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BRIAN FISHER, MONGKOLSERY LIN, SOMSAK ORANKITJAROEN

Results on partial Derivatives of the incomplete Beta
Function

ABSTRACT. The incomplete Beta function B(a, b;z) is defined by

B(a,b;x):/ N1 =)t at,
0

for a,b > 0 and 0 < x < 1. This definition was extended to negative integer values of a and
b by Ozcag et al. Partial derivatives of the incomplete Beta function B(a, b;x) for negative

integer values of a and b were then evaluated. In the following, it is proved that

T In(1 —=x
Bo,l(—l,l;x):—lnl_x _ ( - ) 1
and o
nByi(—n,l;2) = —1In - f - 1n(2n— x) - ; x;
forn =2,3,..., where
gm+n
5amaan(a’ b;x) = Byn(a,b;x).

Further results are also given.

KEY WORDS. Beta function, incomplete Beta function, neutrix, neutrix limit

1 INTRODUCTION

In a change of notation, the incomplete Beta function B(a,b; x) is defined by
B(a, b; x) :/ N1 — ) a, a,b>0, 0<zx<l
0

see Ozcag et al [0].

The following definitions were given by van der Corput [].
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Definition 1.1 A neutriz N is defined as a commutative additive group of functions
v(€) defined on a domain N' with values in an additive group N”, where further, if for some
v € N, v() = for all ¢ € N, then v = 0. The functions in N are called negligible

functions.

Definition 1.2 Let N’ be a set contained in a topological space with a limit point b which
does not belong to N'. If f(&) is a function in N’ with values in N" and it is possible to find
a constant ¢ such that f(§) — c € N, then c is called the neutriz limit of f as & tends to b
and we write N—limg_y;, f(£) = c.

Note that if f tends to c in the normal sense as & tends to b, then it converges to ¢ in the

neutriz sense.

Now let N be the neutrix having domain N’ = (0,z) (0 < z < 1) and range N” the real

numbers, with the negligible functions finite linear sums of the functions

An" e, In"e (A<0, r=1,2,...)

and all functions which converge to zero in the normal sense as € tends to zero.

It was proved, see Ozcag et al. [6] and [7] that

x

B(a,b;z) = N—lim [ " (1 —t)"dt

e—0 €

for all values of a and b and in general

am+n
8am8b"B(a7 b;x) = Bn(a,b;x)
= N—_}lém jt“l In"t(1—t)""'In"(1 —t)dt
for m,n=0,1,2,... and all values of a and b.

Note that B,, ,(a,b;x) is not necessarily equal to B,, (b, a; x).

Note also that if a > 0, then

x

Bpn(a,b;z) =lim [ '™ ¢ (1 —¢)" ' In"(1 —¢)dt

e—0 ¢
for m,n=0,1,2,....

The following results were proved in [2]:

B(0,0:2) = In——, (1)

— X

n—1

B(n,0;x) = —In(l —z) —
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the sum being empty when n =1 and

x U
B(—n,0;x) =1 =12, ....
(n7 71’) n]_—(l: — Z" n )

2 MAIN RESULTS

We now prove the following theorem:

Theorem 2.1

form=1,2,..., where

1s the n—th harmonic number.

Proof. We have

T 1—e
/ tH(1 —t)”ldt:/ (1 —t) " dt
€ 11—z

1—e€ n+1
:/H [1—t +Zt ]

—_

1
=Inz—Ine—In(l —2)+1In(l —¢) — Z_{l 7
( —€)

=1

and it follows that

T

B(0,—n;z) = N—lim [ ¢ '(1—¢)"tdt

e—0 €

"1 1

— N—lim[lne —In(1 —€)] — lim » - [(

— X e—0 E—>0. 1 1

; {1‘ <1—1a:>2} |

Equation (4) follows.

Equation (4) corrects a result given in [6].

1—e)
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Theorem 2.2
Bio(l,—1;2) = (1—x)_1lnx—ln1_x (5)
and
x = (1—x)™"
nBio(l,—n;z) = (1—2)"Inz —In—— — ; et d(n— 1) (6)
form=2,3,....

Proof. We have
n/xlnt(l —t) " dt = /x Intd(l—¢)"
=(1—2z)"lnz—(1—¢)"lne— /90 (1 —t) " dt
and it follows that

nBio(l, —n; ) = N—limn/ Int(1—¢) " 'dt
e—0 e

=(l—2)"Inr —N-lim(1 —€) "Ine— N-lim [ ¢ (1 —¢t)"dt

e—0 e—0 €

=(1—2z)"lnz—-B(0,—n+1;z).

Equation (5) now follows on using equation (1) and equation (6) follows on using equation

(4) forn=2,3,.... O
Theorem 2.3
T In(1 -2z
Bo,l(—l,l;x):—lnl_x— <x )—1 (7)
and
‘ x In(1 — x) . U g
nBo,l(—n,l,ac):—lnl_x— e +izl = (8)
form=2,3,....

Proof. We have

n/ " n(1 —t)dt = —/ In(1 —t)dt™

=e¢"In(l—¢)—z"In(1 —2z) — / (1 — )" dt
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and it follows that
nByi(—n,1;z) = N:_}(i)mn/x 7" (1 —t) dt
=-n"'—2"In(l—z)— B(-n+1,0;7).

Equation (7) now follows on using equation (1) and equation (8) follows on using equation

(3) forn=2,3,.... O
Theorem 2.4
Bor(enr 1) =5 EV (Y |t~y
—n,r+1;2) = ' "In(l —z
oL ’ ~ n—i \i 1—x
n—i—1 _r
x 1
AN 9
Z k +n—z] )
k=1
forn=1,2. . andr=0,1,2,...,n—1, the sum > 1%~ 1”” “ being empty when i =n — 1,

n—1

oy

Boyl(—n, n -+ 1, .Z') =

S

forn=1,2,..., the sum > ;" I “ being empty when i =n — 1 and

n—1 ;
. _ (_1)1—1 r i—n T
Bojl(—n,rjtl,x)—lz: — |, x ln(l—:zr)—l—lnl_x

n—i—1
xr

?v\

n—z
k

r _1 anx
+Z§——n [Z”lnl—x) In(1 —x) E] (11)

i=n-+1 k=1

1

form=12,...andr=n+1,n+2,....

Proof. Integrating by parts, we have

/j £ (1 =) In(1 — t)dt = i(_ly (D

=0

— - ﬂ(r) {xi_”ln(l —z)— € "In(1 —e)+/jt"—”(1 —t)_ldt} , (12)

- 7 —1Nn \1?
1=0

/ t" n(1 —¢) dt

€
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forr=20,1,2,...,n— 1.

Since
) 0 ¢iti—n
GZ_nln(l—E):—Z —,
= 7
it follows that
: —(n—1i) 0<i<n-—1
N—lime ™" In(1 — ¢) = { (=)=, 0sisn-—1, (13)
e—0 0, 1> n.

It now follows from equations (12) and (13) that

T

Boi(—n,7 +1;2) = N—lim [ ¢ " 'In(1 —¢)(1 —¢)"dt

e—0 €
~ (—1) : 1
:Zu(r) {x’”1n(1—x)—|—B(—n+i+1,0;x)— : }
—~i—n\i i—n
r (_1)7;_1 r - nzl _
= " In(1 — 1 —
2o =i \i) |" n(l =) +ng Z R

on using equation (3), proving equation (9).

For the case r = n, equation (12) has to be replaced by the equation

/jt”l(l —t)"In(1 — t)dt = i(—l)i (7;) / £V n(1 — t) dt

— nzl E__lfl (7;) [xi_” In(1 — .:1::) — ¢ In(l —€) + /x (1 —)7! dt}
+(—1Yi[xt1hm1—tyﬁ. (14)

It now follows from equations (13) and (14) that

Boi(—nmn+1;z) =N—lim [ ¢ " 'In(1—¢)(1 —t)"dt

e—0
n—1 i
RaYE)

; 1
: Cﬁ[ﬂﬂﬂml—x%+Bbm+d+1ﬁmﬁ—, }
z’:OZ_n 1 1T—"n

+(=1)"Boa (0, 1;2). (15)

tz— e i 1
/‘fiml—ﬁ E:/m - xae
€ 1

7

Now

)
._.
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and so
T o0 Ii
N—1Ii t In(l—t)dt =—Y = = By1(0,1; ). 16
e_}ém . Il( ) ;ZQ 0,1< ) 7':(;) ( )

It now follows from equations (15) and (16) that

Boi(—n,n+1;z) = ri <;1_):1 (7;)

1=0

7 "In(l —2) +1In . ’

proving equation (10).
When r > n, equation (12) has to be replaced by

/j (1 =) In(1 —#) dt = i(_l)i (:)

=0

:7.1_1 (=1) (7“) [x— In(1 - ) — e In(1 - ¢) + / T t>—1dt]

+ (=1 /x t ' In(1 —t)dt

€

n .Z (=1) (r) [xi_" In(1 —z) — ¢ "In(1 —€) + / 1 —t)7! dt} : (17)

/ t" (1 —¢) dt

€

It now follows from equations (16) and (17) that

xT

Boi(—n,r+1;2) =N—lim [ ¢t Y1 —1)"In(1 —¢t)dt

e—0 €
n—1 i n—i—1
(=)=t - T xF 1
- = n(1 — 2) +1 _ r
Z n—1i \1 7 In( x>+n1—:c Z k +n—z’
=0 k=1
™\ = T’ (=1 (r - 2 ok
— (=" - (1l —2) —In(l—2)— Y —
( >(n>z+z_n() [ n(l - )~ In(1 - 2) k]
since it was proved in [6] that
T n—1 xk
B(n,0;z) =N—lim [ " '(1-t)'dt=-In(1—2)— ) =
e—0 € k
k=1
for n =1,2,.... Equation (11) is now proved. ]

For further related results see [1], [2], [3] and [5].
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LAURE CARDOULIS

Existence of solutions for a system involving the
(2,9)-Laplacian operator in a bounded domain

ABSTRACT. In this paper we study the existence of a non trivial weak solution for a system
involving the Laplacian operator and the g-Laplacian operator in a bounded domain 2 of

RY with sufficiently smooth boundary.

KEY WORDS. (2,q)-Laplacian operator, system, existence of solutions

1 Introduction

We consider in this paper the following system for ¢ = 1,--- ,m,

—Au; — Agu; +w; Ui|q_2ui + 20 aguy = gi, ur, e Upy) 0 S,
{ ! ‘ Zj_l s (S7Q7g>

u; = 0 on O0f).

where  is a bounded domain with sufficiently smooth boudary, Q C RV.

We recall that the g-Laplacian operator is defined by A,¢ = div(|V¢|?2V¢) and we sup-
pose ¢ > 2 in the whole paper. We study the existence of a weak non-trivial solution v =
(up,- -+ ) € W for the system (S, ¢, g) where the variational space is W = (W, %(Q))™,
W, () being the usual Sobolev space endowed with the norm [|¢]|g?() = ([, |[Vo|7)/.
We also denote H = (W;?(Q))™ and |.||w, ||.||z, the norms on W and H (||ul|w =

(S il ) )

We assume throughout all the paper that the bounded functions a;;,w; (for i,5 =1,--- ,m)

satisfy the following hypothesis

Assumption 1.1 i) a;,w; € L®(Q), ai; >0, w; >0 a. e. on Q.

ii) The matriz A = (a;;) is symmetric and satisfies '€AE > 0 for all’§ = (&, ,&n) € R™.
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Note that the above Assumption 1.1ii) is satisfied when the matrix A is a positive definite

one. Introduce now the following functionals for v = (uq,- - ,u,,) € W

Hl(u):Z/ﬂ(|Vui|2+aiiu?+ S aiuu), (1.1)
=1

=Li#i
and

o) = Y /ﬂuvum - wilug]). (1.2)

Since A is symmetric then Hy(u) = >, [o(|Vwil® + agui +237070 o aguju;).

Note that (H;(u))"/? and (Hs(u))'/? define norms on H and W equivalent to the norms ||.||z

and ||.|[w respectively.

We consider different cases for the functions g; : in the second section we deal with g;(., uy, -+,
Up) = h; € W~H9(Q) the dual space of W;*?(Q) with % + & = 1. In the third section, we
define g;(.,uy,+* , Up) := m;|u;|7%u; where the functions m; are bounded and indefinite. In
the fourth section we consider the case g;(.,u1, -, Up) = Afi|u;|""2u; where the functions
fi are still bounded and undefinite, A is a positive real parameter and the coefficient ~ sat-

isfies some hypotheses in which v < q.

In each of the precedent cases, the system (S, ¢, g) will be rewritten under a variational form
with I(u) an adapted Euler functional defined in W and the existence of weak solutions for
the system (.59, ¢, g) will be equivalent to the existence of critical points for this functional
I. In the second and third sections, we will mimimize the Euler functional I using either
standard arguments (cf. Theorem 1.1.2 in [1&]) or the Moutain-Pass Theorem. In the third
section, we will use the principal eigenvalue A\, , , of the g-Laplacian operator associated with

a weight p whereas in the fourth section we will define a characteristic value A\{ (see (4.7)).

Equations and systems with the p-Laplacian have been widely studied for the existence of
solutions or the maximum and antimaximum principles (see for examples |3, 9—13], see also
[11] for the fibering procedure). These last few years, equations with the (p,q)-Laplacian
have been studied (see for examples [1, 6, 15, 19, 21] in a bounded domain and [5] in RY).
Authors study the existence of solutions (sometimes the sign of these solutions and gen-
eralized eigenvalue problems) mainly by minimization of the energy functional either by
standard arguments or the mountain-pass geometry, also by using the method of sub- and
super-solutions. The case of the (2,q)-Laplacian arises in quantum physics (see [2]). A few
systems with two equations have been studied (see for example [10] for a system with two

equations, one with the p-Laplacian and the other one with the g-Laplacian ; see also [20)]
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for a system of two equations with the (p,q)-Laplacian with critical nonlineariries) but as

far as we know, there is no system with n equations for the (2,q)-Laplacian studied yet.

This paper is organised as follows: in section 2, we use standard arguments for minimizing

the functional I when we consider the case where g;(.,u1,- -+ ,uy) = h; € W™H(Q). In
section 3 (in the case of g;(., w1, ,um) = myu|"*y; and ¢ < 2* where 2* = 22 if

N > 2 and 2* = oo if N < 2), first we recall some results of the existence of the principal
eigenvalue for the g-Laplacian operator associated with a bounded weight (and the existence
of a positive eigenfunction associated with). Then we use the Mountain-Pass Theorem in
order to get the existence of a non-trivial solution for our system. Finally in section 4 (when
Gi(y U, Uy) = Afilw|"72u; with 2 < v < ¢ and v < 2* where 2* = f if N > 2 and
2* = 00 if N < 2), first we follow a method introduced by Cherfils-II’Yasov in [7] for one
equation involving the (p-q)-Laplacian operator to define a characteristic value A{". Then
we get the existence of a non-trivial solution by means of global minimization of the FEuler

functional.

2 First case: gi(.,u1,+ -+ ,uUp) := h; € W14 (Q)

In this case the system (9, ¢, g) is rewritten under the following form

{ —Aui — Agu; + wilwi|"Pu; + 30T agguy = hi in Q, (2.1)

u; = 0 on 02,

with h; € W=59(Q) for each i = 1,- -, m. Recall that —A, may be seen acting from W, (1)
into W~ (Q) with § + & =1 by

< =Dy, Y > 4= /Q IVo|92V ¢ - Vo for all ¢, 1) € Wolvq(Q)

(see [¢, 17]) where < .,. >, , denotes the duality mapping between W =14 () and W, ().
Therefore the Euler functional is, for v = (uqy, -+ ,u,) € W,
1
I(u) = §H1( u) + H2 Z < hiyus > g - (2.2)

The result of the existence of solution for the system (2.1) is the following.

Theorem 2.1 Assume that Assumption 1.1 is satisfied and that h; € W19 (Q) for each

i=1,---,m. Then the system (2.1) has a unique solution.
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Proof. The functional I : W — R defined by (2.2) is weakly lower semi-continuous by
the compactness of the embedding of W to (L4(Q))™ and (L*(2))™ and of class C* on W.

Moreover this functional [ is also coercive. Indeed by the Young’s inequality we have

1 /
| <hiyui >q 0 | < [|Rilly—ra @il o) < 2—q||ui|!31,&,q(m + Cllly 1 g

with C' > 0, C independent of u. And since Hy(u) > 0 and Ho(u) > |lullw we get that

1 = /
](u) 2 Q_QHUHW - CZ ||hi||({1/V71,q'(Q)'
1=1

Therefore the functional I has a gobal minimizer (cf.[18, Theorem I.1.2]) and the system
(2.1) has a solution.

