Rostocker Mathematisches Kolloquium

Heft 69

$\left.\begin{array}{lll}\text { Hristo Kiskinov; } & \text { Weighted exponential Dichotomy of the } & 3 \\ \text { Stepan Kostadinov; } & \text { Solutions of linear impulsive differential } & \\ \text { Andrey Zahariev; } & \text { Equations in a Banach Space } & \\ \text { Slav Cholakov } & & \\ \text { Jacqueline Fleckinger; } & \text { Estimate of the validity interval for the } & 19 \\ \text { Jesús Hernández; } & \begin{array}{l}\text { Antimaximum Principle and application to a } \\ \text { François de Thélin }\end{array} & \text { non-cooperative system }\end{array}\right]$

Universität Rostock
Institut FÜr Mathematik
2014/15

Herausgeber:	Universität Rostock Mathematisch - Naturwissenschaftliche Fakultät Institut für Mathematik
Wissenschaftlicher Beirat:	Hans-Dietrich Gronau Friedrich Liese Peter Takáč Günther Wildenhain
Schriftleitung:	Raimond Strauß
Herstellung der Druckvorlage:	Susann Dittmer

Zitat-Kurztitel: Rostock. Math. Kolloq. 69 (2014/15)
ISSN 0138-3248
© Universität Rostock, Institut für Mathematik, D-18051 Rostock

BEZUGSMÖGLICHKEITEN:	Universität Rostock
	Universitätsbibliothek, Schriftentausch
	18051 Rostock
	Tel.: $+49-381-4988637$
	Fax: $+49-381-4988632$
	e-mail: maria.schumacher@uni-rostock.de
	Universität Rostock
	Institut für Mathematik
	18051 Rostock
	Tel.: $+49-381-4986551$
	Fax: $+49-381-4986553$
	e-mail: romako@uni-rostock.de
	Westarp \& Partner Digitaldruck,
DRUCK:	Hohenwarsleben

Weighted exponential Dichotomy of the Solutions of linear impulsive differential Equations in a Banach Space

Abstract

In the paper a dependence is established between the ψ-exponential dichotomy of a homogeneous impulsive differential equation in a Banach space and the existence of ψ bounded solution of the appropriate nonhomogeneous impulsive equation.

KEY WORDS AND PHRASES. Exponential dichotomy for impulsive differential equations, ψ-dichotomy, ψ-boundedness

1 Introduction

The impulsive differential equations are an adequate mathematical apparatus for simulation of numerous processes and phenomena in biology, physics, chemistry and control theory, e.t.c. which during their evolutionary development are subject to short time perturbations in the form of impulses. The qualitative investigation of these processes began with the work of Mil'man and Myshkis [17]. For the first time such equations were considered in an arbitrary Banach space in $[2,3,18,19]$.

The problem of ψ-boundedness and ψ-stability of the solutions of differential equations in finite dimensional Euclidean spaces, introduced for the first time by Akinyele [1] has been studied later by many authors. A beautiful explanation about the benefits of such a use of weighted stability and boundedness can be found for example in [15].

Inspired by the famous monographs of Coppel [6], Daleckii and Krein [7] as well as Massera and Schaeffer [16], where the important notion of exponential and ordinary dichotomy for ordinary differential equations is considered in details, Diamandescu [8]-[10] and Boi [4]-[5] introduced and studied the ψ-dichotomy for linear differential equations in finite dimensional Euclidean space, where ψ is a nonnegative continuous diagonal matrix function. The concept of ψ-dichotomy for arbitrary Banach spaces is introduced and studied in [11] and [12]. In this case $\psi(t)$ is an arbitrary bounded invertible linear operator for all t.

The goal of the present paper is to study such a weighted dichotomy for linear differential equations with impulse effect in arbitrary Banach spaces. We will establish a dependence between the ψ-exponential dichotomy of a homogeneous impulsive equation in a Banach space and the existence of a solution of the corresponding nonhomogeneous impulsive equation which is ψ-bounded on the semi-axis R_{+}.

The first investigation in this direction was made in [20] for the particular case of ψ-ordinary dichotomy.

It must be mentioned that in $[13,14]$ the attempt to introduce ψ-exponential dichotomy for impulsive differential equations in finite dimensional spaces is a real disaster - due to the meaningless use of the fundamental matrix there even the definitions are wrong.

2 Preliminaries

Let X be an arbitrary Banach space with norm |.| and let $L B(X)$ be the space of all linear bounded operators acting in X with the norm $\|$.$\| and identity I$. Denote $R_{+}=[0, \infty)$.

We consider the nonhomogeneous impulsive equation

$$
\begin{align*}
\frac{\mathrm{d} x}{\mathrm{~d} t} & =A(t) x+f(t) \quad\left(t \neq t_{n}\right) \tag{1}\\
x\left(t_{n}+0\right) & =Q_{n} x\left(t_{n}\right)+h_{n} \quad(n=1,2,3, \ldots) \tag{2}
\end{align*}
$$

where the operator valued function $A():. R_{+} \rightarrow L B(X)$ and the function $f():. R_{+} \rightarrow X$ are strongly measurable and Bochner integrable on the finite subintervals of $R_{+},\left\{Q_{n}\right\}_{n=1}^{\infty}$ is a sequence of impulsive operators $Q_{n} \in L B(X)(n=1,2,3, \ldots), T=\left\{t_{n}\right\}_{n=1}^{\infty}$ is a sequence of points on the semi-axis R_{+}satisfying the condition

$$
0<t_{1}<t_{2}<\ldots, \lim _{n \rightarrow \infty} t_{n}=\infty
$$

and $\left\{h_{n}\right\}_{n=1}^{\infty}$ is a sequence of elements $h_{n} \in X$. The corresponding homogeneous linear impulsive equation is

$$
\begin{gather*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=A(t) x \quad\left(t \neq t_{n}\right) \tag{3}\\
x\left(t_{n}+0\right)=Q_{n} x\left(t_{n}\right) \quad(t=1,2,3, \ldots) . \tag{4}
\end{gather*}
$$

Definition 1 By a solution of the impulsive equation (1), (2) (or (3), (4)) we shall call a function $x(t)$ which for $t \neq t_{n}$ satisfies equation (1) (or (3)), for $t=t_{n}$ satisfies condition (2) (or (4)) and is continuous from the left.

It is known (see [18], [3]) that for the impulsive equation (3), (4) there exists an evolutionary Cauchy operator associating with any element $\xi \in X$ a solution $x(t)$ of the impulsive equation which satisfies the initial condition $x(s)=\xi(0 \leq s \leq t<\infty)$.

Lemma 1 ([3]) Let the conditions $A(t), Q_{n} \in L B(X)$ hold, where $t \in R_{+}(n=1,2, \ldots)$. Then the evolutionary operator $V(t, s)(0 \leq s \leq t<\infty)$ of the impulsive equation (3), (4) has the form

$$
V(t, s)=\left\{\begin{array}{l}
V_{0}(t, s), t_{n}<s \leq t \leq t_{n+1} \\
V_{0}\left(t, t_{n}\right)\left(\prod_{j=n}^{k+1} Q_{j} V_{0}\left(t_{j}, t_{j-1}\right)\right) Q_{k} V_{0}\left(t_{k}, s\right) \\
t_{k-1}<s \leq t_{k}<t_{n}<t \leq t_{n+1}
\end{array}\right.
$$

where $V_{0}(t, s)(0 \leq s \leq t<\infty)$ is the evolutionary operator of equation (3).
The operator-valued function $V(t, s)$ satisfies the equalities

$$
\begin{gather*}
V(t, t)=I(0 \leq t<\infty) \tag{5}\\
V(t, s)=V(t, \tau) V(\tau, s)(0 \leq s \leq \tau \leq t<\infty) . \tag{6}
\end{gather*}
$$

Moreover, it is differentiable at the points $t \in\left(t_{j-1}, t_{j}\right](j=1,2,3, \ldots)$ and $s \in\left[t_{j-1}, t_{j}\right)(j=$ $1,2,3, \ldots)$, and it is

$$
\begin{equation*}
\frac{\mathrm{d} V(t, s)}{\mathrm{d} t}=A(t) V(t, s), \quad \frac{\mathrm{d} V(t, s)}{\mathrm{d} s}=V(t, s) A(s) . \tag{7}
\end{equation*}
$$

At the points $t_{n}(n=1,2,3, \ldots)$ the following equalities are staisfied:

$$
\begin{equation*}
V\left(t_{n}+0, s\right)=Q_{n} V\left(t_{n}, s\right)\left(0 \leq s \leq t_{n}<\infty\right) . \tag{8}
\end{equation*}
$$

Lemma 2 ([3]) Let the following conditions hold:

1. $A(t), Q_{n} \in L B(X)$, where $t \in R_{+}(n=1,2, \ldots)$.
2. The operators Q_{n} have continuous inverses $Q_{n}^{-1}(n=1,2,3, \ldots)$.

Then the evolutionary operator $V(t, s)(0 \leq t, s<\infty)$ of the impulsive equation (3), (4) has the form

$$
V(t, s)=\left\{\begin{array}{l}
V_{0}(t, s), t_{n}<s, t \leq t_{n+1} \\
V_{0}\left(t, t_{n}\right)\left(\prod_{j=n}^{k+1} Q_{j} V_{0}\left(t_{j}, t_{j-1}\right)\right) Q_{k} V_{0}\left(t_{k}, s\right), \\
t_{k-1}<s \leq t_{k}<t_{n}<t \leq t_{n+1} \\
V_{0}\left(t, t_{n}\right)\left(\prod_{j=n}^{k-1} Q_{j}^{-1} V_{0}\left(t_{j}, t_{j+1}\right)\right) Q_{k}^{-1} V_{0}\left(t_{k}, s\right), \\
t_{n-1}<t \leq t_{n}<t_{k}<s \leq t_{k+1}
\end{array}\right.
$$

where $V_{0}(t, s)(0 \leq s, t<\infty)$ is the evolutionary operator of the equation (3).
If the conditions of Lemma 2 are satisfied, then the following equalities hold:

$$
\begin{gather*}
V(t, s)=V^{-1}(s, t), \quad V(t, s)=V(t, \tau) V(\tau, s)(0 \leq s, \tau, t<\infty), \tag{9}\\
V\left(t_{n}+0, s\right)=Q_{n} V\left(t_{n}, s\right)\left(0 \leq s, t_{n}<\infty\right) . \tag{10}
\end{gather*}
$$

Let $R L(X)$ be the subspace of all invertible operators in $L B(X)$ whose inverse operators are bounded, too. Let $\psi(t): R_{+} \rightarrow R L(X)$ be a continuous operator-function with respect to $t \in R_{+}$.

Definition 2 A function $u():. R_{+} \rightarrow X$ is said to be ψ-bounded on R_{+}if $\psi(t) u(t)$ is bounded on R_{+}.

Definition 3 A function $f():. R_{+} \rightarrow X$ is said to be ψ-integrally bounded on R_{+}if it is measurable and there exists a positive constant m such that $\int_{t}^{t+1}|\psi(\tau) f(\tau)| d \tau \leq m$ for all $t \in R_{+}$.

Definition 4 A sequence of points $h=\left\{h_{n}\right\}_{n=1}^{\infty}$ is said to be ψ-bounded on R_{+}if $\sup _{n=1,2,3, \ldots}\left|\psi\left(t_{n}\right) h_{n}\right|<\infty, h_{n} \in X, t_{n} \in T(n=1,2,3, \ldots)$.

