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BENEDICTE ALZIARY, JACQUELINE FLECKINGER

Sign of the solution to a non-cooperative system

ABSTRACT. Combining the results of a recent paper by Fleckinger-Hernandez-de Thélin
[14] for a non cooperative 2 x 2 system with the method of PhD Thesis of M. H. Lécureux we
compute the sign of the solutions of a n X n non-cooperative systems when the parameter

varies near the lowest principal eigenvalue of the system.

KEY WORDS. Maximum Principle, Antimaximum Principle, Elliptic Equations and Sys-

tems, Non Cooperative Systems, Principal Eigenvalue.

1 Introduction

Many results have been obtained since decades on Maximum Principle and Antimaximum
principle for second order elliptic partial differential equations involving e.g. Laplacian, p-
Laplacian, Schrodinger operator, ... or weighted equations. Then most of these results have

been extended to systems.

The maximum principle (studied since centuries) has many applications in various domains
as physic, chemistry, biology, .... Usually it shows that for positive data the solutions are
positive (positivity is preserved). It is generally valid for a parameter below the “principal”
eigenvalue (the smallest one). The Antimaximum principle, introduced in 1979 by Clément
and Peletier (|38]), shows that, for one equation, as this parameter goes through this principal
eigenvalue, the sign are reversed; this holds only for a small interval. The original proof relies
on a decomposition into the groundstate (principal eigenfunction of the operator) and its
orthogonal. It is the same idea which has been used in [14]| (combined with a bootstrap
method) to derive a precise estimate for the validity interval of the Antimaximum principle
for one equation. By use of this result, Fleckinger-Hernandez-de Thélin (|11]) deduce results
on the sign of solution for some 2 x 2 non-cooperative systems. Indeed many papers have

appeared for cooperative systems involving various elliptic operators: (1], [2], [4], [9], [10],
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[11], [12], [13], ...). Concerning non cooperative systems the literature is more restricted
(7 14, - )

In this paper we extend the results obtained in [14], valid for 2 X 2 non-cooperative systems
involving Dirichlet Laplacian, to n x n ones. Recall that a system is said to be “cooperative”

if all the terms outside the diagonal of the associated square matrix are positive.
For this aim we combine the precise estimate for the validity interval of the antimaximum

principle obtained in [14] with the method used in [15], [1]| for systems.

In Section 2 we are concerned with one equation. We first recall the precise estimate for
the validity interval for the antimaximum principle ([11]); then we give some related results

used in the study of systems.

In Section 3 we first state our main results for a n x n system (eventually non-cooperative)

and then we prove them.

Finally, in Section 4, we compare our results with the ones of [141]. Our method, which uses
the matricial calculus and in particular Jordan decomposition, allows us to have a more

general point of view, even for a 2 x 2 system.

2 Results for one equation:

In [14], the authors consider a non-cooperative 2 x 2 system with constant coefficients.
Before studying the system they consider one equation and establish a precise estimate of

the validity interval for the antimaximum principle. We recall this result that we use later.

2.1 A precise Antimaximum for the equation [14]

Let © be a smooth bounded domain in JRY. Consider the following Dirichlet boundary value

problem
— Az =0z+ hinQ, z=0o0n0Q, (2.1)

where o is a real parameter.

The associated eigenvalue problem is
—A¢p = Ao inQ, ¢=0o0nodN. (2.2)

As usual, denote by 0 < A\; < Ay < ... the eigenvalues of the Dirichlet Laplacian defined on

2 and by ¢ a set of orthonormal associated eigenfunctions, with ¢; > 0.

Hypothesis 1 Assume he€ LY, g > N if N>2and q=2 if N = 1.
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Hypothesis 2 Assume h' := [ h¢y > 0.

Writing

h=h'¢, +ht (2.3)
where [, h*¢; = 0 one has:
Lemma 2.1 [11] We assume \y <0 <A< Xy and h € L9, g > N > 2. We suppose that

there exists a constant Cy depending only on €, q, and A such that z satisfying (2.1) is such
that
1zl 2 < Cul[A| 2. (2.4)

Then there exist constants Cy and C3, depending only on ), q and A such that

[2ller < Col[hf| e and [[z][za < Csf[hl|La- (2.5)

Remark 2.1 The same result holds for A < ¢ < A\; where A is any given constant < Aq,

with the same proof.

Remark 2.2 Inequality (2.4) cannot hold, for all \; < ¢ < A, unless h is orthogonal to ¢;.

Theorem 1 [I1]: Assume Hypotheses 1 and 2; fir A such that \y < 0 < A < X\y. There
exists a constant K depending only on 2, A and q such that, for Ay < o < Ay + d(h) with

Kh!
5(hy = (2.6)
17+ L
the solution z to (2.1) satisfies the antimaximum principle, that is
2<0in; 0z/0v > 0 on 0S, (2.7)
where 0/0v denotes the outward normal derivative.
2.2 Other remarks for one equation
Consider again Equation (2.1). For o # Ay, z solution to (2.1) is
hl
z= 2" +2F = b1 + 2%, (2.8)
)\1 — 0
with 21 satisfying
— Azt =0z 4+ At inQ; 2t =00n00. (2.9)

In the next section, our proofs will use the following result.
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Lemma 2.2 We assume Hypothesis 1 and o < \;. Then z*+ (and its first derivatives) is

bounded: There exits a positive constant Cy, independent of o such that
Iz*[ler < Collhl|za- (2.10)

Moreover, if o < A < Ay, where A is some given constant < \{, z is bounded and there exits

a positive constant C{, independent of o such that

Iller < Collhll Lo (2.11)

Proof: This is a simple consequence of the variational characterization of As:

)\2/ 2 < /|v,zL|2 _ a/ 2L + /zth g)\l/ 2L + /thL.
Q Q Q Q Q Q

By Cauchy-Schwarz we deduce

1

il
z 2 <

At 2. (2.12)

This does not depend on o < A;.

Then one can deduce (2.10), that is z* (and its derivatives) is bounded. This can be found
e.g. in [0] (for ¢ < Ay and A\; — o small enough) or it can be derived exactly as in [14] (where

the case o > A\; and o — A\; small enough is considered).
Finally we write 2 = 2;¢; + 2+ and deduce (2.11).

Remark 2.3 Note that in (2.8), since h' > 0, Af‘—ig — 400 as o = A, 0 < A1

3 Results for a n X n system:

We consider now a n xn (eventually non-cooperative) system defined on €2 a smooth bounded
domain in RY:

—AU = AU + pU + F inQ, U = 0 on 012, (9)

where F' is a column vector with components f;, 1 < i < n. Matrix A is not necessarily
cooperative, that means that its terms outside the diagonal are not necessarily positive. First
we introduce some notations concerning matrices. Then, with these notations we can state

our results and prove them.
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3.1 The matrix of the system and and the eigenvalues

Hypothesis 3 A is a n x n matrix which has constant coefficients and has only real
eigenvalues. Moreover, the largest one which is denoted by & s positive and algebrically and

geometrically simple. The associated eigenvectors Xy has only non zero components.

Of course some of the other eigenvalues can be equal. Therefore we write them in decreasing

order
The eigenvalues of A = (a;j)1<ij<n, denoted , &, &o,. .., &, , are the roots of the associated
characteristic polynomial

pal€) = det(€1, — A) =[] (€ - &), (3.14)

where [,, is the n x n identity matrix.

Remark 3.1 By above, £ > & = pa(§) > 0.

Denote by X; ... X, the eigenvectors associated respectively to eigenvalue &, ..., &,.

Jordan decomposition Matrix A can be expressed as A = PJP~!, where P = (p;;)
is the change of basis matrix of A and J is the Jordan canonical form (lower triangular

matrix) associated with A. The diagonal entries of J are the ordered eigenvalues of A and
pa(§) = ps(§).

Notation : In the following, set
U=PU & U=P'U F=PF & F=P'F (3.15)
Here U and F are column vectors with components u; and ﬁ

Eigenvalues of the system: p is an eigenvalue of the system if there exists a non zero
solution U to
—AU = AU 4+ pU inQ, U = 0 on 09). (So)

We also say that p is a “principal eigenvalue” of System (S) if it is an eigenvalue with com-
ponents of the associated eigenvector which do not change sign. (Note that the components

do not change sign but are not necessarily positive as claimed in [14]).

Then ¢; X}, is an eigenvector associated to eigenvalue

fjk = Aj = Sk (3.16)
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3.2 Results for | — p11| — 0

We study here the sign of the component of U as pp — 11 = A — &

For this purpose we use the methods in [15] or [!] combined with [11]. Note that by (3.13),
11 </fllk:)\1_£k7 forall 2 <k <n.

Hypothesis 4  F' is with components f; € L9, ¢q > N >2, ¢q=2f N=1,1<1i < ny
moreover we assume that the first component fl of F =P 'F is>0, #0.