Let us prove now the uniqueness of the solution. Suppose on the contrary that there exist
two distinct solutions u = (uy, -+ ,uy,) € W and v = (v, ,v,,) € W for (2.1), so there

exists k such that uj # vg. Since

(I'(u) = TI'(w) - (u—v)=T"(u) - u—T'(W) - u—T(u)- v+ I'(v) v=0,

we have . . .
i=1 Y ij=1"% i=1 7%
- Z/ Vv, - Vu; — Z / Q;jVjU; — Z / (|Vvi|q_2Vvi -Vu; + w¢|vi|q_2v,~ui) =0
i=1 79 i,j=1"¢ i=1 79

and on the other hand

Z/ Vu; - Vu; + Z / a;ujv; + Z/(|Vui|q_2Vui Vo + w;|ug| T2 u;)
=1 Q Q i=1 Q

i,7=1

=3 [wul =30 [ aguu =3 [ (Vul - wiful) <o
i=1 Y Q i=1 7/

1,j=1

So we get

Z/ Vu, . (VUZ — VUZ) + Z / aijuj(ui — Ui) + Z/ |Vui|q_2Vui . (VU, — VUZ)
=1 Q Q i=1 Q

i,j=1

+ Z/le|uz\q2uz(ul — Ui) — Z /Q sz- . (Vul — VU1> — Z /QCLijUj(UJZ' — Ui)
i=1 i=1 i,7=1

- Z/ |Vv,~|q_2Vvi . (VUZ — VUZ) — Z/ wi|vi|q_2v,~(u,~ — 'Ui) =0.
i=1 7 i=1 78
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Thus

Z/ ywi—w,-|2+z/<|w\q2vui— VT 2V0,) - (Vs — Vo)
i=1 78 i=1 7

+ / agj(u; —v;)(u; — v;) + Z/ wi (|| u; — [vi]T%0;) (u; — v;) = 0.
=179 i=1 79

i,j=1

The last equality can be rewritten under the following form with the duality product
< .. >dq

m m
Z < —Aul -+ Avi, U; — V; >o9 + Z < —Aqui + Aq’UZ’, Ui — Vi >q' g
=1 =1

m m
+ Z < aij(u; —vj),u; —v; >99 + Z < w;(Jug 2wy — o] T 20), ui — v > 4= 0.
ij=1 i=1

Moreover a consequence of the strict convexity of the spaces Wy*(Q) and W,(Q) is that
the duality mappings —A and —A, are strictly monotone. So from wuy # vy we get

< —Auk + Avk, U — Vi >22> 0,

and

-1 ~1
< =gt + Bgi e = Ve > ([unllna gy = 10kll5 1 o)) Nlellwpag) = llvellwpag) 2 0

since x — 297! is increasing on [0,00) (and even < —Ajug + Ayvg, up — v >44> 0 from |3,
Proposition 1]).
Thus

m m
Z < —AUZ + A’UZ', Uj — Vi >22 +Z < —Aqui + Aqvi,ui — Vi >q.q> 0.

i=1 i=1
Furthermore, since the function z + |z|?7%z is increasing and w; > 0, we have
m
Z —2 -2
< w@(|u1|q U; — |Ul'|q vi),ui — V; >q',q2 0.
i=1
Finally from Assumption 1.1,
m
E < aij(u]- — vj),ui — V; >2722 0.
,j=1

Therefore we get a contradiction. O]
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Remark: We can generalize Theorem 2.1 replacing the 2-Laplacian operator by the p-

Laplacian with 2 < p < ¢, that for the following system

—Apui — Aqui + wi|ui|q_2ui + Z;nzl QU5 = hz in Q,
u; = 0 on 0f),

and even for

—Apui — Aqui + bi|ui|p_2ui —+ wi\ui|q_2ui -+ Z;nzl Qi jUj = hz in Q,
u; = 0 on 0%,

under the additional hypothesis that the bounded functions b;, ¢ = 1, - - - , m are non-negative.

3 Second case: g;(.,u1, - ,Up) = m;|u;|9%uy;

In this section we assume that

Assumption 3.1 ¢ < 2* where 2* = 22 if N > 2 and 2* = oo if N < 2,

and we rewrite the system (S, ¢, g) under the following form:

fori=1,---,m,
—Aui — Aqui + wi|ui]q_2ui + Z;nzl aijuj = mi|ui]q_2ui n Q, (3 1)
u; = 0 on 9. '
Note that the decomposition with the weights ¢; := m; — w; does not necessarily coincide
with the decomposition ¢; = ¢;1 — ¢;— where ¢;; = max(c¢;,0) and ¢;— = max(—c;,0). Define
now for u = (uy,- -+ ,uy) € W the functional
M(u) = Z/ ], (3.2)
i=1 /9
The Euler functional associated with (3.1) is consequently for u = (uq, -+ ,u,,) € W,
1 1 1
First let us recall the usual weighted eigenvalue problem for the g-Laplacian:
—Ayu = Np|u|9?u in Q, (3.4)
u =0 on 0f),

with a bounded weight function p and a real parameter \. It is said that \ is an eigenvalue
of the g-Laplacian associated with the weight p if (3.4) has a non-trivial solution u which

is called an eigenfunction associated with A. It is well known (see [1]) that if the Lebesgue
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measure of {x € 2, p(x) > 0} is positive, then the first positive eigenvalue A\, , , of —A, with

weight function p is obtained by the Rayleight quotient

fQ |Vul
Jo plule

Moreover, A 4, has a positive eigenfunction ¢, ,, € Cy*(Q) (for some a, € (0,1)). Assume

My, — inf{ cu e W), / plul? > 0}. (3.5)
Q

in this section that

Assumption 3.2 i) Foralli=1,---,m, m; € L=(),

ii) For alli=1,---,m, the real 1 is not an eigenvalue of the g-Laplacian with the weight

Assume also in this section that either Assumption 3.3 or Assumption 3.4 holds

Assumption 3.3 There exists k € {1,--- ,m} such that:
meas{z € Q, (my —w)(x) > 0} # 0 and A\ gmy—w, < 1.

Assumption 3.4 There exist k,1 € {1,---,m}, k # [ such that:

meas{x € Q, (mg —wg)(x) > 0} #0 and A gmy—w, + /(wl — )| 1. gmp—wi|T <0
Q

With @1 qm,—w, the normalized eigenfunction associated with Ai g, —w,-

Note that Assumption 3.4 is satisfed when Ay g, —w, (Mr — wg) +w; —my < 0 a. e. in .
Our aim is to study the existence of a weak solution for the system (3.1) by minimizing the
functional I defined by (3.3). As in section 2, the functional I is weakly lower semi-continous
on W but may be no more coercive so we cannot use standard arguments for minimizing I.
First, we prove that any Palais-Smale sequence is bounded in W and has a strong convergent
subsequence. Then we are able to apply the Mountain-Pass Lemma and Assumptions 3.3 or

3.4 allow us to get a non-trivial solution.
We say that (u,) C W, u, = (t1n, -+, Umn), is a Palais-Smale sequence if it satisfies the
following conditions

|I(u,)| < D for all n € N and |[I'(u,)||w+ — 0 as n — o0 (3.6)

with some constant D > 0, W* being the dual space of W.

Lemma 3.1 Assume that Assumptions 1.1 and 3.2 are satisfied. If (u,) C W, u, =

(Win, s Umn), 18 a Palais-Smale sequence, then (u,) is bounded in W.
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Proof. Let (u,) C W, u, = (U1p, -+ ,Umn), be a Palais-Smale sequence. We want to prove
that (||un||lw)n is bounded or equivalently that (Hz(uy,)), is bounded. But

éHQ(un) ~ I(uy) — %Hl(un) + éM@n) <D+ EM(%) <D+ Clunllpuaye (37)
with C' a positive constant, C' independent of w,, (since the functions m; are bounded in the
functional M (u) defined by (3.2)). So it is sufficient to show that (||u,||(zs(q))=) is bounded.
We adapt ideas from [19]. Assume on the contrary that o, := ||ty (ze(@))m —n—eo 00 (for a
subsequence) and denote v, = iun = (Vin, "+, Umn). From (3.7), we deduce that (||v,|w)
is bounded and from the compact embedding of W into (L%(£2))™ we get the existence of
vo = (Vo1, -+ ,Vom) € W such that (v,) converges to vy, strongly in (L?(€2))™ and weakly in
W (for a subsequence).

e Now we prove that (v,) converges strongly to vy in W. Indeed by taking

OMBES ?(Un — ), we obtain

1 m
— Z / (Vin.V (Vi — v0:) + Qiiin (Vin — V0;))
i=1 7§

ag

I'(up).¢p =

1 m
+— Z / (Vi | Vi V (vin — v0:) + Wilttin] ™ win (Vin — v07))
— Jo

q
n

1 1 &
A Ujn (Vin — Voi) — ——1 M| Win| i (Vi — 03).- 3.8
= 3 [ atntn o) gz 3 [t )69

+ o
gy

But u,, = a,v, so (3.8) becomes

, 1
I'(up).¢p = 2 Z /Q(va-v(vm — 00;) + QiiVin (Vin, — Vi)

m
+ Z /Q(|va‘q2vvm-v(?fm — vpi) + wi|Um|q72?Jm(Um — Vi)
i=1

1 “ _
+ —= Z / @ Vjn(Vin — Voi) — Z/ M| Vi |7 QUm(Um — Vp;)- (3.9)
/O i=1 79

q
«Q =
N R

Note that |7(un).dal < 17'(un) - [ alliw = 17/ ()l =2t [0 — w0l s0

I'(uy).¢0n, —nsoo 0 from (3.6), a;, —psee 00 and (||v,||w) bounded. Moreover, since the
functions a;;j, w;, m; are bounded there exists a positive constant, denoting C' at each step,
such that

\ /Qaijvjn(vm —v0i))| < Cllvjnllz2@)[vin — voill2@) < Cllvnllw lvn — voll o)y
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and therefore
/ ;Vjn(Vin — Vo)) — 0 as n — oo. (3.10)
Q

By the same way, for b; = w; or b; = m;,

- o=t -
I/ bilvin|"*Vin (Vin — v0:))| < C(/ [vin?) (/ [vin = v0il ) < Cllvallfy lvn = voll zayym
Q Q Q
S0

/ bi]vm|q’2vm(vm —vg;)) — 0 as n — oc. (3.11)
Q

Recall that < .,. >, is the duality product between W59 (Q) and W, () with %—Fi = 1.
From (3.9), (3.10), (3.11), we deduce that

1

q—2

m m
Z < — A, Vip, — Vo; >22 + Z < —Ayin, Vin, — Vi >gq—> 0asn —oo. (3.12)
679

i=1 i=1

Moreover we have (see also the proof of Theorem 2.1)

—1 —1
< =D gUin+Ag0i, Vin — Vi >¢q> (Ilvmll‘v’V&,q(Q)—IIUOiII‘V’V&,q(Q))(IlvmIIWg,q(Q)—IIUOiIIWOLq(Q)) >0

(3.13)
and

< —A'Um + AUQZ‘,UM — Vo; >2’22 ||Um — UO/L'H?/V(}Q(Q) > (“U’mHWOl’Q(Q) — H’UOiHWOl,z(Q))2. (314)
From (3.13) and (3.14) we get
-1 -1
0< Z(Ilvmll‘évg,q(m - ||U0iH;I/VOLq(QQ(HvinHWOlvq(Q) - ||U0i||W01’q(Q)>
i=1

m

1
= 0 (lemllwgz = Neoillwg o)’
n =1
1 & -
< i Z < —A?)m,?)m — Voi >>2,2 + Z < —Aqvinavin — Voi >¢'q
an ~ i=1

m m
1
+ Z < AgVoi, Vin — Voi >q'q +W Z < Avg;, Vi, — Voi >22 -

: a4

i=1 i=1
Because the right-hand side of the above estimate tends to 0 as n tends to infinity (from
(3.12) and the weak convergence of (v,) to vy in W) we obtain that for i = 1,---  m,
||Um||WO1,q(Q) — ||U0i||Wg,q(Q) as n — oo and therefore (v,,) strongly converges to vy in W.
e Finally, we prove that vy is a non-trivial solution of the eigenvalue problem of the g-
Laplacian with weight m; — w; for at least one 1.

Let ¢ = (¢1,- -+ , ) € W. Taking #gb as a test function, since u,, = a,v,, we have

1 1 m m
I/(un> _1¢ = ) ZZ;/Q(VUWLV(bZ + jz_;\/gaijvjn(m)

al al
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+ Z /Q(|va|q_2va.V¢i + Wil Vi "0 s — M| Vin| T Vi ).
=1

Letting n — oo, we see that for each ¢ =1,--- ,m,
— A, vg; + w;|ve; |92 v0; = my|vg; |7 20; in
v [voi v [voil v . (3.15)
Voi = 0 on 0f)
Since ||vp||(za@)y» = 1 and (v,) converges strongly to vy in W we get that [lvollw > 1.

Therefore there exists ¢ such that vy; is a weak solution to (3.15). This contradicts Assump-
tion 3.2. O

Lemma 3.2 Assume that Assumptions 1.1 and 3.2 are satisfied. If (u,) C W, u, =

(Uiny -y Umn), 1S a Palais-Smale sequence, then (u,) has a strong convergent subsequence
m W.
Proof. Let (u,) be a Palais-Smale sequence in W, u,, = (41, " , Umn). By Lemma 3.1, the

sequence (u,) is bounded in W. From the compact embedding of W14(Q) into L(Q) we
get the existence of ug = (ug1,- -+ ,uom) € W such that (u,) converges to ug strongly in
(L9(€2))™ and weakly in W (for a subsequence still denoted by (u,)). We want to prove that
|lunllw — |Juollw as n — oo and we proceed as in the proof of Lemma 3.1.

Since |I'(uy).(un — ug)| < || (un)||w(

lun||lw + [Juollw) we deduce that

I'(uy).(up, — ug) — 0 as n — oo. (3.16)
But
I (un - uO Z/ vum : uzn qu + Zamu]n Uip — qu))
+ Z / (IVUin| " Vi V (Ui — o) + (Wi — ) [tin] ™ *in (win — ug;)).-
— Jo
As in Lemma 3.1, denoting b; either w; or m;, we have for ¢,5 =1,---,m,,

/ bi|um|q_2um(um —ug;)) — 0 asn — oo,/ @ijUjn (Win, — ug;)) = 0 as n — oo, (3.17)
Q Q

From (3.16) and (3.17), we get that
Z < =AUy, Ui, — Ui >22 + Z < =AU, Ui — Ug; >¢7g— 0 @8 1 — 00.
i=1 =1

Moreover we have

m

Z (lin e gy = N0l 10 ) (ttin g oy = luoillzoey)
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m

+ Z(HUinHWOl’Q(Q) - ||U0i||W01’2(Q))2

=1

m m
< g < =AU, Ui, — Ugi >22 + E < =D gUin, Uin — Ugi >q' g
i=1 =1

m m
+ Z < AqUOiauin — Up; > ¢ q + Z < Aui,um — Ug; >2,2 -

i=1 i=1
As in Lemma 3.1 we deduce that for i = 1,--- ,m, HumHWOl,q(Q) — HuOiHW&,q(Q) as n — 00
and therefore (u,,) strongly converges to uy in W. O

So we can state the main result of this section

Theorem 3.1 Assume that Assumptions 1.1, 3.1 and 3.2 are satisfied. Assume also that
either Assumption 3.3 or 3.4 holds. Then the system (3.1) has a non-trivial solution in W.

Proof. The C'-functional I satisfies the Palais-Smale conditions and I(0) = 0.
e First, we claim that there exist positive constants p* > 0 and § > 0 such that [(u) > § for

any u = (uy,- -+ ,uy,) € W satistying |Ju|lw = p*.
Let w = (uy, -+ ,uy,) € W. Put p = ||u|lw and note that Hy(u) > ||u||% and Hy(u) > p?.
Moreover, since ¢ < 2*, for i =1,--- ,m,

1 1
|/mi|ui|q| < (/ |mi|r)1/r(/ |ug| )Yt with = + = =1 and s := gt < 2.
Q Q Q ot

From the continous embedding of W'2(Q) C L*(Q) we deduce the existence of a positive

constant Cy such that | fo mylwi|| < Cillui|[f1,2(q)- Thus

[M(u)] < Chllully

and o0
).