Let $C_{\psi}(X, T)$ denote the space of all functions with values in X and ψ-bounded on R_{+}which are continuous for $t \neq t_{n}$, have discontinuities of the first kind for $t=t_{n}$ and are continuous from the left which is a Banach space with the norm

$$
\left|\left\|f\left|\|_{C_{\psi}}=\sup _{t \in R_{+}}\right| \psi(t) f(t) \mid\right.\right.
$$

Let $M_{\psi}(X, T)$ denote the Banach space of all functions with values in X and ψ-integrally bounded which are continuous for $t \neq t_{n}$, have discontinuities of the first kind for $t=t_{n}$ and are continuous from the left for $t=t_{n}$ with the norm

$$
\left|\left\|f\left|\|_{M_{\psi}}=\sup _{t \in R_{+}} \int_{t}^{t+1}\right| \psi(s) f(s) \mid \mathrm{d} s\right.\right.
$$

Let $H_{\psi}(X, T)$ denote the space of all ψ-bounded sequences $h=\left\{h_{n}\right\}_{n=1}^{\infty}$ in X, i.e.

$$
H_{\psi}(X, T)=\left\{h: \sup _{n=1,2,3, \ldots}\left|\psi\left(t_{n}\right) h_{n}\right|<\infty, h_{n} \in X, t_{n} \in T, n=1,2,3, \ldots\right\}
$$

with the norm

$$
\left|\left\|h\left|\|_{H_{\psi}}=\sup _{n=1,2,3, \ldots}\right| \psi\left(t_{n}\right) h_{n} \mid .\right.\right.
$$

Definition 5 The homogeneous impulsive equation (3), (4) is said to be ψ-exponential dichotomous on R_{+}if there exist a pair P_{1} and $P_{2}=I-P_{1}$ of mutually complementary projections in X and numbers $M, \delta>0$ for which the inequalities

$$
\begin{array}{ll}
\left\|\psi(t) V(t) P_{1} V^{-1}(s) \psi^{-1}(s)\right\| \leq M e^{-\delta(t-s)} & (0 \leq s \leq t<\infty) \\
\left\|\psi(t) V(t) P_{2} V^{-1}(s) \psi^{-1}(s)\right\| \leq M e^{-\delta(s-t)} & (0 \leq t \leq s<\infty) \tag{12}
\end{array}
$$

hold, where $V(t)=V(t, 0)$ and $V(t, s)(0 \leq s, t<\infty)$ is the Cauchy evolutionary operator of the impulsive equation (3), (4).

The equation (3), (4) is said to have a ψ-ordinary dichotomy on R_{+}if (11) and (12) hold with $\delta=0$.

Lemma 3 Equation (3), (4) has a ψ-exponential dichotomy on R_{+}with positive constants ν_{1} and ν_{2} if and only if there exist a pair of mutually complementary projections P_{1} and $P_{2}=I-P_{1}$ and positive constants $M, \tilde{N}_{1}, \tilde{N}_{2}$ such that following inequalities are fulfilled:

$$
\begin{gather*}
\left|\psi(t) V(t) P_{1} \xi\right| \leq \tilde{N}_{1} e^{-\nu_{1}(t-s)}\left|\psi(s) V(s) P_{1} \xi\right| \quad(\xi \in X, 0 \leq s \leq t), \tag{13}\\
\left|\psi(t) V(t) P_{2} \xi\right| \leq \tilde{N}_{2} e^{-\nu_{2}(s-t)}\left|\psi(s) V(s) P_{2} \xi\right| \quad(\xi \in X, 0 \leq t \leq s), \tag{14}\\
\left\|\psi(t) V(t) P_{1} V^{-1}(t) \psi^{-1}(t)\right\| \leq M \quad(t \geq 0) . \tag{15}
\end{gather*}
$$

The proof of the lemma is similar as the proof of Lemma 3.1 in [11] for equations without impulses and will be omitted.

Definition 6 The homogeneous impulsive equation (3), (4) is said to have a ψ-bounded growth on R_{+}if for some fixed $l>0$ there exists a constant $c \geq 1$ such that every solution $x(t)$ of (3), (4) satisfies

$$
\begin{equation*}
|\psi(t) x(t)| \leq c|\psi(s) x(s)| \quad(0 \leq s \leq t \leq s+l) \tag{16}
\end{equation*}
$$

Lemma 4 Equation (3), (4) has ψ-bounded growth on R_{+}if and only if there exist positive constants $K \geq 1$ and $\alpha>0$ such that

$$
\begin{equation*}
\left\|\psi(t) V(t) V^{-1}(s) \psi^{-1}(s)\right\| \leq K e^{\alpha(t-s)} \quad(0 \leq s \leq t) \tag{17}
\end{equation*}
$$

The proof of the lemma is similar as the proof of Lemma 3.2 in [11] for equations without impulses and will be omitted.
Remark 1 It is easy to see that the condition for ψ-bounded growth (and for bounded growth) of (3), (4) is independent of the choice of l. Hence we will use the Definition 6 with fixed $l=1$.

Lemma 5 If (3), (4) has ψ-bounded growth on R_{+}, then (15) is a consequence of (13) and (14).

The proof of the lemma is similar as the proof of Lemma 3.5 in [11] for equations without impulses and will be omitted.

3. Main results

We shall say that condition (H) is satisfied if the following conditions hold:
H1. $A(t), Q_{n} \in L B(X)$, where $t \in R_{+}(n=1,2,3, \ldots)$.
H2. $Q_{n} \in R L(X) \quad(n=1,2,3, \ldots)$.
H3. $\psi(t): R_{+} \rightarrow R L(X)$ is a continuous operator-function with respect to $t \in R_{+}$.
Theorem 2 Let us assume the following:

1. Condition (H) is satisfied.
2. Equation (3), (4) is ψ-exponential dichotomous.
3. There exist a number $l>0$ and a positive integer λ such that each interval on R_{+}with length l contains not more than λ points of the sequence T.

Then for any function $f \in C_{\psi}(X, T)$ and any sequence $h \in H_{\psi}(X, T)$ there exists a solution of the nonhomogeneous equation (1), (2) which is ψ-bounded on R_{+}.

Proof. Consider the function

$$
\begin{align*}
\tilde{x}(t) & =\int_{0}^{t} \psi(t) V(t) P_{1} V^{-1}(s) f(s) \mathrm{d} s-\int_{t}^{\infty} \psi(t) V(t) P_{2} V^{-1}(s) f(s) \mathrm{d} s \tag{18}\\
& +\sum_{t_{j}<t} \psi(t) V(t) P_{1} V^{-1}\left(t_{j}+0\right) h_{j}-\sum_{t_{j} \geq t} \psi(t) V(t) P_{2} V^{-1}\left(t_{j}+0\right) h_{j}
\end{align*}
$$

In order to prove the boundedness of $\tilde{x}(t)$ we shall estimate the norms of the summands in (18). By (11) and (12) we have

$$
\begin{align*}
& \left|\int_{0}^{t} \psi(t) V(t) P_{1} V^{-1}(s) f(s) \mathrm{d} s\right|= \\
& \quad=\left|\int_{0}^{t} \psi(t) V(t) P_{1} V^{-1}(s) \psi^{-1}(s) \psi(s) f(s) \mathrm{d} s\right| \\
& \quad \leq \int_{0}^{t}\left\|\psi(t) V(t) P_{1} V^{-1}(s) \psi^{-1}(s)\right\||\psi(s) f(s)| \mathrm{d} s \tag{19}\\
& \quad \leq M e^{-\delta t} \int_{0}^{t} e^{\delta s} \mathrm{~d} s\left\|\left.\left|\|f\|\left\|_{C_{\psi}} \leq \frac{M}{\delta}\right\|\right| f \right\rvert\,\right\|_{C_{\psi}}
\end{align*}
$$

and

$$
\begin{align*}
\mid \int_{t}^{\infty} & \psi(t) V(t) P_{2} V^{-1}(s) f(s) \mathrm{d} s \mid \\
& =\left|\int_{t}^{\infty} \psi(t) V(t) P_{2} V^{-1}(s) \psi^{-1}(s) \psi(s) f(s) \mathrm{d} s\right| \\
& \leq \int_{t}^{\infty}\left\|\psi(t) V(t) P_{2} V^{-1}(s) \psi^{-1}(s)\right\||\psi(s) f(s)| \mathrm{d} s \tag{20}\\
& \leq M e^{\delta t} \int_{t}^{\infty} e^{-\delta s} \mathrm{~d} s\left\|f \left|\left\|_{C_{\psi}} \leq \frac{M}{\delta}\left|\|f \mid\|_{C_{\psi}}\right.\right.\right.\right.
\end{align*}
$$

Analogously having in mind also the conditions 3 and H 3 we obtain for the next summands

$$
\begin{align*}
& \left|\sum_{t_{j}<t} \psi(t) V(t) P_{1} V^{-1}\left(t_{j}+0\right) h_{j}\right| \\
& \quad=\left|\sum_{t_{j}<t} \psi(t) V(t) P_{1} V^{-1}\left(t_{j}+0\right) \psi^{-1}\left(t_{j}+0\right) \psi\left(t_{j}+0\right) h_{j}\right| \\
& \quad=\left|\sum_{t_{j}<t} \psi(t) V(t) P_{1} V^{-1}\left(t_{j}+0\right) \psi^{-1}\left(t_{j}+0\right) \psi\left(t_{j}\right) h_{j}\right| \tag{21}\\
& \quad \leq \sum_{t_{j}<t}\left\|\psi (t) V (t) P _ { 1 } V ^ { - 1 } (t _ { j } + 0) \psi ^ { - 1 } (t _ { j } + 0) \left|\|\left|\psi\left(t_{j}\right) h_{j}\right|\right.\right. \\
& \quad \leq M\left(\sum_{t_{j}<t} e^{\delta\left(t_{j}-t\right)}\right)\left\|\left.| | h\left|\left\|_{H_{\psi}} \leq \frac{M \lambda}{1-e^{-\delta l}}\right\|\right| h \right\rvert\,\right\|_{H_{\psi}}
\end{align*}
$$

and

$$
\begin{align*}
& \left|\sum_{t \leq t_{j}} \psi(t) V(t) P_{2} V^{-1}\left(t_{j}+0\right) h_{j}\right| \\
& \quad=\left|\sum_{t \leq t_{j}} \psi(t) V(t) P_{2} V^{-1}\left(t_{j}+0\right) \psi^{-1}\left(t_{j}+0\right) \psi\left(t_{j}+0\right) h_{j}\right| \\
& \quad=\left|\sum_{t \leq t_{j}} \psi(t) V(t) P_{2} V^{-1}\left(t_{j}+0\right) \psi^{-1}\left(t_{j}+0\right) \psi\left(t_{j}\right) h_{j}\right| \tag{22}\\
& \quad \leq \sum_{t \leq t_{j}}\left\|\psi (t) V (t) P _ { 2 } V ^ { - 1 } (t _ { j } + 0) \psi ^ { - 1 } (t _ { j } + 0) \left|\|\left|\psi\left(t_{j}\right) h_{j}\right|\right.\right. \\
& \quad \leq M\left(\sum_{t \leq t_{j}} e^{\delta\left(t-t_{j}\right)}\right)\left\|\left|\left\|\left.h\left|\left\|_{H_{\psi}} \leq \frac{M \lambda}{1-e^{-\delta l}}\right\|\right| h \right\rvert\,\right\|_{H_{\psi}} .\right.\right.
\end{align*}
$$

From (18) - (22) it follows that $\tilde{x}(t)$ is bounded on R_{+}and satisfies for $t \in R_{+}$the inequality

$$
|\tilde{x}(t)| \leq \frac{2 M}{\delta}\left|\left\|f \left|\left\|\left.\right|_{C_{\psi}}+\frac{2 M \lambda}{1-e^{-\delta l}}\left|\|h \mid\|_{H_{\psi}}\right.\right.\right.\right.\right.
$$

Let be $x(t)=\psi^{-1}(t) \tilde{x}(t)$. Obviously $x(t)$ is ψ-bounded on R_{+}. It is immediately verified that the function $x(t)$ is continuous for $t \neq t_{n}$ and that the limit values $x\left(t_{n}+0\right)(n=1,2, \ldots)$
exist. We shall show that the function $x(t)$ satisfies the impulsive equation (1), (2) using the equalities (7) and (10).

