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Brian Fisher, Mongkolsery Lin, Somsak Orankitjaroen

Results on partial Derivatives of the incomplete Beta
Function

ABSTRACT. The incomplete Beta function B(a, b;x) is defined by

B(a, b;x) =

∫ x

0

ta−1(1− t)b−1 dt ,

for a, b > 0 and 0 < x < 1. This definition was extended to negative integer values of a and
b by Özçaḡ et al. Partial derivatives of the incomplete Beta function B(a, b;x) for negative
integer values of a and b were then evaluated. In the following, it is proved that

B0,1(−1, 1;x) = − ln
x

1− x
− ln(1− x)

x
− 1

and

nB0,1(−n, 1;x) = − ln
x

1− x
− ln(1− x)

xn
− n−1 +

n−1∑
i=1

x−i

i
,

for n = 2, 3, . . . , where
∂m+n

∂am∂bn
B(a, b;x) = Bm,n(a, b;x) .

Further results are also given.

KEY WORDS. Beta function, incomplete Beta function, neutrix, neutrix limit

1 INTRODUCTION

In a change of notation, the incomplete Beta function B(a, b;x) is defined by

B(a, b;x) =

∫ x

0

ta−1(1− t)b−1 dt, a, b > 0, 0 < x < 1

see Özçaḡ et al [6].

The following definitions were given by van der Corput [4].
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Definition 1.1 A neutrix N is defined as a commutative additive group of functions
ν(ξ) defined on a domain N ′ with values in an additive group N ′′, where further, if for some
ν ∈ N , ν(ξ) = γ for all ξ ∈ N ′, then γ = 0. The functions in N are called negligible
functions.

Definition 1.2 Let N ′ be a set contained in a topological space with a limit point b which
does not belong to N ′. If f(ξ) is a function in N ′ with values in N ′′ and it is possible to find
a constant c such that f(ξ) − c ∈ N, then c is called the neutrix limit of f as ξ tends to b
and we write N−limξ→b f(ξ) = c.

Note that if f tends to c in the normal sense as ξ tends to b, then it converges to c in the
neutrix sense.

Now let N be the neutrix having domain N ′ = (0, x) (0 < x < 1) and range N ′′ the real
numbers, with the negligible functions finite linear sums of the functions

ελ lnr−1 ε, lnr ε (λ < 0, r = 1, 2, . . .)

and all functions which converge to zero in the normal sense as ε tends to zero.

It was proved, see Özçaḡ et al. [6] and [7] that

B(a, b;x) = N−lim
ε→0

∫ x

ε

ta−1(1− t)b−1 dt

for all values of a and b and in general

∂m+n

∂am∂bn
B(a, b;x) = Bm,n(a, b;x)

= N−lim
ε→0

∫ x

ε

ta−1 lnm t (1− t)b−1 lnn(1− t) dt

for m,n = 0, 1, 2, . . . and all values of a and b.

Note that Bm,n(a, b;x) is not necessarily equal to Bm,n(b, a;x).

Note also that if a > 0, then

Bm,n(a, b;x) = lim
ε→0

∫ x

ε

ta−1 lnm t (1− t)b−1 lnn(1− t) dt

for m,n = 0, 1, 2, . . . .

The following results were proved in [2]:

B(0, 0;x) = ln
x

1− x
, (1)

B(n, 0;x) = − ln(1− x)−
n−1∑
i=1

xi

i
, n = 1, 2, . . . , (2)
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the sum being empty when n = 1 and

B(−n, 0;x) = ln
x

1− x
−

n∑
i=1

x−i

i
, n = 1, 2, . . . . (3)

2 MAIN RESULTS

We now prove the following theorem:

Theorem 2.1

B(0,−n;x) = ln
x

1− x
+

n∑
i=1

(1− x)−i

i
− φ(n) , (4)

for n = 1, 2, . . . , where

φ(n) =
n∑
i=1

1

i

is the n−th harmonic number.

Proof. We have∫ x

ε

t−1(1− t)−n−1 dt =

∫ 1−ε

1−x
t−n−1(1− t)−1 dt

=

∫ 1−ε

1−x

[
(1− t)−1 +

n+1∑
i=1

t−i

]
dt

= lnx− ln ε− ln(1− x) + ln(1− ε)−
n∑
i=1

1

i

[
1

(1− ε)i
− 1

(1− x)i

]
and it follows that

B(0,−n;x) = N−lim
ε→0

∫ x

ε

t−1(1− t)−n−1 dt

= ln
x

1− x
− N−lim

ε→0
[ln ε− ln(1− ε)]− lim

ε→0

n∑
i=1

1

i

[
1

(1− ε)i
− 1

(1− x)i

]
= ln

x

1− x
−

n∑
i=1

1

i

[
1− 1

(1− x)i

]
.

Equation (4) follows.

Equation (4) corrects a result given in [6].
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Theorem 2.2

B1,0(1,−1;x) = (1− x)−1 lnx− ln
x

1− x
(5)

and

nB1,0(1,−n;x) = (1− x)−n lnx− ln
x

1− x
−

n−1∑
i=1

(1− x)−i

i
+ φ(n− 1) (6)

for n = 2, 3, . . . .

Proof. We have

n

∫ x

ε

ln t(1− t)−n−1 dt =

∫ x

ε

ln t d(1− t)−n

= (1− x)−n lnx− (1− ε)−n ln ε−
∫ x

ε

t−1(1− t)−n dt

and it follows that

nB1,0(1,−n;x) = N−lim
ε→0

n

∫ x

ε

ln t(1− t)−n−1 dt

= (1− x)−n lnx− N−lim
ε→0

(1− ε)−n ln ε− N−lim
ε→0

∫ x

ε

t−1(1− t)−n dt

= (1− x)−n lnx−B(0,−n+ 1;x) .

Equation (5) now follows on using equation (1) and equation (6) follows on using equation
(4) for n = 2, 3, . . . .

Theorem 2.3

B0,1(−1, 1;x) = − ln
x

1− x
− ln(1− x)

x
− 1 (7)

and

nB0,1(−n, 1;x) = − ln
x

1− x
− ln(1− x)

xn
− n−1 +

n−1∑
i=1

x−i

i
, (8)

for n = 2, 3, . . . .

Proof. We have

n

∫ x

ε

t−n−1 ln(1− t) dt = −
∫ x

ε

ln(1− t) dt−n

= ε−n ln(1− ε)− x−n ln(1− x)−
∫ x

ε

t−n(1− t)−1 dt
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and it follows that

nB0,1(−n, 1;x) = N−lim
ε→0

n

∫ x

ε

t−n−1 ln(1− t) dt

= −n−1 − x−n ln(1− x)−B(−n+ 1, 0;x) .

Equation (7) now follows on using equation (1) and equation (8) follows on using equation
(3) for n = 2, 3, . . . .

Theorem 2.4

B0,1(−n, r + 1;x) =
r∑
i=0

(−1)i−1

n− i

(
r

i

)[
xi−n ln(1− x) + ln

x

1− x

−
n−i−1∑
k=1

x−k

k
+

1

n− i

]
(9)

for n = 1, 2, . . . and r = 0, 1, 2, . . . , n− 1, the sum
∑n−i−1

k=1
x−k

k
being empty when i = n− 1,

B0,1(−n, n+ 1;x) =
n−1∑
i=0

(−1)i−1

n− i

(
n

i

)[
xi−n ln(1− x) + ln

x

1− x

−
n−i−1∑
k=1

x−k

k
+

1

n− i

]
− (−1)n

∞∑
i=1

xi

i2
, (10)

for n = 1, 2, . . . , the sum
∑n−i−1

k=1
x−k

k
being empty when i = n− 1 and

B0,1(−n, r + 1;x) =
n−1∑
i=0

(−1)i−1

n− i

(
r

i

)[
xi−n ln(1− x) + ln

x

1− x

−
n−i−1∑
k=1

x−k

k
+

1

n− i

]
+ (−1)n

(
r

n

) ∞∑
i=1

xi

i2

+
r∑

i=n+1

(−1)i

i− n

(
r

i

)[
xi−n ln(1− x)− ln(1− x)−

i−n∑
k=1

xk

k

]
(11)

for n = 1, 2, . . . and r = n+ 1, n+ 2, . . . .

Proof. Integrating by parts, we have∫ x

ε

t−n−1(1− t)r ln(1− t) dt =
r∑
i=0

(−1)i
(
r

i

)∫ x

ε

ti−n−1 ln(1− t) dt

=
r∑
i=0

(−1)i

i− n

(
r

i

)[
xi−n ln(1− x)− εi−n ln(1− ε) +

∫ x

ε

ti−n(1− t)−1 dt

]
, (12)
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for r = 0, 1, 2, . . . , n− 1.

Since

εi−n ln(1− ε) = −
∞∑
j=1

εi+j−n

j
,

it follows that

N−lim
ε→0

εi−n ln(1− ε) =

{
−(n− i)−1, 0 ≤ i ≤ n− 1,

0, i ≥ n.
(13)

It now follows from equations (12) and (13) that

B0,1(−n, r + 1;x) = N−lim
ε→0

∫ x

ε

t−n−1 ln(1− t)(1− t)r dt

=
r∑
i=0

(−1)i

i− n

(
r

i

)[
xi−n ln(1− x) +B(−n+ i+ 1, 0;x)− 1

i− n

]

=
r∑
i=0

(−1)i−1

n− i

(
r

i

)[
xi−n ln(1− x) + ln

x

1− x
−

n−i−1∑
k=1

x−k

k
+

1

n− i

]
,

on using equation (3), proving equation (9).

For the case r = n, equation (12) has to be replaced by the equation∫ x

ε

t−n−1(1− t)n ln(1− t) dt =
n∑
i=0

(−1)i
(
n

i

)∫ x

ε

ti−n−1 ln(1− t) dt

=
n−1∑
i=0

(−1)i

i− n

(
n

i

)[
xi−n ln(1− x)− εi−n ln(1− ε) +

∫ x

ε

ti−n(1− t)−1 dt

]
+ (−1)n

∫ x

ε

t−1 ln(1− t) dt . (14)

It now follows from equations (13) and (14) that

B0,1(−n,n+ 1;x) = N−lim
ε→0

∫ x

ε

t−n−1 ln(1− t)(1− t)n dt

=
n−1∑
i=0

(−1)i

i− n

(
n

i

)[
xi−n ln(1− x) +B(−n+ i+ 1, 0;x)− 1

i− n

]
+ (−1)nB0,1(0, 1;x) . (15)

Now ∫ x

ε

t−1 ln(1− t) dt = −
∞∑
i=1

∫ x

ε

ti−1

i
dt = −

∞∑
i=1

xi − εi

i2
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and so

N−lim
ε→0

∫ x

ε

t−1 ln(1− t) dt = −
∞∑
i=1

xi

i2
= B0,1(0, 1;x) . (16)

It now follows from equations (15) and (16) that

B0,1(−n, n+ 1;x) =
n−1∑
i=0

(−1)i−1

n− i

(
n

i

)[
xi−n ln(1− x) + ln

x

1− x

−
n−i−1∑
k=1

x−k

k
+

1

n− i

]
− (−1)n

∞∑
i=1

xi

i2
,

proving equation (10).

When r > n, equation (12) has to be replaced by∫ x

ε

t−n−1(1− t)r ln(1− t) dt =
r∑
i=0

(−1)i
(
r

i

)∫ x

ε

ti−n−1 ln(1− t) dt

=
n−1∑
i=0

(−1)i

i− n

(
r

i

)[
xi−n ln(1− x)− εi−n ln(1− ε) +

∫ x

ε

ti−n(1− t)−1 dt

]
+ (−1)n

(
r

n

)∫ x

ε

t−1 ln(1− t) dt

+
r∑

i=n+1

(−1)i

i− n

(
r

i

)[
xi−n ln(1− x)− εi−n ln(1− ε) +

∫ x

ε

ti−n(1− t)−1 dt

]
. (17)

It now follows from equations (16) and (17) that

B0,1(−n, r + 1;x) = N−lim
ε→0

∫ x

ε

t−n−1(1− t)r ln(1− t) dt

=
n−1∑
i=0

(−1)i−1

n− i

(
r

i

)[
xi−n ln(1− x) + ln

x

1− x
−

n−i−1∑
k=1

x−k

k
+

1

n− i

]

− (−1)n
(
r

n

) ∞∑
i=1

xi

i2
+

r∑
i=n+1

(−1)i

i− n

(
r

i

)[
xi−n ln(1− x)− ln(1− x)−

i−n∑
k=1

xk

k

]
,

since it was proved in [6] that

B(n, 0;x) = N−lim
ε→0

∫ x

ε

tn−1(1− t)−1 dt = − ln(1− x)−
n−1∑
k=1

xk

k

for n = 1, 2, . . . . Equation (11) is now proved.

For further related results see [1], [2], [3] and [5].
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Laure Cardoulis

Existence of solutions for a system involving the
(2,q)-Laplacian operator in a bounded domain

ABSTRACT. In this paper we study the existence of a non trivial weak solution for a system
involving the Laplacian operator and the q-Laplacian operator in a bounded domain Ω of
RN with sufficiently smooth boundary.

KEY WORDS. (2,q)-Laplacian operator, system, existence of solutions

1 Introduction

We consider in this paper the following system for i = 1, · · · ,m,{
−∆ui −∆qui + wi|ui|q−2ui +

∑m
j=1 aijuj = gi(., u1, · · · , um) in Ω,

ui = 0 on ∂Ω.
(S, q, g)

where Ω is a bounded domain with sufficiently smooth boudary, Ω ⊂ RN .

We recall that the q-Laplacian operator is defined by ∆qφ = div(|∇φ|q−2∇φ) and we sup-
pose q > 2 in the whole paper. We study the existence of a weak non-trivial solution u =

(u1, · · · , um) ∈ W for the system (S, q, g) where the variational space is W = (W 1,q
0 (Ω))m,

W 1,q
0 (Ω) being the usual Sobolev space endowed with the norm ‖φ‖1,q

0 (Ω) = (
∫

Ω
|∇φ|q)1/q.

We also denote H = (W 1,2
0 (Ω))m and ‖.‖W , ‖.‖H , the norms on W and H (‖u‖W =

(
∑m

i=1 ‖ui‖
q

W 1,q
0 (Ω)

)1/q).

We assume throughout all the paper that the bounded functions aij, wi (for i, j = 1, · · · ,m)
satisfy the following hypothesis

Assumption 1.1 i) aij, wi ∈ L∞(Ω), aii ≥ 0, wi ≥ 0 a. e. on Ω.

ii) The matrix A = (aij) is symmetric and satisfies tξAξ ≥ 0 for all tξ = (ξ1, · · · , ξm) ∈ Rm.
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Note that the above Assumption 1.1ii) is satisfied when the matrix A is a positive definite
one. Introduce now the following functionals for u = (u1, · · · , um) ∈ W

H1(u) =
m∑
i=1

∫
Ω

(|∇ui|2 + aiiu
2
i +

m∑
j=1,i 6=j

aijujui), (1.1)

and

H2(u) =
m∑
i=1

∫
Ω

(|∇ui|q + wi|ui|q). (1.2)

Since A is symmetric then H1(u) =
∑m

i=1

∫
Ω

(|∇ui|2 + aiiu
2
i + 2

∑m
j=1,i<j aijujui).

Note that (H1(u))1/2 and (H2(u))1/q define norms on H andW equivalent to the norms ‖.‖H
and ‖.‖W respectively.

We consider different cases for the functions gi : in the second section we deal with gi(., u1, · · · ,
um) := hi ∈ W−1,q′(Ω) the dual space of W 1,q

0 (Ω) with 1
q

+ 1
q′

= 1. In the third section, we
define gi(., u1, · · · , um) := mi|ui|q−2ui where the functions mi are bounded and indefinite. In
the fourth section we consider the case gi(., u1, · · · , um) := λfi|ui|γ−2ui where the functions
fi are still bounded and undefinite, λ is a positive real parameter and the coefficient γ sat-
isfies some hypotheses in which γ < q.

In each of the precedent cases, the system (S, q, g) will be rewritten under a variational form
with I(u) an adapted Euler functional defined in W and the existence of weak solutions for
the system (S, q, g) will be equivalent to the existence of critical points for this functional
I. In the second and third sections, we will mimimize the Euler functional I using either
standard arguments (cf. Theorem I.1.2 in [18]) or the Moutain-Pass Theorem. In the third
section, we will use the principal eigenvalue λ1,q,ρ of the q-Laplacian operator associated with
a weight ρ whereas in the fourth section we will define a characteristic value λ+

1 (see (4.7)).

Equations and systems with the p-Laplacian have been widely studied for the existence of
solutions or the maximum and antimaximum principles (see for examples [3, 9–13], see also
[14] for the fibering procedure). These last few years, equations with the (p,q)-Laplacian
have been studied (see for examples [4, 6, 15, 19, 21] in a bounded domain and [5] in RN).
Authors study the existence of solutions (sometimes the sign of these solutions and gen-
eralized eigenvalue problems) mainly by minimization of the energy functional either by
standard arguments or the mountain-pass geometry, also by using the method of sub- and
super-solutions. The case of the (2,q)-Laplacian arises in quantum physics (see [2]). A few
systems with two equations have been studied (see for example [16] for a system with two
equations, one with the p-Laplacian and the other one with the q-Laplacian ; see also [20]
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for a system of two equations with the (p,q)-Laplacian with critical nonlineariries) but as
far as we know, there is no system with n equations for the (2,q)-Laplacian studied yet.

This paper is organised as follows: in section 2, we use standard arguments for minimizing
the functional I when we consider the case where gi(., u1, · · · , um) := hi ∈ W−1,q′(Ω). In
section 3 (in the case of gi(., u1, · · · , um) := mi|ui|q−2ui and q < 2∗ where 2∗ = 2N

N−2
if

N > 2 and 2∗ = ∞ if N ≤ 2), first we recall some results of the existence of the principal
eigenvalue for the q-Laplacian operator associated with a bounded weight (and the existence
of a positive eigenfunction associated with). Then we use the Mountain-Pass Theorem in
order to get the existence of a non-trivial solution for our system. Finally in section 4 (when
gi(., u1, · · · , um) := λfi|ui|γ−2ui with 2 < γ < q and γ < 2∗ where 2∗ = 2N

N−2
if N > 2 and

2∗ = ∞ if N ≤ 2), first we follow a method introduced by Cherfils-Il’Yasov in [7] for one
equation involving the (p-q)-Laplacian operator to define a characteristic value λ+

1 . Then
we get the existence of a non-trivial solution by means of global minimization of the Euler
functional.

2 First case: gi(., u1, · · · , um) := hi ∈ W−1,q′(Ω)gi(., u1, · · · , um) := hi ∈ W−1,q′(Ω)gi(., u1, · · · , um) := hi ∈ W−1,q′(Ω)

In this case the system (S, q, g) is rewritten under the following form{
−∆ui −∆qui + wi|ui|q−2ui +

∑m
j=1 aijuj = hi in Ω,

ui = 0 on ∂Ω,
(2.1)

with hi ∈ W−1,q′(Ω) for each i = 1, · · · ,m. Recall that −∆q may be seen acting fromW 1,q
0 (Ω)

into W−1,q′(Ω) with 1
q

+ 1
q′

= 1 by

< −∆qφ, ψ >q′,q=

∫
Ω

|∇φ|q−2∇φ · ∇ψ for all φ, ψ ∈ W 1,q
0 (Ω)

(see [8, 17]) where < ., . >q′,q denotes the duality mapping between W−1,q′(Ω) and W 1,q
0 (Ω).

Therefore the Euler functional is, for u = (u1, · · · , um) ∈ W,

I(u) =
1

2
H1(u) +

1

q
H2(u)−

m∑
i=1

< hi, ui >q′,q . (2.2)

The result of the existence of solution for the system (2.1) is the following.

Theorem 2.1 Assume that Assumption 1.1 is satisfied and that hi ∈ W−1,q′(Ω) for each
i = 1, · · · ,m. Then the system (2.1) has a unique solution.
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Proof. The functional I : W → R defined by (2.2) is weakly lower semi-continuous by
the compactness of the embedding of W to (Lq(Ω))m and (L2(Ω))m and of class C1 on W.
Moreover this functional I is also coercive. Indeed by the Young’s inequality we have

| < hi, ui >q′,q | ≤ ‖hi‖W−1,q′ (Ω)‖ui‖W 1,q
0 (Ω) ≤

1

2q
‖ui‖qW 1,q

0 (Ω)
+ C‖hi‖q

′

W−1,q′ (Ω)

with C > 0, C independent of u. And since H1(u) ≥ 0 and H2(u) ≥ ‖u‖W we get that

I(u) ≥ 1

2q
‖u‖W − C

m∑
i=1

‖hi‖q
′

W−1,q′ (Ω)
.