Recall also that there exists a positive constant Cy > 0 such that ||u||g < Cyflu|lw for all
uec W X

Therefore if p < p* := & (ﬁ)ﬁ , then 1 — %Hu”%{2 >1-— %(Cgp)q_Q >0 and

1 1
Iu) > g+ gl - =

e Assume here that Assumption 3.3 is satisfied with & = 1 for simplicity.
Let ¢1 4.m;—w, be the normalized eigenfunction associated with Ay m,—w, (i. €. be such that

Jo(m1 — w1)[é1,g.my—w, |2 = 1, we may choose such ¢ g m,—w, because the equation (3.4) is
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homogeneous). Denote ®, = (¢1 4my—uy;0,---,0) and take R sufficiently large such that
|R®,|lw > p*. We have from (3.4) and (3.5)

R? R
H(R®,) = S (@) + [ (90100l + (101 = 100 61 gm0
R? R
= - Hi(®g) + v /(Al,q,mlwl(ml —wi) + w1 — m1)|P1gmy—w, |
Q

S0, since Ai gmy—w;, < 1,

2 q

(D) = - Hi(®) 4~ g — 1) <0
for R sufficiently large. Therefore we can apply the mountain-pass theorem to deduce that [
has a non-trivial critical point which is a non-trivial weak solution of the system (3.1).
e Assume now that Assumption 3.4 is satisfied with £k = 1 and [ = 2 for simplicity.
Denote again @1 g m,—w, the normalized eigenfunction associated with Aq ., —w, such that
fQ(ml — w1)|®1,4my—uws [T = 1 and denote here ¥, = (0, ¢1 gmy—us;0,---,0). Take R suffi-
ciently large such that ||RV,||w > p*. We have here

R? R q q
I<R\I’q) = 7H1(\1jq) + 7 Q(|v¢1,q,m1—w1| + (w2 — m2)|¢1,q,m1—w1| )
R? R1
= 7H1(\DQ) + ? /(Al,q,ml—wl (ml - wl) + Wo — m2)|¢1,q,m1—w1 |q'
Q

From Assumption 3.4, we get that [(RY,) < 0 for R sufficiently large.Therefore, as in the
precedent case, we apply the mountain-pass theorem and deduce that I has a non-trivial

critical point. O

Remark: Asin section 2, we can generalize Theorem 3.1 replacing the 2-Laplacian operator

by the p-Laplacian with 2 < p < ¢ for the following system

—Apui — Aqui + bi|u,~|p’2ui + )\wi|uz~|q’2ui + Z;nzl Qjju; = /\mi|ui|q’2u,~ in Q,
u; = 0 on 01,

under the additional hypotheses that the bounded functions b;, 7 = 1, --- , m are non-negative
and A is a real parameter. Then the hypothesis ii) in Assumption 3.2 is replaced by A is not an
eigenvalue of —A, associated with m; —wj for each ¢. Moreover the hypothesis A\ 4, —w, <1

in Assumption 3.3 is replaced by A1 gmy—w, < A
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4 Third case: ng(.,’u,l, ce ,’U,m) = )\fi|u,~|""2u,;

In this section we rewrite the system (S, ¢, g) under the following form:

fori=1,---,m,

{ —AUZ — Aqui + wi|ui|q*2ui + Z;nzl AijUj = )\fi|ui|7*2ui in Q, (4 1)

u; = 0 on Of).

We assume throughout all this section that the indefinite bounded functions f; and the
coefficients v and ¢ satisfy the following hypotheses

Assumption 4.1 i) 2 <y <g,
ii) v < 2 whereZ*‘:]\Q[—]_V2 if2< N and 2* = > if 2> N,
iii) For eachi=1,--- ,m, f; € L>(Q) and meas{z € Q, fi(x) > 0} # 0.

We also define the functionals .
Flu)=>)_ / filwi|” (4.2)
i=1 7

and

1 1 A
I\(u) = §H1(u) + —Hy(u) — —F(u) (4.3)

q Y
where H; and H, are respectively defined by (1.1) and (1.2). We recall that we study here
the existence of a weak non-trivial solution u = (uy,--- ,uy,) € W for the system (4.1) with

respect to the real positive parameter A and that the existence of weak solutions for the
system (4.1) is equivalent to the existence of critical points for the Euler functional I). The
main result is the existence of a weak non-trivial solution for the system (4.1) associated
with A > Al where \] is defined by (4.7). For the first part of this section we follow a
method developed by Cherfils-1I"Yasov in |7] for one equation with the (p,q)-Laplacian oper-
ator. This method is based on proving the existence of solution for A = A" then on applying
the mountain-pass theorem for A > Af. Although we also could apply the mountain-pass

theorem for our case, we will use in fact standard arguments to minimize the functional .

In section 4.1 we present some preliminary results: we define A and we prove the existence
of a solution for the system (4.1) for A = A\{. The section 4.2 is devoted to the main theorem

of the existence of a solution for the system (4.1) associated with A > A\{.

4.1 Some preliminaries results

As in [7] we define for A > 0, t > 0 and u € W, I(t,u) = I,(tu).
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Lemma 4.1 Assume that Assumptions 1.1, 4.1 1), 4.1 iii) are satisfied. For given u in

: f t,u) =0
W, u # 0 such that F'(u) # 0, the unique solution (t(u), A(u)) of the system At u) =
8t2 [)\<t U) =0
s given by
y—2\7 (H, (u)> = Hy (1) Hy(u) =
t(u) = —— >0, MNu)=0C 4.4
() (q—v) (Hg(u) (u) = Cas F(u) (44)
with
q—" q—2
a=—-— (C,,= 4.5
—2 T -2 )
S ) 0
Proof. The system (5) %2 A is equivalent to the system
tH1<U)+tq_1H2( ) AT 1F< ) =0
Hy(u) + (¢ = D2 Hy(u) = Ay = )72 F(u) =0
and to the following system
Hy(u) +t972Hy(u) — M 2F(u) =0
Hy(u) + (¢ — D)t 2Hy(u) — My — D 2F(u) =0
Therefore
(q —2)t" 2 Hy(u) — Ay — 2)t7 2 F(u) = 0. (4.6)

Note that the system (S) is not solvable in the case where u € W, u # 0 satisfies F'(u) = 0
(since if u # 0, then Ho(u) # 0 and from (4.6) we deduce F(u) # 0).

We deduce that
(¢ — 2)t"*Hy(u)
(v =2 2F(u)

A:

Replacing A by % in Hy(u) + t72Hy(u) — AX772F(u) = 0, we get that

a2 = (= §>Z;EZ) And we obtain (4.4) associated with (4.5). O

Thus we can define the following characteristic points (recall that F' is defined by (4.2))

AT = inf{\(u),u € W, F(u) > 0} and \| = i AT (4.7)

2aqlfa

Lemma 4.2 Assume that Assumptions 1.1 and 4.1 are satisfied.
We have 0 < A < AT,
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Proof. Let u = (uy,--- ,umn) € W be such that F'(u) > 0.

First from v < 2*, let (t l) be such that v < ¢ < 2* and + + 2 = 1. Since Wy*() C L}(Q)
with a continuous embedding and since the functions fl are bounded, there exist positive
constants still denoting C at each step and depending on some Sobolev constants, such that

fori=1,-

| / A< A0 Bl < Ol < Ol

Then
F(U) S CHl(U)W/Q.

By the same way, from v < ¢, let s = % and 7 be such that % + % =1.

Then we have

[ < ml DY 1l < Ol < Clluliy g,

and
F(u) < CHg(u)V/q.

Therefore there exists a positive constant C’, independent of u, such that

2 q(1—a)

Hy(uw)® Hy(u)t= S C,quF(u)sF(u) o

=GRy 2T )

=C'Cqpy
since 2% + q(l =) — 1. Thus A} > 0.

Finally we prove that A < A\f.

Indeed note that A > A{ & 5z Al > Af & (3)77% > (§)72

Denote = ‘15—2 > 0and n = 5= 2 > 0. Since 2 < 7 < ¢ we have 1 > 7. Moreover the function
f defined by f(z) = (1+ x)l/“":, is strictly decreasing on (0, 00). Then (14 p)t/* < (1+n)Y/".
And we get that (2)772 < (3)972. So A] < A{. O

We obtain now the following result that will enable us to get the existence of a non-trivial

solution for the system (4.1) associated with A}

Proposition 4.1 Assume that Assumptions 1.1 and 4.1 are satisfied. Assume that u =
(ur, -+ ,uy) € W satisfies F(u) # 0 and N(u) = 0 (i.e. w is a critical point of \(u)).
Then 4 = (dy,- -+ ,Uy) € W is a non-trivial solution of the system (4.1) associated with
A= gag—aA(u) where for all i = 1,-- m, 4; = Tu; and * = (%)q—%t(u) > 0. Moreover
I(3) = 0,
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Proof. Let u = (uy,--- ,uy) € W which satisfies F'(u) # 0 and X (u) = 0.

For all test function ¢, we have

oA

So .
2C o(Hy(u)*  (Ho(u)) = *(F(u)) ™! /Q(Vul Vo +anui¢+ Z ayju;Qd)
j=2
+qCy5 (1 — ) (Hy(w)* (Ha(u)) ™ (F(u)) ™ /(Wullq_QVul Vo + wiug |70 9)
Q
—WCq,wa(Hl(U))Q(H2(U))1_Q(F(U))_2/Qf1|U1|7_2UJ1¢ =0.
And .
H o &
ZCq;yOé (H;EZ;) /g;(VUl : VQb + Gnul(b + ]; CL1jUj¢)
+qCqy(1 — a) (Z:EZD /Q(‘Vuﬂq_zVul Vo + wi|u |72 u10)
—A "Puip = 0.
(w1 [ il
Define 4; = tu; for i =1, ,m, s >0 and H(u) = Z;EZ% Then

2C, o(H(u))* s / (Vi - Vo + aning + Z a1;;)
Q

=2
+Cq77(1 - a)(H(u))@qsq—l /(|Vl[1|q_2Vu~1 . V¢ + w1|dl|q_2d1gb)
Q

—/\(U)Wsw_l/f1|d1|7_2131¢ = 0.
Q

And equivalently

QCq’W(X(H(U>>a715277 / (le : V(z) + Cln’lfl(b + Z (lu”lfj(ﬁ)
Q

j=2
£ (1 = a)(H(w)gs™™ / (V@[T - V6 + wi i |20, 0)
Q

—)\('LL)’}//Qfly’le_zdeS = O

Multiplying this last equation by 2aq+_a and denoting \ = QQqVI_Q)\(u) we get

2(q — ) = 2 ~ ~ - -
(m) S /Q(Vul : V(b + a11U1¢ + Z CL1jUj¢)

=2
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WL

q_fg q—" ~ 1q—2 ~ ~ 1q—2,~
25— ) ) [ (92 - Vo wn i)

—5\/ fild i = 0.
Q

1

Choosing s = (%) " Wwe obtain

/(VU} . V(b + a11u~1¢ + Z CLUQZJ‘QS) + /(|V’L[1|q_2V’L[1 . V¢ + IU1|U~1‘q_2U~1¢)
Q

j=2 @

—X/jumnﬂm¢:0.

Q

Doing the same for 4;, i = 2,--- ,m, we get that & = (u1,-- - ,,,) is a weak solution of (4.1)
associated with \.

Now we prove that I5(a) = 0.

Recall that @ = 1u and A= gag—aA(u). Then we have

_ Hi(u) . Hy(u) B Cq7,yH1(u)aH2(u)1fa.

I;(u) =
A( ) 252 qsq 20‘(]1_0‘87
Denoting r = cq,szl(gzzc:g;(u)l—a7 since £ = (g)q%t(u) >0 and a = 1= we get

Ii(a) =

o Gm) &) e o (C) (%)O‘(t(u))q—”—l].

But t(u) = <;2>qj <Hl(“)>qf2 > 0and C,, = (L SO

Ha(u) q—y)(y=2)1-@

. e
I (@) = L Z_ 1] =o.
5 () T[q_2+q_2 } 0

Proposition 4.2 Assume that Assumptions 1.1 and 4.1 are satisfied and
0 < XA < AT. Then the system (4.1) has no non-trivial solution in W associated with .

Proof. Assume that 0 < A < Af. Assume also that the system (4.1) has a non-trivial solu-

tion w = (uy,- -+ ,uy,) € W associated with A. Then we have
Hi(u) + Ho(u) = AF(u). Note that this is impossible if F'(u) < 0.
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Therefore assume now that F'(u) > 0.
Recall that I)(t,v) = I)(tv) = %Hl(v) + %HQ('U) - %F(U) for all t > 0 and v € W. We have
%fk(t, v) = tHy(v) + t7 ' Hy(v) — A" F(v) and in particular, since u is a weak solution of

(4.1), note that
8

)—[j\(u)-ﬁu:&

Dy((fll;
[[ull
Moreover we have %]}(t, v) = 7R\ (¢, v) with
Ra(t,v) = 27 THy(v) + t7 7 Hy(v) — AF(v).

Let v € W be such that v # 0 and F(v) > 0. Note that from Lemma 4.1 we have
Ry (t(v),v) = 0.

Moreover we can prove that Ry(t,v) > Ry (t(v),v) for all ¢ > 0.

Indeed let f(t) = t* 7H(v) + t% 7 Hy(v). The function f admits a global minimum on #(v)
on (0,00) so f(t) > f(t(v)) = (HlT(”))a <111T2T(;’)>1_a > (0. Therefore Ry(t,v) > Ry(t(v),v) for
all ¢ > 0.

Finally since A < AT < A(v), we get that Ry(t,v) > Ryu(t,v) for all ¢ > 0. Thus
Ry(t,v) > Rx(t(v),v) > Ry (t(v),v) = 0 and %f,\(t,v) = %_f,\(tv) > ( for all t > 0.

) v)
So, choosing t = ||u|| and v = ﬁu we get a contradiction since %f)\(HUH, mu) =0. O

Now we obtain a minimizer for A].

Proposition 4.3 Assume that Assumptions 1.1 and 4.1 are satisfied. There evists v =
(v1,++ ,um) € W such that M(v) = AT.

Proof. First note that A(tu) = A(u) for all ¢ > 0 and u € W.
Define #(u) = 1 for u € W\ {0} and note that

((H1(u))™(Ha(u)'~ @)%

(Hy(H(u)u)” (Ha () = 1.

Therefore we can derive that
AT = inf{\(u),u € W such that F(u) > 0 and H;(u)*Hy(u)' " = 1}.

Then we consider a minimizing sequence (v,) of Af.
We have v = 2a + ¢(1 — ), so

17
vall% = Noal% [val/ 5

and since W C H with a continuous embedding, there exists a positive constant C' such that

1—
[oallr < Cllvall2 JJoall i,
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But H, and H, are equivalent norms respectively in H and W so we get that
vl < C(Hl(Un))a(H2(Un))l_a =C

(for a positive constant C'). We deduce that (v,) is a bounded sequence in H. By the com-
pact embedding Wy *(Q) € L7(Q) (for v < 2*), we get the existence of v = (vy, -+ ,vp) € H

such that (v,) converges to v, strongly in (L7(€2))™ and weakly in H (for a subsequence).

Afterwards we prove that F(v) > 0, v € W and since H; and H, are weakly lower semi-

continous in H and W respectively, we get that A\(v) = A].

Indeed, since F' is a continuous function and F'(v,) > 0, F(v,) —n—e0 F(v), we have F(v) >
0. Moreover, if F(v) = 0, then A(v,) = <2 —, . 0o. This contradicts A(vy) —noe A

F(U,Z)
So F(v) > 0 and v # 0.

Now we prove that v € W. Recall that (v,) is a bounded sequence in H and that (v,)
converges to v # 0 strongly in (L7(€2))™. So there exists a positive constant C” such that
|vnll(zv@pm = C" > 0 for n large enough. Therefore, from the continuous embedding
H C (L7(Q2))™, we get that ||v,||g > C" > 0 for n large enough.

Finally from |Jv,||g > €' > 0 and ||v, |2 [lo]|l ¢ < € we obtain that (v,) is a bounded
sequence in W. Therefore (v,,) admits a subsequence, still denoted (v,,) such that (v,) con-
verges to v strongly in (L7(2))? and weakly in W. Thus v € W.

Finally we prove that A(v) = A{.

From the weakly semi-continuousness of H; and H, respectively on H and W we have

Hy(v) <liminf Hy(v,) and Hy(v) < liminf Hy(v,,).

But A(vn) = FC(Z,Z) o (v”;)(ng(vn))l_a —nsoo AT . Passing to the limit inf as n tends to
a j et
0o we get that A} > Cexh (UQ(U()HQ(”)) = A(v). We deduce that
Av) = AT
This concludes the proof. O

Contrary to [7], we are not able to prove that the minimizer v is non-negative because of the
coupling terms a;;v;v; in Hy(v). Finally combining Propositions 4.1 and 4.3, since v (defined
by Proposition 4.3) is a critical point of A(u), we derive the existence of a non-trivial weak
solution u™ = (uf,--- ,u}) for the system (4.1) associated with A\]. This is the following

result
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Proposition 4.4 Assume that Assumptions 1.1 and 4.1 are satisfied.