Theorem 2  Assume Hypothesis 3 and 4. Assume also p < p11 . Then, there exists 6 > 0

independant of p, such that for i — 0 < p < pi1, the components u; of the solution U have

ou;
ov

the sign of p;1 and the outside normal derivatives have the sign of —p;1.

Theorem 3  Assume Hypothesis 3 and 4 are satisfied; then, there exists 6 > 0 independant
of w such that for p11 < p < pyy + 0 the components u; of the solution U have the sign of

—pi1 and their outgoing normal deriwvatives have opposite sign.

Remark 3.2 The results of Theorems 2 and 3 are still valid if we assume only fQ fl ¢1 >0
instead of f; > 0 # 0.

3.3 Proofs

We start with the proof of Theorem 2 where p < p111; assume Hypotheses 3 and 4.

3.3.1 Step 1: An equivalent system
We follow [15] or [1]. As above set U = PU and F = PF.
Starting from
—AU = AU + pU + F,
multiplying by P!, we obtain
—AU = JU 4 pU + F.
Note that everywhere we have the homogeneous Dirichlet boundary conditions, but we do
not write them for simplicity.

The Jordan matrix J has p Jordan blocks J; (1 < i < p < n) which are k; x k; matrices of

the form

& 0 - 0
1 & 0

Ji = E :
0 -1 & 0

0o - 1 &
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By Hypothesis 3, the first block is 1 x 1 : J; = (&;). Hence we obtain the first equation

— AGy = &4 + piy + fi (3.17)

Since f; > 0, Z 0, & +p < A and by Hypothesis 4, fi € L%, we have the maximum principle

and

~ Uq
>0 Q. — < 0. 3.18
0 on 8y|aQ ( )

Then we consider the second Jordan blocks J, which is a ko X ko matrix with first line
&, 0,0,...
The first equation of this second block is
— iy = &yl + il + fo.

Since pu < p11 = A\ —& < A1 —& < A\ =&, k> 2. Hence, by Lemma 2.2, us stays bounded
as (&t — f111. and this holds for all the ug, £ > 1. By induction uy, is bounded for all k.

3.3.2 Step 2: End of the proof of Theorem 2

Now we go back to the functions u;: U = PU = (u;) implies that for each u;, 1 <i <n, we

have

u; = pinur + ZpijuNj- (3.19)
=2
The last term in (3.19) stays bounded according to Lemma 2.2; indeed 3 7, pi;u; is bounded

by a constant which does not depend on pu.

By Remark 2.3, u; — +00 as pp — Ay — &;. Hence, each u; has the same sign than p;; (the

first coefficient of the ¢ — th line in matrix P which is also the i-th coefficient of the first

811,7;
ov

behaves as p;; %?j which

eigenvector X7) for \; — & — p > 0 small enough. Analogously,
has the sign of —p;;.

It is noticeable that only u; plays a role!! m

3.4 Proof of Theorem 3 (u > p11)

Now pi11 < p < gy + € where € <min{& — &, 2 — A\ } and f; € LY, g > N. We proceed as

above but deduce immediately that for g — 17 small enough (p—pq1 < 07 := (5(}1) < ﬁ)
1 q
defined in [14]|, Theorem 1), u; < 0 by the antimaximum principle. From now on choose

p— py < 0, with § < min{e,d}. (3.20)
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For the other equations, by Lemma 2.1, u; > 0 is bounded as above.

We consider now U. We notice that F' = PF which can also be written fi=> 0 pikfk
implies f* = >7)_ pifir. With the same argument as above, the components wu; of the
solution U have the sign of —p;; for u — py; sufficiently small (4 — pq; < 0). The normal

derivatives of the wu; are of opposite sign. ]

4 Annex: The 2 X 2 non-cooperative system

We apply now our results to the 2 x 2 system, considered in [I1]. Consider the 2 x 2

non-cooperative system depending on a real parameter p
—AU = AU 4+ pU + F inQ, U =0 on 012, (9)

which can also be written as

—Au = au + bv + pu + f inQ, (S1)
—Av = cu + dv + pv + g in Q, (S2)
u=wv=0o0n . (S3)

Hypothesis 5 Assume b > 0,c <0, and D := (a — d)* + 4bc > 0.

Here System (S) has (at least) two principal eigenvalues p; and u;” where
Hy = A1 —51 < ,U/;r =\ —gg, (421)

where & and &. are the eigenvalues of Matrix A and we choose & > &.

The main theorems in [11] are:

Theorem 4 ([11]) Assume Hypothesis 5, uy < p < pi and d < a. Assume also
f20,920,f,9#0,f,gc L% q¢>NifN=>2;q=2if N=1L

Then there exists 6 > 0, independent of p, such that p < py + 9 implies

u<0,v>01in; é)—u>0,@<00n({99.
ov ov

Theorem 5 ([11]) Assume Hypothesis 5, uy < p < py and a < d. Assume also
f<0,920,f,g#0,f,gel! ¢>NifN>2;q=2if N=1

Then there exists 6 > 0, independent of u, such that i p < py + 90 implies

u<0,v<0inf @>0,@>00n89.
ov ov
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Theorem 6 ([11]) Assume Hypothesis 5 and a < d. Assume also that the parameter
satisfies: p < py , and

[20,9>0,fg#0, fg€L”
Assume also t*g — f >0, t*g — f # 0 with

t*_d—a—l—\/ﬁ
N —2¢

Then
ou ov

uw>0,v>0inQ; — <0, — < 0on 0.
v ov

VN b
c d)’
with eigenvalues & = M <& = %ﬁ where D = (a—d)?*+4bc > 0. The eigenvectors

are
& —a &1—a & —a

Note that the characteristic polynomial is P(s) = (a — s)(d — s) — be. Since P(a) = P(d) =
—bc > 0, a and d are outside [, & ].

The matrix A is

For d > a both p;; > 0 and for d < a p1; > 0, pa; < 0.

_1 1 Cb—gg b
r b(& — 52)<§1—a —b>'
" 1
L)

In Theorem 2 of [11| d < a, f,g > 0 so that fl > (0 and u has the sign of —p;; = -0 < 0; v
has the sign of —py; = a — & > 0.

(e —&)f + byl (4.22)

In Theorem 3 of [14] d > a, f < 0 and g > 0 implies f; > 0. So that u has the sign of
—p11 = —b < 0; v has the sign of —pjp =a — & < 0.

Finally the hypothesis f; > 0 is sufficient for having the sign of the solutions and the
maximum principle holds (all u; > 0) iff p; > 0.
Our results can conclude for other cases; e.g, as in Theorem 2, d < a, f > 0, but now g < 0

with f; = s 52)[( — &) f +bg] > 0.

Analogously, in Theorem 4, f,g > 0 and fl > 0 implies for having u,v > 0 that necessarily
& —a > 0 so that a < d. But again we can conclude for the sign in other cases (e.g. a > d)
if only f; > 0, ( which is precisely the added condition in Theorem 4). O
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HARRY POPPE

Reference Stability for ODE

1 Introduction

We consider initial value problems for autonomous ODE, and we will study stability for these
problems. The dignified definition of Ljapunow stability has two shortcomings. To overcome
these difficulties we define the notion of reference stability. This notion has especially the
advantage that we can characterize it topologically. We illustrate the procedere by simple

examples.

2 Some simple but instructive examples

We consider the equations & = £x™, n > 2, x(ty) = xo. But these equations are autonomous

and hence we let to = 0.

These equations are of product type:
&= g(t)h(z) = 2" (h(z) = +am).

Since h(zx) = 0 <= 42" = 0 <= 2z = 0: z = 0 is an equilibrium point of & = +z",

z(0) = 0. We will show that the zero solutions of our equations always are unique.

Proposition 2.1 The zero solution of our equations always are unique.

Proof: We have h(z) = £2", it is enough to consider h(z) = z™.

bl ! 1 L 1 1
/—ds:/ s"ds:( 51”> = (1— n_l):>
, h(s) ” 1—n y l—n Yy

1 1
lim 1-— = 400,
y—0\1—n yn—1

since n > 2. Thus by a well-known criterion (see [1]) z = 0 is a unique solution.

Now
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(a) =" for x # 0, xo # 0 we find:

o — T = (1 —n)t
=g+ (1)t (2.1)

e =gy 4 (n— 1)t (2.2)
Example 2.2 (a) n=3: & =12% 2(0) = 2 :
1 — 25t
e =t =gt -2 = 2 = —2% = |z| = L. We know that
x3 x3 1— 222t

1
xg 7# 0 holds and hence z is defined on (—oo, F)
Lo

We have two cases:

1. z¢p > 0, then by continuity and since £ = z is autonomous: V¢ € (—oo, F) :
Lo

z(t) > 0, thus |z| =2 = S
V1 — 223t

1
2. xo < 0, by the same argument: V¢ € <—oo, F) :
Ty

—Zo Zo

=— =z =z(l) =

|£L’(t)‘ = —SU(t) - m ﬁ?

and here zyp < 0 = z(t) < 0Vt.