We differentiate $x(t)$ by $t \neq t_{n}$ and get

$$
\begin{aligned}
\frac{\mathrm{d} x}{\mathrm{~d} t} & =A(t) \int_{0}^{t} V(t) P_{1} V^{-1}(s) f(s) \mathrm{d} s+V(t) P_{1} V^{-1}(t) f(t) \\
& +V(t) P_{2} V^{-1}(t) f(t)-A(t) \int_{t}^{\infty} V(t) P_{2} V^{-1}(s) f(s) \mathrm{d} s \\
& +\sum_{t_{j}<t} A(t) V(t) P_{1} V^{-1}\left(t_{j}+0\right) h_{j}-\sum_{t_{j} \geq t} A(t) V(t) P_{2} V^{-1}\left(t_{j}+0\right) h_{j} \\
& =A(t) x(t)+V(t) P_{1} V^{-1}(t) f(t)+V(t) P_{2} V^{-1}(t) f(t) \\
& =A(t) x(t)+f(t)
\end{aligned}
$$

Analogously we obtain for $t=t_{n} \quad(n=1,2, \ldots)$ taking into account (10)

$$
\begin{aligned}
x\left(t_{n}\right. & +0) \\
& =\int_{0}^{t_{n}} V\left(t_{n}+0\right) P_{1} V^{-1}(s) f(s) \mathrm{d} s-\int_{t_{n}}^{\infty} V\left(t_{n}+0\right) P_{2} V^{-1}(s) f(s) \mathrm{d} s \\
& +\sum_{t_{j} \leq t_{n}} V\left(t_{n}+0\right) P_{1} V^{-1}\left(t_{j}+0\right) h_{j}-\sum_{t_{j}>t_{n}} V\left(t_{n}+0\right) P_{2} V^{-1}\left(t_{j}+0\right) h_{j} \\
& =Q_{n} \int_{0}^{t_{n}} V\left(t_{n}\right) P_{1} V^{-1}(s) f(s) \mathrm{d} s-Q_{n} \int_{t_{n}}^{\infty} V\left(t_{n}\right) P_{2} V^{-1}(s) f(s) \mathrm{d} s \\
& +Q_{n} \sum_{t_{j}<t_{n}} V\left(t_{n}\right) P_{1} V^{-1}\left(t_{j}+0\right) h_{j}-Q_{n} \sum_{t_{j} \geq t_{n}} V\left(t_{n}\right) P_{1} V^{-1}\left(t_{j}+0\right) h_{j} \\
& +V\left(t_{n}+0\right) P_{1} V^{-1}\left(t_{n}+0\right) h_{n}+V\left(t_{n}+0\right) P_{2} V^{-1}\left(t_{n}+0\right) h_{n} \\
& =Q_{n} x\left(t_{n}\right)+h_{n} .
\end{aligned}
$$

Hence the function $x(t)$ is a ψ-bounded solution of the nonhomogeneous impulsive equation (1), (2) on R_{+}. Theorem 2 is proved.

Remark 3 Theorem 2 still holds, if the condition $f \in C_{\psi}(X, T)$ is replaced by the weaker condition $f \in M_{\psi}(X, T)$.

Proof. In the case $f \in M_{\psi}(X, T)$ the estimates (19) and (20) can be replaced by the following
estimates

$$
\begin{align*}
& \left\lvert\, \begin{aligned}
\mid \int_{0}^{t} & \psi(t) V(t) P_{1} V^{-1}(s) f(s) \mathrm{d} s \mid \\
& =\left|\int_{0}^{t} \psi(t) V(t) P_{1} V^{-1}(s) \psi^{-1}(s) \psi(s) f(s) \mathrm{d} s\right| \\
& \leq \int_{0}^{t}\left\|\psi(t) V(t) P_{1} V^{-1}(s) \psi^{-1}(s)\right\||\psi(s) f(s)| \mathrm{d} s \\
& \leq M \int_{0}^{t} e^{-\delta(t-s)}|\psi(s) f(s)| \mathrm{d} s \leq M\left|\|f \mid\|_{M_{\psi}} \sum_{k=0}^{\infty} e^{-\delta k}\right. \\
& \leq \frac{M}{1-e^{-\delta}}\left|\|f \mid\|_{M_{\psi}}\right. \\
& =\left|\int_{t}^{\infty} \psi(t) V(t) P_{2} V^{-1}(s) f(s) \mathrm{d} s\right| \\
& \leq \int_{t}^{\infty}\left\|\psi(t) V(t) P_{2} V^{-1}(s) \psi^{-1}(s)\right\||\psi(s) f(s)| \mathrm{d} s \\
& \leq M \int_{t}^{\infty} e^{-\delta(s-t)}|\psi(s) f(s)| \mathrm{d} s \leq M| ||f| \|_{M_{\psi}} \sum_{k=0}^{\infty} e^{-\delta k} \\
& \leq \frac{M}{1-e^{-\delta}}\left\|\left|\|f \mid\|_{M_{\psi}} .\right.\right.
\end{aligned}\right.
\end{align*}
$$

Remark 4 Theorem 2 obviously holds without condition 3 if we consider inhomogeneous equations with $h=0$. In this case the ψ-bounded solutions lie in the subspace $C_{\psi}^{0}(X, T)$ of the space $C_{\psi}(X, T)$ which consists of the functions satisfying the condition

$$
\begin{equation*}
x\left(t_{n}+0\right)=Q_{n} x\left(t_{n}\right) \quad(n=1,2,3, \ldots) . \tag{25}
\end{equation*}
$$

Let X_{1} be the linear manifold of all $\xi \in X$ for which the functions $V(t) \xi\left(t \in R_{+}\right)$are ψ-bounded.

For our next main result we will need the following lemma.
Lemma 6 ([20]) Assume the following:

1. Condition (H) is satisfied.
2. $B_{\psi}(X)$ is an arbitrary Banach space of functions $f():. R_{+} \rightarrow X$ and for any function $f \in B_{\psi}(X)$ the nonhomogeneous equation (1), (2) has at least one ψ-bounded on R_{+}solution $x \in C_{\psi}(X, T)$.
3. The set X_{1} is a complementary subspace of X and X_{2} is a complement of it $\left(X_{1}+X_{2}=X\right)$. Then to each function $f(t) \in B_{\psi}(X)$ there corresponds a unique solution $x(t)$ which is ψ bounded on R_{+}and starts from X_{2}, i.e. $x(0) \in X_{2}$.

This solution satisfies the estimate

$$
\begin{equation*}
\left\|x \left|\left\|_{C_{\psi}} \leq k\left|\|f \mid\|_{B_{\psi}},\right.\right.\right.\right. \tag{26}
\end{equation*}
$$

where $k>0$ is a constant not depending on f.
Now we are ready for our second main result - a theorem, which is like an inverse of Theorem 2.

Theorem 5 Let us assume the following:

1. Condition (H) is satisfied.
2. The homogeneous impulsive equation (3), (4) has a ψ-bounded growth on R_{+}.
3. The linear manifold

$$
\begin{equation*}
X_{1}=\left\{\xi \in X: \sup _{0 \leq t<\infty}|\psi(t) V(t) \xi|<\infty\right\} \tag{27}
\end{equation*}
$$

is a complementary subspace (i.e. there exists a subspace X_{2} of X for which $X=X_{1}+X_{2}$).
4. For each function $f \in C_{\psi}(X, T)$ the nonhomogeneous impulsive equation (1), (2) for $h=\left\{h_{n}\right\}_{n=1}^{\infty}=0$ has at least one solution belonging to the subspace $C_{\psi}^{0}(X, T)$.
Then the impulsive equation (3), (4) is ψ-exponential dichotomous.
Proof. Let $x(t)$ be a nontrivial ψ-bounded solution of the impulsive equation (3), (4) with initial value $x(0) \in X_{1}$. Set

$$
y(t)=x(t) \int_{0}^{t} \chi(\tau)|\psi(\tau) x(\tau)|^{-1} \mathrm{~d} \tau
$$

where

$$
\chi(t)= \begin{cases}1: & 0 \leq t \leq t_{0}+\tau \\ 1-\left(t-t_{0}-\tau\right): & t_{0}+\tau<t \leq t_{0}+\tau+1 \\ 0: & t_{0}+\tau+1 \leq t\end{cases}
$$

It is not hard to check that the function $y(t)$ is a solution of the nonhomogeneous impulsive equation (1), (2) for $h=0$ and for

$$
f(t)=\chi(t) \frac{x(t)}{|\psi(t) x(t)|}
$$

Obviously $f \in C_{\psi}(X, T)$ and $\left\|\|f\|_{C_{\psi}}=1\right.$. But $y(0)=0 \in X_{2}$, and applying Lemma 6 it follows

$$
\left\|\left|\|y\|_{C_{\psi}}=\sup _{t \in R_{+}}\right| \psi(t) y(t)|\leq k|\right\| f \mid \|_{C_{\psi}}=k
$$

from (26). Hence

$$
|\psi(t) y(t)|=|\psi(t) x(t)| \int_{0}^{t} \chi(s)|\psi(s) x(s)|^{-1} \mathrm{~d} s \leq k \quad\left(t \in R_{+}\right)
$$

By $t=t_{0}+\tau$ we obtain the inequality

$$
\begin{equation*}
\left|\psi\left(t_{0}+\tau\right) y\left(t_{0}+\tau\right)\right|=\left|\psi\left(t_{0}+\tau\right) x\left(t_{0}+\tau\right)\right| \int_{0}^{t_{0}+\tau}|\psi(s) x(s)|^{-1} \mathrm{~d} s \leq k . \tag{28}
\end{equation*}
$$

Let consider the function

$$
\varphi(t)=\int_{0}^{t}|\psi(s) x(s)|^{-1} \mathrm{~d} s
$$

From (28) it follows

$$
\frac{\varphi^{\prime}\left(t_{0}+\tau\right)}{\varphi\left(t_{0}+\tau\right)} \geq \frac{1}{k}
$$

After integrating the inequality with respect to τ on $[1, \tau]$ this implies the estimate

$$
\begin{equation*}
\varphi\left(t_{0}+\tau\right) \geq \varphi\left(t_{0}+1\right) e^{\frac{(\tau-1)}{k}} \quad(\tau \geq 1) \tag{29}
\end{equation*}
$$

From condition 2 of the theorem it follows for $s \in\left[t_{0}, t_{0}+1\right]$ that there exists a constant $c>1$ such that

$$
|\psi(s) x(s)| \leq c\left|\psi\left(t_{0}\right) x\left(t_{0}\right)\right|
$$

and that is why

$$
\varphi\left(t_{0}+1\right)=\int_{t_{0}}^{t_{0}+1}|\psi(s) x(s)|^{-1} \mathrm{~d} s \geq c^{-1}\left|\psi\left(t_{0}\right) x\left(t_{0}\right)\right|^{-1}
$$

From here, taking into account the estimates (28) and (29) we obtain for $\tau \geq 1$ the relation

$$
\left|\psi\left(t_{0}+\tau\right) x\left(t_{0}+\tau\right)\right| \leq \frac{k}{\varphi\left(t_{0}+\tau\right)} \leq \frac{k e^{-\frac{\tau-1}{k}}}{\varphi\left(t_{0}+1\right)} \leq k c e^{\frac{1}{k}} e^{-\frac{\tau}{k}}\left|\psi\left(t_{0}\right) x\left(t_{0}\right)\right| .
$$

For $\tau \leq 1$ we have

$$
\left|\psi\left(t_{0}+\tau\right) x\left(t_{0}+\tau\right)\right| \leq c\left|\psi\left(t_{0}\right) x\left(t_{0}\right)\right| \leq c e^{\frac{1-\tau}{k}}\left|\psi\left(t_{0}\right) x\left(t_{0}\right)\right| .
$$

Hence we obtain the estimate

$$
\begin{equation*}
|\psi(t) x(t)| \leq N e^{-\nu\left(t-t_{0}\right)}\left|\psi\left(t_{0}\right) x\left(t_{0}\right)\right|, \tag{30}
\end{equation*}
$$

where $\nu=\frac{1}{k}$ and $N=\max \left\{c e^{\frac{1}{k}}, k c e^{\frac{1}{k}}\right\}$, i.e. the inequality (13).