There exists u™ = (uf,--+ ,u}) € W a non-trivial solution for the system (4.1) associated

with . Moreover L+ (u") =0 and F(u™) > 0.

Proof. From Proposition 4.3 we have A\(v) = A} = inf{\(u),u € W, F(u) > 0}. Thus v is

a critical point of the function A on W. From Proposition 4.1 we derive that there exists

a non-trivial solution u®™ = (uf, - ,u}) of system (4.1) associated with g A(v) = A
where for all i = 1,--- ,m, uj = 1v; and : = (%)q%t(v) > 0. Moreover from Proposition

4.1, I+ (u") = 0 and from Proposition 4.3, F(u") = LF(v) > 0. O

4.2 Main result

Theorem 4.1 Assume that Assumptions 1.1 and 4.1 are satisfied. If X > X[, then the

system (4.1), associated with X, admits a non-trivial solution in W.

Proof. Even if we could follow [7] for proving this result using the mountain-pass theorem, we
use here standard arguments by global minimization of the C*'-functional Iy. Note that I is
weakly lower semi-continuous by the compact embedding of W into (L4(Q))™ and (L*(2))™.

Moreover I is coercive: indeed for any u € W,

Hs(u) — éF(u)

1
Li(u) > =
)\<) q Y

Since |F(u)| < C||ul|{; with C a positive constant, we get that

1 ACq _
B 2 Tl (1 - THuW) |

Thus I, is coercive. Furthermore from Proposition 4.4, we have I+ (ut) =0and F(ut) > 0.
Finally from the hypothesis A > A", we get that I(u®) < I s (") = 0. Therefore we deduce
that I, has a non-trivial critical point which is a non-trivial weak solution of the system
(4.1) associated with . O

Remarks: We can get the same results for a larger class of coefficients, assuming that
a;j, w;, f; € L"(2) for some r > 1 as in [7]. But we have not been able to adapt this method
for a system with a (p,q)-Laplacian operator (with p # 2) and even for a non-symmetric
system with a (2,q)-Laplacian operator. However in the particular case where the matrix A
is not symmetric and has the following form: A = (a;;) with aj; = Kay; for j =2,---,m
for some positive constant K > 0 (K independent of j) and a;; = aj; for ¢,j > 2, we can

generalize all the above results. Indeed we introduce the diagonal matrix D = (d;;) with
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diy1=K,dj;=1fori=2,--- ,mandd;; =0 if 7 # j. We replace the functionals H;, H, and
F (defined before by (1.1),(1.2),(4.2)) by

:id“/ |vuz|q+wz’uz ) de/fllul )
=1
Zd“/ |VUZ —l—amu + Z az]u]uz)

J=1,i#£]5
i=1 Q &

Therefore if we assume that the matrix DA satisfies the following hypothesis *¢ D AE > 0 for
all '€ = (&1, -+ ,&n) € R™, we still derive that the Euler functional I, defined by (4.3) (with
the new functionals Hy, Hy and F) is associated with the system (4.1) and the existence of
weak solutions for the system (4.1) is equivalent to the existence of critical points for 1.
Finally due to the coupling term of system (4.1), note that we just obtain the existence of a

non-trivial solution in Theorem 4.1 contrary to 7] where a non-negative solution is obtained.
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HARRY POPPE

Ascoli-Arzela-Theory based on continuous
convergence in an (almost) non-Hausdorff setting 2

1 Introduction

We start with the paper [!] and thus come back to continuous convergence and to the
characterization of compactness with respect to this convergence structure for the space
C(X,Y) of continuous functions, where X and Y are topological spaces. More generally
we can use for X,Y convergence spaces, as was done for instance in [11] and [15]. But in
the first paper of this title X and Y were topological spaces and we will continue with this

assumption.
What is the aim of our paper?

1. In the main theorems [15, (3.24), (3.27)], |1, 33] and corollary [I 1, 10] necessary and
sufficient conditions were given to ensure that H C C(X,Y) is relatively compact
w.r.t. continuous convergence. Here, as a corollary, we characterize compactness of

H.

2. In the papers [11], [I] not provided examples which show that the assumptions in our

theorems (for instance that Y is Hausdorff) we cannot omit.

3. It is known for long time that the important notion of equicontinuity can be char-
acterized using the canonical map as used in duality theory (embedding in a second
dual) ([7], and [15, theorem 4.36]). In the paper [3] and especially in the book [12] this
approach was extended to include even continuity too. But the two Ascoli-Arzela the-
orems ([12, (13.15), (13.21)]) based on this approach are not correct. We will show this

by an instructive counter example. And we will give some comments for this situation.
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2 Compactness in (C(X,Y), c-lim)

We will use the following notion of relative compactness: Let X be a topological space, then

A C X is called relatively compact iff for each ultrafilter 7 on X,
Aer=3dzeX :m—x. (seelll],[3])

We still need a lemma.

Lemma 2.1 Let X be a topological space, Y a Hausdorff topological space; let 1 be a
topology (im a convergence structure) on C(X,Y) with 7, < n (7,-lim < lim). If H C
C(X,Y) is n-compact, then H is T,-closed in Y~ .

For a (simple) proof see lemma |3, theorem 3.1].

Now [, theorem 33] states: If X, Y topological spaces, H C C(X,Y), H # () and we consider

for H the two conditions:
() Ve € X : H(z) = {f(x)|f € H} is relatively compact.
(8) H is evenly continuous.
then the following holds:
1. Let X be Hausdorff; H relatively c-compact = («), (3).

2. Let X be a Ts-space, (a),(8) = H is in (C(X,Y), c-lim) relatively compact.

Theorem 2.2 |[Corollary of |1, theorem33]| Let be X, Y topological spaces, H C C(X,Y);

for H we consider the conditions:
(o) Yz € X : H(x) is relatively compact
(B) H is evenly continuous

(v) H is in YX7,-closed.

Then hold:
1. Let Y be Hausdorff, H is ¢-lim-compact = («), (8), (7).
2. (o), (B),(v) = Hisin (C(X,Y), c-lim) compact.
Proof. 1. H c-lim-compact in C(X,Y) = H is c-lim-relatively compact; then follows

«), theorem 33. Now since 7, < c¢-lim holds in ,Y), lemma 2.1 yields
(), (B) by th 33. N i » lim holds in C(X,Y), 1 2.1 yield

condition (7) too.
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2. By the Tychonoff theorem: (o) => H is 7,-relatively compact in Y, hence H is
T,-compact in Y* by (v); H C C(X,Y) = H is in C(X,Y)7,-compact too. Now let
7 be an ultrafilter on C(X,Y) with H € 7: we find g € H : 1 —% ¢, but then follows:
m — g by (3) and by [1, theorem 31]. Hence H is in C(X,Y) c-lim-compact.

3 Examples

For the construction of our examples we need a result of S. Mrowka which we found in [0]

and a corollary of this result.

Proposition 3.1 Let (X,7) be a Hausdorff topologigal space, where of course T means
the system of all open sets of X; let (A;)ier be a net in 2%, 2% is the set of closed sets of X .
Then (A;) has a subnet Kuratowski-Hausdorff-converging in 2°X.

Proof. We know: a net(B;) (from 2%) converges iff L,B; C L;B; holds, meaning:
Vee X,VGe€T:xe€Gand GNB; # )

for all i from a confinal set of I it follows that eventually G N B; # 0, since {G € 7|x € G}
is a basis of the neighborhood filter U(z). Here by Ls, Li we denote the limit superior and

limit inferior respectively.

Now we consider the two-point space {0, 1} provided with discrete topology.

1, ANG#0

Viel: letbe f; € {0,1}7 : VG € 7: f;(G) =

Obviously, the map f; — A; is injective.

{0,1}7 with pointwise topology 7, is compact by the Tychonoff theorem, and hence for (f;)
there exists a subnet (f;,) and a f from {0,1}" such that f;, 5 f. Now we want to show
Ls(A;,) C Li(A;,) : Y(z,G) € X x7:x € Ls(A;,) and = € G: there exists a confinal subset

K, C K such that Vk € Ky : A;,, NG # ()

implying Vk € K : f;, (G) = 1. We assume that f(G) = 0 holds, {0} is open and for our net
(fi )kex holds: f;, (G) — f(G) implying eventually f; (G) = 0, yielding a contradiction
because K is kofinal in K and Vk € K; : f;, (G) = 1.

Hence we have f(G) = 1; now f; (G) — f(G) = 1 and {1} is open implies: eventually
fi,(G) =1 and thus eventually A; NG # 0 showing that = € Li(A;,).

Corollary 3.2 Let X be a Hausdorff topological space, F the Sierpinski-space with open
sets: 0,{0},{0,1} = F. Then (C(X, F),c-lim) = C.(X, F) is compact.
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Proof. Let X4, be a net from C(X,F'), meaning that all A; are closed sets in X, hence
Vi e I: A; € 2%. By the proposition 3.1 (A;) has a subnet (A;, ) converging to a set A € 2%,
Hence we get LsA; = LiA;, = A, LsA;, = A shows:

Xa, —Xa in C(X,F),
hence we found a subnet converging continuously to y 4.
Thus C.(X, F) is compact.

At first we show that lemma 2.1 does not work if Y is not Hausdorff.

Example 3.3 Let be X = R, the reals with Euclidian topology and F' the Sierpinski-space.
By corollary 3.2 (C(R, F), c-lim) is compact; the pointwise topology 7, is splitting and thus
Tp-lim < c-lim.

But by example [15, (2.16) (b)] Cc(R, F) is not closed in F*.

The basic result that for conjoining topologies the (relative) compactness of H C C'(X,Y)

implies that H is evenly continuous is well-known (|10, chapt. 7, theorem 20[; [!, theorem
32; [15, theorem 3.21]).

For a concrete formulation we take here |1, theorem 32]:

Let X be a topological space, Y a Hausdorff topological space and let H C C(X,Y) C YX.

Let lim be a convergence structure for C'(X,Y’) such that
1. Hisin (C(X,Y),lim) relatively compact
2. lim is conjoining for C(X,Y)

Then H is evenly continuous.

In theorem [15, theorem (3.21)] X is a convergence space and Y is a Hausdorff pseudotopo-

logical convergence space.

Our next example shows that we cannot omit the assumption that Y is Hausdorff.

Example 3.4 We use the same space as in example 3.3. Again we have a space Y = F
which is not Hausdorff. We have here H = C(R, F') and the convergence structure lim for
C(R, F) is the continuous convergence: lim = c-lim; ¢-lim is conjoining for C(R, F') and
C.(R, F) is compact. We will show that C'(R, F') is not evenly continuous. R and F are first
countable spaces and hence by [15, theorem 3.18] we can use sequences instead of filters or
nets to characterize even continuity: Forn € N,n > 1let A, = [%, 1} C R and X4, denotes,
as usual, the characteristic function of A,. For 0 € R we find X4, - 0€ F, - - 0€R.

Now we assume that C(R, F) is evenly continuous; then follows X4, (1) — 0 € F; since {0}
is open in F there exists ng € N: Yn > ng: Xa, (%) =0eF,butVne N;n>1:Xy4, (%) =

1 € F, a contradiction.
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Remark 3.5 Example 3.4 of course works for assertion 1 of theorem 2.2 too. Since
Cc(R, F) also is relatively compact and c-lim is conjoining our example shows that we

cannot omit in assertion 1 of [, theorem 33| that Y is Hausdorff.

We consider a nice topological space Y, meaning that Y is at least Hausdorff and a topology
T for C(X,Y). The fact that H C C(X,Y) is 7-compact must not imply that H is evenly
continuous if 7 is not conjoining for C'(X,Y). We will explain this situation by an example.

As concrete topologies 7 we consider the pointwise topology 7, and the uniform topology 7,,.

Example 3.6 We use an example from classical analysis of a sequence of functions from

C([0,1],R) : Y(n,2) € (N = {0}) x [0,1] : fo : fu(z) = ﬁ,ﬂ) Va € [0,1] 1 folz) =0.
then holds:
1. fo -2 fo

2. (fn) does not converge uniformly to fj

Proof. 1. ¥n,n>1: f,(0) =0— 0= fy(0);
Vo € (2,1]: 12 <1 = [ful = fo = 255 < L+ 1 =0, hence |, (x) — fo(z)| = 0
for n — 4o0.

2.Vn>1:2=21¢€(0,1 and f, (1) = 3. But then (f,) cannot converges uniformly to
f() on [O, ]_]

Now let be H = {f,|n > 1} U{fo} C C([0,1],R).
Then holds:

1. H is Tp-compact

2. H is not evenly continuous

3. T, is not conjoining for C([0, 1], R).

Proof. 1. is obvious

2. (fn) does not converge continuously to fy : [0, 1] is compact (and Hausdorff) implying

that then c-lim = 7,-lim, yielding that f,, — fy uniformly, a contradiction.

If we assume that H is evenly continuous then f, LN fo = fn — fo by the basis

[1, theorem 31|, a contradiction.

3. If 7, is conjoining then c-lim < 7,-lim since c¢-lim is splitting (and conjoining) for

C([0,1],R) implying f, 2y fo = f1 =5 fo, a contradiction.

Finally, we will show that assertion 2 of theorem 2.2 is not true if condition () is not fulfilled.
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Example 3.7 Let be X =Y = R we consider the sequence (f,), n € Nyn > 1: f, :
fo(x) = 1z, Vo € R; again let be fy: Vo € R: f(x) = 0, hence Vn € N: f,, € C(R,R).

H = {fu|n € N,n > 1}; for fixed z € R : H(z) = {£z|n € N,n > 1} is bounded and hence
relatively compact in Y = R. Thus condition («) holds for H.

Moreover let be z € R;
V(s,n) € (07 +OO) X (N - {O})

let be 6 = ¢ and y € Us(x) : | fuly) — fu()| = |2y — La| = Ly — 2| < |y — 2| < &; hence H is
equicontinuous on R which implies that H is evenly continuous showing that condition ()
is fulfilled too.

We see at once that f, —2» fo and even f,, — fy hold. H U {fy} is 7,-compact; we have
fod Hand f, # f¥V(m,n) e NxN,m#£n,m>1n>1, f, = f, in C(R,R) =
fn LN fo in R®: each 7,-neighbourhood of fy in R¥ contains infinitively many functions f,
implying that fy is a 7,-cluster point of H. Thus H is not 7,-closed in R® and hence not
T,-compact since Y = R is Hausdorff. H C C(R,R) = H is not 7,-compact in C(R,R)
implying that H is not ¢-lim-compact in C'(R,R) since 7,-lim < ¢-lim holds.

4 Duality and the Ascoli-Arzela theorems
In the introduction we mentioned that the equicontinuity of a subset H C C(X,Y’) can be

characterized by embedding of X into a function space using the canonical map. In [%] this

approach was extended to include even continuity and also the topological equicontinuity of

Royden.
At length we find it in the book [12]. We want to consider here equicontinuity and even
continuity. In [2], [1] and [5] R. Bartsch and I developed and studied a general duality system

(XY, X4 X% J. X —» X%

where X7 is the first dual space of X with respect to Y, X% is the second dual space of X

w.r.t. Y and J denotes the canonical map as is known from classical duality examples.

And we can include these characterization of equicontinuity and even continuity into this

general scheme:

Let X, Y be topological spaces and H C C'(X,Y’). We can consider (H,7,) as the redefined
first dual space of X w.r.t. Y according to |2, 4.3., p. 284]: X? = (H,7,). by definition |2,

4.1.] we see that H = X has no defect since in H there are no algebraic operations defined.
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Hence by [2, definition 4.2.] and [, definition 2.2.] the second dual space of X w.r.t. Y is
X% = C((H,7,),Y). The canonical map
J: X = C((H,)Y),
Vee X : Jr=w(z,-),
w(z, ) : (H,1m) =Y,
Vh e H :w(z,-)(h) =w(z,h) = h(x).

We now need the convergence structure of strict (strong) continuous convergence.

Generalizing a formulation, where sequences were used (|9]), in (|15, 2.25]) I defined:

Definition 4.1 Let X,Y be topological spaces, ® a filter in YX; we say that ® converges

strc

strictly continuous to f,® — f, iff for each y € Y and each filter ¢ on X : fo — y =
w(® x @) = B(p) = y.