Remarks 2.3  (a) Result concerning stability: 0 : V¢ € [0, +00) : 0(t) = 0 is defined on

[0, +00), but no other solution is defined on this interval.

(b) The sets of possible initial values of this equation are:

(0,400), (—00,0)

1

(c) 97 xo # 0 is a pole:

Zo +OO, To > 0

[ —
(5) VET 26t =00, @0 <0

2
210
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Example 2.4 (b)) n=3, 3 = —23, 2(0) = zy, 79 # 0. By (2.2) holds:

="+ (n—-1tn=3= 1% =1, +2t,
1+ 25t
xiQ = M |x0|

— |X =,
zj g V1 + 222

and Vg, 9 # 0: Vt € [0,4+00) : 1 + 223t > 0.

As above we get again

Zo
20 >0—= 1= —rrv—o—=>0

V1 +2xht

To
V1 +2xht

Remarks 2.5 1. Result concerning stability: = = 0 is defined on [0, +00) and all other

Ty < 0=z = <0

solutions too.

2. The set of all possible initial values of this equation is (—o0,0) U (0, +00).

More precisely we have

1 1
14225t > 0= —— <t, and — — <0.
2x§ 2x§

Remark 2.6 More example of ODE we consider to illustrate definitions or to apply the

results of propositions.

3 Ljapunow — Stability
We consider an autonomous system of ordinary differential equations:
= f(x), f:G—>R", (3.1)

G C R™is open and f is continuous. Let ¢ty € R, 0 < ¢y and let = be a solution, z(ty) = x¢ €
R™ defined (at least) on [tg, +00).

We want to formulate that x is Ljapunow-stable in a precise way. But this is only possible,

if we use the following definition:

Definition 3.1 =z is called Ljapunow-stable (L-stable) iff Ve > 0 36 > 0, 6 = d(e),
0 < § <e:Vy, where y solves the initial value problem § = f(y), y(to) = yo € G (on some
intervall of R):

llyo — xo|| < 0 = (y is defined on [ty, +00) and YVt >ty : ||y(t) — z(t)] < e).



Reference Stability for ODE 17

Remarks 3.2 1. The very definition of Ljapunow stability is in some sense unclear:

several authors use definition 3.1, see for instance [1], [3], [1].

Other do not mention at all the domain of the (reference) solutions y in definition 3.1,

see for instance 5], [6], [7].
2. Definition 3.1 has two serious shortcomings.
First shortcoming.
The two statements of the conclusion of the implication:
y is defined on [ty, +00), Vit >ty : ||y(t) — z(t)|] < € are not independent:

by the Ljapunow definition of stability we find a family of implications: Ve > 0 3 = d(¢) :
ly(to) — x(to)|| < d = (y exists on [ty, +00) and Vit >ty : ||y(t) — x(t)|| < ). This family
depends on ¢ (and the associated §(¢)). Now we fix e = € > 0 and we find 6 = §(¢); indeed
we now have one single implication: ||y(to) —x(to)|| < 6(€) = (y is defined on [ty, +00) and
Vit >ty ||y(t) — z(t)]| <€), in short: A= (BAC).

But this implications is equivalent to

“(BANC)= —-A, or

~BV-C = —-A.
Now, if =B is true, then there exists t; € (¢y, +00) such that y is not defined in ¢ : y(;)
does not exist.
If =C' is false, that is C' is true, we have:

Vi =to: y(t) -zl <E,

which means ||y(t) — x(¢)|| is a (positive) real number and the assertion is: each of these
numbers is smaller than €.

But here we find an error:
ly(t1) — z(t1)]
is no number, but a senseless symbol.

This senseless symbol also can occur if =C' is true. Then we find t5 € (0, 400):

ly(t2) — x(t2)|| > E.

and either ||y(t2) — z(t2)|| € R or ||y(ta) — z(t2)] is a senseless symbol.

Second shortcoming.
If we have found a set of (explizite) solutions y, then we can often by the Ljapunow definition
of stability easily, without starting to prove that x is stable or unstable, decide that the

solution x is not stable. This we can conclude from the following proposition and its corollary.
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Proposition 3.3 We consider the initial value problem (3.1) and let x : [t, +00) — R"
be a solution. If y is another solution y : (a,b) — R", tg € (a,b), we denote by D(y) the
domain (a,b) of y. Now we assume that there ezists a sequence (Yn)nen of solutions s. th.
Yn(to) = z(to) and Vn € N: [tg, +00) € D(y,). Then x is not stable.

Proof: We assume that x is stable: foreg =135 € R, 0<d < 1:Vy: |ly(ty) — z(to)]| <
d = y is defined on [ty, +00) and Vit >ty : ||y(t) — z(t)|| < 1; Iny € Ny, (o) € Us(z(ty))
and hence ||y, (to) — x(to)|| < . Thus y,, is defined on [ty, +00), yielding a constradiction
since [tg, +00) € D(yn,). Hence x is not stable.

Corollary 3.4 Let Sy be the set of all solutions of § = f(y), y(to) = yo € G which are
not defined entirely on (to, +00), hence x ¢ Sy. Let Sy be infinite and let x(to) be a cluster

point of {y(to)|y € So}-

Then x is not stable.
Example 3.5 We come back to example 2.2:
=2 2(0) = z9 € R;

So consists of all nontrivial solutions of the initial value problem and hence {y(0)|y € S} =
(—00,0) U (0,400). Thus we can apply the corollary and since z(0) = 0 is a cluster point of
{y(0)]y € Sp} we find that x is unstable.

But since we have no solution which we can compare with the zero function x on [0, 4+00),

the assertion “z is unstable” makes no sence.

4 The Reference-Stability

There exists a consequent and simple way out from the difficulties of the Ljapunow stability
definition: we consider only the set of all solutions of the initial value problem which are
defined (at least) on [ty, +00).

Definition 4.1 Let x be defined on [ty, +00) and x is solution of the initial value problem
(3.1)

R =R(x) = {yly : [to, +00) = R", y = f(y), y(to) =y € G and y # x};
R(z) is called the set of reference solutions of the solution x. Of course, instead of y :

[to, +00) = R™ we can use: [tg, +00) C D(y).

Example 4.2 Let be § = f(y) =y, to = 0, x : Vt > 0 : x(t) = 0, the zero solution:
2(0) = 0. Then R(z) = R(0) = {y = yoe'|lyo € R\{0}} is the set of reference solutions of

z = 0.
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Example 4.3 We consider example 2.4: © = —z°, 2(0) = zy € R; then for the zero solution
=0, 2(0) =0, we find on

[0,400) : R(z) = R(0) = {x = L‘xg € R\{O}} :

V1 + 2a3t
Definition 4.4 We consider the initial value problem (3.1) and the solution
x: [tg, +00) — R™ is to be investigated on stability; let R(x) be the set of reference solutions
of x; we assume: R(x) # 0. x is called reference stable , R-stable, iff Ve > 030 = d(¢e),
0<d<e:Vye€R(x):

ly(to) — x(to)|| <6 =Vt >t : [Jy(t) —z(t)]| <e.

Remarks 4.5 1. We emphasize insistently what was assumed in the definition: within
reference stability we always assume R(z) # (). If R(z) = () holds, we simply say that
we have no stability problem. As an example for this situation we look at example 2.2:
i = 2%, 2(0) = 0: here we have R(z) = R(0) = 0.

2. As usual we still define: z is called to be asymptotically reference stable iff x is reference
stable and 30 > 0:Vy € R(z)

ly(to) = 2(to)ll < 6 = lim [ly(t) —z(t)]| =0

5 Topological characterization of the notion of reference stability

If 2y is an equilibrium point of (3.1), then in [3] is defined: z; is called stable.iff for each
neighborhood V' = V() there exists a neighborhood U = U(zy), U C V and U C G such
that: for each solution y of (3.1), y(to) = vo : yo € U = y is defined on [ty, +00) and
y(lto, +50)) C V.

In [8] the author considers only unique solutions and thus he can assign to each initial
value y(to) the solution y, y(tg) — y and he assums that all y belong to the Banachspace
Cy([to, +00), R™) of all bounded continuous functions on [tg, +00) equipped with the sup-
norm. Now he remarks that stability of a solution z is equivalent to the continuity of the
map y(tp) — y at the point x(ty). (See remark on page 137 of [¢]). But the author has no
precise domain of his map and the bounded continuous functions are not enough, since one

wants for instance to consider instability too.

Best suited for topological characterization of stability is the notion of reference stability

(see section 4).

Before we study such characterizations we will provide some facts from elementary general

topology.
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For topological spaces the notion of a neighborhood is important. Often a topology on a
set is defined by open sets. But we also can start with neighborhoods. For a proof of the

following propositions see [2], [9].