Therefore the functional I has a gobal minimizer (cf.[18, Theorem I.1.2]) and the system
(2.1) has a solution.
Let us prove now the uniqueness of the solution. Suppose on the contrary that there exist
two distinct solutions u = (u1, · · · , um) ∈ W and v = (v1, · · · , vm) ∈ W for (2.1), so there
exists k such that uk 6= vk. Since

(I ′(u)− I ′(v)) · (u− v) = I ′(u) · u− I ′(v) · u− I ′(u) · v + I ′(v) · v = 0,

we have
m∑
i=1

∫
Ω

|∇ui|2 +
m∑

i,j=1

∫
Ω

aijujui +
m∑
i=1

∫
Ω

(|∇ui|q + wi|ui|q)

−
m∑
i=1

∫
Ω

∇vi · ∇ui −
m∑

i,j=1

∫
Ω

aijvjui −
m∑
i=1

∫
Ω

(|∇vi|q−2∇vi · ∇ui + wi|vi|q−2viui) = 0

and on the other hand
m∑
i=1

∫
Ω

∇ui · ∇vi +
m∑

i,j=1

∫
Ω

aijujvi +
m∑
i=1

∫
Ω

(|∇ui|q−2∇ui · ∇vi + wi|ui|q−2uivi)

−
m∑
i=1

∫
Ω

|∇vi|2 −
m∑

i,j=1

∫
Ω

aijvjvi −
m∑
i=1

∫
Ω

(|∇vi|q + wi|vi|q) = 0.

So we get

m∑
i=1

∫
Ω

∇ui · (∇ui −∇vi) +
m∑

i,j=1

∫
Ω

aijuj(ui − vi) +
m∑
i=1

∫
Ω

|∇ui|q−2∇ui · (∇ui −∇vi)

+
m∑
i=1

∫
Ω

wi|ui|q−2ui(ui − vi)−
m∑
i=1

∫
Ω

∇vi · (∇ui −∇vi)−
m∑

i,j=1

∫
Ω

aijvj(ui − vi)

−
m∑
i=1

∫
Ω

|∇vi|q−2∇vi · (∇ui −∇vi)−
m∑
i=1

∫
Ω

wi|vi|q−2vi(ui − vi) = 0.
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Thus
m∑
i=1

∫
Ω

|∇ui −∇vi|2 +
m∑
i=1

∫
Ω

(|∇ui|q−2∇ui − |∇vi|q−2∇vi) · (∇ui −∇vi)

+
m∑

i,j=1

∫
Ω

aij(uj − vj)(ui − vi) +
m∑
i=1

∫
Ω

wi(|ui|q−2ui − |vi|q−2vi)(ui − vi) = 0.

The last equality can be rewritten under the following form with the duality product
< ., . >q′,q

m∑
i=1

< −∆ui + ∆vi, ui − vi >2,2 +
m∑
i=1

< −∆qui + ∆qvi, ui − vi >q′,q

+
m∑

i,j=1

< aij(uj − vj), ui − vi >2,2 +
m∑
i=1

< wi(|ui|q−2ui − |vi|q−2vi), ui − vi >q′,q= 0.

Moreover a consequence of the strict convexity of the spaces W 1,2
0 (Ω) and W 1,q

0 (Ω) is that
the duality mappings −∆ and −∆q are strictly monotone. So from uk 6= vk we get

< −∆uk + ∆vk, uk − vk >2,2> 0,

and

< −∆quk + ∆qvk, uk − vk >q′,q≥ (‖uk‖q−1

W 1,q
0 (Ω)

− ‖vk‖q−1

W 1,q
0 (Ω)

)(‖uk‖W 1,q
0 (Ω) − ‖vk‖W 1,q

0 (Ω)) ≥ 0

since x 7→ xq−1 is increasing on [0,∞) (and even < −∆quk + ∆qvk, uk − vk >q′,q> 0 from [8,
Proposition 1]).
Thus

m∑
i=1

< −∆ui + ∆vi, ui − vi >2,2 +
m∑
i=1

< −∆qui + ∆qvi, ui − vi >q′,q> 0.

Furthermore, since the function x 7→ |x|q−2x is increasing and wi ≥ 0, we have

m∑
i=1

< wi(|ui|q−2ui − |vi|q−2vi), ui − vi >q′,q≥ 0.

Finally from Assumption 1.1,

m∑
i,j=1

< aij(uj − vj), ui − vi >2,2≥ 0.

Therefore we get a contradiction.
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Remark: We can generalize Theorem 2.1 replacing the 2-Laplacian operator by the p-
Laplacian with 2 < p < q, that for the following system{

−∆pui −∆qui + wi|ui|q−2ui +
∑m

j=1 aijuj = hi in Ω,

ui = 0 on ∂Ω,

and even for{
−∆pui −∆qui + bi|ui|p−2ui + wi|ui|q−2ui +

∑m
j=1 aijuj = hi in Ω,

ui = 0 on ∂Ω,

under the additional hypothesis that the bounded functions bi, i = 1, · · · ,m are non-negative.

3 Second case: gi(., u1, · · · , um) := mi|ui|q−2uigi(., u1, · · · , um) := mi|ui|q−2uigi(., u1, · · · , um) := mi|ui|q−2ui

In this section we assume that

Assumption 3.1 q < 2∗ where 2∗ = 2N
N−2

if N > 2 and 2∗ =∞ if N ≤ 2,

and we rewrite the system (S, q, g) under the following form:
for i = 1, · · · ,m,{

−∆ui −∆qui + wi|ui|q−2ui +
∑m

j=1 aijuj = mi|ui|q−2ui in Ω,

ui = 0 on ∂Ω.
(3.1)

Note that the decomposition with the weights ci := mi − wi does not necessarily coincide
with the decomposition ci = ci+ − ci− where ci+ = max(ci, 0) and ci− = max(−ci, 0). Define
now for u = (u1, · · · , um) ∈ W the functional

M(u) =
m∑
i=1

∫
Ω

mi|ui|q. (3.2)

The Euler functional associated with (3.1) is consequently for u = (u1, · · · , um) ∈ W,

I(u) =
1

2
H1(u) +

1

q
H2(u)− 1

q
M(u). (3.3)

First let us recall the usual weighted eigenvalue problem for the q-Laplacian:{
−∆qu = λρ|u|q−2u in Ω,

u = 0 on ∂Ω,
(3.4)

with a bounded weight function ρ and a real parameter λ. It is said that λ is an eigenvalue
of the q-Laplacian associated with the weight ρ if (3.4) has a non-trivial solution u which
is called an eigenfunction associated with λ. It is well known (see [1]) that if the Lebesgue
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measure of {x ∈ Ω, ρ(x) > 0} is positive, then the first positive eigenvalue λ1,q,ρ of −∆q with
weight function ρ is obtained by the Rayleight quotient

λ1,q,ρ = inf{
∫

Ω
|∇u|q∫

Ω
ρ|u|q

;u ∈ W 1,q
0 (Ω),

∫
Ω

ρ|u|q > 0}. (3.5)

Moreover, λ1,q,ρ has a positive eigenfunction φ1,q,ρ ∈ C1,αq
0 (Ω) (for some αq ∈ (0, 1)). Assume

in this section that

Assumption 3.2 i) For all i = 1, · · · ,m, mi ∈ L∞(Ω),

ii) For all i = 1, · · · ,m, the real 1 is not an eigenvalue of the q-Laplacian with the weight
mi − wi.

Assume also in this section that either Assumption 3.3 or Assumption 3.4 holds

Assumption 3.3 There exists k ∈ {1, · · · ,m} such that:

meas{x ∈ Ω, (mk − wk)(x) > 0} 6= 0 and λ1,q,mk−wk < 1.

Assumption 3.4 There exist k, l ∈ {1, · · · ,m}, k 6= l such that:

meas{x ∈ Ω, (mk − wk)(x) > 0} 6= 0 and λ1,q,mk−wk +

∫
Ω

(wl −ml)|φ1,q,mk−wk |q < 0

with φ1,q,mk−wk the normalized eigenfunction associated with λ1,q,mk−wk .

Note that Assumption 3.4 is satisfed when λ1,q,mk−wk(mk − wk) + wl −ml < 0 a. e. in Ω.

Our aim is to study the existence of a weak solution for the system (3.1) by minimizing the
functional I defined by (3.3). As in section 2, the functional I is weakly lower semi-continous
on W but may be no more coercive so we cannot use standard arguments for minimizing I.
First, we prove that any Palais-Smale sequence is bounded inW and has a strong convergent
subsequence. Then we are able to apply the Mountain-Pass Lemma and Assumptions 3.3 or
3.4 allow us to get a non-trivial solution.

We say that (un) ⊂ W, un = (u1n, · · · , umn), is a Palais-Smale sequence if it satisfies the
following conditions

|I(un)| ≤ D for all n ∈ N and ‖I ′(un)‖W ∗ → 0 as n→∞ (3.6)

with some constant D > 0, W ∗ being the dual space of W.

Lemma 3.1 Assume that Assumptions 1.1 and 3.2 are satisfied. If (un) ⊂ W, un =

(u1n, · · · , umn), is a Palais-Smale sequence, then (un) is bounded in W.
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Proof. Let (un) ⊂ W, un = (u1n, · · · , umn), be a Palais-Smale sequence. We want to prove
that (‖un‖W )n is bounded or equivalently that (H2(un))n is bounded. But

1

q
H2(un) = I(un)− 1

2
H1(un) +

1

q
M(un) ≤ D +

1

q
M(un) ≤ D + C‖un‖q(Lq(Ω))m (3.7)

with C a positive constant, C independent of un (since the functions mi are bounded in the
functional M(u) defined by (3.2)). So it is sufficient to show that (‖un‖(Lq(Ω))m) is bounded.
We adapt ideas from [19]. Assume on the contrary that αn := ‖un‖(Lq(Ω))m →n→∞ ∞ (for a
subsequence) and denote vn = 1

αn
un = (v1n, · · · , vmn). From (3.7), we deduce that (‖vn‖W )

is bounded and from the compact embedding of W into (Lq(Ω))m we get the existence of
v0 = (v01, · · · , v0m) ∈ W such that (vn) converges to v0, strongly in (Lq(Ω))m and weakly in
W (for a subsequence).
• Now we prove that (vn) converges strongly to v0 in W. Indeed by taking
φn := 1

αq−1
n

(vn − v0), we obtain

I ′(un).φn =
1

αq−1
n

m∑
i=1

∫
Ω

(∇uin.∇(vin − v0i) + aiiuin(vin − v0i))

+
1

αq−1
n

m∑
i=1

∫
Ω

(|∇uin|q−2∇uin.∇(vin − v0i) + wi|uin|q−2uin(vin − v0i))

+
1

αq−1
n

∑
i,j;i 6=j

∫
Ω

aijujn(vin − v0i)−
1

αq−1
n

m∑
i=1

∫
Ω

mi|uin|q−2uin(vin − v0i). (3.8)

But un = αnvn so (3.8) becomes

I ′(un).φn =
1

αq−2
n

m∑
i=1

∫
Ω

(∇vin.∇(vin − v0i) + aiivin(vin − v0i))

+
m∑
i=1

∫
Ω

(|∇vin|q−2∇vin.∇(vin − v0i) + wi|vin|q−2vin(vin − v0i))

+
1

αq−2
n

∑
i,j;i 6=j

∫
Ω

aijvjn(vin − v0i)−
m∑
i=1

∫
Ω

mi|vin|q−2vin(vin − v0i). (3.9)

Note that |I ′(un).φn| ≤ ‖I ′(un)‖W ∗‖φn‖W = ‖I ′(un)‖W ∗ 1

αq−1
n
‖vn − v0‖W so

I ′(un).φn →n→∞ 0 from (3.6), αn →n→∞ ∞ and (‖vn‖W ) bounded. Moreover, since the
functions aij, wi,mi are bounded there exists a positive constant, denoting C at each step,
such that

|
∫

Ω

aijvjn(vin − v0i))| ≤ C‖vjn‖L2(Ω)‖vin − v0i‖L2(Ω) ≤ C‖vn‖W‖vn − v0‖(Lq(Ω))m
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and therefore ∫
Ω

aijvjn(vin − v0i))→ 0 as n→∞. (3.10)

By the same way, for bi = wi or bi = mi,

|
∫

Ω

bi|vin|q−2vin(vin − v0i))| ≤ C(

∫
Ω

|vin|q)
q−1
q (

∫
Ω

|vin − v0i|q)1/q ≤ C‖vn‖q−1
W ‖vn − v0‖(Lq(Ω))m

so ∫
Ω

bi|vin|q−2vin(vin − v0i))→ 0 as n→∞. (3.11)

Recall that < ., . >q′,q is the duality product betweenW−1,q′(Ω) andW 1,q
0 (Ω) with 1

q
+ 1

q′
= 1.

From (3.9), (3.10), (3.11), we deduce that

1

αq−2
n

m∑
i=1

< −∆vin, vin − v0i >2,2 +
m∑
i=1

< −∆qvin, vin − v0i >q′,q→ 0 as n→∞. (3.12)

Moreover we have (see also the proof of Theorem 2.1)

< −∆qvin+∆qv0i, vin−v0i >q′,q≥ (‖vin‖q−1

W 1,q
0 (Ω)

−‖v0i‖q−1

W 1,q
0 (Ω)

)(‖vin‖W 1,q
0 (Ω)−‖v0i‖W 1,q

0 (Ω)) ≥ 0

(3.13)
and

< −∆vin + ∆v0i, vin − v0i >2,2= ‖vin − v0i‖2
W 1,2

0 (Ω)
≥ (‖vin‖W 1,2

0 (Ω) − ‖v0i‖W 1,2
0 (Ω))

2. (3.14)

From (3.13) and (3.14) we get

0 ≤
m∑
i=1

(‖vin‖q−1

W 1,q
0 (Ω)

− ‖v0i‖q−1

W 1,q
0 (Ω)

)(‖vin‖W 1,q
0 (Ω) − ‖v0i‖W 1,q

0 (Ω))

+
1

αq−2
n

m∑
i=1

(‖vin‖W 1,2
0 (Ω) − ‖v0i‖W 1,2

0 (Ω))
2

≤ 1

αq−2
n

m∑
i=1

< −∆vin, vin − v0i >2,2 +
m∑
i=1

< −∆qvin, vin − v0i >q′,q

+
m∑
i=1

< ∆qv0i, vin − v0i >q′,q +
1

αq−2
n

m∑
i=1

< ∆v0i, vin − v0i >2,2 .

Because the right-hand side of the above estimate tends to 0 as n tends to infinity (from
(3.12) and the weak convergence of (vn) to v0 in W ) we obtain that for i = 1, · · · ,m,
‖vin‖W 1,q

0 (Ω) → ‖v0i‖W 1,q
0 (Ω) as n→∞ and therefore (vn) strongly converges to v0 in W.

• Finally, we prove that v0i is a non-trivial solution of the eigenvalue problem of the q-
Laplacian with weight mi − wi for at least one i.
Let φ = (φ1, · · · , φm) ∈ W. Taking 1

αq−1
n
φ as a test function, since un = αnvn, we have

I ′(un).
1

αq−1
n

φ =
1

αq−2
n

m∑
i=1

∫
Ω

(∇vin.∇φi +
m∑
j=1

∫
Ω

aijvjnφi)
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+
m∑
i=1

∫
Ω

(|∇vin|q−2∇vin.∇φi + wi|vin|q−2vinφi −mi|vin|q−2vinφi).

Letting n→∞, we see that for each i = 1, · · · ,m,{
−∆qv0i + wi|v0i|q−2v0i = mi|v0i|q−2v0i in Ω

v0i = 0 on ∂Ω
. (3.15)

Since ‖vn‖(Lq(Ω))m = 1 and (vn) converges strongly to v0 in W we get that ‖v0‖W ≥ 1.

Therefore there exists i such that v0i is a weak solution to (3.15). This contradicts Assump-
tion 3.2.

Lemma 3.2 Assume that Assumptions 1.1 and 3.2 are satisfied. If (un) ⊂ W, un =

(u1n, · · · , umn), is a Palais-Smale sequence, then (un) has a strong convergent subsequence
in W.

Proof. Let (un) be a Palais-Smale sequence in W , un = (u1n, · · · , umn). By Lemma 3.1, the
sequence (un) is bounded in W. From the compact embedding of W 1,q(Ω) into Lq(Ω) we
get the existence of u0 = (u01, · · · , u0m) ∈ W such that (un) converges to u0 strongly in
(Lq(Ω))m and weakly in W (for a subsequence still denoted by (un)). We want to prove that
‖un‖W → ‖u0‖W as n→∞ and we proceed as in the proof of Lemma 3.1.
Since |I ′(un).(un − u0)| ≤ ‖I ′(un)‖W ∗(‖un‖W + ‖u0‖W ) we deduce that

I ′(un).(un − u0)→ 0 as n→∞. (3.16)

But

I ′(un).(un − u0) =
m∑
i=1

∫
Ω

(∇uin · ∇(uin − u0i) +
m∑
j=1

aijujn(uin − u0i))

+
m∑
i=1

∫
Ω

(|∇uin|q−2∇uin.∇(uin − u0i) + (wi −mi)|uin|q−2uin(uin − u0i)).

As in Lemma 3.1, denoting bi either wi or mi, we have for i, j = 1, · · · ,m,,∫
Ω

bi|uin|q−2uin(uin − u0i))→ 0 as n→∞,
∫

Ω

aijujn(uin − u0i))→ 0 as n→∞. (3.17)

From (3.16) and (3.17), we get that

m∑
i=1

< −∆uin, uin − u0i >2,2 +
m∑
i=1

< −∆quin, uin − u0i >q′,q→ 0 as n→∞.

Moreover we have

0 ≤
m∑
i=1

(‖uin‖q−1

W 1,q
0 (Ω)

− ‖u0i‖q−1

W 1,q
0 (Ω)

)(‖uin‖W 1,q
0 (Ω) − ‖u0i‖W 1,q

0 (Ω))
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+
m∑
i=1

(‖uin‖W 1,2
0 (Ω) − ‖u0i‖W 1,2

0 (Ω))
2

≤
m∑
i=1

< −∆uin, uin − u0i >2,2 +
m∑
i=1

< −∆quin, uin − u0i >q′,q

+
m∑
i=1

< ∆qu0i, uin − u0i >q′,q +
m∑
i=1

< ∆ui, uin − u0i >2,2 .

As in Lemma 3.1 we deduce that for i = 1, · · · ,m, ‖uin‖W 1,q
0 (Ω) → ‖u0i‖W 1,q

0 (Ω) as n → ∞
and therefore (un) strongly converges to u0 in W.

So we can state the main result of this section

Theorem 3.1 Assume that Assumptions 1.1, 3.1 and 3.2 are satisfied. Assume also that
either Assumption 3.3 or 3.4 holds. Then the system (3.1) has a non-trivial solution in W.

Proof. The C1-functional I satisfies the Palais-Smale conditions and I(0) = 0.

• First, we claim that there exist positive constants ρ∗ > 0 and δ > 0 such that I(u) ≥ δ for
any u = (u1, · · · , um) ∈ W satisfying ‖u‖W = ρ∗.

Let u = (u1, · · · , um) ∈ W. Put ρ = ‖u‖W and note that H1(u) ≥ ‖u‖2
H and H2(u) ≥ ρq.

Moreover, since q < 2∗, for i = 1, · · · ,m,

|
∫

Ω

mi|ui|q| ≤ (

∫
Ω

|mi|r)1/r(

∫
Ω

|ui|qt)1/t with
1

r
+

1

t
= 1 and s := qt < 2∗.

From the continous embedding of W 1,2(Ω) ⊂ Ls(Ω) we deduce the existence of a positive
constant C1 such that |

∫
Ω
mi|ui|q| ≤ C1‖ui‖qW 1,2(Ω). Thus

|M(u)| ≤ C1‖u‖qH

and
I(u) ≥ 1

q
ρq +

1

2
‖u‖2

H(1− 2C1

q
‖u‖q−2

H ).

Recall also that there exists a positive constant C2 > 0 such that ‖u‖H ≤ C2‖u‖W for all
u ∈ W.
Therefore if ρ ≤ ρ∗ := 1

C2

(
q

2C1

) 1
q−2

, then 1− 2C1

q
‖u‖q−2

H ≥ 1− 2C1

q
(C2ρ)q−2 ≥ 0 and

I(u) ≥ 1

q
ρq := δ.