Remark 4.2 1. Of course, a net (f;) from Y converges strictly continuous to f € Y¥
iff for each y € Y and each net (z3) from X holds: f(xx) =y = fi(xx) =y

2. stre-lim is conjoining for C'(X,Y) since we see at once that c-lim < str ¢c-lim holds.

3. Strict continuous convergence has similar properties as of continuous convergence, es-
pecially str c-lim is a pseudotopological convergence structure and if Y Hausdorff then
(C(X,Y),strc-lim) is Hausdorff too.

4. If X is compact and Hausdorff then c-lim = stre-lim on C'(X,Y) (see [17], and also

[13])-

Now we come to the characterizations of even/equi-continuity as already announced.
Proposition 4.3 Let X,Y be topological spaces, H C C(X,Y); equivalent are:
(1) J: X = (C((H,7,),Y),stre-lim) is continuous

(2) H is evenly continuous

Proof. (1)=(2): VY(z,y) € X x Y, for each net (z) in X s.th. x; — z, for each net
(h;) from H s.th. h;(z) — y we want to show: h;(xy) — y.

strc

Now by (1) x — © = Jay, — Jx, meaning that w(xy, ) — w(z, ).
Vk e K :w(zg,-): (H,1p) =Y

is continuous and w(z,-) : (H,7,) — Y is continuous by [2, lemma 4.1., (1)] and hence
CU(.Tk, ')7 W(I, ) S C((H7 TP>7 Y)
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By the definition of strict continuous convergence and since we know that h;(z) — v,

which means w(z, -)(h;) — y we get at once:
w(zk, ) (hi) = hi(zk) > y.

Hence H is evenly continuous.

(2)=(1): Y(z,y) € X xY : Y(xy),(x) net from X s.th. zx — =, we will show:
Jrp — Jr w.r.t. stre-lim: w(ag,-) 2% w(a,-): let (h;) be a net from H such that
w(z,-)(h;) = y, hence h;(z) = y; now by (2): z — x and h;(z) = y = h;(x) — v,
meaning w(zy, -)(h;) = y. Thus w(ay, ) 5% w(x,-) yielding that .J is continuous.
Remark 4.4 Proposition 4.3 was proved in [12, theorem (13.16)]. But instead of strict

continuity here was used the notion of Pettis-convergence:

[12, (13.7) Definition]. A net (f;) from H C C(X,Y) Pettis converges to f if for each
y € Y and each neighborhood V' of y there is a neighborhood W of y such that eventually

Li(f7tw)) c V.

But in [17] was shown that the two convergence structures are equivalent.
The following proposition was proved in |12, theorem (13.12)]. Our proof is somewhat more
clear.

Proposition 4.5 Let X be a topological and (Y, A) an uniform space; let be H C
C(X,Y).

Equivalent are:
(1) H is equicontinuous
(2) J: X = (C((H,7,),Y),7,) is continuous
Proof. (1)=(2): ((zg), ), (zx) anet in X,z € X; we want to show:
r — v = Jrp = w(xy, ) 2wz, ) = Jx
w.r.t. the uniform topology 7, : VV € A, for (V,z) by (1) there exists a neighborhood

UeUlx) ¥(y,h) € Ux H: (h(y), h(z)) = (@(y,)(h),w(z,-)(h) € V;
E|k0€K2VkaOZSCkEU.

Now we have:
V(k,h) €e{k € K|k > ko} x H : 2, € U = (h(z), h(x)) = (w(zk, h), w(z,h)) €V

showing that w(zy, ) —= w(x,-) holds.
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2)=(1): Y(z,V) € X x A, (H,V) = {(p,q) € C(H,Y) x C(H,Y)|Vh € H :
(p(h),q(h) € V}; now w(z,-) € C((H,7p,),Y); we consider

(H,V)(w(z,-)) ={p € C(H,Y)|Vh € H : (p(h),w(z,")(h)) = (p(h), h(x)) € V'}

is a 7,-neighborhood of w(x,-). Hence U € U(x) : J(U) C (H,V)(w(z,-)) by (2)
showing that holds:

V(y, h) € Ulx) x H = (h(y), h(x)) = (w(y, -)(h),w(z,-)(h)) €V,

since w(y, ) € (H,V)(w(z,-). But this means that H is equicontinuous.

A conjoining topology or convergence structure can be defined (or characterized) by the
continuity of the evaluation map w. And if we consider the definition of continuous conver-
gence then it is nearby that a conjoining convergence structure also can be characterized in

a suitable way using the embedding into the second dual.

This is our next result.

Proposition 4.6 Let X,Y be topological spaces, let H C C(X,Y) and let lim be a
convergence structure on H (maybe also lim is defined on C(X,Y) s.th. (H,lim) is a con-

vergence space). We assume that 7,-lim < lim holds. Then are equivalent:
(1) lim s conjoining for H

(2) J: X — (C((H,lim),Y), c-lim) is continuous
Proof. We know that lim is conjoining for H iff w = w(-,-) : X x (H,lim) — Y is continuous.

(1)==(2): Y(z, (zx)),x € X, (zx) a net from X s.th. xp — x. We will show:

Jry — Jr, hence w(z,,, ) — w(z,-).
Since 7,-1im < lim holds:

Vk e K,Vo € X : w(zg, ), w(x, ) € C((H,lim),Y).

Let (h;) a net from H,h € H and h; % h: now

Tp = 2, hi 2 h = w(zk, hy) = w(z, h)
since w is continuous, hence

hi(xg) = h(z) = w(xy, ) (hi) = w(z,-)(h)

showing that Jxj, — Ja wich means: J is continuous.
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lim,

(2)==(1): Let be (zj) a net from X, z, - x € X, (h;) a net from H s.th. h, — h €
H; by (2): 2, = = w(wy, ) — w(x,-); but then
hi 22 b = w(ay, ) (hi) — w(z, ) (h) = w(zg, b)) — w(z, h)
yielding that lim is conjoining for H.
Corollary 4.7 We use the assumptions of proposition 4.6

1. Let lim = c-lim for C(X,Y); since c-lim is conjoining for C(X,Y’) and hence for
H C C(X,Y) too we get:

J: X — (C((H,c-lim),Y), c-lim)
18 continuous

Remark: For H = C(X,Y) this result was shown in |11, theorem 3., 1.|

2. lim = stre-lim is conjoining and hence we get:
J: X — (C((H,stre-lim),Y), c-lim)
1S continuous.

As already mentioned in our text ||, theorem 32| provides a necessary compactness criterion:
for each conjoining topology or convergence structure: the compactness of H C C'(X,Y) im-
plies that H is evenly continuous. But conversely we can’t obtain a smooth sufficient criterion
for an arbitrary conjoining convergence structure: We have a simple, but fundamental fact:
pointwise convergence plus even continuity equals continuous convergence but not more.
(see for instance [!, theorem 31|). And continuous convergence is the smallest conjoining
convergence structure for C(X,Y"). Already in a paper from 1971 (|1, theorem 1]) I proved
a necessary and sufficient compactness criterion for conjoining convergence structures. This
criterion shows that one can’t go beyond c-lim. With some slight improvements the original

theorem reads as follows:

Theorem 4.8 Let X,Y be topological spaces and Y is Hausdorff; let H C C(X,Y)
and lim be a pseudotopological convergence structure for C(X,Y). We assume that lim is a

conjoining convergence structure for C(X,Y). Equivalent are:
(1) H is lim-compact
(2) (o) Vo € X: H(x) is relatively compact
(B) H is evenly continuous
(v) H is 7p-closed in YX
()

lim = ¢-lim on H
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Proof. (1)==(2): Since lim is conjoining for C'(X,Y) we have c-lim < lim and hence
H is also c-lim-compact. But then follow («), (5), (7) by theorem 2.2. We have ¢-lim <
lim on H; now let be: V(v, f), ¥ ultraﬁlter on C(X,Y), f € H; let be H € 9 and
Y oty f; (H,lim) is compact and hence RLN g € H and thus ¢ Cﬂ; g.

Y is Hausdorff by assumption and thus (C (X,Y), c-lim) is Hausdorff too implying: g =

c-lim

f. But then we see: v — f = 1 ELN f.since c-lim and lim are pseudotopological

convergence spaces we get: lim < c-lim and hence lim = ¢-lim on H.

(2)==(1): Theorem 2.2 shows (o), (#)and(y) = H is c¢-lim compact in C'(X,Y"); now
(H, c-lim) compact and (H,lim) = (H, c-lim) by (¢) implies that H is lim-compact too.

Concluding we will consider the two Ascoli-Arzela theorems in [12| (as announced in the

introduction), where we (partially), use our notations:

Theorem |12, (13.15)] Let X be a reqular space and Y a uniform space. Then H C
C(X,Y) is compact w. r. t. a jointly continuous topology n if and only if

(a) H is n-closed
(b) H(zx) has compact closures for each x € X

(c) the natural map

J: X = (C((H,7,),Y), )

18 continuous.

By proposition 4.5 we know that condition (c) is equivalent to H being equicontinuous.

Now theorem 4.8 shows that in general (a), (b) and (c) of (13.15) do not imply the compact-
ness of H for each conjoining topology 1 for C(X,Y’) (or for H). For instance, if X is not
compact in general 7,-lim is strictly stronger than c-lim. Look at our example 4.9. Thus the
sufficient assertion of theorem (13.15) is wrong. Quite analogously we find that |12, theorem
(13.21)] is not correct too.

Here we have even continuity instead of equicontinuity.

We come now to our last example.

Example 4.9 We consider again example 3.6. Now let be

H C C(R,R), H:{fn:VxeR:fn(:c):%xmeN}U{fo}—{ x\n>1}U{f0}7

where fj is the zerofunction on R. We show that hold:
(1) H is equicontinuous and hence evenly continuous.

(2) H(x) is compact for each x € R
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3) H is 7,-compact

4) H is in R¥7,-closed
5) H is c-lim-compact
6) H is 7.,-compact

7) H is 1,-closed in C'(R,R)

(
(
(
(
(
(8

)
)
)
)
)
)

H is not 7,~-compact

Proof. (1) For example 3.6 we showed that H — {fy} is equicontinuous,

same manner that H is equicontinuous:

Y(r,y) € R X B, Vo> 1: fofa) — fuly)l = o~ 9l

1
Ve > 035 =4(e) >0, 5::5:‘v’(x,y)€R><]R:|x—y|<6———>E|x—y|§

but also

[z =yl <0 = [fo(x) = fo(y)| = |0 - 0] <e.

H. Poppe

we show in the

Thus H is uniformly equicontinuous and hence equicontinuous and evenly continuous.

(2) Ve € R: H(x) = {fu(z)|n € N} is homeomorph to the compact set

1
{—|n€N,n21}U{O}§R:Y.
n

(3) Vo €R: f,(z) = £ — 0 showing f, —= fo and hence H = {f,|n € N\{0}} U {fo} is

Tp-compact.

(4) H is 7,-compact in C(R,R) = H is 7,-compact in R¥; (R¥, 7)) is Hausdorff = H is

in RRTP-CIOSGd.

(5) By theorem 2.2 from (1), (2) and (4) follows that H is in C'(R,R) ¢-lim-compact.

(6) R = X is locally compact and Hausdorff and thus 7.,-lim = ¢-lim, where 7, is the

compact-open topology. Then (C(R,R), c-lim) is a topological space.

(7) The uniform topology 7, in R¥ can be defined by the use of neighborhoods. And then

we see that 7, is first countable. Hence we can work with sequences.

We assume that H has a 7,~accumulation point g € C(R,R); g ¢ H = g # fo on R.

Then there exists a sequence (f,) from H s.th. f, — g; then holds f, LN g too.

Otherwise Vn € N : f,, € H and (f,) cannot be a constant sequence. Hence we find a

subsequence (fy,) s.th. f,, LN fo implying that f,, LN g; but then g = fy because

(C(R,R), 7,) is Hausdorff; g = f yields a contradiction.

Thus H is 7,-closed.
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(8) We assume that H is 7,-compact; since H consists of a sequence there exists a subse-

quence (g,,) of (f,) and a g € H s.th. g,, — g yielding g,, —= g too. But then we
know from the proof of (7) that g = fy holds.

Now {g,, |k € N} is an infinite set of unbounded functions on R showing that g, 5 f

is not possible, a contradiction. Hence H is not 7,-compact.

Remarks 1. Here we have again an concrete example which shows that in general does

not hold: (f,) is converging pointwise, ( f,,) is equicontinuous implies that f;,) converges

uniformly.
2. What is the result of example 4.97
The uniform topology 7, (for C(R,R)) is conjoining. By assertions (1), (2), (7) of 4.9
we see that the assumptions of [12, theorem (13.15)] are fullfilled.
Thus this theorem asserts that H is 7,-compact, but this contradicts assertion (8) of
4.9 which states that H is not 7,-compact.
Since H is evenly continuous too our example also works for [12, theorem (13.21)]
yielding that the sufficient assertion of this theorem also is wrong.
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LAURE CARDOULIS

Applications of Carleman inequalities for a two-by-two
parabolic system in an unbounded guide

ABSTRACT. In this article we consider the inverse problem of determining some of the
coefficients of a two-by-two parabolic system defined on an unbounded guide. Using an
adapted Carleman estimate, we establish local stability results for at least two coefficients
of this system in any finite portion of the guide. These estimates are obtained with data of

the solution at a fixed time and boundary measurements for observations.

KEY WORDS. inverse problems, Carleman inequalities, heat operator, system, unbounded

guide

1 Introduction

Let w be a bounded connex domain in R*!, n > 2 with C? boundary. Denote Q := R x w,
Q=Qx(0,7) and ¥ =9 x (0,T). We consider the following system

ou— Au+au+bv =g, in Q,
ov—Av+cu+dv=gy in Q,

u=hy and v =hy on X,

u(z,0) = ug(x) and v(x,0) = vo(x) in Q,

(1.1)

where a, b, ¢, d are bounded coefficients defined on €2 such that
a,b,c,d € A(My) == {f € L=(Q), || fllr() < Mo} for some My > 0.

Our inverse problem is to estimate at least two coefficients between a, b, ¢, d from the data
of the solution (u,v) at T/2 and the measurement of (u,v) on a part of the boundary.
We will consider (u,v) (resp. (w,v)) a solution of (1.1) associated with (a, b, ¢, d, ug, vo,
g1, 92, h1, ho) (resp. (a, Z, c, 67, Uo, Vo, g1, ga2, h1, he)) and two positive reals I, L such that
[ < L. Denote

Qp=(—-L,L) xwand = (—1,1) X w.
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The first result of this paper gives a Holder result (3.3) for the coefficients b and ¢ in the

case where @ = a, d = d and is the following (see Theorem 3.1)

=~ ~ ., T -, T
I8 =Bl + lle= Ay < & (=D M + 10 = )

2

+/ (OT)Z(I(?V((‘}’f(u—@))|2+|ay(3tk(v_@))|2) o dt)

where K is a positive constant, k € (0,1), 7, is a part of the boundary (see (2.2)), and
assuming that the hypothesis (3.2) is satisfied.

The second result (3.15) of this paper is also a Holder stability result for the four coefficients
a, b, c,d (see Theorem 3.2)

|a — 5||2L2(Ql) + 16— b||%2(szl) + e - EH%Q(QL) +|d - d||%2(szl)

1 1
~, T -, T
<K <H S0 (= W) 5) sy + 1 D208 = D) 3 g
k=0 k=0

2

S, 2 (10,08~ i) + 13,0k = 8" do dt)

with stronger hypotheses (3.13) and (3.14) than those in Theorem 3.1 (see (3.2)).
The third theorem of this paper gives a Holder stability result (3.34) (see Theorem 3.3) for

the following reaction-diffusion system

Ou—Au+au+bv+ Ay -Vu+ Ay -Vo=g¢; in Q,
v —Av+cu+dv+ Az - Vu+ Ay - Vo =gy in Q,
u=hy and v =hy on X,

u(z,0) = ug(x) and v(x,0) = vo(z) in Q,

(1.2)

where all the coefficients a, b, ¢, d, Ay, Ay, A3, A4 are bounded (a, b, ¢,d € A(My) and Ay, As, As,
Ay € A(My)" N HY(2)™). We obtain a stability result for the coefficients b and Az (assuming
Az has the form A3 = Vg) with the same kind of observations in the right-hand side of
(3.34) as we have obtained in (3.3) or (3.15). Assuming that the Assumptions (3.32) and
(3.33) hold, we get the following result

16— bH%?(QZ) + |45 — A3H%L2(Ql))”

1 1
., T ., T
< K <|| Zatk(u —u)(, 5)”%12(%) + Z@f(u —0)(,, E)H%w(m)

k=0

£
I
o
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Of course each of these above stability results implies an uniqueness result.