Proposition 5.1 Let X be a set and for each v € X there exists a nonempty family
B(x) of such subsets of X s.th. B = (B(x))sex has the properties:

(a) Be B(x) =z €B
(b) By, By € B(x)3dBs € B(z) : B3 C BN By
() VV eB(x)3BeB(x)Vye BAIW e B(y):WCV
G C X 1is called open iff
VrxeG3IBeB(x):BCG.

Then 7 = {G C X|G open} is a topology on X and 7 is uniquely determined by the system
B = (B())zex.
Moreover Vz € X : B(z) is a base of the T-neighborhoodsystem U(x).

Hence we say that the base system B generates the topology 7.

Corollary 5.2 Let be 1y, 7 topologies on X which are generated by the base neighborhood
systems (B'(2))zex, (B*(¥))sex

If holds: Vo € XV B, € B'(x)3 B, € B*(z) : B, C By then we find: 7 C 7.

Proof: VG € 11, hence G is open w.r.t. 7y and we want to show that G is m-open too:
Vz€G:G emn = 3B, € B (2) : z € By C G; by assumption there exists By € B*(z)
s.th. By(2) C By(z2) = z € By C G and hence G is open w.r.t, 7 : G € Ty.

Now we are looking for suitable topologies on C([tg, +00),R"); [tg, +00) (with Euclid-
ian topology) is a locally compact Hausdorff space. Thus the compact-open topology for
C([to, +00), R*) has many open sets. But for applications to characterize stability we need

“uniform topologies”.

Remark 5.3 Algebraic operations in C([ty, +00), R™) and in C([ty, +00),R) we can define

pointwise; we consider these spaces as vector spaces over R.

Definition 5.4 Let M C C([to, +o0),R), M # 0 and all functions from M are positive:
V(o t) € M X [tg, +00) : a(t) > 0; now for f € C([ty, +00), R") we define a-neighborhoods
of [+ Ba(f) = {g € C([to, +00), RV € [to, +-00) : [|g(t) = F)]| < (t)}-

Which properties M must have such that B = (Ba(f))(a,f)eMxC(fto,+o0),r7) 15 @ base neigh-

borhood system (see proposition 5.1).
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Proposition 5.5 We assume that holds:
(1) ae M = LtaeM

(2) o, f € M = min{a, f} € M.

Then B is a base neighborhood system.

Proof: At first we remark that %oz, min{a, } are positive continuous functions. We will

show that B fulfills the base neighborhood systems axioms (a), (b), (c) of proposition 5.1.

(a) Y(a, f): f € Ba(f), since Vt € [tg, +00) :
1) = FO)] =0 < alt)

(b) ¥ f € C(fto, +00), R")
Voag,ay € M :let f = min{ay, as}, then Bs(f) C B, (f) N Ba,(f), since

Vit >ty : min{og(t), az(t)} < ai(t), min{ay (t), as(t)} < as(t)

(¢) ¥V Ba(f) € (Bs(f))sem : « € M — 30 € M —> Bs(f) € (Bs(/f))pens; Vg € Bg(f) :
we will show that Ba(g) C Ba(f) holds: V (h,t) € Ba(g) x [to, +00):

1A(t) = f(D)I] = (1A () = g(t) + g(t) — FOI < [1h(E) — gD + [lg(t) = f(B)]]

hence h € B,(f).

Remark 5.6 If M fulfills (1), (2) then the a-base neighborhood system generates an unique
topology 7 = 7y for C([to, +00), R%).

Lemma 5.7 M, M, C C([0,+0),R), My, My generate the topologies 11, T respectively.
Then holds:
My CMy=—1Cm

Proof: We show that the identity map id: (C([t,+00),R"), 72) — (C([to, +00),R*), 1) is
continuous: let G € 7 be open = id™ ' (G) = G; G € 7, = Vh € G 3ac M, : B(h) =
{9 € C([to, +00),R™")|Vt > to : ||g(t) — h(t)]] < a(t)} C G. But @ € M} = o € M2 and
hence G € .

Definition 5.8 Now we consider evamples of the generating set M C C([tg, +00), R)

and the corresponding topologies:
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1. By e we mean now the constant function:
gVt € [tg,+00) : e(t) = ¢, M. = {e|le > 0}

Of course:

1 .
e>0= 55 > 0; 1,62 € M, => min{eq, e} € M,

As is well known, B = (B:(f))(e,f)eM.xC(to,+00),&7) generates the uniform topology T,
on C([ty, +00), R")

2. We consider a subset of M, :¥YNneN, n>1:¢, = % the constant functions now have

the value %; M(l) = {%}n eNn> 1}. M(l)genemtes a topology:

1 11 1
_GM(I):§E:%€M(

n n

3=

" mm{%%} e M. (5.1)

3. M., the symbol ¢, means: converging to zero; M. = {a € M|lim; o a(t) = 0}. We
denote the topology generated by M. on C([to, +00),R"™) by T,.: positive — converging
topology. Clearly:

1
a€ M, — 3¢ € Me,aq,00 € M, =Vt >t5:0 <min{oy(t), az(t)} < ay(t)

(and < as(t))

and thus lim min{ay(t), as(t)} = 0 showing min{ay,as} € M..

t—+o0

4. M, ={a € C([ty, +0),R)|Vt >ty : a(t) > 0}; thus a means “all”. Of course:

1 .
a € M, — 5 € M,,ay,ay € M, = min{ay,an} € M, .

The topology generated by M, we denote by 7,,, since this topology was used by Marston
Morse; 1, first was defined by E. Hewitt, it is also called Whitney — or fine topology.

As we have hoped, we can show: 7, = T(L).

n

Proposition 5.9 0On C([ty, +o0),R") holds 7, = (1)

Proof: M(l) C M. :>7—(

) C 7, by lemma 5.7. By corollary 5.2 we find 7, C T(1)-

1
n n

Corollary 5.10 (C([tg, +00),R%)7,) is a topological A,-space. Hence we can use se-

quences instead of nets or filter.

PI‘OpOSition 5.11 Moreover we have: Ty < Tpc-
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Proof: V(f,e) € C([ty, +00),R") x (0,400) : B.(f) € 74; let h = Se~", t € [to, +00); since
0<tywegetfor0<ty<t:e'<1= Se' <% <e, thus showing that By(f) C B(f)
holds and Bj,(f) € 7,.. Hence by corollary 5.2 7, C 7.

Corollary 5.12  For our topologies T, Ty, Tm holds:

Ty, S Tpc S Tm

Now we come to the main point of this section: stability as continuity.

As already remarked the basic idea of stability is nothing else then the continuity of a natural
map into the space of continuous functions. Using reference stability we can define this map

in a clear and exact way:

We consider the initial value problem (3.1). Let x be a solution which is defined on [t(, +00)

and R(z) be the set of reference solutions of x (definition 4.1).

Let R(z) = R(z) U {z} and we assume that all solution of R(z) are unique; moreover V;,
(V means “value”)= {y(to)ly € R(z)}, V;, € G C R" and for V,, we consider the Euclidian
topology of R™, which can be generated by an arbitrary compatible norm of R™. Then the
map F' is well defined:

F:V;y — O([tg, +00),R™) : Vy(to) € Vi : F(y(to)) =y

C([to, +00), R™) we provide with the uniform topology 7,.
Remark 5.13 Since of course some y € R(x) may be unbounded we use C([to, +00), R")

and not the space Cy([to, +00), R") of bounded continuous maps.

Now using the generation of 7, by base e-neighborhoods (see 5.8, 1.) and the characterization
of the continuity of a map by (base) neighbourhoods it is not hard to prove the assertion of

the following theorem:

Theorem 5.14 FEquivalent are:
(1) z is reference stable

(2) the map F : Vi, — (C([to, +00),R"™), 7,) is continuous in x(t).

Application of theorem 5.14 to concrete examples. We consider again Example 2.4: & = —a3,
to =0, z(0) = zo; on [0, 400) are defined:
the zero solution 0 and the set of reference solutions

Zo

R(0) = {a: = —T%?)t‘xo € R\{O}} , hence R(0) = {x = m‘% € R} ;
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for o = 0 we obtain the zero function:
0

ﬁz()7 Vie=Vo = {x(O):x0|x0€R(O)} =R.

Of course the solutions of R(0) are unique solutions and by proposition 2.1 = = 0 is unique.

Thus all elements of R(0) are unique solutions and we can apply theorem 5.14:

Now we show the continuity of the map F: we can use convergence too and especially we

can use sequences here:

let () be a sequence from Vj s.th. (zf) — 0(0) = 0. We will show:

F(zg) = (2(¢;0,20)), — F(0(0)) = 0 uniformly on [0, +00) :

1
VE>0, 20#£0, 1<1+ 20t = 1< /1+ 20 =—=0< —==<1
V1 +2xdt
| o]

—0< < |zl -

V1 +2xdt

Hence |F(zf) — 0| = |F(z§)| < |zg], but 2§ — 0 = |23| — 0 = F(zf) — 0 uniformly on
[0, 4+00), since |z{| does not depend on t.