• Assume here that Assumption 3.3 is satisfied with k = 1 for simplicity.
Let φ1,q,m1−w1 be the normalized eigenfunction associated with λ1,q,m1−w1 (i. e. be such that∫

Ω
(m1 − w1)|φ1,q,m1−w1 |q = 1, we may choose such φ1,q,m1−w1 because the equation (3.4) is
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homogeneous). Denote Φq = (φ1,q,m1−w1 , 0, · · · , 0) and take R sufficiently large such that
‖RΦq‖W > ρ∗. We have from (3.4) and (3.5)

I(RΦq) =
R2

2
H1(Φq) +

Rq

q

∫
Ω

(|∇φ1,q,m1−w1|q + (w1 −m1)|φ1,q,m1−w1|q)

=
R2

2
H1(Φq) +

Rq

q

∫
Ω

(λ1,q,m1−w1(m1 − w1) + w1 −m1)|φ1,q,m1−w1|q.

So, since λ1,q,m1−w1 < 1,

I(RΦq) =
R2

2
H1(Φq) +

Rq

q
(λ1,q,m1−w1 − 1) < 0

for R sufficiently large.Therefore we can apply the mountain-pass theorem to deduce that I
has a non-trivial critical point which is a non-trivial weak solution of the system (3.1).
• Assume now that Assumption 3.4 is satisfied with k = 1 and l = 2 for simplicity.
Denote again φ1,q,m1−w1 the normalized eigenfunction associated with λ1,q,m1−w1 such that∫

Ω
(m1 − w1)|φ1,q,m1−w1|q = 1 and denote here Ψq = (0, φ1,q,m1−w1 , 0, · · · , 0). Take R suffi-

ciently large such that ‖RΨq‖W > ρ∗. We have here

I(RΨq) =
R2

2
H1(Ψq) +

Rq

q

∫
Ω

(|∇φ1,q,m1−w1|q + (w2 −m2)|φ1,q,m1−w1|q)

=
R2

2
H1(Ψq) +

Rq

q

∫
Ω

(λ1,q,m1−w1(m1 − w1) + w2 −m2)|φ1,q,m1−w1|q.

From Assumption 3.4, we get that I(RΨq) < 0 for R sufficiently large.Therefore, as in the
precedent case, we apply the mountain-pass theorem and deduce that I has a non-trivial
critical point.

Remark: As in section 2, we can generalize Theorem 3.1 replacing the 2-Laplacian operator
by the p-Laplacian with 2 ≤ p < q for the following system{

−∆pui −∆qui + bi|ui|p−2ui + λwi|ui|q−2ui +
∑m

j=1 aijuj = λmi|ui|q−2ui in Ω,

ui = 0 on ∂Ω,

under the additional hypotheses that the bounded functions bi, i = 1, · · · ,m are non-negative
and λ is a real parameter. Then the hypothesis ii) in Assumption 3.2 is replaced by λ is not an
eigenvalue of −∆q associated with mi−wi for each i.Moreover the hypothesis λ1,q,mk−wk < 1

in Assumption 3.3 is replaced by λ1,q,mk−wk < λ.
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4 Third case: gi(., u1, · · · , um) := λfi|ui|γ−2uigi(., u1, · · · , um) := λfi|ui|γ−2uigi(., u1, · · · , um) := λfi|ui|γ−2ui

In this section we rewrite the system (S, q, g) under the following form:
for i = 1, · · · ,m,{

−∆ui −∆qui + wi|ui|q−2ui +
∑m

j=1 aijuj = λfi|ui|γ−2ui in Ω,

ui = 0 on ∂Ω.
(4.1)

We assume throughout all this section that the indefinite bounded functions fi and the
coefficients γ and q satisfy the following hypotheses

Assumption 4.1 i) 2 < γ < q,

ii) γ < 2∗ where 2∗ = 2N
N−2

if 2 < N and 2∗ =∞ if 2 ≥ N,

iii) For each i = 1, · · · ,m, fi ∈ L∞(Ω) and meas{x ∈ Ω, fi(x) > 0} 6= 0.

We also define the functionals

F (u) =
m∑
i=1

∫
Ω

fi|ui|γ (4.2)

and
Iλ(u) =

1

2
H1(u) +

1

q
H2(u)− λ

γ
F (u) (4.3)

where H1 and H2 are respectively defined by (1.1) and (1.2). We recall that we study here
the existence of a weak non-trivial solution u = (u1, · · · , um) ∈ W for the system (4.1) with
respect to the real positive parameter λ and that the existence of weak solutions for the
system (4.1) is equivalent to the existence of critical points for the Euler functional Iλ. The
main result is the existence of a weak non-trivial solution for the system (4.1) associated
with λ > λ+

1 where λ+
1 is defined by (4.7). For the first part of this section we follow a

method developed by Cherfils-Il’Yasov in [7] for one equation with the (p,q)-Laplacian oper-
ator. This method is based on proving the existence of solution for λ = λ+

1 then on applying
the mountain-pass theorem for λ > λ+

1 . Although we also could apply the mountain-pass
theorem for our case, we will use in fact standard arguments to minimize the functional Iλ.

In section 4.1 we present some preliminary results: we define λ+
1 and we prove the existence

of a solution for the system (4.1) for λ = λ+
1 . The section 4.2 is devoted to the main theorem

of the existence of a solution for the system (4.1) associated with λ > λ+
1 .

4.1 Some preliminaries results

As in [7] we define for λ > 0, t > 0 and u ∈ W, Ĩλ(t, u) = Iλ(tu).
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Lemma 4.1 Assume that Assumptions 1.1, 4.1 i), 4.1 iii) are satisfied. For given u in

W,u 6= 0 such that F (u) 6= 0, the unique solution (t(u), λ(u)) of the system

{
∂
∂t
Ĩλ(t, u) = 0

∂2

∂t2
Ĩλ(t, u) = 0

is given by

t(u) =

(
γ − 2

q − γ

) 1
q−2
(
H1(u)

H2(u)

) 1
q−2

> 0, λ(u) = Cq,γ
H1(u)αH2(u)1−α

F (u)
(4.4)

with

α =
q − γ
q − 2

, Cq,γ =
q − 2

(q − γ)α(γ − 2)1−α . (4.5)

Proof. The system (S)

{
∂
∂t
Ĩλ(t, u) = 0

∂2

∂t2
Ĩλ(t, u) = 0

is equivalent to the system

{
tH1(u) + tq−1H2(u)− λtγ−1F (u) = 0

H1(u) + (q − 1)tq−2H2(u)− λ(γ − 1)tγ−2F (u) = 0

and to the following system{
H1(u) + tq−2H2(u)− λtγ−2F (u) = 0

H1(u) + (q − 1)tq−2H2(u)− λ(γ − 1)tγ−2F (u) = 0
.

Therefore

(q − 2)tq−2H2(u)− λ(γ − 2)tγ−2F (u) = 0. (4.6)

Note that the system (S) is not solvable in the case where u ∈ W, u 6= 0 satisfies F (u) = 0

(since if u 6= 0, then H2(u) 6= 0 and from (4.6) we deduce F (u) 6= 0).
We deduce that

λ =
(q − 2)tq−2H2(u)

(γ − 2)tγ−2F (u)
.

Replacing λ by (q−2)tq−2H2(u)
(γ−2)tγ−2F (u)

in H1(u) + tq−2H2(u)− λtγ−2F (u) = 0, we get that
tq−2 = (γ−2

q−γ )H1(u)
H2(u)

. And we obtain (4.4) associated with (4.5).

Thus we can define the following characteristic points (recall that F is defined by (4.2))

Λ+
1 = inf{λ(u), u ∈ W,F (u) > 0} and λ+

1 =
γ

2αq1−αΛ+
1 . (4.7)

Lemma 4.2 Assume that Assumptions 1.1 and 4.1 are satisfied.
We have 0 < Λ+

1 < λ+
1 .
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Proof. Let u = (u1, · · · , um) ∈ W be such that F (u) > 0.

First from γ < 2∗, let (t, l) be such that γ < t < 2∗ and 1
l

+ γ
t

= 1. Since W 1,2
0 (Ω) ⊂ Lt(Ω)

with a continuous embedding and since the functions fi are bounded, there exist positive
constants still denoting C at each step and depending on some Sobolev constants, such that
for i = 1, · · · ,m

|
∫

Ω

fi|ui|γ| ≤ (

∫
Ω

|fi|l)1/l(

∫
Ω

|ui|t)γ/t ≤ C‖ui‖γLt(Ω) ≤ C‖ui‖γW 1,2
0 (Ω)

.

Then
F (u) ≤ CH1(u)γ/2.

By the same way, from γ < q, let s = q
γ
and r be such that 1

s
+ 1

r
= 1.

Then we have

|
∫

Ω

fi|ui|γ| ≤ m(

∫
Ω

|fi|r)1/r(

∫
Ω

|ui|γs)1/s ≤ C‖ui‖γLq(Ω) ≤ C‖ui‖γW 1,q
0 (Ω)

and
F (u) ≤ CH2(u)γ/q.

Therefore there exists a positive constant C ′, independent of u, such that

λ(u) = Cq,γ
H1(u)αH2(u)1−α

F (u)
≥ C ′Cq,γ

F (u)
2α
γ F (u)

q(1−α)
γ

F (u)
= C ′Cq,γ

since 2α
γ

+ q(1−α)
γ

= 1. Thus Λ+
1 > 0.

Finally we prove that Λ+
1 < λ+

1 .

Indeed note that λ+
1 > Λ+

1 ⇔
γ

2αq1−α
Λ+

1 > Λ+
1 ⇔ (γ

2
)q−2 > ( q

2
)γ−2.

Denote µ = q−2
2
> 0 and η = γ−2

2
> 0. Since 2 < γ < q we have µ > η. Moreover the function

f defined by f(x) = (1 +x)1/x, is strictly decreasing on (0,∞). Then (1 +µ)1/µ < (1 + η)1/η.

And we get that ( q
2
)γ−2 < (γ

2
)q−2. So Λ+

1 < λ+
1 .

We obtain now the following result that will enable us to get the existence of a non-trivial
solution for the system (4.1) associated with λ+

1 .

Proposition 4.1 Assume that Assumptions 1.1 and 4.1 are satisfied. Assume that u =

(u1, · · · , um) ∈ W satisfies F (u) 6= 0 and λ′(u) = 0 (i.e. u is a critical point of λ(u)).
Then ũ = (ũ1, · · · , ũm) ∈ W is a non-trivial solution of the system (4.1) associated with
λ̃ = γ

2αq1−α
λ(u) where for all i = 1, · · · ,m, ũi = 1

s
ui and 1

s
= ( q

2
)

1
q−2 t(u) > 0. Moreover

Iλ̃(ũ) = 0.



26 L.Cardoulis

Proof. Let u = (u1, · · · , um) ∈ W which satisfies F (u) 6= 0 and λ′(u) = 0.
For all test function φ, we have

∂λ

∂u1

(u) · φ = 0.

So

2Cq,γα(H1(u))α−1(H2(u))1−α(F (u))−1

∫
Ω

(∇u1 · ∇φ+ a11u1φ+
m∑
j=2

a1jujφ)

+qCq,γ(1− α)(H1(u))α(H2(u))−α(F (u))−1

∫
Ω

(|∇u1|q−2∇u1 · ∇φ+ w1|u1|q−2u1φ)

−γCq,γα(H1(u))α(H2(u))1−α(F (u))−2

∫
Ω

f1|u1|γ−2u1φ = 0.

And

2Cq,γα

(
H1(u)

H2(u)

)α−1 ∫
Ω

(∇u1 · ∇φ+ a11u1φ+
m∑
j=2

a1jujφ)

+qCq,γ(1− α)

(
H1(u)

H2(u)

)α ∫
Ω

(|∇u1|q−2∇u1 · ∇φ+ w1|u1|q−2u1φ)

−λ(u)γ

∫
Ω

f1|u1|γ−2u1φ = 0.

Define ũi = 1
s
ui for i = 1, · · · ,m, s > 0 and H(u) = H1(u)

H2(u)
. Then

2Cq,γα(H(u))α−1s

∫
Ω

(∇ũ1 · ∇φ+ a11ũ1φ+
m∑
j=2

a1jũjφ)

+Cq,γ(1− α)(H(u))αqsq−1

∫
Ω

(|∇ũ1|q−2∇ũ1 · ∇φ+ w1|ũ1|q−2ũ1φ)

−λ(u)γsγ−1

∫
Ω

f1|ũ1|γ−2ũ1φ = 0.

And equivalently

2Cq,γα(H(u))α−1s2−γ
∫

Ω

(∇ũ1 · ∇φ+ a11ũ1φ+
m∑
j=2

a1jũjφ)

+Cq,γ(1− α)(H(u))αqsq−γ
∫

Ω

(|∇ũ1|q−2∇ũ1 · ∇φ+ w1|ũ1|q−2ũ1φ)

−λ(u)γ

∫
Ω

f1|ũ1|γ−2ũ1φ = 0.

Multiplying this last equation by 1
2αq1−α

and denoting λ̃ = γ
2αq1−α

λ(u) we get

(
2(q − γ)

q(γ − 2)H(u)

) γ−2
q−2

s2−γ
∫

Ω

(∇ũ1 · ∇φ+ a11ũ1φ+
m∑
j=2

a1jũjφ)



Existence of solutions for a system involving the (2,q)-Laplacian 27

+

(
q(γ − 2)H(u)

2(q − γ)

) q−γ
q−2

sq−γ
∫

Ω

(|∇ũ1|q−2∇ũ1 · ∇φ+ w1|ũ1|q−2ũ1φ)

−λ̃
∫

Ω

f1|ũ1|γ−2ũ1φ = 0.

Choosing s =
(

2(q−γ)
q(γ−2)H(u)

) 1
q−2 we obtain

∫
Ω

(∇ũ1 · ∇φ+ a11ũ1φ+
m∑
j=2

a1jũjφ) +

∫
Ω

(|∇ũ1|q−2∇ũ1 · ∇φ+ w1|ũ1|q−2ũ1φ)

−λ̃
∫

Ω

f1|ũ1|γ−2ũ1φ = 0.

Doing the same for ũi, i = 2, · · · ,m, we get that ũ = (ũ1, · · · , ũm) is a weak solution of (4.1)
associated with λ̃.

Now we prove that Iλ̃(ũ) = 0.

Recall that ũ = 1
s
u and λ̃ = γ

2αq1−α
λ(u). Then we have

Iλ̃(ũ) =
H1(u)

2s2
+
H2(u)

qsq
− Cq,γH1(u)αH2(u)1−α

2αq1−αsγ
.

Denoting r = Cq,γH1(u)αH2(u)1−α

2αq1−αsγ
, since 1

s
= ( q

2
)

1
q−2 t(u) > 0 and α = q−γ

q−2
we get

Iλ̃(ũ) = r

[
1

Cq,γ

(
qH1(u)

2H2(u)

)1−α (q
2

)α−1

(t(u))2−γ +
1

Cq,γ

(
2H2(u)

qH1(u)

)α (q
2

)α
(t(u))q−γ − 1

]
.

But t(u) =
(
γ−2
q−γ

) 1
q−2
(
H1(u)
H2(u)

) 1
q−2

> 0 and Cq,γ = q−2
(q−γ)α(γ−2)1−α

so

Iλ̃(ũ) = r

[
q − γ
q − 2

+
γ − 2

q − 2
− 1

]
= 0.

Proposition 4.2 Assume that Assumptions 1.1 and 4.1 are satisfied and
0 < λ < Λ+

1 . Then the system (4.1) has no non-trivial solution in W associated with λ.

Proof. Assume that 0 < λ < Λ+
1 . Assume also that the system (4.1) has a non-trivial solu-

tion u = (u1, · · · , um) ∈ W associated with λ. Then we have
H1(u) +H2(u) = λF (u). Note that this is impossible if F (u) ≤ 0.
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Therefore assume now that F (u) > 0.

Recall that Ĩλ(t, v) = Iλ(tv) = t2

2
H1(v)+ tq

q
H2(v)− λtγ

γ
F (v) for all t > 0 and v ∈ W. We have

∂
∂t
Ĩλ(t, v) = tH1(v) + tq−1H2(v)− λtγ−1F (v) and in particular, since u is a weak solution of

(4.1), note that
∂

∂t
Ĩλ(‖u‖,

1

‖u‖
u) = I ′λ(u) · 1

‖u‖
u = 0.

Moreover we have ∂
∂t
Ĩλ(t, v) = tγ−1Rλ(t, v) with

Rλ(t, v) = t2−γH1(v) + tq−γH2(v)− λF (v).

Let v ∈ W be such that v 6= 0 and F (v) > 0. Note that from Lemma 4.1 we have
Rλ(v)(t(v), v) = 0.

Moreover we can prove that Rλ(t, v) ≥ Rλ(t(v), v) for all t > 0.

Indeed let f(t) = t2−γH1(v) + tq−γH2(v). The function f admits a global minimum on t(v)

on (0,∞) so f(t) ≥ f(t(v)) =
(
H1(v)
α

)α (
H2(v)
1−α

)1−α
> 0. Therefore Rλ(t, v) ≥ Rλ(t(v), v) for

all t > 0.

Finally since λ < Λ+
1 ≤ λ(v), we get that Rλ(t, v) > Rλ(v)(t, v) for all t > 0. Thus

Rλ(t, v) ≥ Rλ(t(v), v) > Rλ(v)(t(v), v) = 0 and ∂
∂t
Ĩλ(t, v) = ∂

∂t
Iλ(tv) > 0 for all t > 0.

So, choosing t = ‖u‖ and v = 1
‖u‖u, we get a contradiction since ∂

∂t
Ĩλ(‖u‖, 1

‖u‖u) = 0.

Now we obtain a minimizer for Λ+
1 .

Proposition 4.3 Assume that Assumptions 1.1 and 4.1 are satisfied. There exists v =

(v1, · · · , vm) ∈ W such that λ(v) = Λ+
1 .

Proof. First note that λ(tu) = λ(u) for all t > 0 and u ∈ W.
Define t̃(u) = 1

((H1(u))α(H2(u))1−α)
1
γ
for u ∈ W \ {0} and note that

(H1(t̃(u)u)α(H2(t̃(u)))1−α = 1.

Therefore we can derive that

Λ+
1 = inf{λ(u), u ∈ W such that F (u) > 0 and H1(u)αH2(u)1−α = 1}.

Then we consider a minimizing sequence (vn) of Λ+
1 .

We have γ = 2α + q(1− α), so

‖vn‖γH = ‖vn‖2α
H ‖vn‖

q(1−α)
H

and since W ⊂ H with a continuous embedding, there exists a positive constant C such that

‖vn‖γH ≤ C‖vn‖2α
H ‖vn‖

q(1−α)
W .
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But H1 and H2 are equivalent norms respectively in H and W so we get that

‖vn‖γH ≤ C(H1(vn))α(H2(vn))1−α = C

(for a positive constant C). We deduce that (vn) is a bounded sequence in H. By the com-
pact embedding W 1,2

0 (Ω) ⊂ Lγ(Ω) (for γ < 2∗), we get the existence of v = (v1, · · · , vm) ∈ H
such that (vn) converges to v, strongly in (Lγ(Ω))m and weakly in H (for a subsequence).

Afterwards we prove that F (v) > 0, v ∈ W and since H1 and H2 are weakly lower semi-
continous in H and W respectively, we get that λ(v) = Λ+

1 .

Indeed, since F is a continuous function and F (vn) > 0, F (vn)→n→∞ F (v), we have F (v) ≥
0. Moreover, if F (v) = 0, then λ(vn) = Cq,γ

F (vn)
→n→∞ ∞. This contradicts λ(vn) →n→∞ Λ+

1 .

So F (v) > 0 and v 6= 0.

Now we prove that v ∈ W. Recall that (vn) is a bounded sequence in H and that (vn)

converges to v 6= 0 strongly in (Lγ(Ω))m. So there exists a positive constant C ′ such that
‖vn‖(Lγ(Ω))m ≥ C ′ > 0 for n large enough. Therefore, from the continuous embedding
H ⊂ (Lγ(Ω))m, we get that ‖vn‖H ≥ C ′ > 0 for n large enough.
Finally from ‖vn‖H ≥ C ′ > 0 and ‖vn‖2α

H ‖vn‖
(1−α)q
W ≤ C we obtain that (vn) is a bounded

sequence in W . Therefore (vn) admits a subsequence, still denoted (vn) such that (vn) con-
verges to v strongly in (Lγ(Ω))2 and weakly in W. Thus v ∈ W.

Finally we prove that λ(v) = Λ+
1 .

From the weakly semi-continuousness of H1 and H2 respectively on H and W we have

H1(v) ≤ lim inf H1(vn) and H2(v) ≤ lim inf H2(vn).

But λ(vn) = Cq,γ
F (vn)

= Cq,γ(H1(vn))α(H2(vn))1−α

F (vn)
→n→∞ Λ+

1 . Passing to the limit inf as n tends to

∞ we get that Λ+
1 ≥

Cq,γ(H1(v))α(H2(v))1−α

F (v)
= λ(v). We deduce that

λ(v) = Λ+
1 .