Up to our knowledge, there are few results concerning the simultaneous identification of more
than one coefficient in each equation (see for example [1] and also [5] where the authors give
a stability result for the diffusion coefficient a and the potential b of the Schrédinger operator
10,q+aAq+bq). In previous papers, stability results have been obtained for parabolic systems
but, as far as we know, these papers have investigated the case of bounded domains and
have given results with observations on a subdomain of their domain (|1, 7]...). Furthermore,
there is no result for a two-by-two parabolic system with only one observation on a part of
the boundary and without any data of the solution at a fixed time even in a bounded domain.
We will use here the global Carleman estimate (2.5) for one equation given in [3] based on
a classical Carleman estimate given in [12, 13]. Our choice of weight functions is adapted
for this unbounded domain but will give us Holder, and not Lipschitz, estimates of the
coefficients. Recall that the method using Carleman estimates for solving inverse problems
has been initiated by [2]. Our results extend to a system previous results for one equation
defined on an unbounded guide (see [3] for the heat operator O,u — Au + qu and || for the
heat operator O,u — V - (¢Vu) where stability results are given either for the potential ¢ or
for the diffusion coefficient c).

This Paper is organized as follows. In section 2, we specify the weight functions used for
our Carleman estimate (cf (2.1), (2.3)) and due to the particular symmetric form of these
weight functions with respect to x; and ¢ —T'/2 we recall from [3] the inequality (2.4), crucial
for our final estimates (3.3), (3.15) and (3.34). Then in section 3 we state and prove our

stability results, first for the coefficients b, ¢, after for a, b, ¢, d and finally for b, As.

2 Carleman estimate

Denote Qp, = Qp x (0,T) = (=L, L) x w x (0,T), . = (x1,- - ,x,) € R", 2’ = (29, -+ ,2y)
and define the operator
Au = Oyu — Au.

Let I > 0, following [3]| in this section, we consider some positive real L > [ and choose
a € R™\ Q such that if

d(z) = |2’ — d')* — 22 for z € Qp, then d > 01in Q, |Vd| > 01in Q. (2.1)
Moreover define
I'y={xe€dQ, <z—a,v(xr)>>0}and vy, =Ty NN. (2.2)

Here < .,. > denotes the usual inner product in R” and v(z) the outward unit normal vector

to 0, at z. Notice that «, does not contain any cross section of the guide. From |[12| we
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consider weight functions as follows: for ¢ € (0,7, if My > supy,.(t — T/2)* = (T/2)?,

2
Y(x,t) = d(x) — (t — %) + My, and ¢(z,t) = @Y, (2.3)

The constant A > 0 will be set in Proposition 2.2 and is usually used as a large parameter
in Carleman inequalities. Since we will not use it, we will consider A fixed in the article. We

recall from [3] the following result.

Proposition 2.1 There exists T >0, L > 1, a € R2\ Q and € > 0 such that (2.1) holds

and, setting

Ore = (Q x ((0,28) U (T — 26, T))) U (=L, —~L + 28) U (L — 2¢, L)) x w x (0,T)),

we have
d1 < do < d2 (24)
where
. T T
do =inf ¢(., =), dy =sup ¢ and dy = sup ¢(., —).
S 2 OL: QL 2
We will use the following notations: Let v = (v, -+ , ;) be a multi-index with «; € NU{0}.

We set 0% = 97" --- 0%, |a| = aq + - - - + v, and define
H*Y(Qr) = {u € L*(Qr), 070w € L*(Qr), |a] + 20541 < 2}

endowed with its norm

[ullFz g, = Z 1050 ull22(0,)-
|| +2an41<2
We recall here a global Carleman-type estimate proved in [3], based on a classical Carleman
estimate (see Yamamoto |12, Theorem 7.3]).

Proposition 2.2 There exist a value of A\ > 0 and positive constants sy and C =
C(\, s0) such that

1
I(u) :== / (£(|8tu|2 + |Aul?) + s¢ |Vul® + 83¢3|u|2) e*?dx dt

< C||6S¢AUH%Q(QL) + OsPe?h HuH?p,l(QL) + Cs/ or |0,u|?e**?do dt, (2.5)
L %0,

for all s > sy and all u € H>*Y(Qr) satisfying u(.,0) = u(.,T) = 0 in Qp, u = 0 on
0 x (0,T). We denote O,u = v - Vu.
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In fact the above Proposition 2.2 is still valid for a more general function u: we can replace
the condition u = 0 on 9, x (0,T) in Proposition 2.2 by uw =0 on (9Q N 0Q) x (0,T).
Since the method of Carleman estimates requires several time differentiations, we assume
in the following that u,v (resp. @, ) belong to H = H3(0,T, H*())) satisfying the a-priori
bound

llullz < My and |jv||z < My for given My > 0.

From now on, we use the notation w(%

L) =w(., %) for any function w.

3 Inverse problems
3.1 The first result

Consider here (u,v) (resp. (w,v)) a strong solution of (1.1) associated with (a, b, ¢, d, wy,
Vo, g1, o, h1, he) (resp. (a, E, ¢, d, U, Vo, g1, g2, h1, ha)). Assume that all the coefficients
a,b,c, d,E,Ebelong to A(My). From |8, Lemma 4.2|, we derive the following result, also used

in [3]
Lemma 3.1 There exist some positive constants C, s, such that

C
/ 29(3) N2(T/2)dx < Cs/ ¥ 0% 2| dw dt + — e**|0,z|*d dt,
Qr L S JQu

for all s > sy and z € H(0,T; L*(Q1)).
For the sake of completeness, we recall its proof.
Proof. Consider n defined by (3.4) and any w € H'(0,T;L*(2)). Since n(%) = 1 and
n(0) = 0, we have
/2

/QL w(z,T/2)*dx = /QL(n(T/Q)w(x,T/Q)) dx :/ i Or(n™(t)|w(x, t)|*)dt dz

Qr,

T/2 T/2
= 2/ / (x,t)0pw(x, t)dx dt + 2/ / H)om(t)|w(z, t)|*dz dt.
QL QL

As 0 <7 <1, using Young’s inequality, it comes that for any s > 0,

/ w(x, T/2)? dv < C’S/ |w|*dz dt + ¢ |Oyw|*dx dt. (3.1)
Qr L S JQr

Then we can conclude replacing w by ez in (3.1). O
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We can state our first main result for a two-by-to linear system which extend precedent
results for one equation (see [3] and [!]). We do not follow here the proof of |1, Theorem

1.2| and rather use ideas from [3].

Theorem 3.1 Letl>0. Let T >0, L > [ and a € R™\ Q satisfying the conditions of

Proposition 2.1. We make the following assumption
., T - T .
lu(., §)| > R and |v(., §)| > R in Sy, for some R > 0. (3.2)

Then there ezists a sufficiently small number 6y such that if § € (0,d),

T T

1w =D Sz, + 10 = D) o,

T / «(0.7) Z(’au(ﬁf(u — ﬂ))‘Q + ’ay(af(v _ 6))‘2)d0dt <

then the following Holder stability estimate holds
b — bH%g(Ql) +|e — E||%2(Ql) < Ko™ for all 6 € (0,0). (3.3)

Here, K > 0 and x € (0,1) are two constants depending on R, r, L, I, My, My, Ms, T and

a.

Proof. Let x,n be C* cut-off functions defined by x, Vx, Ay € A(Mp),0 < x <1,0<n <1,
X(x)=0ifx € ((—oo, =L+ €) U (L — € +00)) X w),
x(x)=1iftx € (—L+2€¢ L —2€) X w,
n(t) =0ift € (0,8)U (T —&T), n(t) =1if t € x(26,T — 2¢). (3.4)
Denote also
Y=u—1u, Yo=XNY, Y1 = 0o, Y2 = O, 2 =0 — 0, 20 = XNz, 21 = Opz and 23 = ;2.
Note that (yo, 20) satisfies

Do — Ayo + ayo + bzo = p1 = (b — b)xn® + (Im)xy — (Ax)ny — 2Vx - V(i) in Qy,
2o — Dzg + cyo + dzo = p2 1= (¢ — c)xnu + (Om)xz — (Ax)nz — 2Vx - V(nz) in Q,
Yo = 20 = 0 on 09 x (0,7).
(3.5)
and (y1, 21), (Y2, 20) satisfy
1 — Ay + ayy + bz = Oipy in Qy, Oryja — Ays + ays + bze = 02py in Q,

Oyz1 — Azy + cyy +dz = Oipo in @, and Orzg — Nzg + cyp + dzg = 02py in Qp,
y1221:OOHGQLX(O,T) y2222:00n8§2L><(0,T).
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e First step: Applying (3.5) for t = %, if we denote

Jim [ B — R + b~ B da

then we get

T (Z) T
J<CemBR(Z)+C | e (Iatyo( )I* +10i20(5)F) do

Qr

with
Fo(T/2) = 120(T/2) 3200, + 12(T/2) 3 @) + 190(T/2) 20,y + 19T/ 00,
Note that
Fy(T/2) < CF(T/2) with F(T/2) = |y(T/2) 320, + 12(T/2) 320, )-
Moreover, since O0;yo = y1, 0;20 = 21 and 1 < ¢, using Lemma 3.1, we obtain

C
J < CeQSd2F(T/2)+CS/ e (|ly1|*+|21 %) da dt—l——/ 20 (|ya|*+|20|%) d dt. (3.6)

L S JQrL
e Second step: Now we evaluate J with the Carleman inequalities (2.5) for y; and z;, i = 1, 2.
Note that all the terms in [le*® Ay;|[7,,, or [le*?Azil|72,, With derivatives of x or 5 will
be bounded above by Ce?% with C' a positive constant. Therefore, for s sufficiently large,

there exists a positive constant C' such that

I(y:) +1(z) < C / eOx*le = el + b~ bf*) du dt + C / il + [2il") da dt + Ce
QL QL
+C5° e ([[yillFea0u) + 12l ) + CS/ *(|0uyil* +10,2/%) do dt.
v %(0,T)

Since e2¢ < 2?(T/2) we deduce that

I(y;) + 1(z) < C/ 2T\ e — 2 4 |b — b?] da dt + CsPe>h

Qr

L Cs / (10,2 + 9y [2) do dt.
’YLX(O T)

Thus
§ / 20 ([yil? + |af?) dedi < C [ 0T~ T 4 |b— P da
L Qr
+ CsPe? ™ 4 C’s/ e**(|0,yi|* + |0,z %) do dt. (3.7)
’YLX(OvT)
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Therefore, from (3.6) and (3.7), we get for s sufficiently large

C
J < Ce®2F(T/2) + =2 (83628d1 +/Q e259(T/2) [le — ¢ + |b— b| | dx
L

v [ 25¢Z|auyz|2 +10,5) do dt .
LX(OT)

So we have
J < Ce*®G(T/2) + Cse™™ + S—(“; /Q T2 e — P+ b— b dz (3.8)
L
with

G(T/2) = F(T/2) + / Z 10,05y + |9,0F=[?) do dt.
’yLX(OT

e Third and last step: In this step, we come back to the coefficients b — band ¢ — é.
First, from the hypothesis (3.2) we derive from (3.8), for s sufficiently large

/Q 2 T/2\2(|b — b + |¢ — ¢|?) dz < Ce*®2G(T/2) + Cse®®. (3.9)
L

Moreover, since e?*% < ¢2¢(T/2) in () and y = 1 in €, we deduce from (3.9) that
(b= bl|72(0y) + 1€ = cllizgay) < Ce*RG(T/2) + Cse™™,

This last inequality can be rewritten in the following form for s sufficiently large (s > s5)
b= bll320y) + 1€ = cllfagqy < C(eX=RIG(T/2) + se*( D)), (3.10)

Note that if G(T'/2) = 0, since (3.10) holds for any s > s, and d; —dy < 0 we get (3.3). Now
if G(T/2) # 0, we recall from (2.4) that dy — dy < 0 and dy — dy > 0 and optimize (3.10)

with respect to s. Indeed denote
f(s) = 2= D)G(T/2) 4 ¥(d17d0) apd g(s) = 2~ D)G(T /2) + se2s(d1=do),

We have f(s) ~ g(s) at infinity. Moreover the function f has a minimum in

1 dg — dy
S3 = In and f(s3) = K'G(T/2)"
d1—dg
with k = 30 21 and K' = (& = 31)@ “ + ( )d2—d0. Finally the minimum s; is sufficiently
large (s3 > s5) if the following condition G(T/Q) < dg, with §g = (drdocg(;?_s?(dz*dﬂ’ is satisfied.

Then we get our result (3.3) and so we complete the proof of Theorem 3.1. O
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Remark 1 e Note that the hypothesis (3.2) is quite usual (cf |1, 7] for a parabolic system
in a bounded domain) and is removed in [!]| by the control theory and in [7| by conditions
on a,g, ¢, d, ug,vg, hy, ha, g1, g2. In some cases, one can also diagonalise the coupling matrix
of the coefficients (see [0]) then use a parabolic positivity result (see |9, Theorem 13.5]) for
the decoupling system. Of course we could obtain the same result as (3.3) for any coefficient
in each equation of (1.1). But if we want to determine the coefficients b and d for example,
we only have to assume that [0(., £)| > R in €, for some R > 0, instead of (3.2).

e In fact we can obtain in the right-hand side of (3.3) the term f’YLX(O,T) S (10,(0F (u —
@))|2+]0, (0¥ (v—1))|?) do dt instead of Sy xom S2 o (10,(0F (u—1))[>+0, (OF (v—10))|?) do dt
if we slightly modify d; (if we define d; = supg,— @, the inequalities (2.4) still hold and all
the terms inside the integrals on v, with derivafives of n are therefore bounded above by

628d1 ) .

3.2 The second result

Consider now (u,v) (resp. (u,v)) a strong solution of (1.1) associated with (a, b, ¢, d, uy,
Vo, g1, 92, hl, hz) (resp. (a, b, ¢, d, ug, Vo, g1, g2, h1, h2)). Assume that all the coefficients
a,b,c,d,d,b,¢, d belong to A(My). For our second main result, first we need the following

lemma inspired from Klibanov and Timonov ([11]). Recall that x and 7 are defined by (3.4).

Lemma 3.2 There exists a positive constant C such that

t 2
/ o’ ( £(€) dg) da dt < g <625d1 + / NP f? dx dt)
L T/2 L

for all s >0 and f € L*(0,T, L*(Qr)) N L>(QL).

Proof. By the Cauchy-Schwarz inequality, we have

; 2 t
W 2 25¢< f(z,€) df) dedt < [ ox*nelt— || | fl,)” dg ’ dz dt
T/2 QrL T/2
T/2 T t
<[ [ oeren o[ rwer s
o, Jo T/2
T t
+/ o2 (t — 5) ( f(x,§)2d§> dzdt.
Qp JT/2 T/2
(3.11)
Note that

D(e2%) = —dsA(t — gwe?w.
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For the second integral of the right hand side of (3.11), since n(7") = 0, by integration by

parts we have

/ oxX*nPe??(t — —)( t f(l’,f)2d§) dx dt
Qp, JT/2 T/2

= 2,2 2s¢ 9
a 43)\/ /MX 00 (e™)( T/Qf(x ,§)7dg) du di

t=

1 2.2 2s¢ ' 2 £250) 2?2
=—— x“n e’ flx, &)"d¢ dx—i—— SO £ da dt
4sX Jq, [ (T/2 (z,£)7de) 4s\ Jq, T/2

t=T/2

e2**v’no x,€)%d¢) dx dt
25A/QL/T/2 X nom( T/zf( §)7d§)

e%**\*nod fxg d¢) dx dt + — / / e f? dx dt. (3.12
25}\/ /T/2 X T/2 (@) AsA Ja, Jr)2 (312

The first integral of (3.12) is bounded above by ;eQSdl due to the derivative of . Therefore

t
/ ¢X2 2 25(;5( z> ( f($7€)2d€) dr dt < g <€2Sd1 +/ 25(;5 27,]2]02 dx dt)
Qp JT/2 2 T/2 S I

We obtain a similar result for the first integral of (3.11) and this concludes the proof of

Lemma 3.2.

O

Now we can state our second main result in view to obtain a stability estimate of the four

coefficients of (1.1) with nearly the same observations that we obtained in Theorem 3.1 (see

the right-hand sides of (3.3) and (3.15)).