Thus from theorem 5.14 follows that the zero solution 0 is reference stable.

Remarks 5.15 1. Using the continuity — arguments we were able to avoid any epsilon-

tics.

2. Let 0 =1:Vag€R, 29 #0, |xog— 0(0)| = |zo] < 1 we get

lim |z(t)]= lim —————= =0
t——+00 t——+o00 1+ 212t

hence the zero solution 0 is even asymptotically reference stable.
Example 5.16 We consider the equation & = z?, 2(0) = .

For zy # 0 by (2.1) we find for the solutions:
o =i+ (1 —n)t

and )
_ — L0
n=2=a2tl=g!'—t= 2= = ;T 0:
0 gt —t 1 — ot 07

Since we look for solutions which are defined at least on [0, +00), we find here:

:ci ¢ (0,400) <= 29 < 0 <= [0,+00) C (xi,jtoo) < [0, +00) C D(x(t;0,z0))
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and equivalently:

xi € (0, +00) <= zy > 0 <= [0,400) € D(x(t;0,x0)) .

Now we study the stability of the zero solution z = 0 on [0, +00).

{x0][0,400) € D(x(t;0,20)) = {wolzo > 0} = (0,+00)}. But 0 = 0(0) is clusterpoint of
(0, 4+00) yielding by corollary 3.4 that x = 0 is unstable in the sense of Ljapunow.

Since we know that only for 2(0) = 27 < 0 holds: [0,400) C D(z(;0,xz¢)) we get as set of
all reference solution of z = 0:

R(0) = {x |z < o} = R(0) = {x =T gy < 0} :

B 1-— 33'0?5 1-— l’ot
Vo = {x(0)|x € ziz<0)} = (—0,0].
We show that x = 0 is reference stable: By the same arguments as above we find too: all
elements of R(0) are unique solutions.

Now:

o< 0= —x9 > 0= —txg >0, since t > 0;

<1— |20l

—trg>0=1—tzyg > 1=
—.Tot 1—I0t

< |zol;

now let (zf}) be a sequence from Vp\{0}, 2§ = (z(¢;0,20))n;

n

Lo

n

1 — gt

(xp) = 0= |z({| = 0= F(ap) = 0=0(0) = F(0) : (F(z())n

< |zgl;

P(ag) — 0(0)] = | F(af)| = ]

converges uniformly on [0, +00) to F(0), yielding that F' is continuous in 0(0) = 0. Hence
by theorem 5.14 0 = x = 0 is reference stable.

Vg <0:|zg <1= lim |z(¢;0,20)] = lim 20| =
t——+o0 t—+oo 1 — xot

meaning that 0 is asymptotically reference stable.
We need a simple lemma.
Lemma 5.17 Let be (h,) a sequence from C([0,+00),R") and let h € ([0, +00), R™) be

bounded: ¥Vt € [0,400) ||h(t)]] < a, a € R, a > 0. If (h,) converges uniformly to h on

[0, +00) then almost all members of the sequence (hy,) are bounded too.
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Proof: h, - h = 3n; € N:V(t,n) € [0,+00) x {n € Njn > n1}: ||h.(t) — ()| < 1;
now

1A (O] = IR < [[ha(t) = M) = ([~ (O] < [[hnlt) = RO+ [[RE)] <1+ a,
hence h,, is bounded Vn > n;.

We will apply this lemma and consider example 4.2: & = z, 2(0) = x¢; * = 0 on [0, +00) is
solution: 0(0) = 0.

R(0) = {zpet|zy € R\{0}} = R(0) = {xpe!|zy € R}, Vp = {z(0) = zo|z € R(0)}.

z = 0 is not reference stable.

Proof: We consider the sequence (zf)) = (%) from Vj; % — 0 but all F (%) =z (t; 0, %) =

%et are unbounded and hence by the lemma 5.17 F (%) does not converges uniformly to 0.
Thus by theorem 5.14 = 0 is not reference stable.

We still consider the positive — converging topology 7p..

Proposition 5.18 Under the assumptions of theorem 5.14 holds:

If the solution x is T,.-stable then x is asymptotically reference stable.

Proof: We consider the map
F:V,y = C([to, +00),R"), x(to) € Viy = F(x(ty) =z € C([tg, +00),R")
and z is Tp.-stable means that
F Vi, = (C([to, +00),R™), Tpe)

is continuous in x(ty); 5.11 shows that 7, C 7,., yielding that F : Vi, — (C([to, +00),R"), 7,)
is continuous in z(ty) too. Hence by theorem 5.14 x is R-stable.

Let v € M.: Vt € [tg, +00): at) > 0 and limy_, () = 0. By the 7,.-continuity of F' in x(t,)
we find 0 > 0, 0 = 0(a) : Vy(to) € Us(x(to)) NViy = Fy(ty)) =y € Un(x(to)) = Vit > 1p:
ly(t) =z < a(t), at) = 0= [ly(t) = =()[| =0
for t — 400, showing that z is asymptotically R-stable, since we finally have: Vy € R(x):

ly(to) = z(to)ll < 0 = [ly(t) —z(@)|| = 0 for t = +o00.

Remark 5.19 If we want to define the basics of reference stability by means of topologies

for the function space C([0,400), R™), then we can proceed:
1. reference stability by the uniform topology 7,

2. asymptotic reference stability by 7.
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ZOLTAN BOROS, ARPAD SzAz

A weak Schwarz inequality for semi-inner products on
groupoids”

ABSTRACT. By introducing appropriate notions of semi-inner products and their induced
generalized seminorms on groupoids, we shall prove a weak form of the famous Schwarz

inequality.

In case of groups, this will be sufficient to prove the subadditivity of the induced generalized
seminorms. Thus, some of the results of the theory of inner product spaces can be extended

to inner product groups.

However, in the near future, we shall only be interested in the corresponding extensions of
some fundamental theorems of Gy. Maksa, P. Volkmann, A. Gilanyi, J. Rdtz and W. Fechner

on additive and quadratic functions.

KEY WORDS AND PHRASES. Groupoids, additive functions, semi-inner products,

generalized seminorms, Schwarz inequality, triangle inequality.

1 Introduction

By introducing appropriate notions of semi-inner products and their induced generalized

seminorms on groupoids, we shall prove a weak form of the famous Schwarz inequality.

More concretely, if X is an additively written groupoid and P is a function of X? to C such
that

P(z,z)>0, P(y,z)=P(z,y), Px+y z)=P(z,2)+ Py, =)
for all z, y, z € X, then by using the notation

p(x) =Pz, z)

*The work of the authors has been supported by the Hungarian Scientific Research Fund (OTKA) Grant
K-111651.
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with z € X, we shall prove that

—Py(z,y) < p@)p(y)

for all z, y € X, where P; denotes the real part, i.e., the first coordinate function of P.

If in particular X is a group, then this weak Schwarz inequality already implies that P, (z, y)
< p(z)p(y) also holds for all =, y € X. Therefore, in this important particular case, the
generalized seminorm p can be proved to be a seminorm on X in the sense it is an even,

N-homogeneous, subadditive function of X to R.

Thus, some of the results of the theory of inner product spaces can be naturally extended to
inner product groups. However, in the near future, we shall only be interested in the corres-
ponding extensions of some fundamental theorems of Maksa and Volkmann [14], Gilanyi [3],

Rétz [15] and Fechner [6] on additive and quadratic functions.

2 Additive functions of groupoids
If X is a set, then a function + of X2 to X is called an operation on X, and the ordered
pair X (+) = (X, +) is called a groupoid.

In the sequel, as is customary, we shall simply write X in place of X (+). And, for any

x, y € X, we shall write x + y in place of the value + (x, y).

Moreover, for any x € X and n € N, with n > 1, we define
le=x and nr=(n—-1)z+x.
If in particular, X is group, then for any x € X and n € N we may also naturally define
0z =0 and (—n)x =n(—x).
A function f of one groupoid X to another Y is called additive if
flety)=f(z)+ f(y)

for all x, y € X.

Moreover, the function f may be naturally called N-homogeneous if it is n—homogeneous
for all n € N in the sense that f(nz) =n f(z) for all z € X.

Additive functions were first studied only on R or R” (see Kuczma [12]). However, later they

have also been intensively investigated on arbitrary groups (see Stetkaer [21]).

Some of the results obtained in groups can be naturally extended to monoids and semigroups.

In [17] and [10], additive functions and relations were considered on groupoids too.

For instance, by induction, we can easily prove the following
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Theorem 2.1 If f is an additive function of a groupoid X to anotherY, then f is

N-homogeneous.