This concludes the proof.

Contrary to [7], we are not able to prove that the minimizer v is non-negative because of the
coupling terms aijvjvi in H1(v). Finally combining Propositions 4.1 and 4.3, since v (defined
by Proposition 4.3) is a critical point of λ(u), we derive the existence of a non-trivial weak
solution u+ = (u+

1 , · · · , u+
m) for the system (4.1) associated with λ+

1 . This is the following
result
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Proposition 4.4 Assume that Assumptions 1.1 and 4.1 are satisfied.
There exists u+ = (u+

1 , · · · , u+
m) ∈ W a non-trivial solution for the system (4.1) associated

with λ+
1 . Moreover Iλ+1 (u+) = 0 and F (u+) > 0.

Proof. From Proposition 4.3 we have λ(v) = Λ+
1 = inf{λ(u), u ∈ W,F (u) > 0}. Thus v is

a critical point of the function λ on W. From Proposition 4.1 we derive that there exists
a non-trivial solution u+ = (u+

1 , · · · , u+
m) of system (4.1) associated with γ

2αq1−α
λ(v) = λ+

1

where for all i = 1, · · · ,m, u+
i = 1

s
vi and 1

s
= ( q

2
)

1
q−2 t(v) > 0. Moreover from Proposition

4.1, Iλ+1 (u+) = 0 and from Proposition 4.3, F (u+) = 1
sγ
F (v) > 0.

4.2 Main result

Theorem 4.1 Assume that Assumptions 1.1 and 4.1 are satisfied. If λ > λ+
1 , then the

system (4.1), associated with λ, admits a non-trivial solution in W.

Proof. Even if we could follow [7] for proving this result using the mountain-pass theorem, we
use here standard arguments by global minimization of the C1-functional Iλ. Note that Iλ is
weakly lower semi-continuous by the compact embedding ofW into (Lq(Ω))m and (L2(Ω))m.

Moreover Iλ is coercive: indeed for any u ∈ W,

Iλ(u) ≥ 1

q
H2(u)− λ

γ
F (u).

Since |F (u)| ≤ C‖u‖γW with C a positive constant, we get that

Iλ(u) ≥ 1

q
‖u‖qW

(
1− λCq

γ
‖u‖γ−qW

)
.

Thus Iλ is coercive. Furthermore from Proposition 4.4, we have Iλ+1 (u+) = 0 and F (u+) > 0.

Finally from the hypothesis λ > λ+
1 , we get that Iλ(u+) < Iλ+1 (u+) = 0. Therefore we deduce

that Iλ has a non-trivial critical point which is a non-trivial weak solution of the system
(4.1) associated with λ.

Remarks: We can get the same results for a larger class of coefficients, assuming that
aij, wi, fi ∈ Lr(Ω) for some r > 1 as in [7]. But we have not been able to adapt this method
for a system with a (p,q)-Laplacian operator (with p 6= 2) and even for a non-symmetric
system with a (2,q)-Laplacian operator. However in the particular case where the matrix A
is not symmetric and has the following form: A = (aij) with aj1 = Ka1j for j = 2, · · · ,m
for some positive constant K > 0 (K independent of j) and aij = aji for i, j ≥ 2, we can
generalize all the above results. Indeed we introduce the diagonal matrix D = (dij) with
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d11 = K, dii = 1 for i = 2, · · · ,m and dij = 0 if i 6= j. We replace the functionals H1, H2 and
F (defined before by (1.1),(1.2),(4.2)) by

H2(u) =
m∑
i=1

dii

∫
Ω

(|∇ui|q + wi|ui|q), F (u) =
m∑
i=1

dii

∫
Ω

fi|ui|γ,

H1(u) =
m∑
i=1

dii

∫
Ω

(|∇ui|2 + aiiu
2
i +

m∑
j=1,i 6=j

aijujui),

H1(u) =
m∑
i=1

dii

∫
Ω

|∇ui|2 +

∫
Ω

tUDAU withtU = (u1, · · · , um).

Therefore if we assume that the matrix DA satisfies the following hypothesis tξDAξ ≥ 0 for
all tξ = (ξ1, · · · , ξm) ∈ Rm, we still derive that the Euler functional Iλ defined by (4.3) (with
the new functionals H1, H2 and F ) is associated with the system (4.1) and the existence of
weak solutions for the system (4.1) is equivalent to the existence of critical points for Iλ.
Finally due to the coupling term of system (4.1), note that we just obtain the existence of a
non-trivial solution in Theorem 4.1 contrary to [7] where a non-negative solution is obtained.
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Ascoli-Arzela-Theory based on continuous
convergence in an (almost) non-Hausdorff setting 2

1 Introduction

We start with the paper [1] and thus come back to continuous convergence and to the
characterization of compactness with respect to this convergence structure for the space
C(X, Y ) of continuous functions, where X and Y are topological spaces. More generally
we can use for X, Y convergence spaces, as was done for instance in [11] and [15]. But in
the first paper of this title X and Y were topological spaces and we will continue with this
assumption.

What is the aim of our paper?

1. In the main theorems [15, (3.24), (3.27)], [1, 33] and corollary [11, 10] necessary and
sufficient conditions were given to ensure that H ⊆ C(X, Y ) is relatively compact
w. r. t. continuous convergence. Here, as a corollary, we characterize compactness of
H.

2. In the papers [11], [1] not provided examples which show that the assumptions in our
theorems (for instance that Y is Hausdorff) we cannot omit.

3. It is known for long time that the important notion of equicontinuity can be char-
acterized using the canonical map as used in duality theory (embedding in a second
dual) ([7], and [15, theorem 4.36]). In the paper [8] and especially in the book [12] this
approach was extended to include even continuity too. But the two Ascoli-Arzela the-
orems ([12, (13.15), (13.21)]) based on this approach are not correct. We will show this
by an instructive counter example. And we will give some comments for this situation.
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2 Compactness in (C(X, Y ), c- lim)(C(X, Y ), c- lim)(C(X, Y ), c- lim)

We will use the following notion of relative compactness: Let X be a topological space, then
A ⊂ X is called relatively compact iff for each ultrafilter π on X,

A ∈ π =⇒ ∃ x ∈ X : π −→ x . (see [16], [3])

We still need a lemma.

Lemma 2.1 Let X be a topological space, Y a Hausdorff topological space; let η be a
topology (lim a convergence structure) on C(X, Y ) with τp ≤ η (τp-lim ≤ lim). If H ⊆
C(X, Y ) is η-compact, then H is τp-closed in Y X .

For a (simple) proof see lemma [3, theorem 3.1].

Now [1, theorem 33] states: If X, Y topological spaces, H ⊆ C(X, Y ), H 6= ∅ and we consider
for H the two conditions:

(α) ∀x ∈ X : H(x) = {f(x)|f ∈ H} is relatively compact.

(β) H is evenly continuous.

then the following holds:

1. Let X be Hausdorff; H relatively c-compact =⇒ (α), (β).

2. Let X be a T3-space, (α), (β) =⇒ H is in (C(X, Y ), c- lim) relatively compact.

Theorem 2.2 [Corollary of [1, theorem33]] Let be X, Y topological spaces, H ⊆ C(X, Y );
for H we consider the conditions:

(α) ∀x ∈ X : H(x) is relatively compact

(β) H is evenly continuous

(γ) H is in Y Xτp-closed.

Then hold:

1. Let Y be Hausdorff, H is c- lim-compact =⇒ (α), (β), (γ).

2. (α), (β), (γ) =⇒ H is in (C(X, Y ), c- lim) compact.

Proof. 1. H c- lim-compact in C(X, Y ) =⇒ H is c- lim-relatively compact; then follows
(α), (β) by theorem 33. Now since τp ≤ c- lim holds in C(X, Y ), lemma 2.1 yields
condition (γ) too.
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2. By the Tychonoff theorem: (α) =⇒ H is τp-relatively compact in Y X , hence H is
τp-compact in Y X by (γ); H ⊆ C(X, Y ) =⇒ H is in C(X, Y )τp-compact too. Now let
π be an ultrafilter on C(X, Y ) with H ∈ π: we find g ∈ H : π

τp−→ g, but then follows:
π

c−→ g by (β) and by [1, theorem 31]. Hence H is in C(X, Y ) c- lim-compact.

3 Examples

For the construction of our examples we need a result of S.Mrowka which we found in [6]
and a corollary of this result.

Proposition 3.1 Let (X, τ) be a Hausdorff topologigal space, where of course τ means
the system of all open sets of X; let (Ai)i∈I be a net in 2X , 2X is the set of closed sets of X.
Then (Ai) has a subnet Kuratowski-Hausdorff-converging in 2X .

Proof. We know: a net(Bi) (from 2X) converges iff LsBi ⊆ LiBi holds, meaning:

∀x ∈ X, ∀G ∈ τ : x ∈ G and G ∩Bi 6= ∅

for all i from a confinal set of I it follows that eventually G ∩ Bi 6= ∅, since {G ∈ τ |x ∈ G}
is a basis of the neighborhood filter U(x). Here by Ls, Li we denote the limit superior and
limit inferior respectively.

Now we consider the two-point space {0, 1} provided with discrete topology.

∀i ∈ I : let be fi ∈ {0, 1}τ : ∀G ∈ τ : fi(G) =

1, Ai ∩G 6= ∅

0, Ai ∩G = ∅ .

Obviously, the map fi → Ai is injective.

{0, 1}τ with pointwise topology τp is compact by the Tychonoff theorem, and hence for (fi)

there exists a subnet (fik) and a f from {0, 1}τ such that fik
τp−→ f . Now we want to show

Ls(Aik) ⊆ Li(Aik) : ∀(x,G) ∈ X × τ : x ∈ Ls(Aik) and x ∈ G: there exists a confinal subset

K1 ⊆ K such that ∀k ∈ K1 : Aik ∩G 6= ∅

implying ∀k ∈ K1 : fik(G) = 1. We assume that f(G) = 0 holds, {0} is open and for our net
(fik)k∈K holds: fik(G) −→ f(G) implying eventually fik(G) = 0, yielding a contradiction
because K1 is kofinal in K and ∀k ∈ K1 : fik(G) = 1.

Hence we have f(G) = 1; now fik(G) −→ f(G) = 1 and {1} is open implies: eventually
fik(G) = 1 and thus eventually Aik ∩G 6= ∅ showing that x ∈ Li(Aik).

Corollary 3.2 Let X be a Hausdorff topological space, F the Sierpinski-space with open
sets: ∅, {0}, {0, 1} = F . Then (C(X,F ), c- lim) = Cc(X,F ) is compact.
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Proof. Let χAi be a net from C(X,F ), meaning that all Ai are closed sets in X, hence
∀i ∈ I : Ai ∈ 2X . By the proposition 3.1 (Ai) has a subnet (Aik) converging to a set A ∈ 2X .
Hence we get LsAik = LiAik = A, LsAik = A shows:

χ
Aik

c−→ χ
A in C(X,F ) ,

hence we found a subnet converging continuously to χA.

Thus Cc(X,F ) is compact.

At first we show that lemma 2.1 does not work if Y is not Hausdorff.

Example 3.3 Let be X = R, the reals with Euclidian topology and F the Sierpinski-space.
By corollary 3.2 (C(R, F ), c- lim) is compact; the pointwise topology τp is splitting and thus
τp- lim ≤ c- lim.

But by example [15, (2.16) (b)] Cc(R, F ) is not closed in FX .

The basic result that for conjoining topologies the (relative) compactness of H ⊆ C(X, Y )

implies that H is evenly continuous is well-known ([10, chapt. 7, theorem 20]; [1, theorem
32]; [15, theorem 3.21]).

For a concrete formulation we take here [1, theorem 32]:

Let X be a topological space, Y a Hausdorff topological space and let H ⊆ C(X, Y ) ⊆ Y X .
Let lim be a convergence structure for C(X, Y ) such that

1. H is in (C(X, Y ), lim) relatively compact

2. lim is conjoining for C(X, Y )

Then H is evenly continuous.

In theorem [15, theorem (3.21)] X is a convergence space and Y is a Hausdorff pseudotopo-
logical convergence space.

Our next example shows that we cannot omit the assumption that Y is Hausdorff.

Example 3.4 We use the same space as in example 3.3. Again we have a space Y = F

which is not Hausdorff. We have here H = C(R, F ) and the convergence structure lim for
C(R, F ) is the continuous convergence: lim = c- lim; c- lim is conjoining for C(R, F ) and
Cc(R, F ) is compact. We will show that C(R, F ) is not evenly continuous. R and F are first
countable spaces and hence by [15, theorem 3.18] we can use sequences instead of filters or
nets to characterize even continuity: For n ∈ N, n ≥ 1 let An =

[
1
n
, 1
]
⊆ R and χAn denotes,

as usual, the characteristic function of An. For 0 ∈ R we find χAn → 0 ∈ F , 1
n
→ 0 ∈ R.

Now we assume that C(R, F ) is evenly continuous; then follows χAn
(

1
n

)
→ 0 ∈ F ; since {0}

is open in F there exists n0 ∈ N: ∀n ≥ n0: χAn
(

1
n

)
= 0 ∈ F , but ∀n ∈ N, n ≥ 1 : χAn

(
1
n

)
=

1 ∈ F , a contradiction.



Ascoli-Arzela-Theory based on . . . 39

Remark 3.5 Example 3.4 of course works for assertion 1 of theorem 2.2 too. Since
Cc(R, F ) also is relatively compact and c- lim is conjoining our example shows that we
cannot omit in assertion 1 of [1, theorem 33] that Y is Hausdorff.

We consider a nice topological space Y , meaning that Y is at least Hausdorff and a topology
τ for C(X, Y ). The fact that H ⊆ C(X, Y ) is τ -compact must not imply that H is evenly
continuous if τ is not conjoining for C(X, Y ). We will explain this situation by an example.
As concrete topologies τ we consider the pointwise topology τp and the uniform topology τu.

Example 3.6 We use an example from classical analysis of a sequence of functions from

C([0, 1],R) : ∀(n, x) ∈ (N− {0})× [0, 1] : fn : fn(x) =
nx

1 + (nx)2
, f0 : ∀x ∈ [0, 1] : f0(x) = 0 .

then holds:

1. fn
τp−→ f0

2. (fn) does not converge uniformly to f0

Proof. 1. ∀n, n ≥ 1 : fn(0) = 0→ 0 = f0(0);
∀x ∈ (x, 1] : (nx)2

1+(nx)2
≤ 1 =⇒ |fn| = fn = nx

1+(nx)2
≤ 1

x
· 1
n
→ 0, hence |fn(x)− f0(x)| → 0

for n→ +∞.

2. ∀n ≥ 1 : x = 1
n
∈ (0, 1] and fn

(
1
n

)
= 1

2
. But then (fn) cannot converges uniformly to

f0 on [0, 1].

Now let be H = {fn|n ≥ 1} ∪ {f0} ⊆ C([0, 1],R).

Then holds:

1. H is τp-compact

2. H is not evenly continuous

3. τp is not conjoining for C([0, 1],R).

Proof. 1. is obvious

2. (fn) does not converge continuously to f0 : [0, 1] is compact (and Hausdorff) implying
that then c- lim = τu- lim, yielding thatfn → f0 uniformly, a contradiction.

If we assume that H is evenly continuous then fn
τp−→ f0 =⇒ fn

c−→ f0 by the basis
[1, theorem 31], a contradiction.

3. If τp is conjoining then c- lim ≤ τp- lim since c- lim is splitting (and conjoining) for
C([0, 1],R) implying fn

τp−→ f0 =⇒ fn
c−→ f0, a contradiction.

Finally, we will show that assertion 2 of theorem 2.2 is not true if condition (γ) is not fulfilled.
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Example 3.7 Let be X = Y = R we consider the sequence (fn), n ∈ N, n ≥ 1 : fn :

fn(x) = 1
n
x, ∀x ∈ R; again let be f0 : ∀x ∈ R : f(x) = 0, hence ∀n ∈ N : fn ∈ C(R,R).

H = {fn|n ∈ N, n ≥ 1}; for fixed x ∈ R : H(x) =
{

1
n
x|n ∈ N, n ≥ 1

}
is bounded and hence

relatively compact in Y = R. Thus condition (α) holds for H.

Moreover let be x ∈ R;

∀(ε, n) ∈ (0,+∞)× (N− {0})

let be δ = ε and y ∈ Uδ(x) : |fn(y)− fn(x)| = | 1
n
y− 1

n
x| = 1

n
|y−x| ≤ |y−x| < ε; hence H is

equicontinuous on R which implies that H is evenly continuous showing that condition (β)

is fulfilled too.

We see at once that fn
τp−→ f0 and even fn

c−→ f0 hold. H ∪ {f0} is τp-compact; we have
f0 /∈ H and fm 6= fn∀(m,n) ∈ N × N, m 6= n, m ≥ 1, n ≥ 1, fn

τp−→ f0 in C(R,R) =⇒
fn

τp−→ f0 in RR: each τp-neighbourhood of f0 in RR contains infinitively many functions fn
implying that f0 is a τp-cluster point of H. Thus H is not τp-closed in RR and hence not
τp-compact since Y = R is Hausdorff. H ⊆ C(R,R) =⇒ H is not τp-compact in C(R,R)

implying that H is not c- lim-compact in C(R,R) since τp- lim ≤ c- lim holds.

4 Duality and the Ascoli-Arzela theorems

In the introduction we mentioned that the equicontinuity of a subset H ⊆ C(X, Y ) can be
characterized by embedding of X into a function space using the canonical map. In [8] this
approach was extended to include even continuity and also the topological equicontinuity of
Royden.

At length we find it in the book [12]. We want to consider here equicontinuity and even
continuity. In [2], [4] and [5] R.Bartsch and I developed and studied a general duality system

(X, Y,Xd, Xdd, J : X → Xdd)

where Xd is the first dual space of X with respect to Y,Xdd is the second dual space of X
w. r. t. Y and J denotes the canonical map as is known from classical duality examples.

And we can include these characterization of equicontinuity and even continuity into this
general scheme:

Let X, Y be topological spaces and H ⊆ C(X, Y ). We can consider (H, τp) as the redefined
first dual space of X w. r. t. Y according to [2, 4.3., p. 284]: Xd = (H, τp). by definition [2,
4.1.] we see that H = Xd has no defect since in H there are no algebraic operations defined.
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Hence by [2, definition 4.2.] and [4, definition 2.2.] the second dual space of X w. r. t. Y is
Xdd = C((H, τp), Y ). The canonical map

J : X → C((H, τp), Y ),

∀x ∈ X : Jx = ω(x, ·) ,
ω(x, ·) : (H, τp)→ Y ;

∀h ∈ H : ω(x, ·)(h) = ω(x, h) = h(x) .

We now need the convergence structure of strict (strong) continuous convergence.

Generalizing a formulation, where sequences were used ([9]), in ([15, 2.25]) I defined:

Definition 4.1 Let X, Y be topological spaces, Φ a filter in Y X ; we say that Φ converges
strictly continuous to f,Φ str c−→ f , iff for each y ∈ Y and each filter ϕ on X : fϕ → y =⇒
ω(Φ× ϕ) = Φ(ϕ)→ y.

Remark 4.2 1. Of course, a net (fi) from Y X converges strictly continuous to f ∈ Y X

iff for each y ∈ Y and each net (xk) from X holds: f(xk)→ y =⇒ fi(xk)→ y

2. str c- lim is conjoining for C(X, Y ) since we see at once that c- lim ≤ str c- lim holds.

3. Strict continuous convergence has similar properties as of continuous convergence, es-
pecially str c- lim is a pseudotopological convergence structure and if Y Hausdorff then
(C(X, Y ), str c- lim) is Hausdorff too.

4. If X is compact and Hausdorff then c- lim = str c- lim on C(X, Y ) (see [17], and also
[13]).

Now we come to the characterizations of even/equi-continuity as already announced.

Proposition 4.3 Let X, Y be topological spaces, H ⊆ C(X, Y ); equivalent are:

(1) J : X → (C((H, τp), Y ), str c- lim) is continuous

(2) H is evenly continuous

Proof. (1)=⇒(2): ∀(x, y) ∈ X × Y , for each net (xk) in X s. th. xk → x, for each net
(hi) from H s. th. hi(x)→ y we want to show: hi(xk)→ y.

Now by (1) xk → x =⇒ Jxk → Jx, meaning that ω(xk, ·)
str c−→ ω(x, ·).

∀k ∈ K : ω(xk, ·) : (H, τp)→ Y

is continuous and ω(x, ·) : (H, τp)→ Y is continuous by [2, lemma 4.1., (1)] and hence
ω(xk, ·), ω(x, ·) ∈ C((H, τp), Y ).
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By the definition of strict continuous convergence and since we know that hi(x)→ y,
which means ω(x, ·)(hi)→ y we get at once:

ω(xk, ·)(hi) = hi(xk)→ y .