Theorem 3.2 Letl > 0. Let T >0, L > [ and a € R™\ Q satisfying the conditions of

Proposition 2.1. We make here the following assumptions

[u| > R and |8t(g)| > R in Q for some R > 0,
u

and

7] > R and |3t(g)| > R in Q for some R > 0.
v

Then there ezists a sufficiently small number 6y such that if § € (0,d),

T . T
| Z@f(u —u) (. 5)“%{2(%) + Zatk(v - 0)(, 5)”%{2(%)

k=0 k=0

+/ Z (10, (8 (w — @)[> + |8, (0f (v — 0))|* do dt < 6

(3.13)

(3.14)
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then the following Holder stability estimate holds

Here, K > 0 and k € (0,1) are two constants depending on R, r, L, l, My, My, My, T and

a.

Proof. As in Thereom 3.1 denote y = v — u and z = v — v. Then (y, z) satisfies

Oy — Ay+ay+bz—(a—a)u+( b)v in Q,
8tz—Az+cy—|—dz:(c—c)u—|—(d— d)v in Q,
y=z=0on X.

e First step: Let y; = £ and z; = Z. Then (y1, 21) satisfies

diyn — Ay +ayy +bz = fi+a—a+ (b —b)ZinQ,
O — Az + ey +dn = fo+tc—c+(d—d)2in Q,
yp =21 =0 on X,

with f; := %(—yla{d—l— y1Au+ 2Vy, - Vu) and fo == u( zlﬁtu + 21Au + 2Vz - Va).

Denote now y, = Qyy1, 22 = Oy21, Y3 = ﬁyg and z3 = at(é) 25. Then
Oy — Ays + ays + bze = O f1 + (E b) t(%) in Q,
Oy — Az +cyp +dzy = Oy fo + (d — d)0y(2) in Q,

Yo = 20 = 0 on X,

and ~
Oys — Ays + ays + bzg = f3+b—binQ
Oz — Azg + cys +dzg = fu + d—din Q, (3.16)
ys =23 =0 on X,
with ~ ~ ~
f3:= at(l%) < Y307 ( ) + y3A(at( )) +2Vys - V(at(%)) - atfl)
and ~ ~ ~
fo:= 8,5(1%) (—238 (=) + Z3A(8t( ) +2V2;3 - V(@t(%)) + atf?) :

Finally let y4 = Oyys3, 24 = Oy23, Y5 = xnys and z5 = xnz4. Then

{ Oys — Ays + ays + bzs = xndi f3 + f5 in Qr, (3.17)

Orzs — Azs + cys + dzs = xnOifa + fo in Qr,

with
J5 = (0m)xys — (Ax)nys — 20V x - Viyu
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and
fo = (Om)xza — (Ax)nzs — 2nVx - Vzy.

Due to the truncation functions, we can apply the Carleman estimates for y5 and z; and

now we estimate I(ys) + I(z5) with (2.5). We have

I(ys) + 1(z5) < C’/ e*?((Ays)? + (Azs)?)dadt 4+ Cs3e*
- (3.18)
+ C’s/ e**®(|10,ys)* + |0, 25|*)dodt.
'yL><(0 T)

As in Thereom 3.1, all the terms in [, €*?((Ays)? + (Az)?) da dt with derivatives of 7 or
x will be bounded above by Ce?% . So since ¢ > 1

/ P (Ays)’ + (Az5)) du dt < C | (2 + 22) d dt + Ce>h
v QL

+c/ €203 202(10, fo 2 + 0, ful?) d dt

< C’/ e (y2 + 2)dxdt + Ce* B +C | ¢e*?x 27722 Y2+ |Vyl? 4 22 + | V| dadt.
QL QL

=1
(3.19)
Since xnys = ys and xnz4 = z5, (3.19) implies

/ e®?((Ays)? + (Az5)?) do dt < C’/ X (y2 + 22 4 |Vys|? + |Vas|?) do dt 4 Ce*™
QL QL

C [ g™y 27722 (W7 + [Vyil® + 27 + [Vzl) de dt. (3.20)
QL

i=1

From (3.18)-(3.20), we get for s sufficiently large

I(ys) + I(z5) < Cs3e®h 4 C pe*? QZ Y2 + |Vyi|> + 22 + |Vz]?) do dt

QL i=1
L+ Cs / ¢29(10,y5[2 + D5 ]?) dor . (3.21)
’YLX(O T)
Using now Lemma 3.2 we have
t 2
o> Xy} dr dt = ¢628¢ Ay’ ( / Oy (§)dE +y (T/ 2)) dz dt
L T/2

C C
< ;e%dl + g/ eX*nPys dx dt + C oe* O’y (T/2)* dx dt
L L
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2sdy , C 2542, 2 2 254 2, 2 2
e +; oe* '\ n7y; dx dt + C oe=*x 0"y (T/2)* dx dt

QL QL

. 2
< ezsd1+§ Pe2y 2P ( Oyys(€)de + y3(T/2)) dz dt+C | ¢e®**\*nPy (T /2)dx dt
T/2 QL

< ge%dl +S—C; (ezsdl + [ o™Xy} da dt) +C [ 0e® PP (i (T/2) +ys(T/2)?) da di
QL QL
C C
< ;eQSdl + ;/ e*Py2 dx dt + CeQ“”dQ/Q (y1(T/2)* + y2(T/2)?) da. (3.22)
L L

Doing the same for fQL o>\ *n?y? dx dt, fQL o> \*n?2? dx dt, fQL de®x 2| Vy;|? dx dt
and
Jo, 9¢¥X*n?|Vzi|? dz dt, for i = 1,2,3 we get from (3.21)-(3.22) and for s sufficienlty large

I(ys) + 1(z5) < Cs3e®h 4 Cs/ 625¢(|8yy5]2 + \8,,25]2) do dt

vL % (0,T")

+ ot [ S (T2 + (T2 + V(T2 + [Va(T/2)P) e (3:23)

QL =1

Note that (3.23) can be rewritten on the following form

2
I(ys) +1(z5) < Cs’e™ @ + 08625d2/ > (8.0fy* +10,0f %) do dt

YL X (OvT) k=0

1
(e : N @Fy(T/2)? + 0F=(T/2)? + |V Ofy(T/2)]? + [VOF=(T/2)|%) da
L k=0

and so
I(ys) + I(z5) < Cs*e®® 4 Cse* 2 [ (T/2) (3.24)

with
2 1
1 (T/2) =/ > 0.0y +10,0F21%) do dt+Y_(10fy(T/2) 50 HIOF 2(T/2) I qy)-
1x(0.T) k=g k=0
e Second step: Now we evaluate (3.16) at T7'/2. We have

/ eI\ ([b— b + |d — d|?) dw < C/ > 2 (1003 (T/2)* + |0ez3(T/2) ) dax
Qr

Qr
+ Ce* 2y (T/2)

with
2

E(T/2) =) (lv(T/2) 20, + 12(T/2) | Fr20,))-

=1
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So, since n(7/2) = 1,

/ 250(T/2)3 2 (|b—b>+|d—d|?) dx < C' [ 2T/ (|ys(T/2)[*+|25(T/2)[?) dw+Ce*% Fy(T/2).
QL QL

(3.25)
Now let ¥; = e*?y5 and 1)y = €°¢25. Calculate J; = fQ T/2 1 (t)Yn(t) dx dt and
= [, Jy" 0aa(t)ta(t) de dt. Since n(0) = 0, we get
1 1
- % 6(T/2)? ds — - / 29Ty (T/2)? dz and Jo = 5 / 212 (T /2)* da
QL QL QL

Therefore (3.25) becomes

/ 256(T/2) (| b|2—|—|d d?) dz < Ce**2Fy(T/2)
Qr,

T/2 4 T/2 4
+ C/ / =0 (t) sy (t) dx dt + C’/ / —O0pa(t)siha(t) dx dt. (3.26)
Qp JO S Qr J0 S
Using Young inequality, we deduce from (3.26)

C

/ TN — b + |d = df?) do < —(I(ys) + 1(z9)) + Ce=“Fy(T/2).  (3.27)
Qr

From (3.24) and (3.27) we get
/Q 2 T/2\2(|h — b)? + |d — d?) do < Cs*¢®% + Ce®2(F(T/2) + F3(T/2)).  (3.28)
L
Proceeding as in Theorem 3.1, we obtain from (3.28)
/Q (Ib—b]* + |d — df*) dz < Cs?e( D) 4 Ce2(®=d) fy(T/2) (3.29)
!
with

1
k=0 ~

L X OT)k 0

Notice that in the first and second steps of this proof, we have only used the hypothesis
(3.13).
e Third step: Finally using the hypothesis (3.14), we can proceed exactly as before and

obtain

/Q (|ad — a> + & = ¢?) do < Cs?e?s =) 4 Ce2slda—do) py(T/2), (3.30)
1

From (3.29)-(3.30) we end the proof of Thereom 3.2. O
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Remark 2 e First note that our stability results (3.3) and (3.15) are obtained on ; for
the left-hand term while the observation data G(7T'/2) and F3(7/2) are required on €, for
the right-hand term of (3.3), (3.15).

e Second we have used Lemma 3.2 instead of Lemma 3.1 in the proof of Theorem 3.2 in
order to avoid a third derivative with respect to t in the observation terms. Indeed, if we
no longer used Lemma 3.2 in the proof of Theorem 3.2, we could use a modified version of
Lemma 3.1: applying (3.1) with w = e*?ynz, we could obtain the following inequality

/ e29(3)y 212(T/2))? dx < Cs/ X202\ *n?|2|* dx dt—i—%e%dl—l—g/ e*x*n?0,2|* dx dt,

Qr

QL L

for all z € H(0,T; L*(2z)).
Moreover, if we did so, since we had to give up the end of the first step of the proof of
Theorem 3.2, we'd rather follow the ideas of the proof of Theorem 3.1. Therefore, when in
the second step we evaluated (3.16) for t = T'/2, with the above inequality we would have
to estimate [, €***T72\2dyys(T/2)]* dx and [, e*?T/2x?|0,25(T/2)|* dz; thus we could
obtain [, 625¢X ?|0yal* do dt and [, e***x*n |8 24)? dz dt in the right-hand side of the es-
timates. Then we would have to apply the Carleman estimates for xnys, xnz4, X10Ya, X10;24
and so we would obtain a third derivative in time for the observation terms.
e Third the assumptions (3.13) and (3.14) are equivalent to |u| > R, [v] > R and
| det ((: gﬂ;)) | > R with R a positive constant. For example, if n = 2 and w = (r,r2)

¢
with r; > 0, let a(x1) be a positive and bounded function in C?(R) such that min,, g a(x;) >
2r2. Then u(z,t) = a(z,)t + x5 and v(x,t) = txy + 1 are solutions of the system (1.1) with
=92 = 0, ) = lmanin o)  adnzan? Gy o o ) — Zosin)
and satisfy the conditions (3.13)-(3.14).
e Finally note that the above results remain valid for the system (1.2) when all the coefficients
a,b,c,d, Ay, As, A3, Ay are bounded (a,b,c,d € A(My) and Ay, Ay, Az, Ay € (A(Mp))"). We

obtain a stability result of at least two coefficients between a, b, ¢,d with the same obser-

vations in the right-hand sides of (3.3) or (3.15). In the next section we study the inverse
problem of determining at least one of the coefficient Ay, As, Az, Ay, for example Az if we

assume that this coefficient has the form A3 = Vg.

3.3 The third result

Consider now (u,v) (resp. (u,v)) a strong solution of (1.2) associated with (a, b, ¢, d, Aj,
Ay, Az, Ay, ug, vo, g1, g2, h1, ho) (resp. (a, 75, c, d, Ay, As, Z;, Ay, U, Vo, g1, Go, hi,
hy)). Assume that all the coefficients a, b, ¢, d belong to A(My), Ay, As, As, As, A, belong to
(A(Mp))" N (H'(Q))" and that there exist functions g, g such that

Ay =Vg, Ay =Vgin Q. (3.31)
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The Assumption (3.31) implies conditions on As, Z;: if 'Az = (¢cy,- -+, ¢,), it means that for
alld,j =1,---,n, Opc; = Op;c;, in other words rot(A3) = 0 if n = 3.
Now following an idea developed in [10] for Lamé system in bounded domains, also used for

example in [1], we obtain the following result
Lemma 3.3 Assume that the following assumption
|Vd-Vu(T/2)| > R in Qy for some R >0 (3.32)

holds. Consider the first order partial differential operator Pf =N f-Nu(T/2). Then there

exist positive constants sy > 0 and C' > 0 such that for all s > sy,

52/ e25(]§(T/2)|f|2 dr < C/ 625¢(T/2)|Pf|2 dl’,
Qr, Qr
for all f € Hy(Qy).

Proof. The proof follows [1]. Let f € H}(2). Denote w = e**T/? f and Qu =
es#T/2) P(e=s¢T/2)y). So we get Qu = Pw — swV¢(T/2) - Vu(T/2). Therefore we have

/Q Qul? dz > & /Q WVH(T/2) - VE(T/2)2 dr — 2s / (Pw)w(VS(T/2) - VI(T/2)) do

Qr,

/Q Qul* da > sW/ w?(p(T/2))|Vd - Vu(T/2)|* dx

Qr,

—2s) /Q (Vw - V(T /2))we(T/2)(Vd - Va(T/2)) dz.

[ jQuitda = [ wio(r/va- Va/)P da

Qr

—sx [ o(T/2)(Vd - Va(T/2))(V(w?) - Va(T/2)) da.

Qr
Thus integrating by parts

/Q |Quw|* dx > 52)\2/9 w?(¢(T/2))?|Vd - Vu(T/2)|* dx

—i—s)\/Q w3V - (p(T/2)(Vd-Vu(T/2))Vu(T/2)) dx
and

/ I PP de = / Qu|* dx > 32)\2/ eI f2(o(T/2))°|Vd - Va(T/2)|* da
Qp, Qr, QL

+5A / 2002 £27 . (¢(T/2)(Vd - VU(T/2))Vu(T/2)) dz.
Qr,

And we can conclude for s sufficiently large. m
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The strong positivity assumption (3.32) is frequently involved in inverse problems and is
removed in [1] for one equation by the construction of an adapted control. Now we state the
third result.

Theorem 3.3 Let! > 0. Let T > 0, L > [ and a € R" \ Q satisfying the conditions
of Proposition 2.1. Assume that Assumptions (3.31) and (3.32) hold. We also make the

following hypothesis
A
|U(" E
If g =g and A3 = :4\; on 0 N Oy, then there exists a sufficiently small number dy such
that if 0 € (0,50),

)| > R in Qp for some R > 0. (3.33)

1 1
., T -, T
132 0k =) ) sy + 1 05 = D) 5) B
k=0

k;f

+ > (10,(0F (u — @) + [0, (0f (v — D)) |* do dt < 6

=0
YL X (OvT)

then the following Holder stability estimate holds
Hb — b”%z(Ql) + HAg — A3H?L2(QZ))TL S Ko~ fOT' all § € (0, (50) (334)

Here, K > 0 and k € (0,1) are two constants depending on R, r, L, I, My, My, My, T and

a.