Proof. To check this, note that if f (nxz) = n f(z) holds for some z € X and n € N, then we

also have

fln+1)z)=f(nae+a)=f(na)+ f(x)=nf(r)+ f(x)=(n+1)f(2). O
Remark 2.2 If f is an additive function of a groupoid X, with zero, to a group Y, then f

is 0-homogeneous too.
Namely, in this case, we have
fQ0)+ f(0)=f(0+0)=f(0),
and thus f (0) = 0. Therefore,
f0z)=f(0)=0=0Ff(x)
also holds for all x € X.

Now, by using the above observations and the corresponding definitions, we can also easily

prove the following

Theorem 2.3 If f is an additive function of a group X to another Y, then f is Z—homo-

geneous.

Proof. 1f x € X, then by using Remark 2.2 we can see that
f=z)+ f(z)= f(-z+z)=[f(0)=0,
and thus f (—z) = —f (x). Now, if n € N, then by using Theorem 2.1 we can also see that
f((=n)z) = f(n(-2)) =nf(-2)=n(-f(2) = (-n) f(2).
Therefore, f is also — N-homogeneous. Thus, by Theorem 2.1, the required assertion is also
true. 0
In addition to the above theorems, sometimes we shall also need the following

Theorem 2.4 If f is an additive function of an arbitrary groupoid X to a commutative

one Y, then for any =,y € X we have
fly+z)=flz+y).

Proof. By the above assumptions, we evidently have

flyrz)=fy)+ f)=fl)+ ) =flz+y). O
Remark 2.5 In this case, in contrast to the termilogy of Stetkaer |21, p.315], we would

rather say that f is commutative.
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3 Semi-inner products on groupoids

The following definition is a straightforward generalization of that introduced in [19] and [3].

Notation 3.1 Suppose that X is a groupoid and P is a function of X2 to C such that, for

any x, y, 2 € X, we have
(a) P(z,z) =0,
(b) Py, 2) = P(z,y),
(¢) P(z+y, 2)=P(x,2)+ Py, 2).
Remark 3.2 In this case, the function P will be called a semi-inner product on X.

Moreover, if in particular X has a zero, then the semi-inner product P will be called an

inner product if

(d) P(x,z)=0 implies x =0 forall z € X.

Remark 3.3 Thus, our present definition is in accordance with that of [16], but differs
from that used by Lumer [11] and Giles [9]. (See also Dragomir |1, p. 19| for some further

developments.)

The definition and results of the above mentioned authors allowed to carry over some argu-
ments in inner product spaces to those in normed spaces. While, our ones will only allow of

a similar transition from inner product spaces to inner product groups.

Example 3.4 If a is an additive function of X to an inner product space H and

Q(x,y) = (a(z), a(y))

for all x, y € X, then @ is a semi-inner product on X. Moreover, if if in particular X is a

group, then @) is an inner product if and only if a is injective.

Despite this, () may be a rather curious function even if X = R™ and H = R. Namely, by
Kuczma [12, p.292], there exist discontinuous, injective additive functions of R™ to R. In

the case n = 1, by Makai [13], Kuczma [12, p.293] and Baron [1]|, we can say even more.
The most basic properties of the semi-inner product P can be listed in the next

Theorem 3.5 Foranyz,y, z€ X andn € N, we have
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Proof. By using (b) and (c), and the additivity of complex conjugation, we can see that (3)

1s true.

Thus, P is actually a biadditve function of X2 to C. Hence, by Theorem 2.1, it is clear that

(4) is also true.

Moreover, by using (c¢) and (3) and the commutativity of the addition in C, we can see that
(1) and (2) are also true. O

Remark 3.6 Note that if in particular X has a zero, then by Remark 2.2 we have P (x, 0) =
0 and P (0, y) =0, and thus also

P(Oz,y)=0P(z,y)=P(x,0y)

for all z, y € X.

Moreover, if more specially X is a group, then by Theorem 2.3 we have
P(kz,y)=kP(z,y)=P(z, ky)

forall k€ Z and z, y € X.
Remark 3.7 Note that the first and second coordinate functions P, and P of P also have

the same commutativity and bilinearity properties as P.

Furthermore, by properties (a) and (b), for any x, y € X we have
(1) P(z,2)=P(x,z) and Py(z,z)=0,
(2) Pi(y,z)=Pi(z,y) and P (y,z)=—P(z,y).

Thus, in particular P; is also a semi-inner product on X. However, because of its skew-sym-

metry, P, cannot be a semi-inner product on X whenever P, # 0.
More exactly, one can easily prove the following

Theorem 3.8 A function Q of X? to C is a semi-inner product if and only if for any
x,y € X we have

(1> Ql(x7x)20 and Q2('r7 x):();
(2> Ql(ya x):Ql(xay) and QQ(?J, x):_Q2($>y);

Remark 3.9 Note that the second part of (2) implies that of (1). Moreover, the second
parts of (2) and (3) imply that @), is additive in its second variable too.

Therefore, by the above theorem, we can also state that a function @ of X2 to C is a semi-
inner product if and only if (); is a semi-inner product and (s is a skew-symmetric and
biadditive.
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4 The induced generalized norm

Definition 4.1 For any x € X, we define
p(x)=+/P(z, z).
Example 4.2 If in particular ) is as in Example 3.4, then
q(r) =VQ(x, z) = |a()]
for all z € X.

The most immediate properties of the function p can be listed in the following
Theorem 4.3 For any x, y € X and n € N, we have
(1) p(z) 20,
(2) p(nz)=mnp(z),
B) p(z+y)=py+z),
@) p(n(z+y))=p(nz+ny),
(5) p(z+y)?=Pi(z+y )+ Pz +y, y),
6) plez+y)?=p@)+pu)*+2h( vy).
Proof. To prove (5) and (6), note that by the Definition 4.1 and Remark 3.7 we have
plx) = Pz, z)
and
px+y)=P(x+y, 2+y)=P(z+y,z)+ P (z+y,y)
=Pi(z, 2)+ Pi(y, 2) + Pi(2,y) + Pi(y, y) = p(@)* + 2Pz, y) +p(y)*

Hence, by the symmetry of P, and the commutativity of the addition in R, it is clear that

(3) is also true.
Moreover, by using (2), (6) and Theorem 3.5, we can see that
p(n(z+y)’ =n*p(z+y)?=n’p(@)*+ n’p(y)’+ 2n* P, y)
and
p(nz+ny)? = pna)+ p(ne)+ 2P(nz, ny)
=n?p(x)?+ n’p(y)*+ 2n? Pi(x, ).

Therefore, p (n (z + y))2 = p(nz + ny)? and thus by the nonnegativity of p (4) also
holds. O
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Remark 4.4 If in particular X has a zero, the by Remark 3.6 we have p (0) = 0, and thus

also
p(0z)=[0]p(x) and p(0(z+y)) =p(0z+0y)
for all z, y € X.

Moreover, if more specially X is a group, then by Remark 3.6 we have

p(kx)=[k|p(z) and p(k(z+y)) =p(kz+ky)

forall k € Z and =, y € X.

5 A weak Schwarz inequality

To prove a Schwarz type inequality for P, it is convenient to start with

Lemma 5.1 Foranyn,m € N and x, y € X, we have

2

p(naj—i—my)2 =n p(x)2+ me(y)2+ 2nm Pi(z, y).

Proof. By Theorem 4.3 and Remark 3.7, we have

p(nr+my)=pnz)*+p(my)*+ 2P(nx, my)

=n’p(x)*+ m’p(y)*> + 2nmPy(z, y). O

Now, by using this simple lemma, we can give two different proofs for the following theorem.

The first one is more novel than the second one.

Theorem 5.2 For any x, y € X, we have
—Pi(z,y) < p(@)p(y)-
Proof 1. From Lemma 5.1, we can see that
—2Pi(z,y) < (n/m)p(2)*+ (m/n)p(y)*.

for all n, m € N.

Therefore, by the definition of rational numbers, we actually have
—2Py(z,y) < rp(2)’+r " p(y)’

for all » € Q with r» > 0.
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Hence, by using that each real number is a limit of a sequence of rational numbers and the

operation in R are continuous, we can already infer that
—2Pi(z, y) < Ap(2)® + A7 p(y)?

for all A € R with A > 0.
Now, by defining
f)=Ap(@)*+ A" p(y)?
for all A\ > 0, we can state that
2P(z, y) < inf f(A)

Moreover, if p(x) # 0 and p(y) # 0, then by taking

M =py)/p(x)

we can note that Ao > 0 such that

f(Xo)=2p(z)p(y).
Therefore,

inf f(A) < 2p(z)p(y), and thus — 2P (x,y) < 2p(z)p(y).

A>0
Hence, the required inequality follows.

While, if either p (z) = 0 or p(y) = 0, then from the definition of f we can see that

)i\n%f()\):O, and thus —2P(z,y) <0.
>
Therefore, — P (x, y) < 0, and thus the required inequality trivially holds. O]

Remark 5.3 If p(z) # 0 and p(y) # 0, then by computing f'(\) for all A > 0, we can
prove that f (o) < f(A) for all A > 0 with A # Ao.