Analogously we consider the case if the solution $x(t)$ of the impulsive equation (3), (4) has an initial value $x(0) \in X_{2}$. Then we will consider the function

$$
\tilde{y}(t)=x(t) \int_{t}^{\infty} \chi(s)|\psi(s) x(s)|^{-1} \mathrm{~d} s
$$

instead of $y(t)$. It is easy to check that the function $\tilde{y}(t)$ is a solution of the nonhomogeneous impulsive equation (1), (2) for $h=0$ and for

$$
\tilde{f}(t)=-\chi(t) \frac{x(t)}{|\psi(t) x(t)|}
$$

The solution $\tilde{y}(t)$ is ψ-bounded because $\tilde{y}(t)=0$ for $t \geq t_{0}+\tau+1$. But $\tilde{y}(0) \in X_{2}$ and obviously $\tilde{f} \in C_{\psi}(X, T)$. Now we can apply Lemma 6 , and from (26), taking into account that $\left|||\tilde{f}||_{C_{\psi}}=1\right.$, it follows

$$
|\psi(t) \tilde{y}(t)|=|\psi(t) x(t)| \int_{t}^{\infty} \chi(s)|\psi(s) x(s)|^{-1} \mathrm{~d} s \leq k\left|\|\tilde{f} \mid\|_{C_{\psi}}=k .\right.
$$

By $\tau \rightarrow \infty$ we find the inequality

$$
\begin{equation*}
\int_{t}^{\infty}|\psi(s) x(s)|^{-1} \mathrm{~d} s \leq k|\psi(t) x(t)|^{-1} \tag{31}
\end{equation*}
$$

Setting

$$
\tilde{\varphi}(t)=\int_{t}^{\infty}|\psi(s) x(s)|^{-1} \mathrm{~d} s
$$

we obtain

$$
\tilde{\varphi}^{\prime}(t) \leq \frac{1}{k} \tilde{\varphi}(t)
$$

By integration the estimate

$$
\begin{equation*}
\tilde{\varphi}(t) \leq \tilde{\varphi}\left(t_{0}\right) e^{\frac{t-t_{0}}{k}} \tag{32}
\end{equation*}
$$

follows. Now let $\tau \geq t$. From $x(\tau)=V(\tau) V^{-1} x(t)$ it arises

$$
\psi(\tau) x(\tau)=\psi(\tau) V(\tau) V^{-1} \psi^{-1}(t) \psi(t) x(t)
$$

and

$$
|\psi(\tau) x(\tau)|=\left\|\psi(\tau) V(\tau) V^{-1} \psi^{-1}(t)\right\||\psi(t) x(t)|
$$

Condition 2 of the theorem and Lemma 4 imply that there exist constants $K \geq 1, \alpha>0$ such that

$$
|\psi(\tau) x(\tau)|=K e^{\alpha(\tau-t)}|\psi(t) x(t)|
$$

Then

$$
\begin{aligned}
& |\psi(t) x(t)| \tilde{\varphi}(t)=|\psi(t) x(t)| \int_{t}^{\infty}|\psi(s) x(s)|^{-1} \mathrm{~d} s \\
& \quad \geq \int_{t}^{\infty}|\psi(s) x(s)| \frac{e^{-\alpha(s-t)}}{K}|\psi(s) x(s)|^{-1} \mathrm{~d} s=\frac{1}{K} \int_{t}^{\infty} e^{-\alpha(s-t)} \mathrm{d} s=\frac{1}{K \alpha} .
\end{aligned}
$$

Having in mind (31) and (32) it follows

$$
|\psi(t) x(t)| \geq \frac{(K \alpha)^{-1}}{\tilde{\varphi}(t)} \geq \frac{(K \alpha)^{-1}}{\tilde{\varphi}\left(t_{0}\right)} e^{\frac{1}{k}\left(t-t_{0}\right)} \geq \frac{(K \alpha)^{-1}}{k} e^{\frac{1}{k}\left(t-t_{0}\right)}\left|\psi\left(t_{0}\right) x\left(t_{0}\right)\right| .
$$

This inequality is from the same type as the desired estimate (14). From condition 2 of the theorem and Lemma 5 and Lemma 3 it follows that the impulsive equation (3), (4) is ψ-exponential dichotomous. Hence Theorem 5 is proved.

Remark 6 Theorem 5 holds without condition 3 if the space X is finite dimensional.

References

[1] Akinyele, O. : On partial stability and boundedness of degree k. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 8, 65, (1978), 259-264
[2] Bajnov, D., Kostadinov, S., and Myshkis, A. : Bounded and periodic solutions of differential equations with impulse effect in a Banach space. Differential and Integral Equations, 1 (1988), 223-230
[3] Bajnov, D., Kostadinov, S., and Zabrejko, P. : Exponential dichotomy of linear impulsive differential equations in a Banach space. Int. J. Theor. Phys., 28 (1989), No. 7, 797-814
[4] Boi, P. : On the ψ-dichotomy for homogeneous linear differential equations. Electron. J. Differ. Equ., 2006, No. 40, 1-12
[5] Boi, P. : Existence of ψ-bounded solutions for nonhomogeneous linear differential equations. Electron. J. Differ. Equ., 2007, No. 52, 1-10
[6] Coppel, W. : Dichotomies in stability theory. Lectures Notes in Mathematics, Vol. 629, Springer Verlag, Berlin (1978)
[7] Daleckii, J., and Krein, M. : Stability of Solutions of Differential Equations in Banach space. American Mathematical Society, Providence, Rhode Island (1974)
[8] Diamandescu, A. : Note on the Ψ-boundedness of the solutions of a system of differential equations. Acta Math. Univ. Comen., New Ser. 73, (2004), No. 2, 223-233
[9] Diamandescu, A. : Existence of ψ-bounded solutions for a system of differential equations. Electron. J. Differ. Equ., 2004, No. 63, 1-6
[10] Diamandescu, A. : Existence of Ψ-bounded solutions for nonhomogeneous linear difference equations. Appl. Math. E-Notes, 10, (2010), 94-102
[11] Georgieva, A., Kiskinov, H., Kostadinov, S., and Zahariev, A. : Psi-exponential dichotomy for linear differential equations in a Banach space. Electron. J. Differ. Equ., 2013, No. 153, 1-13
[12] Georgieva, A., Kiskinov, H., Kostadinov, S., and Zahariev, A. : Existence of solutions of nonlinear differential equations with Psi-exponential or Psi-ordinary dichotomous linear part in a Banach space. Electron. J. Qual. Theory Differ. Equ., 2014, No. 2, 1-10
[13] Gupta, B., and Srivastava, S. : On the ψ-dichotomy for impulsive homogeneous linear differential equations. Int. J. of Math. Anal. (Ruse), 2, (2008), No. 25, 1241 - 1248
[14] Gupta, B., and Srivastava, S. : Existence of ψ-bounded solution for a system of impulsive differential equations. Int. J. of Math. Anal. (Ruse), 2, (2008), No. 25, 1249 1256
[15] Hristova, S., and Proytcheva, V. : Weighted exponential stability for generalized delay functional differential equations with bounded delay. Advances in Difference Equations 2014, 2014:185
[16] Massera, J., and Schaeffer, J. : Linear Differential Equations and Function Spaces. Academic Press, (1966)
[17] Mil'man, V., and Myshkis, A. : On the stability of motion in the presence of impulses. Sib. Math. J, 1, (1960), 233-237
[18] Zabrejko, P., Bajnov, D., and Kostadinov, S. : Characteristic exponents of impulsive differential equations in a Banach space. Int. J. Theor. Phys., 27 (1988), No. 6, 731-743
[19] Zabrejko, P., Bajnov, D., and Kostadinov, S. : Stability of linear equations with impulse effect. Tamkang J. Math., 18 (1987), No. 4, 57-63
[20] S. Zlatev : Psi-ordinary dichotomy of the solutions of impulse differential equations in a Banach space. Int. J. Pure and Appl. Math., 92, (2014), No. 4, 609-618
received: Mai 25, 2015

Authors:

Hristo Kiskinov	Andrey Zahariev
Faculty of Mathematics and Informatics	Faculty of Mathematics and Informatics
University of Plovdiv	University of Plovdiv
236 Bulgaria Blvd.,	236 Bulgaria Blvd.,
4003 Plovdiv,	4003 Plovdiv,
Bulgaria	Bulgaria
e-mail: kiskinov@uni-plovdiv.bg	e-mail: zandrey@uni-plovdiv.bg
Stepan Kostadinov	Slav Cholakov
Faculty of Mathematics and Informatics	Faculty of Mathematics and Informatics
University of Plovdiv	University of Plovdiv
236 Bulgaria Blvd.,	236 Bulgaria Blvd.,
4003 Plovdiv,	4003 Plovdiv,
Bulgaria	Bulgaria
e-mail: stkostadinov@uni-plovdiv.bg	e-mail: cholakovs@uni-plovdiv.bg

Estimate of the validity interval for the Antimaximum Principle and application to a non-cooperative system

Abstract

We are concerned with the sign of the solutions of non-cooperative systems when the parameter varies near a Principal eigenvalue of the system. With this aim we give precise estimates of the validity interval for the Antimaximum Principle for an equation and an example. We apply these results to a non-cooperative system. Finally a counterexample shows that our hypotheses are necessary. The Maximum Principle remains true only for a restricted positive cone.

KEY WORDS. Maximum Principle, Antimaximum Principle, Elliptic Equations and Systems, Non cooperative systems, Principal Eigenvalue.

1 Introduction

In this paper we use ideas concerning the Anti-Maximum Principle due to Clement and Peletier [5] and later to Arcoya Gámez [3] to obtain in Section 2 precise estimates concerning the validity interval for the Antimaximum Principle for one equation. An example shows that this estimate is sharp.

The Maximum Principle and then the Antimaximum Principle for the case of a single equation have been extensively studied later for cooperative elliptic systems (see the references ([1],[6],[7],[8],[10],[12]). The results in [10], are still valid for systems(with constant coefficients) involving the p-Laplacian. Some results for non-cooperative systems can be found e.g. in [4],[11]. Very general results concerning the Maximum Principle for equations and cooperative systems for different classes (classical, weak, very weak) of solutions were given by Amann in a long paper [2], in particular the Maximum Principle was shown to be equivalent to the positivity of the principal eigenvalue.

Here in Section 3, we consider a non-cooperative 2×2 system with constant coefficients depending on a real parameter μ having two real principal eigenvalues $\mu_{1}^{-}<\mu_{1}^{+}$. We obtain some theorems of Antimaximum Principle type concerning the behavior of different cones of
couples of functions having positivity (or negativity) properties. We give several results of this type for values of $\mu_{1}^{-}<\mu$ but close to μ_{1}^{-}by combining the usual Maximum Principle and the results for the Antimaximum Principle in Section 2.

Finally a counterexample is given showing that the Maximum Principle does not hold in general for non cooperative systems, but a (partial, under an additional assumption) Maximum Principle for $\mu<\mu_{1}^{-}$is also obtained.

2 Estimate of the validity interval for the Anti-maximum Principle

Let Ω be a smooth bounded domain in \mathbb{R}^{N}. We consider the following Dirichlet boundary value problem

$$
\begin{equation*}
-\Delta z=\mu z+h \text { in } \Omega, \quad z=0 \text { on } \partial \Omega \tag{2.1}
\end{equation*}
$$

where μ is a real parameter. We associate to (2.1) the eigenvalue problem

$$
\begin{equation*}
-\Delta \varphi=\lambda \varphi \text { in } \Omega, \quad \varphi=0 \text { on } \partial \Omega \tag{2.2}
\end{equation*}
$$

We denote by $\lambda_{k}, k \in \mathbb{N}^{*}$ the eigenvalues $\left(0<\lambda_{1}<\lambda_{2} \leq \ldots\right)$ and by φ_{k} a set of orthonormal associated eigenfunctions. We choose $\varphi_{1}>0$.