Proof. As in Theorem 3.1 denote
Yy=u—1u, Yo = XY, Y1 = OYo, Yo = O, 2 =0V — 0, zg = XNz, 21 = Opzg and 2o = Oy21.
Then (yo, zo) satisfies

Owyo — Ayo + ayo + bzo + A1 - Vyo + Ay - Vzo = & in @y,
Orzg — Dzg + cyo + dzo + Az - Vyo + Ay - Vo = & in Q, (3.35)
Yo =20 =0 on 9, x (0,7)

with
& = xn(b— b7 + (9m)xy — (Ax)ny — 2Vx - V(ny) + nyAs - Vx + 124y - Vy
and
& = xn(As — As) - Vi + (Om)xz — (AX)nz — 2Vx - V(nz) + nyAs - Vyx +nzAs - V.
Then

§o =V (x(9—9))-Vu—n(g—9)Vx-Vu+(9m)xz—(Ax)nz—2Vx-V(n2)+nyAs-Vx+nzAs-VX.
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e First step: We evaluate (3.35) for ¢ = £ and we get

Ouyo(T/2) — Ayo(T/2) 4 ayo(T'/2) + bzo(T/2) + Ay - Viyo(T'/2) + Ay - V2o(T'/2)

X(b—b)T(T/2) — (Ax)y(T/2) — 2Vx - Vy(T/2) + y(T/2)Ar - Vx + 2(T/2) A - Vx (3.36)
and

=P(x(g—9) — (- 9)Vx-VuT/2) — (Ax)2(T/2) — 2Vx - V2(T/2) + y(T/2)As - Vx
+2(T/2)As - Vyx
(3.37)

with P the operator defined in Lemma 3.3. From (3.36) we have

/ 29\ 2|b — B[ (5 Dpar<c €2S¢%|aty0( )I” do
o Q1
+Ce* (||l20(T/2)ll ) + 190(T/2) 20,y + 19T/ 0, + 112(T/2) [ Z2(0,))-
So
/ =D\ b — b2i( )I2 dr < Ce®2 Ry (T/2)+O/ ¢ Dy (5 )| dz
Qr

Qr,
with
F(T/2) = |y(T/2) Iz, + 12(T/2) 30y

Then, applying Lemma 3.1 we get

[ st ar < o R @)+ 05 [ g d
+— [ 0%yl du dt.
S JQr

Moreover using Lemma 3.3 for (3.37) we have

# [ Rt de < C [ PP - ) da
Qr QL

< Ce*sh +C/ 29(3) \8tz0( )| da

Qr,
+Ce (|l20(T/2) 0, + 190(T/2) Wi 0,y + (/22 + 12(T/2) (0,

Applying again Lemma 3.1 we get

52/ 0T\ (G — g)de < Ce® D 4 Ce® 2 Fy(T/2) + Cs/ ¢ | 21| dx dt
Qr

L
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C
+ = | e*9¢3| 2| dxdt (3.39)
S Jor

with
F(T/2) = y(T/2) 7@, + 12(T/2) 520,

From (3.38)-(3.39) we obtain
25¢(L) 2b_52~z 2 4 256(T/2),2(7 _ )2 d
AN ()P da+ [ TG — g)? da
QL QL

< Sty o2 gy (7/9) 4 Cs / e2s¢¢3(|y1|2+|zl|2>dxdt+§ / 98 |yl + |2 devdt
QL

(3.40)
with
F3(T/2) = ly(T/2) 720, + 112(T/2) | 720,)-
Using now Assumption (3.33), we get from (3.40) and for s sufficiently large
~ _ C
/ 22\ 2(b—b)2 + (§— g)%) da < — 0 4 O Fy(T/2)
Qr S
256 43 (1, |2 2 c 256 43(1, |2 2
+Cs | e*¢°(|y1|* + |=1|7) do dt + A & (|ya]” + |22]°) dx dt. (3.41)
L QL

e Second step: As in Theorem 3.1, now we use the Carleman inequalities (2.5) for y; and z;,
i =1,2. Recall that ¢ < ¢(T'/2) so we get for s sufficiently large

I(y:) + I(z) < 0/ TV (x (G — 9)))* + x3[b — b]?) dx + CsPe®h
Qr,

+Cs/ > (|0, yi|* + 0,2 ]%) do dt.
’YLX((]:T)

Thus

83/ 2 (|yil® + |z%) dw dtSC/ TP (Y (x(@ — 9)* + X6 — b*) da
L Q

L

+ Csde®d 4 C’s/ e*?(|0,ui|* + |0,2:%) do dt. (3.42)

YL X (07T)

Therefore, from (3.41) and (3.42), we get for s sufficiently large

/ 625¢(%)X2((b —5)2 + (g —g)?) dzx < C’eQSdQFg(T/Z) + Cge*h
Qr,

C _ - C 2
¢ / T/ (17 (G g))P + b —B2) da+ & 0 S (10, + |8, 2[2) do di.
QL =1

§ S YL X (OvT)
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Thus we have for s sufficiently large

z 7 -~ S sai O S -~
/Q (b +(g—g)%) do < Ce® = Fy(T/2)+Cse> +§/Q T2\ (x(9—9))| dw
’ ’ (3.43)
with )
Fy(T/2) = F5(T/2) + > (0.0fyl* +10,0F =) do dt.

'VLX(O7T) k=0
e Third step: We apply the same ideas for V(x(g — ¢)). For any integer 1 < i < n, taking

the space derivative with respect to z; in (3.37), we obtain
0404,20(T/2) — A0y, 20(T/2) + Oy, (cyo(T/2) + dzo(T/2) + A3 - Vyo(T/2) + Ay - V2o(T'/2))
= P(0,(x(9 = 9))) + V(X(g — 9)) - V(0,u(T/2)) — 05,((9 — 9)Vx - Vu(T/2))
— 0y, ((AX)2(T/2) =2V x - V2(T/2) + y(T/2)As - Vx + 2(T/2) Ay - V). (3.44)

We can apply again Lemma 3.3: there exists a positive constant C' such that for s sufficiently

large,

[, (G- g de < C [ PO, (4G - 9)) de
O Q

L

Thus, using (3.44) we obtain

s* / (0, (x(§ —9)))° da < Ce®F5(T/2) + Ce®h +C / P2, 20 (T/2)? da
Qr, Q

L

c / 9T/ |Y (g — TP de
Qr

with F5(T/2) = [|2(T/2) |30, + 19(T/2)|1 %2, So using Lemma 3.1 we get

E / 2T/, (((F-g)))? de < C By(T/2) 40> 4O / T/ |Y (y(g—)2| da
QL Q

L

+ C’s/ (0, 21)? d dt + ¢ e*?(0y,2)? du dt. (3.45)
L S JQr

Moreover by the Carleman inequality (2.5), we have for j = 1,2,

5/ e*0(22 + |V2[?) do dt < C/ e Az;? da dt + Cs*e® M| 7210,
L

L

+C’s/ 10, 2;]%€*? do dt.
YL X (OvT)
Thus

s/ 625¢(z]2+\sz]2)da:dt < C/ 623¢(y?+\Vyj]2+z?+]sz|2) dazdt—l—/ >V (x(G—9)) > dx dt
L QL L
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+ Cs3e?h Cs/ 0, 2;%e*? do dt. (3.46)

YL X (07T)

By the same way we obtain

(Y5 +|Vy; P +27+|Vz]?) do dt+/ 22 (x(b—b))? dx dt
QL

L

s/ > (i +|Vy;|*) do dt < C/
QL Q

+ Csde?d 4 CS/ 10,y,|%e**¢ do dt. (3.47)

'7L><(07T)
From (3.46) and (3.47) we deduce

s /Q €202 442+ [V 4|V ) dadt < C /Q 20 (2 4 |V 222+ |V 23 2) ot + O
L L

+C [ VG- gD+ D) dedir Cs [ 0P+ o) do de.
QL L%(0,T)
(3.48)
Since ¢ < ¢(T/2), (3.48) implies for s sufficiently large

s/ 625(15(,2]2 + y? + |sz|2 + |Vyj|2) dr dt < Cg3e?h
Qr

40 [ TG )P+ (-0 do+Cs [ (D + o) do
Qr, ol

LX (09T)

and so

2 2
s/ 625¢Z(]sz\2 + | Vy;|?) do dt < s/ 628¢Z(Z]2- +y; + |V + [Vy ) do dt
L

j=1 L j=1

< 08362Sd1 + OS/

2

e (10uz* + 10vy;]?) do dt

L x(0,T) j=1

e / T (19 (T — g2 + (v — B)?) da. (3.49)
Qr

Using inequalities (3.45) for 1 <7 <n and (3.49), we get

2 / T\ ((G—g))P do < O Fy(T/2)+C / TV (x (g =) 2|+ I (b=B) ] de
Q5 Q

L

+C s34 4 C’s/

YL X (OvT)

2

e (10uz]* + 10,y;1%) do dt.
j=1

Therefore for s sufficienlty large

2 / PTG (y(F — )| da < O F5(T)2) + C / 25T/ (y (b~ B))? da
QL 0

L
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+ OsPe®h 4 C’s/

YL X (OvT)

2
e (10u2* + 10uy,1?) do dt. (3.50)
j=1
e Fourth step: Now we gather (3.43) and (3.50) and we get for s sufficiently large
| PP + - g+ V(G - 9)P) do < CEER(T/2) + s, (351)
Qr

with Fs(T/2) = Fy(T/2) + F5(T/2). Moreover, since e?*% < e2*¢(7/2) in ); and x = 1 in €,
we deduce that

16— bl172(0 + 17 — gll3r 0y < C* BT F(T/2) 4 se (A=),
This concludes the proof of Theorem 3.3. n

Remark 3 In Theorem 3.3 we have presented the case of determining the coefficients
b and As. Of course we could obtain similar results for at least two coefficients between
a,b,c,d, Ay, Ay, As, Ay. If we want to determine A; and Az, we only have to assume that
Assumption (3.32) holds intead of (3.32)-(3.33). If we want to estimate the coefficients A,
and Aj, we still have to assume the hypothesis (3.32) satisfied but in this case, we should

also assume that the following hypothesis
|Vd-Vo(T/2)] > R in Q, for some R > 0

holds. Note also that the last item of Remark 1 still holds for (3.34). To conclude, if we
would like to determine more than two coefficients, we could procede with the same method

used in Theorem 3.2.
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SADEK BOUROUBI

On the Square-Triangular Numbers and
Balancing-Numbers

ABSTRACT. In 1770, Euler looked for positive integers n and m such that n(n+1)/2 = m?.
Integer solutions for this equation produce what he called square-triangular numbers. In this
paper, we present a new explicit formula for this kind of numbers and establish a link with

balancing numbers.

KEY WORDS. Triangular number, Square number, Square-triangular number, Balancing

number

1 Introduction

A triangular number counts objects arranged in an equilateral triangle. The first five trian-
gular numbers are 1, 3, 6, 10, 15, as shown in Figure 1. Let T}, denote the n'* triangular

number, then 7, is equal to the sum of the n natural numbers from 1 to n, i.e.,

1 1
Tn:1+...+n:@:<n;— )

Y
° Y °
Y ° ° o o [ )
A ° ° e o o e o e o
L e o e o o e o o o Y e o o Y
1 3 6 10 15

Figure 1: The first five triangular numbers
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Similar considerations lead to square numbers which can be thought of as the numbers of
objects that can be arranged in the shape of a square. The first five square numbers are 1,

4,9, 16, 25, as shown in Figure 2. Let S, denote the n'* square number, then we have

S, =n?.
L ° ° ° °
° ° ° ° ° ° ° ° °
° ° ° ° ° ° ° ° ° ° ° °

1 4 9 16 25

Figure 2: The first five square numbers

A square-triangular number is a number which is both a triangular and square number. The
firsts non-trivial square-triangular number is 36, see Figure 3. A square-triangular number

is a positive integer solution of the diophantine equation:

w —m?. (1)
° [ ] [ [ [ ] ([ [ ]
[ ] () [ ] [ ] ([ [ [ ] [
e O o
[ ] [ ] [ ] [ ] [ ] ()
o e O o
[ ] ([ e O o 36 [ ] ([ L o [ ] [
([ [ ] [ ] e O o ° PY P P ° °
o [ ] [ ] e o o [ ]
o [ ] [ ] e O o o o * * * * ° *

Figure 3: The first non-trivial square-triangular number
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2 Main Results

Lemma 1 (n,m) is a solution of Equation

>~

1) if, and only if
k-1 —2
2k . 2k A
= 2" d m= E 2! k *.
n 4 (22' N 2) and m 2 <2i N 3) , for ke N

Proof. From Equation (1), we have
n® +n —2m? = 0. (2)
Equation (2) can be rewritten as follows:
(2n+1)* —2(2m)* = 1. (3)
Letting x = 2n + 1 and y = 2m, Equations (3) becomes the Pell equation:
?— 2% = 1. (4)

It is well known, that the form 2? — 2y? is irreducible over the field Q of rational num-
bers, but in the extension field @(\/5) it can be factored as a product of linear factors
(z +yv2)(z — yv/2). Using the norm concept for the extension field Q(v/2), Equation (4)

can be written in the form:

N (z+yv2) =1. (5)

It is easily checked that the set of all numbers of the form z+y+/2, where z and y are integers,
form a ring, which is denoted Z[v/2]. The subset of units of Z[v/2], which we denote U forms
a group. It is easy to show that a € U if and only if N(a) = =1 [2]. Applying Dirichlet’s
Theorem, we can show that & = {£ (1 + \/§)k, keZ}.

N(<1+\/§>k) = (w (1+\/§>)k:(—1)’“, (6)

N(a):u:m:(ux/é)%,kez. (7)

Thus, all integral solutions of Equation (4) are given by:

r+V2% = (1+\/§>2k

_ Z (zlk) 2

1=0

) (Z (3): ) v (Z (57)° ) - )

)

Since

we obtain
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We get, after identification

and

Equivalently, we have

and

This completes the proof. O

We have thus proved, via Lemma 2, the following theorem.

Theorem 2 Let ST, denotes the n'* square-triangular number. Then

STn = Sm = Tka
where
n—2 QTL . n—1 27’L .
= 2 d k= 2"
" z_:l (m‘ + 3) o z; (22' + 2)

3 A Link Between Square-Triangular Numbers and Balancing Num-

bers
Behera and Panda |1] introduced balancing numbers m € Z* as solutions of the equation:
1424 4+Mm—1)=n+1)+n+2) 4+ n+r). (9)
Theorem 3 Let B, be the n'™ balancing number. Then
ST, = B2
Proof. By making the substitution m + r = n, with n > m + 1, Equation (9) becomes

1424---+(m—-1)=m+1)+(m+2)+---+n (10)
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Therefore

m is a balancing number <= 1+2+---+(m

m(m — 1)

=(1+2+-+n)—

~m(m+1)

— =

This completes the proof.

2

m(m —1)

m(m+ 1)

2

2

s n(n+1)

2

_n(n+1)
2

m? is a square-triangular number

7

(1+2+-+m)

O

Table 1 bellow summarizes the first ten square-triangular numbers with there associated

triangular and balancing numbers, based on Theorem 2 and Theorem 3.

— Z‘ N(N+1 = i
n| N= Zo(m+2) Ty = S5 1(m+3) ST = B,
1 1 1 1
2 8 36 6 36
3 49 1225 35 1225
4 288 41616 204 41616
5 1681 1413721 1189 1413721
6 9800 48024900 6930 48024900
7 57121 1631432881 40391 1631432881
8 332928 55420693056 235416 55420693056
9 1940449 1882672131025 1372105 1882672131025
10 11309768 63955431761796 7997214 63955431761796

Table 1: The first ten square-triangular numbers

4 Recurrence Relations for Square-Triangular Numbers

Theorem 4 The sequence of square-triangular numbers (ST,), satisfies the recurrence

relation:

ST,
with ST}, = 1 and ST, = 36.

345T,, 1 — ST, o+ 2, for n > 3,
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Proof. Tt is well known that the sequence of balancing numbers satisfies the following recur-

rence relations [1]:
BnJrl =68, — anly (11)

and
B:-B,.B, =1 (12)

Hence

B! = (6Bn,1— By)”

= 36B%> | —12B,_ 1B, + B?_,
From Equation (11), we get

B, + B,_
B? = 36B2_,—12 (%) Bno+ B2,
= 36B%2 |, -2B,B, ,— B2,

= 34B._ | —2(B.Bn,—2 — B._|) — Bi_,-

n

From Equation (12), we get

B? = 34B? | - B2 ,+2

n

This completes the proof according to Theorem 3. ]

5 Generating Function for Square-Triangular Numbers

In this section, we present the generating function based on some relations on balancing

numbers.

Theorem 5 The generating function of ST, is:

z(1+ z)

T = g =+

Proof. Let f(x) = ZSTn x". Then

n>1

xf(x) = Z 345T, 1 =",

n>2
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and

22 f(z) = Z STy "

n>3
Therefore

rf(z) — 2*f(x) = 34a® + 2(345Tn,1 — ST, o) 2"

n>3

= 342+ ) (34T — ST, o +2) 2" =2 a™

n>3 n>3

By Theorem 6, we have

Marf(r) —2°f(x) = 34x2+ZSTn x”—?(lix —1—3:—.7:2)

n>3
1
— 341:2+(f(x)—:1:—36x2)—2(1 —1—9(:—:62)
-
B z(1+z)
Hence
1
(1 - 34z + 22) f(z) = z(1+2)
11—z
This completes the proof. O

By using the generating function we can have the following equivalent explicit formula for

the sequence of square-triangular numbers (ST,,),, that may be convenient to include.

Theorem 6 Forn > 1, we have
(17 +12v2)" + (17— 12V/2)" - 2

ST, =
32
Proof. From expanding the generating function of S7,, in partial fractions, we obtain
1 1242 — 17 12v/2 + 17
(o) = -7 - -

16(x—1)  32(12v2—-1742) 32(12vV2+17 —x)
Therefore

n

R RN | (=2)" L S
fz) = 16; +3QZ(_17+1N§)”+322(17+1N§)”

n>0 n>0

1 1 n 1 n
= =N oY (172 2) S (17—12 2) n,
n>0x +32 ( +12v2) 2"+ V2)

16 2 32 2
Then
sr, = — L1 (17+ 12&)” + L (17 _ 12\/§)n-
16 32 32

Hence, the result follows. O
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