Proof 2. From Lemma 5.1, we can also see that
0 <p(a)®+ (m/n)’p(y)* + 2(m/n) Pi(z, y)

for all n, m € N.

Therefore, by using a similar argument as in Proof 1, we can state that

0<p()*+ Npy)*+ 2P i(z, y),
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and thus
0<p(@)’+ APz, y)+ A (Ap(y)* + Pi(z, )

for all A > 0.
Hence, if p (y) > 0 and Py(z, y) < 0, then by taking A = —P;(z, y)/p (y)? we can see that

0<p(2)?— Pz, 9)*/p(y)?,  andthus Pz, y)> < (p(a)p(y)”

Therefore, because of | Pi(z, y)| = —Pi(z, y), the required inequality is also true.

While, if p(y) = 0 and Pi(z, y) < 0, then by taking A = —n Pi(z, y) for some n € N we
can see that

0<p(x)®—2nP(z,y)? and thus Pz, y)* < p(x)*/2n.

Hence, by taking the limit n — oo, we can infer that Pj(z, y) = 0. Therefore, the required
inequality trivially holds.

Now, to complete the proof, it remains only to note that if P;(z, y) > 0, then the required

inequality is also trivially true. O

From Theorem 5.2, we can easily infer the following

Corollary 5.4 If in particular X is a group, then for any x, y € X, we have

| Pi(z,y)] < p(x)p(y).

Proof. By Theorem 5.2 and Remarks 3.6 and 4.4, now we also have

Pz, y) = —Pi(=z,y) <p(=x)p(y) =p(@)p(y).
Therefore, the required inequality is also true. O

Remark 5.5 Note that if z, y € X such that | P (z, y)| < p(x)p(y) holds, then we also

have | Py(z, y)| < p(x)p(y) and hence Fy(z, y) < p(z)p(y) and —PFi(z, y) < p(z)p(y)
fori=1,2.

The following example shows that if in particular X = R? and P is an R-bihomogeneous
semi-inner product on X, then even the weak Scwarz inequality —Pe(z, y) < p(z)p(y)

need not be true for all x, y € X.
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Example 5.6 For any z, y € R?, define
a(z)=ux and b(y) = (v2, —v1),

and moreover

Qi(r,y) =11 and Qa(z, y) = (a(z), b(y)).

Then, Q@ = (Q;, Q) is an R-bihogeneous semi-inner product on R? such that, under the

notation
q(z) =VQ(z, )
with # € R?, even the inequality
—Q2(z,y) < q(x)q(y)

fails to hold for all z, y € R2.

It is clear that () is a symmetric, bilinear function of (Rz) ? to R. Moreover, we can easily
see that a and b are linear functions of R? to itself. Therefore, )5 is also a bilinear function
of (R2)2 to R. Hence, it is clear that () is a bilinear function of R? to itself.

Moreover, since
Q2 (z, y) = (a(z), b(y)) = ((21, 22), (y2, —41)) = T1y2 — T2
for all x, y € R2, we can note that
Q2 (xz, ) =0 and Q2 (y,x)=—Q2(y, x)

for all z, y € R2. Hence, it is clear that ) is an R-bihogeneous semi-inner product on R2.

On the other hand, for instance, by taking
u=(0,1) and v=1(1,0),
we can see that
q@q@) = lullu] =0,  but = Qulu,v) = wv — ey = 1.
Remark 5.7 Note that, by making the plausible change
Q1 (x,y) = (z,y)
for all z, y € R?, we could get
|Q (2, y) P = Qulz, y)* + Q2(z, y)* = (wryn + 2292)” + (212 — 2231’
= (af+23) (yi + 93) = |2’ |y]* = q(2)

and thus |Q (z, y)| = q(x)q(y) for all z, y € R

2 2

q(),
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However, it is now more important to note that, by using Corollary 5.4, we can give two

different proofs for the subadditivity of p. The first one is more novel than the second one.

Theorem 5.8 If in particular X is a group, then for any x, y € X, we have

(1) plr+y) <p@)+py),

(2) [p(x)—pWw)| <plz—-y).

Proof 1. By using Theorem 4.3 and the inequality Pi(z, y) < p(z)p (y), we can see that

pz+y)’=Plr+y, 2)+ Plz+y,y) <plx+y)p)+plz+y)py).

Therefore, by the nonnegativity of p, inequality (1) is also true. ]

Proof 2. By using Theorem 4.3 and the inequality Pi(x, y) < p(x)p(y), we can also see
that

px+y)’=p@)’+pu)’+2P(z,y)
<p@)?+p)?*+2p@)py) = (p)+pW)"

Therefore, by the nonnegativity of p, inequality (1) is also true. O

Remark 5.9 Theorems 4.3 and 5.8, together with Remark 4.4, show that if in particular
X is a group, then p is already a seminorm on X in the sense it is an even, N-homogeneous,
subadditive function of X to R.

Hence, it can be easily seen that, in this case, the function d, defined by

d(z,y)=p(-z+y)

for all x, y € X, is a both left and right translation invariant semimetric on X.

In an improved and enlarged version of [3], we shall show that, analogously to seminorms
and semimetrics derived from the usual semi-inner products on vector spaces, the generalized
seminorms and semimetrics derived from semi-inner products on groupoids and groups also

have several useful additional properties.

Acknowledgement. The authors are indebted to Professors Gyula Maksa and Jens Schwaiger
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BENEDICTE ALZIARY, JACQUELINE FLECKINGER

Semi-linear cooperative elliptic systems involving
Schrodinger operators:
Groundstate positivity or negativity

ABSTRACT. We study here the behavior of the solutions to a 2 x 2 semi-linear cooperative

system involving Schrédinger operators (considered in its variational form):
LU := (=A+q(2))U = AU 4+ pU + F(z,U) in RY

U(Jﬁ)mﬁoo — 0

where ¢ is a continuous positive potential tending to +o0o at infinity; u is a real parameter
varying near the principal eigenvalue of the system; U is a column vector with components
up and uy and A is a square cooperative matrix with constant coefficient. F' is a column

vector with components f; and f; depending eventually on U.

1 Introduction

We study here the behaviour of the solutions to a 2 x 2 semi-linear cooperative system

involving Schrodinger operators (considered in its variational form):
LU := (=A+q(2))U = AU 4+ pU + F(z,U) in RY

U(33)|m|ﬁoo —0

where ¢ is a continuous positive potential tending to +oo at infinity; U is a column vector
with components u; and u, and A is a square matrix with constant coefficients; moreover
A is a cooperative matrix (which means that its coefficients outside the diagonal are non
negative). F' is a column vector with components f; and f, depending eventually on U.
The real parameter p varies near the principal eigenvalue of the system and plays a key
role. According to its position it determines not only the sign of the solutions but also their

position w.r.t. the groundstate.
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Such systems have been intensively studied (very often for p = 0) and mainly for Dirichlet
problems defined on bounded domains ([16], [17], [18], [21], [20], [25], [12], [1]). When the
whole RY is considered, as here, 2 cases are generally studied: either "Schrédinger systems"
([1], 12], [3], [7]), that is system involving Schrédinger operators, as here, or systems with
a weight tending to 0 ([23], [6]). It is also possible to consider a combination of these 2

problems with a potential ¢ and a weight ¢ :
LU := (=A 4 q(2))U = g(2)AU + pg(x)U + F(2,U) in RY

as far as 2 tends to 0 at infinity which is the condition for having some compactness and

q
therefore a discrete spectrum.

The first results on Schrodinger systems, when F' does not depend on U (linear systems)

deal with cooperative systems and with the Maximum Principle (MP) that is:
"If the data F is non negative, # 0, then, any solution U is non negative”.

As for the case of one equation, this Maximum Principle holds for a parameter u < A*,
where A* is the principal eigenvalue of the system, which means that LU — AU — A*U =0

has a non zero solution which does not change sign.

For the classical case of an equation defined on a bounded domain with zero boundary
conditions, —Au = pu + f(x), f > 0, Clément and Peletier 1] have shown that the
solution u changes sign as soon as p goes over \;, the first eigenvalue of the Dirichlet
Laplacian defined on 2. More precisely there exists a small positive ¢, depending on f, such
that for all 4 € (A1, A\ +9), u < 0. This phenomenon is known as "Anti-maximum Principle"
(AMP).

In our present case, where we have no boundary, we have improved these results giving not
only the sign of the solutions but also comparing the solutions with the groundstate (principal
eigenfunction); it is what we call "groundstate positivity" (GSP) (resp. negativity) (resp.
GSN). We extend in particular previous results established in [5] for linear systems to some
semi-linear cooperative systems. For being not excessively technical, we limit our study to
radial potentials and cooperative systems. Extensions to more general cases will appear

somewhere else.