Hence H is evenly continuous.

(2)=⇒(1): ∀(x, y) ∈ X × Y : ∀(xk), (xk) net from X s. th. xk → x, we will show:
Jxk → Jx w. r. t. str c- lim: ω(xk, ·)

str c−→ ω(x, ·): let (hi) be a net from H such that
ω(x, ·)(hi)→ y, hence hi(x)→ y; now by (2): xk → x and hi(x)→ y =⇒ hi(xk)→ y,
meaning ω(xk, ·)(hi)→ y. Thus ω(xk, ·)

str c−→ ω(x, ·) yielding that J is continuous.

Remark 4.4 Proposition 4.3 was proved in [12, theorem (13.16)]. But instead of strict
continuity here was used the notion of Pettis-convergence:

[12, (13.7) Definition]. A net (fi) from H ⊆ C(X, Y ) Pettis converges to f if for each
y ∈ Y and each neighborhood V of y there is a neighborhood W of y such that eventually
fi(f

−1(W )) ⊆ V .

But in [17] was shown that the two convergence structures are equivalent.

The following proposition was proved in [12, theorem (13.12)]. Our proof is somewhat more
clear.

Proposition 4.5 Let X be a topological and (Y,A) an uniform space; let be H ⊆
C(X, Y ).

Equivalent are:

(1) H is equicontinuous

(2) J : X → (C((H, τp), Y ), τu) is continuous

Proof. (1)=⇒(2): ((xk), x), (xk) a net in X, x ∈ X; we want to show:

xk → x =⇒ Jxk = ω(xk, ·)→ ω(x, ·) = Jx

w. r. t. the uniform topology τu : ∀V ∈ A, for (V, x) by (1) there exists a neighborhood

U ∈ U(x) :∀(y, h) ∈ U ×H : (h(y), h(x)) = (ω(y, ·)(h), ω(x, ·)(h)) ∈ V ;

∃k0 ∈ K : ∀k ≥ k0 : xk ∈ U .

Now we have:

∀(k, h) ∈ {k ∈ K|k ≥ k0} ×H : xk ∈ U =⇒ (h(xk), h(x)) = (ω(xk, h), w(x, h)) ∈ V

showing that ω(xk, ·)
τu−→ ω(x, ·) holds.
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(2)=⇒(1): ∀(x, V ) ∈ X × A, (H, V ) = {(p, q) ∈ C(H,Y ) × C(H, Y ) | ∀h ∈ H :

(p(h), q(h) ∈ V }; now ω(x, ·) ∈ C((H, τp), Y ); we consider

(H,V )(ω(x, ·)) = {p ∈ C(H, Y )|∀h ∈ H : (p(h), ω(x, ·)(h)) = (p(h), h(x)) ∈ V }

is a τu-neighborhood of ω(x, ·). Hence ∃U ∈ U(x) : J(U) ⊆ (H,V )(ω(x, ·)) by (2)
showing that holds:

∀(y, h) ∈ U(x)×H =⇒ (h(y), h(x)) = (ω(y, ·)(h), ω(x, ·)(h)) ∈ V ,

since ω(y, ·) ∈ (H, V )(ω(x, ·). But this means that H is equicontinuous.

A conjoining topology or convergence structure can be defined (or characterized) by the
continuity of the evaluation map ω. And if we consider the definition of continuous conver-
gence then it is nearby that a conjoining convergence structure also can be characterized in
a suitable way using the embedding into the second dual.

This is our next result.

Proposition 4.6 Let X, Y be topological spaces, let H ⊆ C(X, Y ) and let lim be a
convergence structure on H (maybe also lim is defined on C(X, Y ) s. th. (H, lim) is a con-
vergence space). We assume that τp- lim ≤ lim holds. Then are equivalent:

(1) lim is conjoining for H

(2) J : X → (C((H, lim), Y ), c- lim) is continuous

Proof. We know that lim is conjoining for H iff ω = ω(·, ·) : X× (H, lim)→ Y is continuous.

(1)=⇒(2): ∀(x, (xk)), x ∈ X, (xk) a net from X s. th. xk → x. We will show:

Jxk
c−→ Jx, hence ω(xxk , ·)

c−→ ω(x, ·) .

Since τp- lim ≤ lim holds:

∀k ∈ K, ∀x ∈ X : ω(xk, ·), ω(x, ·) ∈ C((H, lim), Y ) .

Let (hi) a net from H, h ∈ H and hi
lim−→ h; now

xk → x, hi
lim−→ h =⇒ ω(xk, hi)→ ω(x, h)

since ω is continuous, hence

hi(xk)→ h(x) =⇒ ω(xk, ·)(hi)→ ω(x, ·)(h)

showing that Jxk
c−→ Jx wich means: J is continuous.
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(2)=⇒(1): Let be (xk) a net from X, xk → x ∈ X, (hi) a net from H s. th. hi
lim−→ h ∈

H; by (2): xk → x =⇒ ω(xk, ·)
c−→ ω(x, ·); but then

hi
lim−→ h =⇒ ω(xk, ·)(hi) −→ ω(x, ·)(h) =⇒ ω(xk, hi) −→ ω(x, h)

yielding that lim is conjoining for H.

Corollary 4.7 We use the assumptions of proposition 4.6

1. Let lim = c- lim for C(X, Y ); since c- lim is conjoining for C(X, Y ) and hence for
H ⊆ C(X, Y ) too we get:

J : X → (C((H, c- lim), Y ), c- lim)

is continuous

Remark: For H = C(X, Y ) this result was shown in [11, theorem 3., 1.]

2. lim = str c- lim is conjoining and hence we get:

J : X → (C((H, str c- lim), Y ), c- lim)

is continuous.

As already mentioned in our text [1, theorem 32] provides a necessary compactness criterion:
for each conjoining topology or convergence structure: the compactness of H ⊆ C(X, Y ) im-
plies thatH is evenly continuous. But conversely we can’t obtain a smooth sufficient criterion
for an arbitrary conjoining convergence structure: We have a simple, but fundamental fact:
pointwise convergence plus even continuity equals continuous convergence but not more.
(see for instance [1, theorem 31]). And continuous convergence is the smallest conjoining
convergence structure for C(X, Y ). Already in a paper from 1971 ([14, theorem 1]) I proved
a necessary and sufficient compactness criterion for conjoining convergence structures. This
criterion shows that one can’t go beyond c- lim. With some slight improvements the original
theorem reads as follows:

Theorem 4.8 Let X, Y be topological spaces and Y is Hausdorff; let H ⊆ C(X, Y )

and lim be a pseudotopological convergence structure for C(X, Y ). We assume that lim is a
conjoining convergence structure for C(X, Y ). Equivalent are:

(1) H is lim-compact

(2) (α) ∀x ∈ X: H(x) is relatively compact

(β) H is evenly continuous

(γ) H is τp-closed in Y X

(δ) lim = c- lim on H
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Proof. (1)=⇒(2): Since lim is conjoining for C(X, Y ) we have c- lim ≤ lim and hence
H is also c- lim-compact. But then follow (α), (β), (γ) by theorem 2.2. We have c- lim ≤
lim on H; now let be: ∀(ψ, f), ψ ultrafilter on C(X, Y ), f ∈ H; let be H ∈ ψ and
ψ

c-lim−→ f ; (H, lim) is compact and hence ψ lim−→ g ∈ H and thus ψ c-lim−→ g.

Y is Hausdorff by assumption and thus (C(X, Y ), c- lim) is Hausdorff too implying: g =

f . But then we see: ψ c-lim−→ f =⇒ ψ
lim−→ f .since c- lim and lim are pseudotopological

convergence spaces we get: lim ≤ c- lim and hence lim = c- lim on H.

(2)=⇒(1): Theorem 2.2 shows (α), (β)and(γ) =⇒ H is c- lim compact in C(X, Y ); now
(H, c- lim) compact and (H, lim) = (H, c- lim) by (δ) implies that H is lim-compact too.

Concluding we will consider the two Ascoli-Arzela theorems in [12] (as announced in the
introduction), where we (partially), use our notations:

Theorem [12, (13.15)] Let X be a regular space and Y a uniform space. Then H ⊆
C(X, Y ) is compact w. r. t. a jointly continuous topology η if and only if

(a) H is η-closed

(b) H(x) has compact closures for each x ∈ X

(c) the natural map
J : X → (C((H, τp), Y ), τU)

is continuous.

By proposition 4.5 we know that condition (c) is equivalent to H being equicontinuous.

Now theorem 4.8 shows that in general (a), (b) and (c) of (13.15) do not imply the compact-
ness of H for each conjoining topology η for C(X, Y ) (or for H). For instance, if X is not
compact in general τu- lim is strictly stronger than c- lim. Look at our example 4.9. Thus the
sufficient assertion of theorem (13.15) is wrong. Quite analogously we find that [12, theorem
(13.21)] is not correct too.

Here we have even continuity instead of equicontinuity.

We come now to our last example.

Example 4.9 We consider again example 3.6. Now let be

H ⊆ C(R,R), H =

{
fn : ∀x ∈ R : fn(x) =

1

n
x|n ∈ N

}
∪ {f0} =

{
1

n
x|n ≥ 1

}
∪ {f0} ,

where f0 is the zerofunction on R. We show that hold:

(1) H is equicontinuous and hence evenly continuous.

(2) H(x) is compact for each x ∈ R
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(3) H is τp-compact

(4) H is in RRτp-closed

(5) H is c- lim-compact

(6) H is τco-compact

(7) H is τu-closed in C(R,R)

(8) H is not τu-compact

Proof. (1) For example 3.6 we showed that H − {f0} is equicontinuous, we show in the
same manner that H is equicontinuous:

∀(x, y) ∈ R× R, ∀n ≥ 1 : |fn(x)− fn(y)| = 1

n
|x− y|;

∀ε > 0 ∃δ = δ(ε) > 0, δ := ε : ∀(x, y) ∈ R× R : |x− y| < δ =⇒ 1

n
|x− y| ≤ δ

n
≤ ε ;

but also
|x− y| < δ =⇒ |f0(x)− f0(y)| = |0− 0| ≤ ε .

Thus H is uniformly equicontinuous and hence equicontinuous and evenly continuous.

(2) ∀x ∈ R : H(x) = {fn(x)|n ∈ N} is homeomorph to the compact set{
1

n
|n ∈ N, n ≥ 1

}
∪ {0} ⊆ R = Y .

(3) ∀x ∈ R : fn(x) = x
n
→ 0 showing fu

τp−→ f0 and hence H = {fn|n ∈ N\{0}} ∪ {f0} is
τp-compact.

(4) H is τp-compact in C(R,R) =⇒ H is τp-compact in RR; (RR, τp) is Hausdorff =⇒ H is
in RRτp-closed.

(5) By theorem 2.2 from (1), (2) and (4) follows that H is in C(R,R) c- lim-compact.

(6) R = X is locally compact and Hausdorff and thus τco- lim = c- lim, where τco is the
compact-open topology. Then (C(R,R), c- lim) is a topological space.

(7) The uniform topology τu in RR can be defined by the use of neighborhoods. And then
we see that τu is first countable. Hence we can work with sequences.

We assume that H has a τu-accumulation point g ∈ C(R,R); g /∈ H =⇒ g 6= f0 on R.

Then there exists a sequence (fn) from H s. th. fn
τu−→ g; then holds fn

τp−→ g too.
Otherwise ∀n ∈ N : fn ∈ H and (fn) cannot be a constant sequence. Hence we find a
subsequence (fnk) s. th. fnk

τp−→ f0 implying that fnk
τp−→ g; but then g = f0 because

(C(R,R), τp) is Hausdorff; g = f0 yields a contradiction.

Thus H is τu-closed.
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(8) We assume that H is τu-compact; since H consists of a sequence there exists a subse-
quence (gnk) of (fn) and a g ∈ H s. th. gnk

τu−→ g yielding gnk
τp−→ g too. But then we

know from the proof of (7) that g = f0 holds.

Now {gnk |k ∈ N} is an infinite set of unbounded functions on R showing that gnk
τu−→ f0

is not possible, a contradiction. Hence H is not τu-compact.

Remarks 1. Here we have again an concrete example which shows that in general does
not hold: (fn) is converging pointwise, (fn) is equicontinuous implies that fn) converges
uniformly.

2. What is the result of example 4.9?

The uniform topology τu (for C(R,R)) is conjoining. By assertions (1), (2), (7) of 4.9
we see that the assumptions of [12, theorem (13.15)] are fullfilled.

Thus this theorem asserts that H is τu-compact, but this contradicts assertion (8) of
4.9 which states that H is not τu-compact.

Since H is evenly continuous too our example also works for [12, theorem (13.21)]
yielding that the sufficient assertion of this theorem also is wrong.
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Laure Cardoulis

Applications of Carleman inequalities for a two-by-two
parabolic system in an unbounded guide

ABSTRACT. In this article we consider the inverse problem of determining some of the
coefficients of a two-by-two parabolic system defined on an unbounded guide. Using an
adapted Carleman estimate, we establish local stability results for at least two coefficients
of this system in any finite portion of the guide. These estimates are obtained with data of
the solution at a fixed time and boundary measurements for observations.

KEY WORDS. inverse problems, Carleman inequalities, heat operator, system, unbounded
guide

1 Introduction

Let ω be a bounded connex domain in Rn−1, n ≥ 2 with C2 boundary. Denote Ω := R× ω,
Q = Ω× (0, T ) and Σ = ∂Ω× (0, T ). We consider the following system

∂tu−∆u+ au+ bv = g1 in Q,

∂tv −∆v + cu+ dv = g2 in Q,

u = h1 and v = h2 on Σ,

u(x, 0) = u0(x) and v(x, 0) = v0(x) in Ω,

(1.1)

where a, b, c, d are bounded coefficients defined on Ω such that

a, b, c, d ∈ Λ(M0) := {f ∈ L∞(Ω), ‖f‖L∞(Ω) ≤M0} for some M0 > 0.

Our inverse problem is to estimate at least two coefficients between a, b, c, d from the data
of the solution (u, v) at T/2 and the measurement of (u, v) on a part of the boundary.
We will consider (u, v) (resp. (ũ, ṽ)) a solution of (1.1) associated with (a, b, c, d, u0, v0,
g1, g2, h1, h2) (resp. (ã, b̃, c̃, d̃, ũ0, ṽ0, g1, g2, h1, h2)) and two positive reals l, L such that
l < L. Denote

ΩL = (−L,L)× ω and Ωl = (−l, l)× ω.
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The first result of this paper gives a Hölder result (3.3) for the coefficients b and c in the
case where ã = a, d̃ = d and is the following (see Theorem 3.1)

‖b− b̃‖2
L2(Ωl)

+ ‖c− c̃‖2
L2(Ωl)

≤ K

(
‖(u− ũ)(.,

T

2
)‖2
H2(ΩL) + ‖(v − ṽ)(.,

T

2
)‖2
H2(ΩL)

+

∫
γL×(0,T )

2∑
k=0

(|∂ν(∂kt (u− ũ))|2 + |∂ν(∂kt (v − ṽ))|2) dσ dt

)κ

where K is a positive constant, κ ∈ (0, 1), γL is a part of the boundary (see (2.2)), and
assuming that the hypothesis (3.2) is satisfied.
The second result (3.15) of this paper is also a Hölder stability result for the four coefficients
a, b, c, d (see Theorem 3.2)

‖a− ã‖2
L2(Ωl)

+ ‖b− b̃‖2
L2(Ωl)

+ ‖c− c̃‖2
L2(Ωl)

+ ‖d− d̃‖2
L2(Ωl)

≤ K

(
‖

1∑
k=0

∂kt (u− ũ)(.,
T

2
)‖2
H2(ΩL) + ‖

1∑
k=0

∂kt (v − ṽ)(.,
T

2
)‖2
H2(ΩL)

+

∫
γL×(0,T )

2∑
k=0

(|∂ν(∂kt (u− ũ))|2 + |∂ν(∂kt (v − ṽ))|2) dσ dt

)κ

with stronger hypotheses (3.13) and (3.14) than those in Theorem 3.1 (see (3.2)).
The third theorem of this paper gives a Hölder stability result (3.34) (see Theorem 3.3) for
the following reaction-diffusion system

∂tu−∆u+ au+ bv + A1 · ∇u+ A2 · ∇v = g1 in Q,

∂tv −∆v + cu+ dv + A3 · ∇u+ A4 · ∇v = g2 in Q,

u = h1 and v = h2 on Σ,

u(x, 0) = u0(x) and v(x, 0) = v0(x) in Ω,

(1.2)

where all the coefficients a, b, c, d, A1, A2, A3, A4 are bounded (a, b, c, d ∈ Λ(M0) andA1, A2, A3,

A4 ∈ Λ(M0)n∩H1(Ω)n). We obtain a stability result for the coefficients b and A3 (assuming
A3 has the form A3 = ∇g) with the same kind of observations in the right-hand side of
(3.34) as we have obtained in (3.3) or (3.15). Assuming that the Assumptions (3.32) and
(3.33) hold, we get the following result

‖b− b̃‖2
L2(Ωl)

+ ‖A3 − Ã3‖2
(L2(Ωl))n

≤ K

(
‖

1∑
k=0

∂kt (u− ũ)(.,
T

2
)‖2
H2(ΩL) + ‖

1∑
k=0

∂kt (v − ṽ)(.,
T

2
)‖2
H3(ΩL)

+

∫
γL×(0,T )

2∑
k=0

(|∂ν(∂kt (u− ũ))|2 + |∂ν(∂kt (v − ṽ))|2) dσ dt

)κ

.
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Of course each of these above stability results implies an uniqueness result.
Up to our knowledge, there are few results concerning the simultaneous identification of more
than one coefficient in each equation (see for example [1] and also [5] where the authors give
a stability result for the diffusion coefficient a and the potential b of the Schrödinger operator
i∂tq+a∆q+bq). In previous papers, stability results have been obtained for parabolic systems
but, as far as we know, these papers have investigated the case of bounded domains and
have given results with observations on a subdomain of their domain ([1, 7]...). Furthermore,
there is no result for a two-by-two parabolic system with only one observation on a part of
the boundary and without any data of the solution at a fixed time even in a bounded domain.
We will use here the global Carleman estimate (2.5) for one equation given in [3] based on
a classical Carleman estimate given in [12, 13]. Our choice of weight functions is adapted
for this unbounded domain but will give us Hölder, and not Lipschitz, estimates of the
coefficients. Recall that the method using Carleman estimates for solving inverse problems
has been initiated by [2]. Our results extend to a system previous results for one equation
defined on an unbounded guide (see [3] for the heat operator ∂tu−∆u+ qu and [4] for the
heat operator ∂tu −∇ · (c∇u) where stability results are given either for the potential q or
for the diffusion coefficient c).
This Paper is organized as follows. In section 2, we specify the weight functions used for
our Carleman estimate (cf (2.1), (2.3)) and due to the particular symmetric form of these
weight functions with respect to x1 and t−T/2 we recall from [3] the inequality (2.4), crucial
for our final estimates (3.3), (3.15) and (3.34). Then in section 3 we state and prove our
stability results, first for the coefficients b, c, after for a, b, c, d and finally for b, A3.

2 Carleman estimate

Denote QL = ΩL × (0, T ) = (−L,L)× ω × (0, T ), x = (x1, · · · , xn) ∈ Rn, x′ = (x2, · · · , xn)

and define the operator
Au = ∂tu−∆u.

Let l > 0, following [3] in this section, we consider some positive real L > l and choose
a ∈ Rn \ Ω such that if

d̃(x) = |x′ − a′|2 − x2
1 for x ∈ ΩL, then d̃ > 0 in ΩL, |∇d̃| > 0 in ΩL. (2.1)

Moreover define

ΓL = {x ∈ ∂ΩL, < x− a, ν(x) >≥ 0} and γL = ΓL ∩ ∂Ω. (2.2)

Here < ., . > denotes the usual inner product in Rn and ν(x) the outward unit normal vector
to ∂ΩL at x. Notice that γL does not contain any cross section of the guide. From [12] we
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consider weight functions as follows: for t ∈ (0, T ), if M1 > sup0<t<T (t− T/2)2 = (T/2)2,

ψ(x, t) = d̃(x)−
(
t− T

2

)2

+M1, and φ(x, t) = eλψ(x,t). (2.3)

The constant λ > 0 will be set in Proposition 2.2 and is usually used as a large parameter
in Carleman inequalities. Since we will not use it, we will consider λ fixed in the article. We
recall from [3] the following result.