Hypothesis $\left(H_{0}\right)$: We write

$$
\begin{equation*}
h=\alpha \varphi_{1}+h^{\perp} \tag{2.3}
\end{equation*}
$$

where $\int_{\Omega} h^{\perp} \varphi_{1}=0$ and we assume $\alpha>0$ and $h \in L^{q}, q>N$ if $N \geq 2$ and $q=2$ if $N=1$.
Theorem 1 We assume $\left(H_{0}\right)$ and $\lambda_{1}<\mu \leq \Lambda<\lambda_{2}$. There exists a constant K depending only on Ω, Λ and q such that, for $\lambda_{1}<\mu<\lambda_{1}+\delta(h)$ with

$$
\begin{equation*}
\delta(h)=\frac{K \alpha}{\left\|h^{\perp}\right\|_{L^{q}}} \tag{2.4}
\end{equation*}
$$

the solution z to (2.1) satisfies the Antimaximum Principle, that is

$$
\begin{equation*}
z<0 \text { in } \Omega ; \quad \partial z / \partial \nu>0 \text { on } \partial \Omega \tag{2.5}
\end{equation*}
$$

where $\partial / \partial \nu$ denotes the outward normal derivative.
Remark 2.1 The Antimaximum Principle of Theorem 1, assuming $\alpha>0$, is in the line of the version given by Arcoya- Gámez [3].

Lemma 2.1 We assume $\lambda_{1}<\mu \leq \Lambda<\lambda_{2}$ and $h \in L^{q}, q>N \geq 2$. We suppose that there exists a constant C_{1} depending only on Ω, q, and Λ such that z satisfying (2.1) is such that

$$
\begin{equation*}
\|z\|_{L^{2}} \leq C_{1}\|h\|_{L^{2}} \tag{2.6}
\end{equation*}
$$

Then there exist constants C_{2} and C_{3}, depending only on Ω, q and Λ such that

$$
\begin{equation*}
\|z\|_{\mathcal{C}^{1}} \leq C_{2}\|h\|_{L^{q}} \text { and }\|z\|_{L^{q}} \leq C_{3}\|h\|_{L^{q}} . \tag{2.7}
\end{equation*}
$$

Remark 2.2 Hypothesis (2.6) cannot hold, unless h is orthogonal to φ_{1}. Indeed, letting μ go to λ_{1}, (2.6) implies the existence of a solution to (2.1) with $\mu=\lambda_{1}$. Note that in the proof of Theorem 1, Lemma 2.1 is used for h (and hence z) orthogonal to φ_{1}.

2.1 Proof of Lemma 2.1

All constants in this proof depend only on Ω, Λ and q.
Claim: $\|z\|_{L^{q}} \leq C_{3}\|h\|_{L^{q}}$.
If the claim is verified then, by regularity results for the Laplace operator combined with Sobolev imbeddings

$$
\begin{equation*}
\|z\|_{\mathcal{C}^{1}} \leq C_{4}\|z\|_{W^{2, q}} \leq C_{5}\left(\Lambda\|z\|_{L^{q}}+\|h\|_{L^{q}}\right) \tag{2.8}
\end{equation*}
$$

From the claim and regularity results we deduce (2.7).

Proof of the claim:

- Step 1 We consider the sequence $p_{j}=2+\frac{8 j}{N}$ for $j \in \mathbb{N}$. Observe that for any j, $W^{2, p_{j}} \hookrightarrow L^{p_{j+1}}$ and that there exists a constant $H(j)$ such that

$$
\begin{equation*}
\forall v \in W^{2, p_{j}},\|v\|_{L^{p_{j+1}}} \leq H(j)\|v\|_{W^{2, p_{j}}} . \tag{2.9}
\end{equation*}
$$

The relation (2.9) is obvious if $2 p_{j} \geq N$ and for $2 p_{j}<N$ we have

$$
\frac{N p_{j}}{N-2 p_{j}}-p_{j+1}=\frac{2 p_{j} p_{j+1}-8}{N-2 p_{j}}>0
$$

and the result follows by classical Sobolev imbedding.

- Step 2 We consider z satisfying (2.1). For $j=0$, we derive from (2.6) and Hölder inequality that

$$
\begin{equation*}
\|z\|_{L^{2}} \leq C_{5}\|h\|_{L^{q}} . \tag{2.10}
\end{equation*}
$$

By induction we assume that $z \in L^{p_{j}}$ with $p_{j}<q$ and that

$$
\begin{equation*}
\|z\|_{L^{p_{j}}} \leq K(j)\|h\|_{L^{q}} . \tag{2.11}
\end{equation*}
$$

By Hölder inequality,

$$
\|\mu z+h\|_{L^{p_{j}}} \leq \Lambda\|z\|_{L^{p_{j}}}+|\Omega|^{\frac{q-p_{j}}{q p_{j}}}\|h\|_{L^{q}} .
$$

By regularity results for the Laplace operator:

$$
\|z\|_{W^{2, p_{j}}} \leq C(j)\left(\Lambda\|z\|_{L^{p_{j}}}+|\Omega|^{\frac{q-p_{j}}{q p_{j}}}\|h\|_{L^{q}}\right) \leq C(j)\left(\Lambda K(j)+|\Omega|^{\frac{q-p_{j}}{q p_{j}}}\right)\|h\|_{L^{q}} .
$$

Using (2.9) the relation (2.11) holds for $j+1$ and the induction is proved.

- Step 3 Let J be such that $p_{J+1} \geq q>p_{J}$. After J iterations we get by (2.11)

$$
\begin{gathered}
\|z\|_{L^{q}} \leq C_{6}\|z\|_{L^{p_{J+1}}} \leq C_{6} K(J+1)\|z\|_{W^{2, p}} \leq \\
C_{7} K(J+1)\|\mu z+h\|_{L^{p_{J}}} \leq C_{8}\left(\Lambda\|h\|_{L^{q}}+\|h\|_{L^{p_{J}}}\right) \leq C_{9}\|h\|_{L^{q}},
\end{gathered}
$$

which is the claim.

2.2 Proof of Theorem 1

- Step 1: We prove the following inequality:

$$
\begin{equation*}
\left\|z^{\perp}\right\|_{\mathcal{C}^{1}} \leq C_{2}\left\|h^{\perp}\right\|_{L^{q}} . \tag{2.12}
\end{equation*}
$$

We derive from (2.3)

$$
\begin{equation*}
z=\frac{\alpha}{\lambda_{1}-\mu} \varphi_{1}+z^{\perp} \tag{2.13}
\end{equation*}
$$

with z^{\perp} solution of

$$
\begin{equation*}
-\Delta z^{\perp}=\mu z^{\perp}+h^{\perp} \text { in } \Omega ; \quad z^{\perp}=0 \text { on } \partial \Omega . \tag{2.14}
\end{equation*}
$$

By the variational characterization of λ_{2} :

$$
\lambda_{2} \int_{\Omega}\left|z^{\perp}\right|^{2} \leq \int_{\Omega}\left|\nabla z^{\perp}\right|^{2}=\mu \int_{\Omega}\left|z^{\perp}\right|^{2}+\int_{\Omega} z^{\perp} h^{\perp}
$$

Hence

$$
\left\|z^{\perp}\right\|_{L^{2}} \leq \frac{1}{\lambda_{2}-\Lambda}\left\|h^{\perp}\right\|_{L^{2}}
$$

By Lemma 2.1, we derive (2.12).

- Step 2: Close to the boundary:

We show now that on the boundary $\frac{\partial z}{\partial \nu}(x)>0$. and near the boundary $z<0$.
Since $\partial \varphi_{1} / \partial \nu<0$ on $\partial \Omega$, we set

$$
\begin{equation*}
A:=\min _{\partial \Omega}\left|\partial \varphi_{1} / \partial \nu\right|>0 \tag{2.15}
\end{equation*}
$$

By a continuity argument there exists $\varepsilon>0$ such that

$$
\begin{equation*}
\operatorname{dist}(x, \partial \Omega)<\varepsilon \Rightarrow \partial \varphi_{1} / \partial \nu(x) \leq-A / 2 \tag{2.16}
\end{equation*}
$$

Hence by (2.12) to (2.16), for any $x \in \Omega$ such that $\operatorname{dist}(x, \partial \Omega)<\varepsilon$, and if

$$
0<\mu-\lambda_{1}<\frac{\alpha A}{4 C_{2}\left\|h^{\perp}\right\|_{L^{q}}}
$$

we have

$$
\frac{\partial z}{\partial \nu}(x)=\frac{\alpha}{\lambda_{1}-\mu} \frac{\partial \varphi_{1}}{\partial \nu}(x)+\frac{\partial z^{\perp}}{\partial \nu}(x) \geq \frac{\alpha}{\lambda_{1}-\mu} \frac{\partial \varphi_{1}}{\partial \nu}(x)-C_{2}\left\|h^{\perp}\right\|_{L^{q}},
$$

hence

$$
\begin{equation*}
\frac{\partial z}{\partial \nu}(x) \geq \frac{\alpha}{2\left(\lambda_{1}-\mu\right)} \frac{\partial \varphi_{1}}{\partial \nu}(x)>0 . \tag{2.17}
\end{equation*}
$$

Therefore $\frac{\partial z}{\partial \nu}(x)>0$ on $\partial \Omega$. Moreover since $z=\varphi_{1}=0$ on $\partial \Omega$, we deduce from (2.17) that, for $x \in \Omega$ with $\operatorname{dist}(x, \partial \Omega)<\varepsilon^{\prime} \leq \varepsilon / 2\left(\varepsilon^{\prime}\right.$ small enough),

$$
z(x) \leq \frac{\alpha}{2\left(\lambda_{1}-\mu\right)} \varphi_{1}(x)<0
$$

where ε^{\prime} does not depend on μ.

- Step 3: Inside Ω :

We consider now $\Omega_{\varepsilon^{\prime}}:=\left\{x \in \Omega\right.$, $\left.\operatorname{dist}(x, \partial \Omega)>\varepsilon^{\prime}\right\}$. Set

$$
B:=\min _{\Omega_{\varepsilon^{\prime}}} \varphi_{1}(x)>0 .
$$

We have in $\Omega_{\varepsilon^{\prime}}$ by (2.12) and (2.13)

$$
z(x)=\frac{\alpha}{\lambda_{1}-\mu} \varphi_{1}(x)+z^{\perp}(x) \leq \frac{\alpha}{\lambda_{1}-\mu} B+C_{2}\left\|h^{\perp}\right\|_{L^{q}}<0
$$

if we choose

$$
\mu-\lambda_{1}<\frac{\alpha \min (B, A / 2)}{C_{2}\left\|h^{\perp}\right\|_{L^{q}}}
$$

We derive now Theorem 1.

2.3 An example

Let $N=1, \Omega=] 0,1\left[\right.$ and $h=h_{1} \varphi_{1}+h_{2} \varphi_{2}$ with $h_{1}>0, h_{2}>0$. We note that

$$
\begin{equation*}
\varphi_{1}(x)-s \varphi_{2}(x)=\sin \pi x(1-2 \operatorname{scos} \pi x)>0 \tag{2.18}
\end{equation*}
$$

in Ω implies $s \leq 1 / 2$. For this example, taking $\mu=\lambda_{1}+\varepsilon, \varepsilon>0$, we have:

$$
z=\frac{h_{1}}{\lambda_{1}-\mu} \varphi_{1}+\frac{h_{2}}{\lambda_{2}-\mu} \varphi_{2}=-\frac{h_{1}}{\varepsilon}\left(\varphi_{1}-\frac{\varepsilon h_{2}}{h_{1}\left(\lambda_{2}-\lambda_{1}-\varepsilon\right)} \varphi_{2}\right) .
$$

If the Antimaximum Principle holds, $z<0$ in Ω, and by (2.18), we have

$$
\frac{\varepsilon h_{2}}{h_{1}\left(\lambda_{2}-\lambda_{1}-\varepsilon\right)} \leq \frac{1}{2},
$$

hence

$$
\varepsilon \leq \frac{h_{1}\left(\lambda_{2}-\lambda_{1}\right)}{2 h_{2}\left(1+\frac{h_{1}}{2 h_{2}}\right)} \leq \frac{h_{1}\left(\lambda_{2}-\lambda_{1}\right)}{2 h_{2}} .
$$

We obtain an estimate of $\delta(h)$ similar to that in Theorem 1.