Our paper is organized as follows:

We recall first some previous results of the linear case that we use. Then we study a semi-

linear equation. Finally we study a cooperative semi-linear system.
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2 Linear Case: one equation

We shortly recall the case of a linear equation with a parameter p varying near the principal

eigenvalue of the operator.

(B) Lui= (~A+q(z))u = pu+ f(z) m RY,
‘ |hr£ u(z) = 0.

(H,) qis a positive continuous potential tending to +o0o at infinity.

We seek v in V where
1/2
V= {u € L*(RY) s.t. ||lully = (/ |Vul|® + q(:v)uQ) < oo} :

If (H,) is satisfied, the embedding of V into L?(R") is compact (see e.g. [19], |15]). Hence

L possesses an infinity of eigenvalues tending to +oo:

O<Mi< <. <X<.., \N—>+xask — 0.

Notation (A, ¢): We set from now on A := A; the smallest one (which is positive and

Ssiumpile) an € asSsoclated eligeniuncrion os1tive and wi -norm = 1.
imple) and ¢ th iated eigenfunction, positi d with L? ol =1

It is classical (see e.g. [24]) that if f > 0,%# 0, and p < A, there exists exactly one solution
which is positive: the positivity is "improved", or in other words, the (strong) maximum
principle (MP) is satisfied:

(MP) f>0,20 = u>0.

Lately, as said above, another notion has been defined ([3], [10], [22]) the "groundstate
positivity" (GSP) (resp. "negativity" (GSN)) which means that, there exists k& > 0 such
that the solution u > k¢ (GSP) (resp. u < —k¢ (GSN)).

We also say shortly "fundamental positivity" or "negativity", or also "¢-positivity" or "neg-
ativity". Indeed these properties are more precise than MP or AMP. But for proving them,
it is necessary to have a potential growing fast enough, a potential with a super quadratic

growth.

In [10] a class P of radial potentials is defined:

[e.9]

P = {Q € C(Ry,R})/3Ry > 0,Q" > 0a.e.on [Ry, c0), Q(r) 2 < oo} : (1)

Ry
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The last inequality holds precisely if @ is growing sufficiently fast, indeed faster than 72 (the
harmonic oscillator). In this paper we consider only a radial potential ¢ € P. Note that our
proof is valid for more general potentials, in particular for perturbations of radial potential
[9] or [10] . We assume here

(H;) qisradial and is in P
Remark 1 Note that since ¢ is in P it satisfies (H,).

On f we assume
) fer®), = [ oo

For having more precise estimates on u, in particular the "groundstate negativity" (GSIN),

we have to define another set X in which f varies, the set of "groundstate bounded functions":
X ={he L*R"): |hl/¢ € L*([R")}, (2)
equipped with the norm ||h||x = esssupga(|h|/®).

Theorem 1 Assume (H,) and (H}), f € X. For p < A or A < p < Ay there exists
0 > 0 (defined below) depending on f and a positive constant C, depending on f such that
if 0 <|A—pul <9,

A=d<pu<A = uzAC ¢ >0,

— B

A<pu<A+9o = ugAC ¢ < 0.

—H
Proof of Theorem 1 Decompose now u and f in (£) on ¢ and its orthogonal:
u=ulotuts f= ok £t = [uo [uto= [ oo
we derive from Equation (E)
(L—pu'e = (A= pu'e¢ = f'o, Lut = pu™ + f. (3)

Choose pp < A or A < pp < Ay . From the first equation we derive

S
(A —p)

By use of Theorem 3.2 (c) in [9] or [10], we know that the restriction of the resolvent (L— )™

— +oo0 as (A—p) — 0.

to X is bounded from X into itself. The following lemma is a direct consequence of this

result as it is shown in the proof of the Theorem 3.4 in |9].
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Lemma 1 There exists &y small enough and there exists a constant cg (depending on &)
such that for all p with A —dg < pu < AN or A < pp < A+ dp < Ao,

—coll fllx < llutllx < coll flx-

Finally we take in account Lemma 1 and (3):

fl
A—p

lu*llx < coll f]lx and u = ¢+ u;

for |A — u| — 0, %Qﬁ — 400 when ut stays bounded. Hence, for |A — u| small enough,
1

more precisely for |A — p| < 6;(f) := m, we have

1

——— > ¢ f|x-
|A — pf

We deduce that Theorem 1 is valid for § := min{dy, d1(f)}.

3 Semi-linear Schrodinger equation

We study now the case of a semi-linear equation. We first obtain bounds for the solutions, if
they exist and then we show their existence via the method of "sub-super solutions". Finally,

with additional assumptions, we prove the uniqueness of them.

Consider the semi-linear Schrodinger equation (SLSE)
(SLSE) Lu:= (=A+q(2))u = pu+ f(z,u) in RY,

lim wu(z) = 0.
|z|—+o0
We assume that the potential ¢ satisfies (H,) and we denote as above by (A, ¢) the principal
eigenpair with ¢ > 0.
We work in L?(RY) and we consider the problem in its variational formulation. We seek u
in V for a suitable f.

We assume that f satisfies :

(Hy) f : RY x R — R is a Caratheodory function i.e. the function f(e,u) is Lebesgue
measurable in R, for every u(z) € R and the function f(z,e) is continuous in R for almost

every x € R™. Moreover, f is such that

() vu € LA(RY), f(.,u) e L*(RY),

(i1) dk>0 st. Yu eV, f(z,u) > kp(z) >0
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(i11) AK>k>0 st Yu eV, f(z,u) < Ko(x).

Later we also suppose

f(z,u)

[l

(H%) Vo e RN, u — is strictly decreasing

Remark 2 Note that, by (i) and (ii3), for any u € V, f(.,u) € X and hence the solutions,
if they exist, are in X.

Let a parameter p be given, with | — A| “small enough”. In this section we prove groundstate

positivity and negativity for the semi-linear Schrodinger equation.

Theorem 2 If (H)) and (Hy) are satisfied , then there exists 6(f) > 0 (6 = o(f) =
min{do, 81 (f) := ¢} where & and ¢y are given in Lemma 1) such that, for 0 < |p—A| <4
there exists a solution u to (SLES) such that

ullx < + 20K,

K
A — p
Also

-forA—(5<u<A,u>Afu¢>O,

-forA<u<A+5<)\2,u<A—I_(ﬂ¢<0.
Moreover if (HY}) is satisfied, the solution to (SLSE) is unique.

Remark 3 If (ii) does not hold, for u < A, there exists a solution u such that

ullx < + 200K,

K
A —p
The existence is classical (e.g. [3]) and the estimate follows from the proof below.

Proof of Theorem 2

We do the proof in 3 steps: first maximun and anti-maximum principles, secondly existence

of the solution such that u > Af“qﬁ >0 for A —§ < u < A and such that u < AL_“QS < 0, for

A <y < A+ 0, and thirdly the uniqueness.

Step 1. Maximun and anti-maximum principles

We prove the positivity or negativity of the solutions exactly as for the linear case, but,
since f depends on u we have to show that ¢ (which depends on f in the linear case) is now

uniform. This follows from hypotheses (iz) and (ii).
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Let u be a solution to Lu = pu + f(x,u). For this u, set

FHu) = / fawo(@)de, fHeu) = f(ou) — L)),

Also u!' = [u¢(z)dr and ut = u —u'¢.
Note that, always by (i7) and (ii7), 0 < k < fl(u) < K.

With this decomposition, reporting in (SLSFE), we obtain 2 equations:
(L—pu'ed=(A—pu'o=f'o, Lu"=pu"+ f"

Choose < A or A < 1 < Ay . From the first equation we derive

1
1 f
u = —— — fooas(A—pu)—0.
(A —p)
Now we proceed exactly as for the linear case. By use of Theorem 3.2 (¢) in [9] or [10], we
know that the restriction of the resolvent (L — u)~! to X is bounded from X into itself.
So by (7i7) and by Lemma 1 there exists a dy small enough and there exists a constant cg

(depending on dy) such that for all p with |A — p| < do,

Jut|lx < ol f(z )| x < coll flz,u) — fHu)d(x)]|x < 26K.

Write now
)
u =
A=p

é+ut

1 w 1
Hence ||ul|x < ﬁ + Jut]x < ﬁ + 2¢oK. For |A — u| — 0, Af—_u¢ — 400 when ut

stays bounded. For |A — p| small enough, that is here |A — u| < §1(f) ==
71> 0)

. :
5oz We get (since

1
f s K
A —p| — A =y

Finally Maximum and anti-maximum principles are valid for

0(f) := min{do, 01 (f)}-

> 2COK > C(]HfJ'H)(.

Step 2. Existence of solutions

We prove the existence of solutions by Schauder fixed point theory; for this purpose we need
some classical elements: a set K* constructed with the help of sub-super solutions and a
compact operator T acting in K*