Proposition 2.1 There exists T > 0, L > l, a ∈ R2 \Ω and ε̃ > 0 such that (2.1) holds
and, setting

OL,ε̃ = (ΩL × ((0, 2ε̃) ∪ (T − 2ε̃, T ))) ∪ (((−L,−L+ 2ε̃) ∪ (L− 2ε̃, L))× ω × (0, T )),

we have
d1 < d0 < d2 (2.4)

where
d0 = inf

Ωl
φ(.,

T

2
), d1 = sup

OL,ε̃

φ and d2 = sup
ΩL

φ(.,
T

2
).

We will use the following notations: Let α = (α1, · · · , αn) be a multi-index with αi ∈ N∪{0}.
We set ∂αx = ∂α1

1 · · · ∂αnn , |α| = α1 + · · ·+ αn and define

H2,1(QL) = {u ∈ L2(QL), ∂αx∂
αn+1

t u ∈ L2(QL), |α|+ 2αn+1 ≤ 2}

endowed with its norm

‖u‖2
H2,1(QL) =

∑
|α|+2αn+1≤2

‖∂αx∂
αn+1

t u‖2
L2(QL).

We recall here a global Carleman-type estimate proved in [3], based on a classical Carleman
estimate (see Yamamoto [12, Theorem 7.3]).

Proposition 2.2 There exist a value of λ > 0 and positive constants s0 and C =

C(λ, s0) such that

I(u) :=

∫
QL

(
1

sφ
(|∂tu|2 + |∆u|2) + sφ |∇u|2 + s3φ3|u|2

)
e2sφdx dt

≤ C‖esφAu‖2
L2(QL) + Cs3e2sd1‖u‖2

H2,1(QL) + Cs

∫
γL×(0,T )

|∂νu|2e2sφdσ dt, (2.5)

for all s > s0 and all u ∈ H2,1(QL) satisfying u(., 0) = u(., T ) = 0 in ΩL, u = 0 on
∂ΩL × (0, T ). We denote ∂νu = ν · ∇u.
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In fact the above Proposition 2.2 is still valid for a more general function u: we can replace
the condition u = 0 on ∂ΩL × (0, T ) in Proposition 2.2 by u = 0 on (∂Ω ∩ ∂ΩL)× (0, T ).

Since the method of Carleman estimates requires several time differentiations, we assume
in the following that u, v (resp. ũ, ṽ) belong to H = H3(0, T,H3(Ω)) satisfying the a-priori
bound

‖u‖H < M2 and ‖v‖H < M2 for given M2 > 0.

From now on, we use the notation w(T
2
) = w(., T

2
) for any function w.

3 Inverse problems

3.1 The first result

Consider here (u, v) (resp. (ũ, ṽ)) a strong solution of (1.1) associated with (a, b, c, d, u0,
v0, g1, g2, h1, h2) (resp. (a, b̃, c̃, d, ũ0, ṽ0, g1, g2, h1, h2)). Assume that all the coefficients
a, b, c, d, b̃, c̃ belong to Λ(M0). From [8, Lemma 4.2], we derive the following result, also used
in [3]

Lemma 3.1 There exist some positive constants C, s1 such that∫
ΩL

e2sφ(T
2

)|z(T/2)|2dx ≤ Cs

∫
QL

e2sφφ2|z|2dx dt+
C

s

∫
QL

e2sφ|∂tz|2dx dt,

for all s ≥ s1 and z ∈ H1(0, T ;L2(ΩL)).

For the sake of completeness, we recall its proof.

Proof. Consider η defined by (3.4) and any w ∈ H1(0, T ;L2(ΩL)). Since η(T
2
) = 1 and

η(0) = 0, we have∫
ΩL

w(x, T/2)2dx =

∫
ΩL

(η(T/2)w(x, T/2))2dx =

∫
ΩL

∫ T/2

0

∂t(η
2(t)|w(x, t)|2)dt dx

= 2

∫ T/2

0

∫
ΩL

η2(t)w(x, t)∂tw(x, t)dx dt+ 2

∫ T/2

0

∫
ΩL

η(t)∂tη(t)|w(x, t)|2dx dt.

As 0 ≤ η ≤ 1, using Young’s inequality, it comes that for any s > 0,∫
ΩL

w(x, T/2)2 dx ≤ Cs

∫
QL

|w|2dx dt+
C

s

∫
QL

|∂tw|2dx dt. (3.1)

Then we can conclude replacing w by esφz in (3.1).
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We can state our first main result for a two-by-to linear system which extend precedent
results for one equation (see [3] and [4]). We do not follow here the proof of [1, Theorem
1.2] and rather use ideas from [3].

Theorem 3.1 Let l > 0. Let T > 0, L > l and a ∈ Rn \ Ω satisfying the conditions of
Proposition 2.1. We make the following assumption

|ũ(.,
T

2
)| ≥ R and |ṽ(.,

T

2
)| ≥ R in ΩL for some R > 0. (3.2)

Then there exists a sufficiently small number δ0 such that if δ ∈ (0, δ0),

‖(u− ũ)(.,
T

2
)‖2
H2(ΩL) + ‖(v − ṽ)(.,

T

2
)‖2
H2(ΩL)

+

∫
γL×(0,T )

2∑
k=0

(|∂ν(∂kt (u− ũ))|2 + |∂ν(∂kt (v − ṽ))|2)dσdt ≤ δ

then the following Hölder stability estimate holds

‖b− b̃‖2
L2(Ωl)

+ ‖c− c̃‖2
L2(Ωl)

≤ Kδκ for all δ ∈ (0, δ0). (3.3)

Here, K > 0 and κ ∈ (0, 1) are two constants depending on R, r, L, l, M0, M1, M2, T and
a.

Proof. Let χ, η be C∞ cut-off functions defined by χ,∇χ,∆χ ∈ Λ(M0), 0 ≤ χ ≤ 1, 0 ≤ η ≤ 1,

χ(x) = 0 if x ∈ ((−∞,−L+ ε̃) ∪ (L− ε̃,+∞))× ω),

χ(x) = 1 if x ∈ (−L+ 2ε̃, L− 2ε̃)× ω,

η(t) = 0 if t ∈ (0, ε̃) ∪ (T − ε̃, T ), η(t) = 1 if t ∈ ×(2ε̃, T − 2ε̃). (3.4)

Denote also

y = u− ũ, y0 = χηy, y1 = ∂ty0, y2 = ∂ty1, z = v − ṽ, z0 = χηz, z1 = ∂tz0 and z2 = ∂tz1.

Note that (y0, z0) satisfies
∂ty0 −∆y0 + ay0 + bz0 = ρ1 := (̃b− b)χηṽ + (∂tη)χy − (∆χ)ηy − 2∇χ · ∇(ηy) in QL,

∂tz0 −∆z0 + cy0 + dz0 = ρ2 := (c̃− c)χηũ+ (∂tη)χz − (∆χ)ηz − 2∇χ · ∇(ηz) in QL,

y0 = z0 = 0 on ∂ΩL × (0, T ).

(3.5)
and (y1, z1), (y2, z2) satisfy

∂ty1 −∆y1 + ay1 + bz1 = ∂tρ1 in QL,

∂tz1 −∆z1 + cy1 + dz1 = ∂tρ2 in QL,

y1 = z1 = 0 on ∂ΩL × (0, T )

and


∂ty2 −∆y2 + ay2 + bz2 = ∂2

t ρ1 in QL,

∂tz2 −∆z2 + cy2 + dz2 = ∂2
t ρ2 in QL,

y2 = z2 = 0 on ∂ΩL × (0, T ).
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• First step: Applying (3.5) for t = T
2
, if we denote

J :=

∫
ΩL

e2sφ(T
2

)χ2[|c− c̃|2|ũ(
T

2
)|2 + |b− b̃|2|ṽ(

T

2
)|2] dx

then we get

J ≤ Ce2sd2F0(
T

2
) + C

∫
ΩL

e2sφ(T
2

)(|∂ty0(
T

2
)|2 + |∂tz0(

T

2
)|2) dx

with

F0(T/2) = ‖z0(T/2)‖2
H2(ΩL) + ‖z(T/2)‖2

H1(ΩL) + ‖y0(T/2)‖2
H2(ΩL) + ‖y(T/2)‖2

H1(ΩL).

Note that

F0(T/2) ≤ CF (T/2) with F (T/2) = ‖y(T/2)‖2
H2(ΩL) + ‖z(T/2)‖2

H2(ΩL).

Moreover, since ∂ty0 = y1, ∂tz0 = z1 and 1 ≤ φ, using Lemma 3.1, we obtain

J ≤ Ce2sd2F (T/2)+Cs

∫
QL

e2sφφ3(|y1|2+|z1|2) dx dt+
C

s

∫
QL

e2sφφ3(|y2|2+|z2|2) dx dt. (3.6)

• Second step: Now we evaluate J with the Carleman inequalities (2.5) for yi and zi, i = 1, 2.

Note that all the terms in ‖esφAyi‖2
L2(QL) or ‖esφAzi‖2

L2(QL) with derivatives of χ or η will
be bounded above by Ce2sd1 with C a positive constant. Therefore, for s sufficiently large,
there exists a positive constant C such that

I(yi) + I(zi) ≤ C

∫
QL

e2sφχ2[|c− c̃|2 + |b− b̃|2] dx dt+ C

∫
QL

e2sφ(|yi|2 + |zi|2) dx dt+ Ce2sd1

+Cs3e2sd1(‖yi‖2
H2,1(QL) + ‖zi‖2

H2,1(QL)) + Cs

∫
γL×(0,T )

e2sφ(|∂νyi|2 + |∂νzi|2) dσ dt.

Since e2sφ ≤ e2sφ(T/2), we deduce that

I(yi) + I(zi) ≤ C

∫
ΩL

e2sφ(T/2)χ2[|c− c̃|2 + |b− b̃|2] dx dt+ Cs3e2sd1

+Cs

∫
γL×(0,T )

e2sφ(|∂νyi|2 + |∂νzi|2) dσ dt.

Thus
s3

∫
QL

e2sφφ3(|yi|2 + |zi|2) dx dt ≤ C

∫
ΩL

e2sφ(T/2)χ2[|c− c̃|2 + |b− b̃|2] dx

+ Cs3e2sd1 + Cs

∫
γL×(0,T )

e2sφ(|∂νyi|2 + |∂νzi|2) dσ dt. (3.7)
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Therefore, from (3.6) and (3.7), we get for s sufficiently large

J ≤ Ce2sd2F (T/2) +
C

s2

(
s3e2sd1 +

∫
ΩL

e2sφ(T/2)χ2[|c− c̃|2|+ |b− b̃|2] dx

+s

∫
γL×(0,T )

e2sφ

2∑
i=1

(|∂νyi|2 + |∂νzi|2) dσ dt

)
.

So we have

J ≤ Ce2sd2G(T/2) + Cse2sd1 +
C

s2

∫
ΩL

e2sφ(T/2)χ2[|c− c̃|2|+ |b− b̃|2] dx (3.8)

with

G(T/2) = F (T/2) +

∫
γL×(0,T )

2∑
k=0

(|∂ν∂kt y|2 + |∂ν∂kt z|2) dσ dt.

• Third and last step: In this step, we come back to the coefficients b− b̃ and c− c̃.
First, from the hypothesis (3.2) we derive from (3.8), for s sufficiently large∫

ΩL

e2sφ(T/2)χ2(|̃b− b|2 + |c̃− c|2) dx ≤ Ce2sd2G(T/2) + Cse2sd1 . (3.9)

Moreover, since e2sd0 ≤ e2sφ(T/2) in Ωl and χ = 1 in Ωl, we deduce from (3.9) that

e2sd0(‖b̃− b‖2
L2(Ωl)

+ ‖c̃− c‖2
L2(Ωl)

) ≤ Ce2sd2G(T/2) + Cse2sd1 .

This last inequality can be rewritten in the following form for s sufficiently large (s ≥ s2)

‖b̃− b‖2
L2(Ωl)

+ ‖c̃− c‖2
L2(Ωl)

≤ C(e2s(d2−d0)G(T/2) + se2s(d1−d0)). (3.10)

Note that if G(T/2) = 0, since (3.10) holds for any s ≥ s2 and d1−d0 < 0 we get (3.3). Now
if G(T/2) 6= 0, we recall from (2.4) that d1 − d0 < 0 and d2 − d0 > 0 and optimize (3.10)
with respect to s. Indeed denote

f(s) = e2s(d2−d0)G(T/2) + e2s(d1−d0) and g(s) = e2s(d2−d0)G(T/2) + se2s(d1−d0).

We have f(s) ∼ g(s) at infinity. Moreover the function f has a minimum in

s3 =
1

2(d2 − d1)
ln(

d0 − d1

(d2 − d0)G(T/2)
) and f(s3) = K ′G(T/2)κ

with κ = d0−d1
d2−d1 and K ′ = (d0−d1

d2−d0 )
d2−d0
d2−d1 + (d0−d1

d2−d0 )
d1−d0
d2−d0 . Finally the minimum s3 is sufficiently

large (s3 ≥ s2) if the following condition G(T/2) ≤ δ0, with δ0 = d0−d1
(d2−d0)e2s2(d2−d1)

, is satisfied.
Then we get our result (3.3) and so we complete the proof of Theorem 3.1.
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Remark 1 • Note that the hypothesis (3.2) is quite usual (cf [1, 7] for a parabolic system
in a bounded domain) and is removed in [1] by the control theory and in [7] by conditions
on a, b̃, c̃, d, ũ0, ṽ0, h1, h2, g1, g2. In some cases, one can also diagonalise the coupling matrix
of the coefficients (see [6]) then use a parabolic positivity result (see [9, Theorem 13.5]) for
the decoupling system. Of course we could obtain the same result as (3.3) for any coefficient
in each equation of (1.1). But if we want to determine the coefficients b and d for example,
we only have to assume that |ṽ(., T

2
)| ≥ R in ΩL for some R > 0, instead of (3.2).

• In fact we can obtain in the right-hand side of (3.3) the term
∫
γL×(0,T )

∑2
k=1(|∂ν(∂kt (u −

ũ))|2+|∂ν(∂kt (v−ṽ))|2) dσ dt instead of
∫
γL×(0,T )

∑2
k=0(|∂ν(∂kt (u−ũ))|2+|∂ν(∂kt (v−ṽ))|2) dσ dt

if we slightly modify d1 (if we define d1 = supOL,ε̃ φ, the inequalities (2.4) still hold and all
the terms inside the integrals on γL with derivatives of η are therefore bounded above by
e2sd1).

3.2 The second result

Consider now (u, v) (resp. (ũ, ṽ)) a strong solution of (1.1) associated with (a, b, c, d, u0,
v0, g1, g2, h1, h2) (resp. (ã, b̃, c̃, d̃, ũ0, ṽ0, g1, g2, h1, h2)). Assume that all the coefficients
a, b, c, d, ã, b̃, c̃, d̃ belong to Λ(M0). For our second main result, first we need the following
lemma inspired from Klibanov and Timonov ([11]). Recall that χ and η are defined by (3.4).

Lemma 3.2 There exists a positive constant C such that∫
QL

e2sφφχ2η2

(∫ t

T/2

f(ξ) dξ

)2

dx dt ≤ C

s

(
e2sd1 +

∫
QL

e2sφχ2η2f 2 dx dt

)
,

for all s > 0 and f ∈ L2(0, T, L2(ΩL)) ∩ L∞(QL).

Proof. By the Cauchy-Schwarz inequality, we have∫
QL

φχ2η2e2sφ

(∫ t

T/2

f(x, ξ) dξ

)2

dx dt ≤
∫
QL

φχ2η2e2sφ|t− T

2
|
∣∣∣∣∫ t

T/2

f(x, ξ)2 dξ

∣∣∣∣ dx dt
≤
∫

ΩL

∫ T/2

0

φχ2η2e2sφ(
T

2
− t)

∣∣∣∣∫ t

T/2

f(x, ξ)2dξ

∣∣∣∣ dxdt
+

∫
ΩL

∫ T

T/2

φχ2η2e2sφ(t− T

2
)

(∫ t

T/2

f(x, ξ)2dξ

)
dxdt.

(3.11)

Note that

∂t(e
2sφ) = −4sλ(t− T

2
)φe2sφ.
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For the second integral of the right hand side of (3.11), since η(T ) = 0, by integration by
parts we have ∫

ΩL

∫ T

T/2

φχ2η2e2sφ(t− T

2
)

(∫ t

T/2

f(x, ξ)2dξ

)
dx dt

= − 1

4sλ

∫
ΩL

∫ T

T/2

χ2η2∂t(e
2sφ)(

∫ t

T/2

f(x, ξ)2dξ) dx dt

= − 1

4sλ

∫
ΩL

[
χ2η2e2sφ(

∫ t

T/2

f(x, ξ)2dξ)

]t=T
t=T/2

dx+
1

4sλ

∫
ΩL

∫ T

T/2

e2sφχ2η2f 2 dx dt

+
1

2sλ

∫
ΩL

∫ T

T/2

e2sφχ2η∂tη(

∫ t

T/2

f(x, ξ)2dξ) dx dt

=
1

2sλ

∫
ΩL

∫ T

T/2

e2sφχ2η∂tη(

∫ t

T/2

f(x, ξ)2dξ) dx dt+
1

4sλ

∫
ΩL

∫ T

T/2

e2sφχ2η2f 2 dx dt. (3.12)

The first integral of (3.12) is bounded above by C
s
e2sd1 due to the derivative of η. Therefore∫

ΩL

∫ T

T/2

φχ2η2e2sφ(t− T

2
)

(∫ t

T/2

f(x, ξ)2dξ

)
dx dt ≤ C

s

(
e2sd1 +

∫
QL

e2sφχ2η2f 2 dx dt

)
.

We obtain a similar result for the first integral of (3.11) and this concludes the proof of
Lemma 3.2.

Now we can state our second main result in view to obtain a stability estimate of the four
coefficients of (1.1) with nearly the same observations that we obtained in Theorem 3.1 (see
the right-hand sides of (3.3) and (3.15)).

Theorem 3.2 Let l > 0. Let T > 0, L > l and a ∈ Rn \ Ω satisfying the conditions of
Proposition 2.1. We make here the following assumptions

|ũ| ≥ R and |∂t(
ṽ

ũ
)| ≥ R in Q for some R > 0, (3.13)

and
|ṽ| ≥ R and |∂t(

ũ

ṽ
)| ≥ R in Q for some R > 0. (3.14)

Then there exists a sufficiently small number δ0 such that if δ ∈ (0, δ0),

‖
1∑

k=0

∂kt (u− ũ)(.,
T

2
)‖2
H2(ΩL) + ‖

1∑
k=0

∂kt (v − ṽ)(.,
T

2
)‖2
H2(ΩL)

+

∫
γL×(0,T )

2∑
k=0

(|∂ν(∂kt (u− ũ))|2 + |∂ν(∂kt (v − ṽ))|2 dσ dt ≤ δ
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then the following Hölder stability estimate holds

‖a− ã‖2
L2(Ωl)

+ ‖b− b̃‖2
L2(Ωl)

+ ‖c− c̃‖2
L2(Ωl)

+ ‖d− d̃‖2
L2(Ωl)

≤ Kδκ for all δ ∈ (0, δ0). (3.15)

Here, K > 0 and κ ∈ (0, 1) are two constants depending on R, r, L, l, M0, M1, M2, T and
a.

Proof. As in Thereom 3.1 denote y = u− ũ and z = v − ṽ. Then (y, z) satisfies
∂ty −∆y + ay + bz = (ã− a)ũ+ (̃b− b)ṽ in Q,
∂tz −∆z + cy + dz = (c̃− c)ũ+ (d̃− d)ṽ in Q,
y = z = 0 on Σ.

• First step: Let y1 = y
ũ
and z1 = z

ũ
. Then (y1, z1) satisfies

∂ty1 −∆y1 + ay1 + bz1 = f1 + ã− a+ (̃b− b) ṽ
ũ
in Q,

∂tz1 −∆z1 + cy1 + dz1 = f2 + c̃− c+ (d̃− d) ṽ
ũ
in Q,

y1 = z1 = 0 on Σ,

with f1 := 1
ũ
(−y1∂tũ+ y1∆ũ+ 2∇y1 · ∇ũ) and f2 := 1

ũ
(−z1∂tũ+ z1∆ũ+ 2∇z1 · ∇ũ).

Denote now y2 = ∂ty1, z2 = ∂tz1, y3 = 1

∂t(
ṽ
ũ

)
y2 and z3 = 1

∂t(
ṽ
ũ

)
z2. Then

∂ty2 −∆y2 + ay2 + bz2 = ∂tf1 + (̃b− b)∂t( ṽũ) in Q,
∂tz2 −∆z2 + cy2 + dz2 = ∂tf2 + (d̃− d)∂t(

ṽ
ũ
) in Q,

y2 = z2 = 0 on Σ,

and 
∂ty3 −∆y3 + ay3 + bz3 = f3 + b̃− b in Q,
∂tz3 −∆z3 + cy3 + dz3 = f4 + d̃− d in Q,
y3 = z3 = 0 on Σ,

(3.16)

with
f3 :=

1

∂t(
ṽ
ũ
)

(
−y3∂

2
t (
ṽ

ũ
) + y3∆(∂t(

ṽ

ũ
)) + 2∇y3 · ∇(∂t(

ṽ

ũ
)) + ∂tf1

)
and

f4 :=
1

∂t(
ṽ
ũ
)

(
−z3∂

2
t (
ṽ

ũ
) + z3∆(∂t(

ṽ

ũ
)) + 2∇z3 · ∇(∂t(

ṽ

ũ
)) + ∂tf2

)
.