3 A non-cooperative system

Now we will consider the 2×2 non-cooperative system depending on a real parameter μ :

$$
\begin{gather*}
-\Delta u=a u+b v+\mu u+f \text { in } \Omega \tag{1}\\
-\Delta v=c u+d v+\mu v+g \text { in } \Omega \tag{2}\\
u=v=0 \text { on } \partial \Omega \tag{3}
\end{gather*}
$$

or shortly

$$
\begin{equation*}
-\Delta U=A U+\mu U+F \text { in } \Omega, U=0 \text { on } \partial \Omega \tag{S}
\end{equation*}
$$

Hypothesis $\left(H_{1}\right)$ We assume $b>0, c<0$, and

$$
\begin{equation*}
D:=(a-d)^{2}+4 b c>0 \tag{3.1}
\end{equation*}
$$

3.1 Eigenvalues of the system

As usual we say that μ is an eigenvalue of System (S) if $\left(S_{1}\right)-\left(S_{3}\right)$ has a non trivial solution $U=(u, v) \neq 0$ for $F \equiv 0$ and we say that μ is a principal eigenvalue of System (S) if there exists $U=(u, v)$ with $u>0, v>0$ solution to (S) with $F \equiv 0$.

Notice that, since (S) is not cooperative, it is not necessarily true that there is a lowest principal eigenvalue μ_{1} and that the Maximum Principle holds if and only if $\mu_{1}>0$ (Amann [2]).

We seek solutions $u=p \varphi_{1}, v=q \varphi_{1}$ to the eigenvalue problem where, as above, $\left(\lambda_{1}, \varphi_{1}\right)$ is the principal eigenpair for $-\Delta$ with Dirichlet boundary conditions.

Principal eigenvalues correspond to solutions with $p, q>0$. The associated linear system is

$$
\begin{aligned}
& \left(a+\mu-\lambda_{1}\right) p+b q=0 \\
& c p+\left(d+\mu-\lambda_{1}\right) q=0
\end{aligned}
$$

and it follows from $\left(H_{1}\right)$ that $\left(a+\mu-\lambda_{1}\right)$ and $\left(d+\mu-\lambda_{1}\right)$ should have opposite signs. We should have

$$
\operatorname{Det}\left(A+\left(\mu-\lambda_{1}\right) I\right)=\left(a+\mu-\lambda_{1}\right)\left(d+\mu-\lambda_{1}\right)-b c=0,
$$

which implies by $\left(H_{1}\right)$ that the condition on signs is satisfied and this whatever the sign of μ could be. (Notice that $D>0$ implies that both roots are real and that $D=0$ gives a real double root).

We have then shown directly that our system has (at least) two principal eigenvalues. Their signs will depend on the coefficients. If, for example, $a<\lambda_{1}, d<\lambda_{1}$, the largest one is positive. We will denote the two principal eigenvalues by μ_{1}^{-}and μ_{1}^{+}where

$$
\begin{equation*}
\mu_{1}^{-}:=\lambda_{1}-\xi_{1}<\mu_{1}^{+}:=\lambda_{1}-\xi_{2}, \tag{3.2}
\end{equation*}
$$

where the eigenvalues of Matrix A are:

$$
\xi_{1}=\frac{a+d+\sqrt{D}}{2}>\xi_{2}=\frac{a+d-\sqrt{D}}{2} .
$$

Remark 3.1 Usually the Maximum Principle holds if and only if the first eigenvalue is positive. Here by replacing $-\Delta$ by $-\Delta+K$ with $K>0$ large enough we may get $\mu_{1}^{-}>0$. Nevertheless the Maximum Principle needs an additional condition (see Theorem 4 and its remark).

3.2 Main Theorems

3.2.1 The case $\mu_{1}^{-}<\mu<\mu_{1}^{+}$

We assume in this subsection that the parameter μ satisfies:
$\left(H_{2}\right) \quad \mu_{1}^{-}<\mu<\mu_{1}^{+}$.
Theorem 2 Assume $\left(H_{1}\right),\left(H_{2}\right)$, and
$\left(H_{3}\right)$

$$
d<a,
$$

$\left(H_{4}\right) \quad f \geq 0, g \geq 0, f, g \not \equiv 0, f, g \in L^{q}, q>N$ if $N \geq 2 ; q=2$ if $N=1$.
Then there exists $\delta>0$, independent of μ, such that if

$$
\begin{equation*}
\mu<\mu_{1}^{-}+\delta, \tag{5}
\end{equation*}
$$

we get

$$
u<0, v>0 \text { in } \Omega ; \frac{\partial u}{\partial \nu}>0, \frac{\partial v}{\partial \nu}<0 \text { on } \partial \Omega .
$$

Remark 3.2 If in the theorem above we reverse signs of f, g, u, v that is $f \leq 0, g \leq$ $0, f, g \not \equiv 0$, then for μ satisfying $\left(H_{5}\right)$, we get

$$
u>0, v<0 \text { in } \Omega ; \frac{\partial u}{\partial \nu}<0, \frac{\partial v}{\partial \nu}>0 \text { on } \partial \Omega .
$$

Note that the counterexample in subsection (3.3) shows that for f, g of opposite $\operatorname{sign}(f g<0)$, u or v may change sign.

Theorem 3 Assume $\left(H_{1}\right),\left(H_{2}\right)$, and
$\left(H_{3}^{\prime}\right)$

$$
a<d
$$

$\left(H_{4}^{\prime}\right) \quad f \leq 0, g \geq 0, f, g \not \equiv 0, f, g \in L^{q}, q>N$ if $N \geq 2 ; q=2$ if $N=1$.
Then there exists $\delta>0$, independent of μ, such that if
$\left(H_{5}\right)$

$$
\mu<\mu_{1}^{-}+\delta
$$

we obtain

$$
u<0, v<0 \text { in } \Omega ; \frac{\partial u}{\partial \nu}>0, \frac{\partial v}{\partial \nu}>0 \text { on } \partial \Omega
$$

Remark 3.3 If in the theorem above we reverse signs of f, g, u, v that is $f \geq 0, g \leq$ $0, f, g \not \equiv 0$, then for μ satisfying $\left(H_{5}\right)$, we get

$$
u>0, v>0 \text { in } \Omega ; \frac{\partial u}{\partial \nu}<0, \frac{\partial v}{\partial \nu}<0 \text { on } \partial \Omega .
$$

Note that, by the changes used in the proof of the theorem above, the counterexample in subsection (3.3) shows that for f, g with same sign $(f g>0), u$ or v may change sign.

3.2.2 The case $\mu<\mu_{1}^{-}$

We assume in this Section that the parameter μ satisfies:
$\left(H_{2}^{\prime}\right) \quad \mu<\mu_{1}^{-}$.
Theorem 4 Assume $\left(H_{1}\right),\left(H_{2}^{\prime}\right)$, and
$\left(H_{3}^{\prime}\right)$

$$
a<d
$$

$\left(H_{4}^{\prime \prime}\right)$

$$
f \geq 0, g \geq 0, f, g \not \equiv 0, f, g \in L^{2}
$$

Assume also $t^{*} g-f \geq 0, t^{*} g-f \not \equiv 0$ with

$$
t^{*}=\frac{d-a+\sqrt{D}}{-2 c}
$$

Then

$$
u>0, v>0 \text { in } \Omega ; \frac{\partial u}{\partial \nu}<0, \frac{\partial v}{\partial \nu}<0 \text { on } \partial \Omega .
$$

Remark 3.4 As above we can reverse signs of f, g, u, v.

3.3 Counterexample: $a>d$

We consider the system in 1 dimension

$$
\begin{gathered}
\left.-u^{\prime \prime}=4 u+v+\mu u+f \text { in } I:=\right] 0 ; \pi[, \\
-v^{\prime \prime}=-u+v+\mu v+g \text { in } I, \\
u(0)=u(\pi)=v(0)=v(\pi)=0 .
\end{gathered}
$$

$\lambda_{1}=1$ and $\lambda_{2}=4 ; \varphi_{1}=\sin x, \varphi_{2}=\sin 2 x$. We compute $\mu_{1}^{-}=1-\frac{5+\sqrt{5}}{2}$. Choose $f=\varphi_{1}-\frac{1}{2} \varphi_{2} \geq 0$ and $g=k f$ with $k \neq 0$ to be determined later. We obtain

$$
u=u_{1} \varphi_{1}+u_{2} \varphi_{2} \text { and } v=v_{1} \varphi_{1}+v_{2} \varphi_{2}
$$

where

$$
u_{1}=\frac{k-\mu}{\mu^{2}+3 \mu+1}, u_{2}=\frac{\mu-k-3}{2\left(\mu^{2}-3 \mu+1\right)}
$$

$1 /$ Choosing $\mu=-3<\mu_{1}^{-}$, we get $v_{1}=-1$ and $v_{2}=\frac{1-3 k}{38}$. Therefore

$$
-v=\varphi_{1}+\frac{3 k-1}{38} \varphi_{2},
$$

and for $\frac{3 k-1}{38}>\frac{1}{2}, v$ changes sign. Hence Maximum Principle does not hold.
2/ Choosing $\mu_{1}^{-}<\mu=\mu_{1}^{-}+\epsilon, k=\mu_{1}^{-}+\epsilon^{2}$, we have

$$
\frac{u_{2}}{u_{1}}=\left(\frac{\mu-k-3}{k-\mu}\right)\left(\frac{\mu^{2}+3 \mu+1}{2\left(\mu^{2}-3 \mu+1\right)}\right)=\left(\frac{3+\epsilon}{\epsilon}\right)\left(\frac{\sqrt{5}-\epsilon}{(9+3 \sqrt{5})-(6+\sqrt{5}) \epsilon+\epsilon^{2}}\right) .
$$

So that $\frac{u_{2}}{u_{1}} \rightarrow \infty$ as $\epsilon \rightarrow 0$. Hence for these $f>0, g<0, u$ changes sign.

3.4 Proofs of the main results

3.4.1 Some computations and associate equation

In the following we introduce

$$
\begin{align*}
& \gamma_{1}=\frac{1}{2}(a+d+2 \mu-\sqrt{D})=\lambda_{1}+\mu-\mu_{1}^{+} \tag{3.3}\\
& \gamma_{2}=\frac{1}{2}(a+d+2 \mu+\sqrt{D})=\lambda_{1}+\mu-\mu_{1}^{-} \tag{3.4}
\end{align*}
$$

and some auxiliary results used in the proofs of our results.