Finally let y4 = ∂ty3, z4 = ∂tz3, y5 = χηy4 and z5 = χηz4. Then{
∂ty5 −∆y5 + ay5 + bz5 = χη∂tf3 + f5 in QL,

∂tz5 −∆z5 + cy5 + dz5 = χη∂tf4 + f6 in QL,
(3.17)

with
f5 = (∂tη)χy4 − (∆χ)ηy4 − 2η∇χ · ∇y4
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and
f6 = (∂tη)χz4 − (∆χ)ηz4 − 2η∇χ · ∇z4.

Due to the truncation functions, we can apply the Carleman estimates for y5 and z5 and
now we estimate I(y5) + I(z5) with (2.5). We have

I(y5) + I(z5) ≤ C

∫
QL

e2sφ((Ay5)2 + (Az5)2)dxdt+ Cs3e2sd1

+ Cs

∫
γL×(0,T )

e2sφ(|∂νy5|2 + |∂νz5|2)dσdt.

(3.18)

As in Thereom 3.1, all the terms in
∫
QL
e2sφ((Ay5)2 + (Az5)2) dx dt with derivatives of η or

χ will be bounded above by Ce2sd1 . So since φ ≥ 1∫
QL

e2sφ((Ay5)2 + (Az5)2) dx dt ≤ C

∫
QL

e2sφ(y2
5 + z2

5) dx dt+ Ce2sd1

+C

∫
QL

e2sφχ2η2(|∂tf3|2 + |∂tf4|2) dx dt

≤ C

∫
QL

e2sφ(y2
5 + z2

5)dxdt+ Ce2sd1 + C

∫
QL

φe2sφχ2η2

4∑
i=1

(y2
i + |∇yi|2 + z2

i + |∇zi|2)dxdt.

(3.19)
Since χηy4 = y5 and χηz4 = z5, (3.19) implies∫

QL

e2sφ((Ay5)2 + (Az5)2) dx dt ≤ C

∫
QL

e2sφ(y2
5 + z2

5 + |∇y5|2 + |∇z5|2) dx dt+ Ce2sd1

+ C

∫
QL

φe2sφχ2η2

3∑
i=1

(y2
i + |∇yi|2 + z2

i + |∇zi|2) dx dt. (3.20)

From (3.18)-(3.20), we get for s sufficiently large

I(y5) + I(z5) ≤ Cs3e2sd1 + C

∫
QL

φe2sφχ2η2

3∑
i=1

(y2
i + |∇yi|2 + z2

i + |∇zi|2) dx dt

+ Cs

∫
γL×(0,T )

e2sφ(|∂νy5|2 + |∂νz5|2) dσ dt. (3.21)

Using now Lemma 3.2 we have∫
QL

φe2sφχ2η2y2
1 dx dt =

∫
QL

φe2sφχ2η2

(∫ t

T/2

∂ty1(ξ)dξ + y1(T/2)

)2

dx dt

≤ C

s
e2sd1 +

C

s

∫
QL

e2sφχ2η2y2
2 dx dt+ C

∫
QL

φe2sφχ2η2y1(T/2)2 dx dt



Applications of Carleman inequalities for a two-by-two parabolic system in . . . 61

≤ C

s
e2sd1 +

C

s

∫
QL

φe2sφχ2η2y2
3 dx dt+ C

∫
QL

φe2sφχ2η2y1(T/2)2 dx dt

≤ C

s
e2sd1+

C

s

∫
QL

φe2sφχ2η2

(∫ t

T/2

∂ty3(ξ)dξ + y3(T/2)

)2

dx dt+C

∫
QL

φe2sφχ2η2y1(T/2)2dx dt

≤ C

s
e2sd1 +

C

s2

(
e2sd1 +

∫
QL

φe2sφχ2η2y2
4 dx dt

)
+C

∫
QL

φe2sφχ2η2(y1(T/2)2+y3(T/2)2) dx dt

≤ C

s
e2sd1 +

C

s2

∫
QL

e2sφy2
5 dx dt+ Ce2sd2

∫
ΩL

(y1(T/2)2 + y2(T/2)2) dx. (3.22)

Doing the same for
∫
QL
φe2sφχ2η2y2

i dx dt,
∫
QL
φe2sφχ2η2z2

i dx dt,
∫
QL
φe2sφχ2η2|∇yi|2 dx dt

and∫
QL
φe2sφχ2η2|∇zi|2 dx dt, for i = 1, 2, 3 we get from (3.21)-(3.22) and for s sufficienlty large

I(y5) + I(z5) ≤ Cs3e2sd1 + Cs

∫
γL×(0,T )

e2sφ(|∂νy5|2 + |∂νz5|2) dσ dt

+ Ce2sd2

∫
ΩL

2∑
i=1

(yi(T/2)2 + zi(T/2)2 + |∇yi(T/2)|2 + |∇zi(T/2)|2) dx. (3.23)

Note that (3.23) can be rewritten on the following form

I(y5) + I(z5) ≤ Cs3e2sd1 + Cse2sd2

∫
γL×(0,T )

2∑
k=0

(|∂ν∂kt y|2 + |∂ν∂kt z|2) dσ dt

+Ce2sd2

∫
ΩL

1∑
k=0

(∂kt y(T/2)2 + ∂kt z(T/2)2 + |∇∂kt y(T/2)|2 + |∇∂kt z(T/2)|2) dx

and so
I(y5) + I(z5) ≤ Cs3e2sd1 + Cse2sd2F1(T/2) (3.24)

with

F1(T/2) =

∫
γL×(0,T )

2∑
k=0

(|∂ν∂kt y|2+|∂ν∂kt z|2) dσ dt+
1∑

k=0

(‖∂kt y(T/2)‖2
H1(ΩL)+‖∂kt z(T/2)‖2

H1(ΩL)).

• Second step: Now we evaluate (3.16) at T/2. We have∫
ΩL

e2sφ(T/2)χ2(|̃b− b|2 + |d̃− d|2) dx ≤ C

∫
ΩL

e2sφ(T/2)χ2(|∂ty3(T/2)|2 + |∂tz3(T/2)|2) dx

+ Ce2sd2F2(T/2)

with

F2(T/2) =
2∑
i=1

(‖yi(T/2)‖2
H2(ΩL) + ‖zi(T/2)‖2

H2(ΩL)).
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So, since η(T/2) = 1,∫
ΩL

e2sφ(T/2)χ2(|̃b−b|2+|d̃−d|2) dx ≤ C

∫
ΩL

e2sφ(T/2)(|y5(T/2)|2+|z5(T/2)|2) dx+Ce2sd2F2(T/2).

(3.25)
Now let ψ1 = esφy5 and ψ2 = esφz5. Calculate J1 =

∫
ΩL

∫ T/2
0

∂tψ1(t)ψ1(t) dx dt and

J2 =
∫

ΩL

∫ T/2
0

∂tψ2(t)ψ2(t) dx dt. Since η(0) = 0, we get

J1 =
1

2

∫
ΩL

ψ1(T/2)2 dx =
1

2

∫
ΩL

e2sφ(T/2)y5(T/2)2 dx and J2 =
1

2

∫
ΩL

e2sφ(T/2)z5(T/2)2 dx.

Therefore (3.25) becomes∫
ΩL

e2sφ(T/2)χ2(|̃b− b|2 + |d̃− d|2) dx ≤ Ce2sd2F2(T/2)

+ C

∫
ΩL

∫ T/2

0

1

s
∂tψ1(t)sψ1(t) dx dt+ C

∫
ΩL

∫ T/2

0

1

s
∂tψ2(t)sψ2(t) dx dt. (3.26)

Using Young inequality, we deduce from (3.26)∫
ΩL

e2sφ(T/2)χ2(|̃b− b|2 + |d̃− d|2) dx ≤ C

s
(I(y5) + I(z5)) + Ce2sd2F2(T/2). (3.27)

From (3.24) and (3.27) we get∫
ΩL

e2sφ(T/2)χ2(|̃b− b|2 + |d̃− d|2) dx ≤ Cs2e2sd1 + Ce2sd2(F1(T/2) + F2(T/2)). (3.28)

Proceeding as in Theorem 3.1, we obtain from (3.28)∫
Ωl

(|̃b− b|2 + |d̃− d|2) dx ≤ Cs2e2s(d1−d0) + Ce2s(d2−d0)F3(T/2) (3.29)

with

F3(T/2) =
1∑

k=0

(‖∂kt y(T/2)‖2
H2(ΩL)+‖∂kt z(T/2)‖2

H2(ΩL))+

∫
γL×(0,T )

2∑
k=0

(|∂ν∂kt y|2+|∂ν∂kt z|2) dσ dt.

Notice that in the first and second steps of this proof, we have only used the hypothesis
(3.13).
• Third step: Finally using the hypothesis (3.14), we can proceed exactly as before and
obtain ∫

Ωl

(|ã− a|2 + |c̃− c|2) dx ≤ Cs2e2s(d1−d0) + Ce2s(d2−d0)F3(T/2). (3.30)

From (3.29)-(3.30) we end the proof of Thereom 3.2.
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Remark 2 • First note that our stability results (3.3) and (3.15) are obtained on Ωl for
the left-hand term while the observation data G(T/2) and F3(T/2) are required on ΩL for
the right-hand term of (3.3), (3.15).
• Second we have used Lemma 3.2 instead of Lemma 3.1 in the proof of Theorem 3.2 in
order to avoid a third derivative with respect to t in the observation terms. Indeed, if we
no longer used Lemma 3.2 in the proof of Theorem 3.2, we could use a modified version of
Lemma 3.1: applying (3.1) with w = esφχηz, we could obtain the following inequality∫

ΩL

e2sφ(T
2

)χ2|z(T/2)|2 dx ≤ Cs

∫
QL

e2sφφ2χ2η2|z|2 dx dt+C
s
e2sd1+

C

s

∫
QL

e2sφχ2η2|∂tz|2 dx dt,

for all z ∈ H1(0, T ;L2(ΩL)).

Moreover, if we did so, since we had to give up the end of the first step of the proof of
Theorem 3.2, we’d rather follow the ideas of the proof of Theorem 3.1. Therefore, when in
the second step we evaluated (3.16) for t = T/2, with the above inequality we would have
to estimate

∫
ΩL
e2sφ(T/2)χ2|∂ty3(T/2)|2 dx and

∫
ΩL
e2sφ(T/2)χ2|∂tz3(T/2)|2 dx; thus we could

obtain
∫
QL
e2sφχ2η2|∂ty4|2 dx dt and

∫
QL
e2sφχ2η2|∂tz4|2 dx dt in the right-hand side of the es-

timates. Then we would have to apply the Carleman estimates for χηy4, χηz4, χη∂ty4, χη∂tz4

and so we would obtain a third derivative in time for the observation terms.
• Third the assumptions (3.13) and (3.14) are equivalent to |ũ| ≥ R, |ṽ| ≥ R and

| det

((
ũ ∂tũ

ṽ ∂tṽ

))
| ≥ R with R a positive constant. For example, if n = 2 and ω = (r1, r2)

with r1 > 0, let α(x1) be a positive and bounded function in C2(R) such that minx1∈R α(x1) >

2r2
2. Then ũ(x, t) = α(x1)t + x2 and ṽ(x, t) = tx2 + 1 are solutions of the system (1.1) with

g1 = g2 = 0, ã(x) = α′′(x1)+α(x1)x2
α(x1)−x22

, b̃(x) = −x2α′′(x1)−α(x1)2

α(x1)−x22
, c̃(x) =

x22
α(x1)−x22

, d̃(x) = −x2α(x1)

α(x1)−x22
,

and satisfy the conditions (3.13)-(3.14).
• Finally note that the above results remain valid for the system (1.2) when all the coefficients
a, b, c, d, A1, A2, A3, A4 are bounded (a, b, c, d ∈ Λ(M0) and A1, A2, A3, A4 ∈ (Λ(M0))n). We
obtain a stability result of at least two coefficients between a, b, c, d with the same obser-
vations in the right-hand sides of (3.3) or (3.15). In the next section we study the inverse
problem of determining at least one of the coefficient A1, A2, A3, A4, for example A3 if we
assume that this coefficient has the form A3 = ∇g.

3.3 The third result

Consider now (u, v) (resp. (ũ, ṽ)) a strong solution of (1.2) associated with (a, b, c, d, A1,
A2, A3, A4, u0, v0, g1, g2, h1, h2) (resp. (a, b̃, c, d, A1, A2, Ã3, A4, ũ0, ṽ0, g1, g2, h1,
h2)). Assume that all the coefficients a, b, c, d belong to Λ(M0), A1, A2, A3, A4, Ã3 belong to
(Λ(M0))n ∩ (H1(Ω))n and that there exist functions g, g̃ such that

A3 = ∇g, Ã3 = ∇g̃ in Ω. (3.31)
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The Assumption (3.31) implies conditions on A3, Ã3: if tA3 = (c1, · · · , cn), it means that for
all i, j = 1, · · · , n, ∂xicj = ∂xjci, in other words rot(A3) = 0 if n = 3.

Now following an idea developed in [10] for Lamé system in bounded domains, also used for
example in [4], we obtain the following result

Lemma 3.3 Assume that the following assumption

|∇d · ∇ũ(T/2)| ≥ R in ΩL for some R > 0 (3.32)

holds. Consider the first order partial differential operator Pf = ∇f · ∇ũ(T/2). Then there
exist positive constants s4 > 0 and C > 0 such that for all s ≥ s4,

s2

∫
ΩL

e2sφ(T/2)|f |2 dx ≤ C

∫
ΩL

e2sφ(T/2)|Pf |2 dx,

for all f ∈ H1
0 (ΩL).

Proof. The proof follows [4]. Let f ∈ H1
0 (ΩL). Denote w = esφ(T/2)f and Qw =

esφ(T/2)P (e−sφ(T/2)w). So we get Qw = Pw − sw∇φ(T/2) · ∇ũ(T/2). Therefore we have∫
ΩL

|Qw|2 dx ≥ s2

∫
ΩL

w2|∇φ(T/2) · ∇ũ(T/2)|2 dx− 2s

∫
ΩL

(Pw)w(∇φ(T/2) · ∇ũ(T/2)) dx∫
ΩL

|Qw|2 dx ≥ s2λ2

∫
ΩL

w2(φ(T/2))2|∇d · ∇ũ(T/2)|2 dx

−2sλ

∫
ΩL

(∇w · ∇ũ(T/2))wφ(T/2)(∇d · ∇ũ(T/2)) dx.

So ∫
ΩL

|Qw|2 dx ≥ s2λ2

∫
ΩL

w2(φ(T/2))2|∇d · ∇ũ(T/2)|2 dx

−sλ
∫

ΩL

φ(T/2)(∇d · ∇ũ(T/2))(∇(w2) · ∇ũ(T/2)) dx.

Thus integrating by parts∫
ΩL

|Qw|2 dx ≥ s2λ2

∫
ΩL

w2(φ(T/2))2|∇d · ∇ũ(T/2)|2 dx

+sλ

∫
ΩL

w2∇ · (φ(T/2)(∇d · ∇ũ(T/2))∇ũ(T/2)) dx

and∫
ΩL

e2sφ(T/2)|Pf |2 dx =

∫
ΩL

|Qw|2 dx ≥ s2λ2

∫
ΩL

e2sφ(T/2)f 2(φ(T/2))2|∇d · ∇ũ(T/2)|2 dx

+sλ

∫
ΩL

e2sφ(T/2)f 2∇ · (φ(T/2)(∇d · ∇ũ(T/2))∇ũ(T/2)) dx.

And we can conclude for s sufficiently large.
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The strong positivity assumption (3.32) is frequently involved in inverse problems and is
removed in [4] for one equation by the construction of an adapted control. Now we state the
third result.

Theorem 3.3 Let l > 0. Let T > 0, L > l and a ∈ Rn \ Ω satisfying the conditions
of Proposition 2.1. Assume that Assumptions (3.31) and (3.32) hold. We also make the
following hypothesis

|ṽ(.,
T

2
)| ≥ R in ΩL for some R > 0. (3.33)

If g = g̃ and A3 = Ã3 on ∂Ω ∩ ∂ΩL, then there exists a sufficiently small number δ0 such
that if δ ∈ (0, δ0),

‖
1∑

k=0

∂kt (u− ũ)(.,
T

2
)‖2
H2(ΩL) + ‖

1∑
k=0

∂kt (v − ṽ)(.,
T

2
)‖2
H3(ΩL)

+

∫
γL×(0,T )

2∑
k=0

(|∂ν(∂kt (u− ũ))|2 + |∂ν(∂kt (v − ṽ))|2 dσ dt ≤ δ

then the following Hölder stability estimate holds

‖b− b̃‖2
L2(Ωl)

+ ‖A3 − Ã3‖2
(L2(Ωl))n

≤ Kδκ for all δ ∈ (0, δ0). (3.34)

Here, K > 0 and κ ∈ (0, 1) are two constants depending on R, r, L, l, M0, M1, M2, T and
a.

Proof. As in Theorem 3.1 denote

y = u− ũ, y0 = χηy, y1 = ∂ty0, y2 = ∂ty1, z = v − ṽ, z0 = χηz, z1 = ∂tz0 and z2 = ∂tz1.

Then (y0, z0) satisfies
∂ty0 −∆y0 + ay0 + bz0 + A1 · ∇y0 + A2 · ∇z0 = ξ1 in QL,

∂tz0 −∆z0 + cy0 + dz0 + A3 · ∇y0 + A4 · ∇z0 = ξ2 in QL,

y0 = z0 = 0 on ∂ΩL × (0, T )

(3.35)

with

ξ1 := χη(̃b− b)ṽ + (∂tη)χy − (∆χ)ηy − 2∇χ · ∇(ηy) + ηyA1 · ∇χ+ ηzA2 · ∇χ

and

ξ2 := χη(Ã3 − A3) · ∇ũ+ (∂tη)χz − (∆χ)ηz − 2∇χ · ∇(ηz) + ηyA3 · ∇χ+ ηzA4 · ∇χ.

Then

ξ2 = η∇(χ(g̃−g))·∇ũ−η(g̃−g)∇χ·∇ũ+(∂tη)χz−(∆χ)ηz−2∇χ·∇(ηz)+ηyA3·∇χ+ηzA4·∇χ.
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• First step: We evaluate (3.35) for t = T
2
and we get

∂ty0(T/2)−∆y0(T/2) + ay0(T/2) + bz0(T/2) + A1 · ∇y0(T/2) + A2 · ∇z0(T/2)

= χ(̃b− b)ṽ(T/2)− (∆χ)y(T/2)− 2∇χ ·∇y(T/2) + y(T/2)A1 ·∇χ+ z(T/2)A2 ·∇χ (3.36)

and

∂tz0(T/2)−∆z0(T/2) + cy0(T/2) + dz0(T/2) + A3 · ∇y0(T/2) + A4 · ∇z0(T/2)

= P (χ(g̃ − g))− (g̃ − g)∇χ · ∇ũ(T/2)− (∆χ)z(T/2)− 2∇χ · ∇z(T/2) + y(T/2)A3 · ∇χ
+z(T/2)A4 · ∇χ

(3.37)

with P the operator defined in Lemma 3.3. From (3.36) we have∫
ΩL

e2sφ(T
2

)χ2|b− b̃|2|ṽ(
T

2
)|2 dx ≤ C

∫
ΩL

e2sφ(T
2

)|∂ty0(
T

2
)|2 dx

+Ce2sd2(‖z0(T/2)‖2
H1(ΩL) + ‖y0(T/2)‖2

H2(ΩL) + ‖y(T/2)‖2
H1(ΩL) + ‖z(T/2)‖2

L2(ΩL)).

So ∫
ΩL

e2sφ(T
2

)χ2|b− b̃|2|ṽ(
T

2
)|2 dx ≤ Ce2sd2F1(T/2) + C

∫
ΩL

e2sφ(T
2

)|∂ty0(
T

2
)|2 dx

with
F1(T/2) = ‖y(T/2)‖2

H2(ΩL) + ‖z(T/2)‖2
H1(ΩL).

Then, applying Lemma 3.1 we get∫
ΩL

e2sφ(T
2

)χ2|b− b̃|2|ṽ(
T

2
)|2 dx ≤ Ce2sd2F1(T/2) + Cs

∫
QL

e2sφφ3|y1|2 dx dt

+
C

s

∫
QL

e2sφφ3|y2|2 dx dt.
(3.38)

Moreover using Lemma 3.3 for (3.37) we have

s2

∫
ΩL

e2sφ(T/2)χ2(g̃ − g)2 dx ≤ C

∫
ΩL

e2sφ(T/2)|P (χ(g̃ − g))|2 dx

≤ Ce2sd1 + C

∫
ΩL

e2sφ(T
2

)|∂tz0(
T

2
)|2 dx

+Ce2sd2(‖z0(T/2)‖2
H2(ΩL) + ‖y0(T/2)‖2

H1(ΩL) + ‖y(T/2)‖2
L2(ΩL) + ‖z(T/2)‖2

H1(ΩL)).

Applying again Lemma 3.1 we get

s2

∫
ΩL

e2sφ(T/2)χ2(g̃ − g)2dx ≤ Ce2sd1 + Ce2sd2F2(T/2) + Cs

∫
QL

e2sφφ3|z1|2 dx dt
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+
C

s

∫
QL

e2sφφ3|z2|2dxdt (3.39)

with
F2(T/2) = ‖y(T/2)‖2

H1(ΩL) + ‖z(T/2)‖2
H2(ΩL).

From (3.38)-(3.39) we obtain∫
ΩL

e2sφ(T
2

)χ2|b− b̃|2|ṽ(
T

2
)|2 dx+

∫
ΩL

e2sφ(T/2)χ2(g̃ − g)2 dx

≤ C

s2
e2sd1 +Ce2sd2F3(T/2)+Cs

∫
QL

e2sφφ3(|y1|2 + |z1|2)dxdt+
C

s

∫
QL

e2sφφ3(|y2|2 + |z2|2)dxdt

(3.40)
with

F3(T/2) = ‖y(T/2)‖2
H2(ΩL) + ‖z(T/2)‖2

H2(ΩL).

Using now Assumption (3.33), we get from (3.40) and for s sufficiently large∫
ΩL

e2sφ(T
2

)χ2((b− b̃)2 + (g̃ − g)2) dx ≤ C

s2
e2sd1 + Ce2sd2F3(T/2)

+ Cs

∫
QL

e2sφφ3(|y1|2 + |z1|2) dx dt+
C

s

∫
QL

e2sφφ3(|y2|2 + |z2|2) dx dt. (3.41)

• Second step: As in Theorem 3.1, now we use the Carleman inequalities (2.5) for yi and zi,
i = 1, 2. Recall that φ ≤ φ(T/2) so we get for s sufficiently large

I(yi) + I(zi) ≤ C

∫
ΩL

e2sφ(T/2)(|∇(χ(g̃ − g))|2 + χ2|b− b̃|2) dx+ Cs3e2sd1

+Cs

∫
γL×(0,T )

e2sφ(|∂νyi|2 + |∂νzi|2) dσ dt.

Thus

s3

∫
QL

e2sφφ3(|yi|2 + |zi|2) dx dt ≤ C

∫
ΩL

e2sφ(T/2)(|∇(χ(g̃ − g))|2 + χ2|b− b̃|2) dx

+ Cs3e2sd1 + Cs

∫
γL×(0,T )

e2sφ(|∂νyi|2 + |∂νzi|2) dσ dt. (3.42)

Therefore, from (3.41) and (3.42), we get for s sufficiently large∫
ΩL

e2sφ(T
2

)χ2((b− b̃)2 + (g̃ − g)2) dx ≤ Ce2sd2F3(T/2) + Cse2sd1

+
C

s2

∫
ΩL

e2sφ(T/2)(|∇(χ(g̃−g))|2 +χ2|b− b̃|2) dx+
C

s

∫
γL×(0,T )

e2sφ

2∑
i=1

(|∂νyi|2 + |∂νzi|2) dσ dt.
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Thus we have for s sufficiently large∫
ΩL

e2sφ(T
2

)χ2((b−b̃)2+(g̃−g)2) dx ≤ Ce2sd2F4(T/2)+Cse2sd1+
C

s2

∫
ΩL

e2sφ(T/2)|∇(χ(g−g̃))|2| dx

(3.43)
with

F4(T/2) = F3(T/2) +

∫
γL×(0,T )

2∑
k=0

(|∂ν∂kt y|2 + |∂ν∂kt z|2) dσ dt.

• Third step: We apply the same ideas for ∇(χ(g̃ − g)). For any integer 1 ≤ i ≤ n, taking
the space derivative with respect to xi in (3.37), we obtain

∂t∂xiz0(T/2)−∆∂xiz0(T/2) + ∂xi (cy0(T/2) + dz0(T/2) + A3 · ∇y0(T/2) + A4 · ∇z0(T/2))

= P (∂xi(χ(g̃ − g))) +∇(χ(g̃ − g)) · ∇(∂xiũ(T/2))− ∂xi((g̃ − g)∇χ · ∇ũ(T/2))

− ∂xi((∆χ)z(T/2)− 2∇χ · ∇z(T/2) + y(T/2)A3 · ∇χ+ z(T/2)A4 · ∇χ). (3.44)

We can apply again Lemma 3.3: there exists a positive constant C such that for s sufficiently
large,

s2

∫
ΩL

e2sφ(T/2)∂xi(χ(g̃ − g))2 dx ≤ C

∫
ΩL

e2sφ(T/2)(P (∂xi(χ(g̃ − g))))2 dx.

Thus, using (3.44) we obtain

s2

∫
ΩL

e2sφ(T/2)(∂xi(χ(g̃− g)))2 dx ≤ Ce2sd2F5(T/2) +Ce2sd1 +C

∫
ΩL

e2sφ(T/2)|∂xiz1(T/2)|2 dx

+C

∫
ΩL

e2sφ(T/2)|∇(χ(g − g̃))|2| dx

with F5(T/2) = ‖z(T/2)‖2
H3(ΩL) + ‖y(T/2)‖2

H2(ΩL). So using Lemma 3.1 we get

s2

∫
ΩL

e2sφ(T/2)(∂xi(χ(g̃−g)))2 dx ≤ Ce2sd2F5(T/2)+Ce2sd1 +C

∫
ΩL

e2sφ(T/2)|∇(χ(g−g̃))|2| dx

+ Cs

∫
QL

e2sφ(∂xiz1)2 dx dt+
C

s

∫
QL

e2sφ(∂xiz2)2 dx dt. (3.45)

Moreover by the Carleman inequality (2.5), we have for j = 1, 2,

s

∫
QL

e2sφ(z2
j + |∇zj|2) dx dt ≤ C

∫
QL

e2sφ|Azj|2 dx dt+ Cs3e2sd1‖zj‖2
H2,1(QL)

+Cs

∫
γL×(0,T )

|∂νzj|2e2sφ dσ dt.

Thus

s

∫
QL

e2sφ(z2
j+|∇zj|2) dx dt ≤ C

∫
QL

e2sφ(y2
j+|∇yj|2+z2

j+|∇zj|2) dx dt+

∫
QL

e2sφ|∇(χ(g̃−g))|2 dx dt
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+ Cs3e2sd1 + Cs

∫
γL×(0,T )

|∂νzj|2e2sφ dσ dt. (3.46)

By the same way we obtain

s

∫
QL

e2sφ(y2
j +|∇yj|2) dx dt ≤ C

∫
QL

e2sφ(y2
j +|∇yj|2+z2

j +|∇zj|2) dx dt+

∫
QL

e2sφ(χ(̃b−b))2 dx dt

+ Cs3e2sd1 + Cs

∫
γL×(0,T )

|∂νyj|2e2sφ dσ dt. (3.47)

From (3.46) and (3.47) we deduce

s

∫
QL

e2sφ(z2
j +y2

j +|∇zj|2 +|∇yj|2)dxdt ≤ C

∫
QL

e2sφ(y2
j +|∇yj|2 +z2

j +|∇zj|2)dxdt+Cs3e2sd1

+ C

∫
QL

e2sφ(|∇(χ(g̃ − g))|2 + (χ(̃b− b))2) dx dt+ Cs

∫
γL×(0,T )

e2sφ(|∂νzj|2 + |∂νyj|2) dσ dt.

(3.48)
Since φ ≤ φ(T/2), (3.48) implies for s sufficiently large

s

∫
QL

e2sφ(z2
j + y2

j + |∇zj|2 + |∇yj|2) dx dt ≤ Cs3e2sd1

+C

∫
ΩL

e2sφ(T/2)(|∇(χ(g̃ − g))|2 + (χ(̃b− b))2) dx+ Cs

∫
γL×(0,T )

e2sφ(|∂νzj|2 + |∂νyj|2) dσ dt

and so

s

∫
QL

e2sφ

2∑
j=1

(|∇zj|2 + |∇yj|2) dx dt ≤ s

∫
QL

e2sφ

2∑
j=1

(z2
j + y2

j + |∇zj|2 + |∇yj|2) dx dt

≤ Cs3e2sd1 + Cs

∫
γL×(0,T )

e2sφ

2∑
j=1

(|∂νzj|2 + |∂νyj|2) dσ dt

+ C

∫
ΩL

e2sφ(T/2)(|∇(χ(g̃ − g))|2 + (χ(̃b− b))2) dx. (3.49)

Using inequalities (3.45) for 1 ≤ i ≤ n and (3.49), we get

s2

∫
ΩL

e2sφ(T/2)|∇(χ(g̃−g))|2 dx ≤ Ce2sd2F5(T/2)+C

∫
ΩL

e2sφ(T/2)[|∇(χ(g−g̃))|2|+|χ(b−b̃)|2] dx

+Cs3e2sd1 + Cs

∫
γL×(0,T )

e2sφ

2∑
j=1

(|∂νzj|2 + |∂νyj|2) dσ dt.

Therefore for s sufficienlty large

s2

∫
ΩL

e2sφ(T/2)|∇(χ(g̃ − g))|2 dx ≤ Ce2sd2F5(T/2) + C

∫
ΩL

e2sφ(T/2)(χ(b− b̃))2 dx
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+ Cs3e2sd1 + Cs

∫
γL×(0,T )

e2sφ

2∑
j=1

(|∂νzj|2 + |∂νyj|2) dσ dt. (3.50)

• Fourth step: Now we gather (3.43) and (3.50) and we get for s sufficiently large∫
ΩL

e2sφ(T/2)χ2(|̃b− b|2 + |g̃ − g|2 + |∇(χ(g̃ − g))|2) dx ≤ Ce2sd2F6(T/2) + Cse2sd1 , (3.51)

with F6(T/2) = F4(T/2) + F5(T/2). Moreover, since e2sd0 ≤ e2sφ(T/2) in Ωl and χ = 1 in Ωl,

we deduce that

‖b̃− b‖2
L2(Ωl)

+ ‖g̃ − g‖2
H1(Ωl)

≤ C(e2s(d2−d0)F6(T/2) + se2s(d1−d0)).

This concludes the proof of Theorem 3.3.

Remark 3 In Theorem 3.3 we have presented the case of determining the coefficients
b and A3. Of course we could obtain similar results for at least two coefficients between
a, b, c, d, A1, A2, A3, A4. If we want to determine A1 and A3, we only have to assume that
Assumption (3.32) holds intead of (3.32)-(3.33). If we want to estimate the coefficients A2

and A3, we still have to assume the hypothesis (3.32) satisfied but in this case, we should
also assume that the following hypothesis

|∇d · ∇ṽ(T/2)| ≥ R in ΩL for some R > 0

holds. Note also that the last item of Remark 1 still holds for (3.34). To conclude, if we
would like to determine more than two coefficients, we could procede with the same method
used in Theorem 3.2.
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Sadek Bouroubi

On the Square-Triangular Numbers and
Balancing-Numbers

ABSTRACT. In 1770, Euler looked for positive integers n andm such that n(n+1)/2 = m2.
Integer solutions for this equation produce what he called square-triangular numbers. In this
paper, we present a new explicit formula for this kind of numbers and establish a link with
balancing numbers.

KEY WORDS. Triangular number, Square number, Square-triangular number, Balancing
number

1 Introduction

A triangular number counts objects arranged in an equilateral triangle. The first five trian-
gular numbers are 1, 3, 6, 10, 15, as shown in Figure 1. Let Tn denote the nth triangular
number, then Tn is equal to the sum of the n natural numbers from 1 to n, i.e.,

Tn = 1 + · · ·+ n =
n(n+ 1)

2
=

(
n+ 1

2

)
·

6 10 1531

Curve

Figure 1: The first five triangular numbers
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Similar considerations lead to square numbers which can be thought of as the numbers of
objects that can be arranged in the shape of a square. The first five square numbers are 1,
4, 9, 16, 25, as shown in Figure 2. Let Sn denote the nth square number, then we have

Sn = n2.

9 16 2541

Curve

Figure 2: The first five square numbers

A square-triangular number is a number which is both a triangular and square number. The
firsts non-trivial square-triangular number is 36, see Figure 3. A square-triangular number
is a positive integer solution of the diophantine equation:

n(n+ 1)

2
= m2. (1)

36

Figure 3: The first non-trivial square-triangular number
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2 Main Results

Lemma 1 (n,m) is a solution of Equation (1) if, and only if

n =
k−1∑
i=0

(
2k

2i+ 2

)
2i and m =

k−2∑
i=−1

(
2k

2i+ 3

)
2i, for k ∈ N∗·

Proof. From Equation (1), we have

n2 + n− 2m2 = 0. (2)

Equation (2) can be rewritten as follows:

(2n+ 1)2 − 2(2m)2 = 1. (3)

Letting x = 2n+ 1 and y = 2m, Equations (3) becomes the Pell equation:

x2 − 2y2 = 1. (4)

It is well known, that the form x2 − 2y2 is irreducible over the field Q of rational num-
bers, but in the extension field Q(

√
2) it can be factored as a product of linear factors

(x+ y
√

2)(x− y
√

2). Using the norm concept for the extension field Q(
√

2), Equation (4)
can be written in the form:

N
(
x+ y

√
2
)

= 1. (5)

It is easily checked that the set of all numbers of the form x+y
√

2, where x and y are integers,
form a ring, which is denoted Z[

√
2]. The subset of units of Z[

√
2], which we denote U forms

a group. It is easy to show that α ∈ U if and only if N(α) = ±1 [2]. Applying Dirichlet’s
Theorem, we can show that U = {±

(
1 +
√

2
)k
, k ∈ Z}.

Since
N

((
1 +
√

2
)k)

=
(
N
(

1 +
√

2
))k

= (−1)k, (6)

we obtain
N(α) = 1⇔ α =

(
1 +
√

2
)2k

, k ∈ Z. (7)

Thus, all integral solutions of Equation (4) are given by:

x+
√

2y =
(

1 +
√

2
)2k

=
2k∑
i=0

(
2k

i

)
2i/2

=

(
k∑
i=0

(
2k

2i

)
2i

)
+
√

2

(
k−1∑
i=0

(
2k

2i+ 1

)
2i

)
. (8)
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We get, after identification

2n+ 1 = x =
k∑
i=0

(
2k

2i

)
2i,

and

2m = y =
k−1∑
i=0

(
2k

2i+ 1

)
2i.

Equivalently, we have

n =
k−1∑
i=0

(
2k

2i+ 2

)
2i,

and

m =
k−2∑
i=−1

(
2k

2i+ 3

)
2i.

This completes the proof.

We have thus proved, via Lemma 2, the following theorem.

Theorem 2 Let STn denotes the nth square-triangular number. Then

STn = Sm = Tk,

where

m =
n−2∑
i=−1

(
2n

2i+ 3

)
2i and k =

n−1∑
i=0

(
2n

2i+ 2

)
2i.

3 A Link Between Square-Triangular Numbers and Balancing Num-
bers

Behera and Panda [1] introduced balancing numbers m ∈ Z+ as solutions of the equation:

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r) . (9)

Theorem 3 Let Bn be the nth balancing number. Then

STn = B2
n·

Proof. By making the substitution m+ r = n, with n ≥ m+ 1, Equation (9) becomes

1 + 2 + · · ·+ (m− 1) = (m+ 1) + (m+ 2) + · · ·+ n· (10)
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Therefore

m is a balancing number ⇐⇒ 1 + 2 + · · ·+ (m− 1) = (1 + 2 + · · ·+ n)− (1 + 2 + · · ·+m)

⇐⇒ m (m− 1)

2
=
n (n+ 1)

2
− m (m+ 1)

2

⇐⇒ m (m− 1)

2
+
m (m+ 1)

2
=
n (n+ 1)

2

⇐⇒ m2 =
n (n+ 1)

2

⇐⇒ m2 is a square-triangular number

This completes the proof.

Table 1 bellow summarizes the first ten square-triangular numbers with there associated
triangular and balancing numbers, based on Theorem 2 and Theorem 3.

n N =
n−1∑
i=0

(
2n

2i+ 2

)
2i TN = N(N+1)

2
Bn =

n−2∑
i=−1

(
2n

2i+ 3

)
2i STn = B2

n

1 1 1 1 1
2 8 36 6 36
3 49 1225 35 1225
4 288 41616 204 41616
5 1681 1413721 1189 1413721
6 9800 48024900 6930 48024900
7 57121 1631432881 40391 1631432881
8 332928 55420693056 235416 55420693056
9 1940449 1882672131025 1372105 1882672131025
10 11309768 63955431761796 7997214 63955431761796

Table 1: The first ten square-triangular numbers

4 Recurrence Relations for Square-Triangular Numbers

Theorem 4 The sequence of square-triangular numbers (STn)n satisfies the recurrence
relation:

STn = 34STn−1 − STn−2 + 2, for n ≥ 3,

with ST1 = 1 and ST2 = 36.
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Proof. It is well known that the sequence of balancing numbers satisfies the following recur-
rence relations [1]:

Bn+1 = 6Bn −Bn−1, (11)

and
B2
n −Bn+1Bn−1 = 1· (12)

Hence

B2
n = (6Bn−1 −Bn−2)2

= 36B2
n−1 − 12Bn−1Bn−2 +B2

n−2·

From Equation (11), we get

B2
n = 36B2

n−1 − 12

(
Bn +Bn−2

6

)
Bn−2 +B2

n−2

= 36B2
n−1 − 2BnBn−2 −B2

n−2

= 34B2
n−1 − 2

(
BnBn−2 −B2

n−1

)
−B2

n−2·

From Equation (12), we get

B2
n = 34B2

n−1 −B2
n−2 + 2·

This completes the proof according to Theorem 3.

5 Generating Function for Square-Triangular Numbers

In this section, we present the generating function based on some relations on balancing
numbers.

Theorem 5 The generating function of STn is:

f(x) =
x(1 + x)

(1− x)(x2 − 34x+ 1)
·

Proof. Let f(x) =
∑
n≥1

STn x
n. Then

34xf(x) =
∑
n≥2

34STn−1 x
n,
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and
x2f(x) =

∑
n≥3

STn−2 x
n·

Therefore

34xf(x)− x2f(x) = 34x2 +
∑
n≥3

(34STn−1 − STn−2) xn

= 34x2 +
∑
n≥3

(34STn−1 − STn−2 + 2) xn − 2
∑
n≥3

xn·

By Theorem 6, we have

34xf(x)− x2f(x) = 34x2 +
∑
n≥3

STn x
n − 2

(
1

1− x
− 1− x− x2

)
= 34x2 +

(
f(x)− x− 36x2

)
− 2

(
1

1− x
− 1− x− x2

)
= f(x)− x(1 + x)

1− x
·

Hence

(1− 34x+ x2)f(x) =
x(1 + x)

1− x
·

This completes the proof.

By using the generating function we can have the following equivalent explicit formula for
the sequence of square-triangular numbers (STn)n that may be convenient to include.

Theorem 6 For n ≥ 1, we have

STn =

(
17 + 12

√
2
)n

+
(
17− 12

√
2
)n − 2

32
·

Proof. From expanding the generating function of STn in partial fractions, we obtain

f (x) =
1

16 (x− 1)
+

12
√

2− 17

32
(
12
√

2− 17 + x
) +

12
√

2 + 17

32
(
12
√

2 + 17− x
) ·

Therefore

f (x) = − 1

16

∑
n≥0

xn +
1

32

∑
n≥0

(−x)n(
−17 + 12

√
2
)n +

1

32

∑
n≥0

xn(
17 + 12

√
2
)n

= − 1

16

∑
n≥0

xn +
1

32

∑
n≥0

(
17 + 12

√
2
)n
xn +

1

32

∑
n≥0

(
17− 12

√
2
)n
xn·

Then

STn = − 1

16
+

1

32

(
17 + 12

√
2
)n

+
1

32

(
17− 12

√
2
)n
·

Hence, the result follows.
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