Lemma 3.1 We have

$$
\begin{equation*}
\sqrt{D}<a-d \Leftrightarrow d+\mu<\gamma_{1}<\gamma_{2}<a+\mu . \tag{L3}
\end{equation*}
$$

$$
\begin{equation*}
\sqrt{D}<d-a \Leftrightarrow a+\mu<\gamma_{1}<\gamma_{2}<d+\mu \tag{L4}
\end{equation*}
$$

$$
\begin{align*}
& \mu<\mu_{1}^{+}+\delta \Leftrightarrow \gamma_{1}<\lambda_{1}+\delta . \tag{L5}\\
& \mu<\mu_{1}^{-}+\delta \Leftrightarrow \gamma_{2}<\lambda_{1}+\delta .
\end{align*}
$$

3.4.2 Proofs of Theorems 2 and 3

Proof of Theorem 2, $a>d$:

We introduce now

$$
\begin{equation*}
w=u+t v \tag{3.5}
\end{equation*}
$$

with

$$
\begin{equation*}
t=\frac{a-d+\sqrt{D}}{-2 c}=\frac{2 b}{a-d-\sqrt{D}} \tag{3.6}
\end{equation*}
$$

so that

$$
\begin{gather*}
-\Delta w=\gamma_{1} w+f+\operatorname{tg} \text { in } \Omega ; \tag{3.7}\\
\left.w\right|_{\partial \Omega}=0 .
\end{gather*}
$$

We remark that

$$
\begin{equation*}
t=\frac{b}{\gamma_{1}-d-\mu}=\frac{b}{a+\mu-\gamma_{2}}=\frac{\gamma_{1}-a-\mu}{c}=\frac{d+\mu-\gamma_{2}}{c} . \tag{3.8}
\end{equation*}
$$

Note first that Hypothesis $\left(H_{3}\right)$ implies $t>0$ and $a-d>\sqrt{D}$. By $\left(H_{2}\right),\left(H_{4}\right)$, and (L1) in Lemma 3.1, $\gamma_{1}<\lambda_{1}$, and we apply the Maximum Principle which gives $w>0$ on Ω and $\frac{\partial w}{\partial \nu}<0$ on $\partial \Omega$. We compute

$$
\begin{equation*}
a+\mu-\frac{b}{t}=a+d+2 \mu-\gamma_{1}=\gamma_{2}, \tag{3.9}
\end{equation*}
$$

and since $v=(w-u) / t$, we derive

$$
-\Delta u=\left(a+\mu-\frac{b}{t}\right) u+\frac{b}{t} w+f=\gamma_{2} u+\frac{b}{t} w+f
$$

where $\frac{b}{t} w+f>0$. From $\left(H_{5}\right)$ and (L6), $\gamma_{2} \leq \lambda_{1}+\delta_{1}$, where

$$
\begin{equation*}
\delta_{1}:=\delta\left(\frac{b}{t} w+f\right) \tag{3.10}
\end{equation*}
$$

we deduce from the Antimaximum Principle that $u<0$ on Ω and $\frac{\partial u}{\partial \nu}>0$ on $\partial \Omega$. Hence $c u+g>0$.
Now $\left(H_{2}\right),\left(L_{1}\right)$ and $\left(L_{3}\right)$ imply $d+\mu<\gamma_{1}<\lambda_{1}$ and the Maximum Principle applied to (S_{2}) gives $v>0$ on Ω and $\frac{\partial v}{\partial \nu}<0$ on $\partial \Omega$.
We apply now Section 1 to estimate δ_{1}.

$$
\begin{equation*}
h:=\frac{b}{t} w+f=\left(\gamma_{1}-d-\mu\right) w+f=\sigma \varphi_{1}+h^{\perp} . \tag{3.11}
\end{equation*}
$$

First we compute σ :
Set $f=\alpha \varphi_{1}+f^{\perp}, g=\beta \varphi_{1}+g^{\perp}, w=\kappa \varphi_{1}+w^{\perp}$. Since

$$
-\Delta w=\gamma_{1} w+f+\frac{b}{\gamma_{1}-d-\mu} g
$$

we calculate:

$$
\sigma=\alpha+\left(\gamma_{1}-d-\mu\right) \kappa=\alpha \frac{\lambda_{1}-d-\mu}{\lambda_{1}-\gamma_{1}}+\beta \frac{b}{\lambda_{1}-\gamma_{1}} .
$$

Now we estimate $\left\|h^{\perp}\right\|_{L^{2}}$.

$$
-\Delta w^{\perp}=\gamma_{1} w^{\perp}+f^{\perp}+\frac{b}{\gamma_{1}-d-\mu} g^{\perp}
$$

The variational characterization of λ_{2} gives

$$
\left(\lambda_{2}-\gamma_{1}\right)\left\|w^{\perp}\right\|_{L^{2}} \leq\left\|f^{\perp}\right\|_{L^{2}}+\frac{b}{\gamma_{1}-d-\mu}\left\|g^{\perp}\right\|_{L^{2}}
$$

We derive from (3.11)

$$
\left\|h^{\perp}\right\|_{L^{2}} \leq\left\|f^{\perp}\right\|_{L^{2}}+\left(\gamma_{1}-d-\mu\right)\left\|w^{\perp}\right\|_{L^{2}} \leq \frac{\lambda_{2}-d-\mu}{\lambda_{2}-\gamma_{1}}\left\|f^{\perp}\right\|_{L^{2}}+\frac{b}{\lambda_{2}-\gamma_{1}}\left\|g^{\perp}\right\|_{L^{2}}
$$

Reasoning as in Lemma 2.1, we show that there exists a constant C_{3} such that

$$
\begin{equation*}
\left\|h^{\perp}\right\|_{L^{q}} \leq C_{3}\left(\frac{\lambda_{2}-d-\mu}{\lambda_{2}-\gamma_{1}}\left\|f^{\perp}\right\|_{L^{q}}+\frac{b}{\lambda_{2}-\gamma_{1}}\left\|g^{\perp}\right\|_{L^{q}}\right) \tag{3.12}
\end{equation*}
$$

In fact for proving (3.12) we use the same sequence than that in Lemma 2.1 and we show by induction that

$$
\left\|z^{\perp}\right\|_{L^{p_{j}}} \leq K(j)\left(\left\|f^{\perp}\right\|_{L^{q}}+\left\|g^{\perp}\right\|_{L^{q}}\right)
$$

Now we apply the Antimaximum Principle to the equation

$$
-\Delta u=\gamma_{2} u+h .
$$

This is possible since by (L6) in Lemma 3.1, $\lambda_{1}<\gamma_{2}<\lambda_{1}+\delta_{2}=\lambda_{1}+\delta(h)$ where, as in Theorem 1, $\delta(h)=\frac{K \sigma}{\left\|h^{+}\right\|_{L^{q}}}$.
Moreover we notice that $\lambda_{1}-\gamma_{1}=\mu_{1}^{+}-\mu \leq \mu_{1}^{+}-\mu_{1}^{-}$and therefore, since $\alpha>0$ and $\beta>0$ by $\left(H_{4}\right)$,

$$
\sigma=\alpha \frac{\lambda_{1}-d-\mu}{\lambda_{1}-\gamma_{1}}+\beta \frac{b}{\lambda_{1}-\gamma_{1}} \geq \mathcal{A}:=\alpha \frac{\lambda_{1}-d-\mu_{1}^{+}}{\mu_{1}^{+}-\mu_{1}^{-}}+\beta \frac{b}{\mu_{1}^{+}-\mu_{1}^{-}},
$$

and from (3.12), we obtain

$$
\left\|h^{\perp}\right\|_{L^{q}} \leq \mathcal{B}:=C_{3}\left(\frac{\lambda_{2}-d-\mu_{1}^{-}}{\lambda_{2}-\lambda_{1}}\left\|f^{\perp}\right\|_{L^{q}}+\frac{b}{\lambda_{2}-\lambda_{1}}\left\|g^{\perp}\right\|_{L^{q}}\right) .
$$

From the computation above we can choose $\delta_{2}=\frac{K \mathcal{A}}{\mathcal{B}}$ which does not depend on μ, and the result follows.

Proof of Theorem 3, $a<d$:

We deduce this theorem from Theorem 2 by change of variables. Set $\hat{a}=d, \hat{d}=a, \hat{u}=v$, $\hat{v}=-u$ and $\hat{f}=g, \hat{g}=-f . \hat{f} \geq 0, \hat{g} \geq 0$, imply $\hat{u}<0, \hat{v}>0$. We get Theorem 3 .

3.4.3 Proof of Theorem 4

Since $a<d$, we have $t^{*}=\frac{d-a+\sqrt{D}}{-2 c}>0$. With now the change of variable $w=-u+t^{*} v$, as in [4] (see also [11]), we can write the system as

$$
\begin{gather*}
-\Delta u=\gamma_{1} u+\left(b / t^{*}\right) w+f \text { in } \Omega \tag{3.13}\\
-\Delta v=\gamma_{1} v-c w+g \text { in } \Omega \tag{3.14}\\
-\Delta w=\gamma_{2} w+\left(t^{*} g-f\right) \text { in } \Omega \tag{3.15}\\
u=v=w=0 \text { on } \partial \Omega
\end{gather*}
$$

Now $\mu<\mu_{1}^{-}$, and it follows from (L2) in Lemma 3.1 that $\gamma_{1}<\gamma_{2}<\lambda_{1}$. From (3.15) it follows from the Maximum Principle that $w>0$. Then in (3.14) $-c w+g>0$, and again by the Maximum Principle $v>0$. Finally, since $\left(b / t^{*}\right) w+f>0$ in (3.13), again by the Maximum Principle $u>0$.

Acknowledgements The authors thank the referee for useful comments.
J.Hernández is partially supported by the project MTM2011-26119 of the DGISPI (Spain).

References

[1] Amann, H. : Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Re. 18, 4, 1976, p. 620-709
[2] Amann, H. : Maximum Principles and Principal Eigenvalues. Ten Mathematical Essays on Approximation in Analysis and Topology, J. Ferrera, J. López-Gómez, F. R. Ruz del Portal ed., Elsevier, 2005, 1-60
[3] Arcoya, D., and Gámez, J. : Bifurcation theory and related problems: anti-maximum principle and resonance. Comm. Part. Diff. Equat., 26, 2001, p. 1879-1911
[4] Caristi, G., and Mitidieri, E. : Maximum principles for a class of non-cooperative elliptic systems. Delft Progress Rep. 14, 1990, p. 33-56
[5] Clément, P., and Peletier, L. : An anti-maximum principle for second order elliptic operators. J. Diff. Equ. 34, 1979, p. 218-229
[6] de Figueiredo, D. G., and Mitidieri, E. : A Maximum Principle for an Elliptic System and Applications to semilinear Problems. SIAM J. Math and Anal. N17 (1986), 836-849
[7] de Figueiredo, D. G., and Mitidieri, E. : Maximum principles for cooperative elliptic systems. C. R. Acad. Sci. Paris 310, 1990, p. $49-52$
[8] de Figueiredo, D. G., and Mitidieri, E. : Maximum principles for linear elliptic systems. Quaterno Mat. 177, Trieste, 1988
[9] Fleckinger, J., Gossez, J. P., Takác, P., and de Thélin, F. : Existence, nonexistence et principe de l'antimaximum pour le p-laplacien. C. R. Acad. Sci. Paris 321, 1995, p. 731-734
[10] Fleckinger, J., Hernández, J., and de Thélin, F. : On maximum principles and existence of positive solutions for some cooperative elliptic systems. Diff. Int.Eq. 8, 1, 1995, p. 69-85
[11] Lécureux, M. H. : Au-delà du principe du maximum pour des systèmes d'opérateurs elliptiques. Thèse, Université de Toulouse, Toulouse 1, 13 juin 2008
[12] Protter, M. H., and Weinberger, H. : Maximum Principles in Differential Equations. Springer-Verlag, 1984
received: May 15, 2015

Authors:

J. Fleckinger

Institut de Mathématique -
CEREMATH-UT1
Université de Toulouse,
31042 Toulouse Cedex,
France
F. de Thélin

Institut de Mathématique
Université de Toulouse,
31062 Toulouse Cedex,
France
e-mail: francoisdethelin@yahoo.fr
e-mail: jfleckinger@gmail.com
J. Hernández

Departamento de Matemáticas
Universidad Autónoma, 28049 Madrid,
Spain
e-mail: jesus.hernandez@uam.es

Dieter Leseberg

Subdensity as a convenient concept for Bounded Topology

ABSTRACT. A subdensity space is a special case of a density space, which also occur under the name of hypernear space in [17]. Hence, most of classical spaces, like topological spaces, uniform spaces, proximity spaces, contiguity spaces or nearness spaces, respectively can be immediately described and studied in this general framework. Moreover, the more specific defined subdensity spaces allow us to consider and integrate the fundamental species of b topological and b-near spaces, too, as presented and studied in [19]. In this paper it is shown that b-proximal spaces also can be involved, and b-topological spaces then have an alternate description by different corresponding subdensity spaces.

At last, we establish a one-to-one correspondence between suitable subdensity spaces and their related strict topological extensions [1]. This relationship generalizes the one of LODATO, studied by him in the realm of generalized proximity spaces [20].

KEY WORDS AND PHRASES. Bounded Topology; b-topological space; b-proximal space; strict topological extension

1 Basic Concepts

As usual $\underline{P} X$ denotes the power set of a set X, and we call $\mathcal{B}^{X} \subset \underline{P} X$ a bornology (on X) [8], if it possesses the following properties, i.e.
$\left(\mathrm{b}_{0}\right) \emptyset \in \mathcal{B}^{X} ;$
(b_{1}) $B_{2} \subset B_{1} \in \mathcal{B}^{X}$ imply $B_{2} \in \mathcal{B}^{X}$;
$\left(\mathrm{b}_{2}\right) x \in X$ implies $\{x\} \in \mathcal{B}^{X}$;
$\left(\mathrm{b}_{3}\right) B_{1}, B_{2} \in \mathcal{B}^{X}$ imply $B_{1} \cup B_{2} \in \mathcal{B}^{X}$.
The elements of \mathcal{B}^{X} are called bounded sets. Then, for bornologies $\mathcal{B}^{X}, \mathcal{B}^{Y}$ a function f : $X \longrightarrow Y$ is called bi-bounded iff f satisfies
(bib $\left._{1}\right) f \mathcal{B}^{X}:=\left\{f[B]: B \in \mathcal{B}^{X}\right\} \subset \mathcal{B}^{Y}$;
(bib_{2}) $f^{-1} \mathcal{B}^{Y}:=\left\{f^{-1}[D]: D \in \mathcal{B}^{Y}\right\} \subset \mathcal{B}^{X}$.
Evidently, for corresponding power sets each map $f: X \longrightarrow Y$ is bi-bounded. As an instructive example we consider for sets X, Y as bornologies in each case the set of all finite subsets of those. Then, for each map $f: X \longrightarrow Y$ and some $B \in \mathcal{B}_{f i}^{X}:=\{D \subset X: D$ is finite\} we look at the power set on B and consider the restriction $\left.f\right|_{B}$ of f on B. Then $\left.f\right|_{B}$ is bi-bounded.

Then we make use of the following notations: For collections $\rho, \rho_{1}, \rho_{2} \subset \underline{P} X$ we put:

$$
\begin{aligned}
& \rho_{2} \ll \rho_{1} \text { iff } \forall F_{2} \in \rho_{2} \exists F_{1} \in \rho_{1} F_{1} \subset F_{2} ; \\
& \rho_{1} \vee \rho_{2}:=\left\{F_{1} \cup F_{2}: F_{1} \in \rho_{1}, F_{2} \in \rho_{2}\right\} ; \\
& \sec \rho:=\{D \subset X: \forall F \in \rho D \cap F \neq \emptyset\} .
\end{aligned}
$$

Definition 1.1 We call a triple $\left(X, \mathcal{B}^{X}, N\right)$ consisting of a set X, bornology \mathcal{B}^{X} and a function $N: \mathcal{B}^{X} \longrightarrow \underline{P}(\underline{P}(\underline{P} X))$ an episd-space (shortly esd-space) iff the following axioms are satisfied:
$\left(\operatorname{esd}_{1}\right) \rho_{2} \ll \rho_{1} \in N(B), B \in \mathcal{B}^{X}, \rho_{2} \subset \underline{P} X$ imply $\rho_{2} \in N(B)$;
$\left(\operatorname{esd}_{2}\right) B \in \mathcal{B}^{X}$ implies $\mathcal{B}^{X} \notin N(B) \neq \emptyset$;
$\left(\operatorname{esd}_{3}\right) \rho \in N(\emptyset)$ implies $\rho=\emptyset$;
$\left(\operatorname{esd}_{4}\right) x \in X$ implies $\{\{x\}\} \in N(\{x\}) ;$
$\left(\operatorname{esd}_{5}\right) \emptyset \neq B_{2} \subset B_{1} \in \mathcal{B}^{X}$ imply $N\left(B_{2}\right) \subset N\left(B_{1}\right) ;$
$\left(\operatorname{esd}_{6}\right)\left\{\operatorname{cl}_{N}(F): F \in \rho\right\} \in N(B), \rho \subset \underline{P} X, B \in \mathcal{B}^{X}$ imply $\rho \in N(B)$, where $l_{N}(F):=\{x \in$ $X:\{F\} \in N(\{x\})\} ;$
$\left(\operatorname{esd}_{7}\right) \rho_{1} \vee \rho_{2} \in N(B), \rho_{1}, \rho_{2} \subset \underline{P} X, B \in \mathcal{B}^{X}$ imply $\rho_{1} \in N(B)$ or $\rho_{2} \in N(B)$;
$\left(\operatorname{esd}_{8}\right) B \in \mathcal{B}^{X}$ implies cl $l_{N}(B) \in \mathcal{B}^{X}$;
$\left(\operatorname{esd}_{9}\right) \rho \cap \mathcal{B}^{X} \in N(B), B \in \mathcal{B}^{X} \backslash\{\emptyset\}, \rho \subset \underline{P} X$ imply $\rho \in N(B)$.
If $\rho \in N(B)$ for some $B \in \mathcal{B}^{X}$, then we call ρ a B -collection (in N). For esd-spaces $\left(X, \mathcal{B}^{X}, N\right),\left(Y, \mathcal{B}^{Y}, M\right)$ a function $f: X \longrightarrow Y$ is called bi-bounded sd-map (shortly bibsdmap iff it satisfies $\left(\mathrm{bib}_{1}\right),\left(\mathrm{bib}_{2}\right)$ and
(sd) $B \in \mathcal{B}^{X}$ and $\rho \in N(B)$ imply $f \rho:=\{f[F]: F \in \rho\} \in M(f[B])$.
We denote by ESD the corresponding category.

Remark 1.2 In a former paper [19] it was shown, that the category b-TOP of b-topological spaces and b-continuous maps as well as the category b-NEAR of b-nearness spaces and b-near maps can be fully embedded into ESD. In our following research we will establish a further equivalent description of b-topological spaces by means of different esd-spaces resulting into an alternate description of the category TOP, if the given bornology \mathcal{B}^{X} of the considered esd-space is saturated, which means X is an element of \mathcal{B}^{X}. Moreover, we focus our attention on so called b-proximal spaces which also can be integrated into the above defined concept. Then, in a natural way, we will characterize those esd-spaces which can be extended to a certain topological one. In case of saturation this new established connection deliver us the well-known famous theorem of LODATO [20] up to isomorphism.

Definition 1.3 For a set X let \mathcal{B}^{X} be a bornology. A function $t: \mathcal{B}^{X} \longrightarrow \underline{P} X$ is called a b-topological operator (b-topology) (on \mathcal{B}^{X}) iff the following axioms are satisfied, i.e.
(b-t $\left.{ }_{1}\right) B \in \mathcal{B}^{X}$ implies $t(B) \in \mathcal{B}^{X}$;
$\left(\mathrm{b}-\mathrm{t}_{2}\right) t(\emptyset)=\emptyset$;
(b-t $\left.\mathrm{t}_{3}\right) B \in \mathcal{B}^{X}$ implies $B \subset t(B)$;
$\left(\mathrm{b}-\mathrm{t}_{4}\right) B_{1} \subset B_{2} \in \mathcal{B}^{X}$ imply $t\left(B_{1}\right) \subset t\left(B_{2}\right) ;$
$\left(\mathrm{b}-\mathrm{t}_{5}\right) B \in \mathcal{B}^{X}$ implies $t(t(B)) \subset t(B)$;
$\left(\mathrm{b}-\mathrm{t}_{6}\right) B_{1}, B_{2} \in \mathcal{B}^{X}$ imply $t\left(B_{1} \cup B_{2}\right) \subset t\left(B_{1}\right) \subset t\left(B_{2}\right)$.
Then the triple $\left(X, \mathcal{B}^{X}, t\right)$ is called a b-topological space. For b-topological spaces $\left(X, \mathcal{B}^{X}, t^{X}\right)$, $\left(Y, \mathcal{B}^{Y}, t^{Y}\right)$ a function $f: X \longrightarrow Y$ is called b-continuous map iff it is bi-bounded and satisfies the following condition, i.e.
(cont) $B \in \mathcal{B}^{X}$ implies $f\left[t^{X}(B)\right] \subset t^{Y}(f[B])$.
We denote by b-TOP the corresponding category [19].
Example 1.4 For a set X let \mathcal{B}_{f}^{X} be denote the set of all finite subsets of X. Thus, \mathcal{B}_{f}^{X} defines a bornology on X. Then, for a fixed set $D \in \mathcal{B}_{f}^{X}$ we establish a b-topology $t^{D}: \mathcal{B}^{X} \longrightarrow \underline{P} X$ by setting $t^{D}(\emptyset):=\emptyset$ and $t^{D}(B):=B \cup D$, otherwise.

Remark 1.5 If \mathcal{B}^{X} is saturated, then a b-topological space can be considered as topological space and vice versa. Moreover, if for bornologies $\mathcal{B}^{X}, \mathcal{B}^{Y}$ with saturated $\mathcal{B}^{X} f: X \longrightarrow Y$ is constant map, then f is automatically b-continuous.

Lemma 1.6 For a b-topological space $\left(X, \mathcal{B}^{X}, t\right)$ we set: $N_{t}(\emptyset):=\{\emptyset\}$ and $N_{t}(B):=\{\rho \subset$ $\left.\underline{P} X: B \in \sec \left\{t(F): F \in \rho \cap \mathcal{B}^{X}\right\}\right\}$, otherwise.

Then $\left(X, \mathcal{B}^{X}, N_{t}\right)$ is an esd-space such that $t=c l_{N_{t}}$ (see also Chapter 2).

Proof: Firstly, we have to verify that N_{t} is satisfying the axioms $\left(\operatorname{esd}_{1}\right)$ to $\left(\operatorname{esd}_{9}\right)$.
to $\left(\operatorname{esd}_{1}\right): \rho_{2} \ll \rho_{1} \in N_{t}(B), \rho \subset \underline{P} X, B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $F \in \rho_{2} \cap \mathcal{B}^{X}$ imply the existence of $F_{1} \in \rho_{1}$ with $F_{1} \subset F_{2}$. Hence $F_{1} \in \rho_{1} \cap \mathcal{B}^{X}$ follows by applying (b_{1}), and $B \cap t\left(F_{1}\right) \neq \emptyset$ results by hypothesis. Consequently, $B \cap t\left(F_{2}\right) \neq \emptyset$ is valid according to (b- t_{4}), resulting into $\rho_{2} \in N_{t}(B)$.
to $\left(\right.$ esd $\left._{2}\right)$: Let $B \in \mathcal{B}^{X}$; in first case if $B=\emptyset$ we have $\emptyset \in N_{t}(B)$ by definition. In second case if $B \neq \emptyset$ we get $\{B\} \in N_{t}(B)$, since $B \cap t(B) \neq \emptyset$ is valid.
Further suppose $\mathcal{B}^{X} \in N_{t}(B)$, and without restriction $B \neq \emptyset$, otherwise $B=$ \emptyset contradicts. Then $B \in \sec \left\{t(F): F \in B^{X}\right\}$ implies $B \cap t(\emptyset) \neq \emptyset$, which contradicts too. Hence $\mathcal{B}^{X} \notin N_{t}(B)$ follows.
to $\left(\mathrm{esd}_{3}\right)$: evident by definition of N_{t}.
to $\left(\operatorname{esd}_{4}\right)$: see especially proof of $\left(e s d_{2}\right)$.
to $\left(\operatorname{esd}_{5}\right)$: evident.
to $\left(\operatorname{esd}_{6}\right)$: For $\left\{c l_{N_{t}}(F): F \in \rho\right\} \in N_{t}(B), \rho \subset \underline{P} X, B \in \mathcal{B}^{X}$ let $A \in \rho \cap \mathcal{B}^{X}$, we have to verify $B \cap t(A) \neq \emptyset$. Since $c l_{N_{t}}(A) \in\left\{c l_{N_{t}}(F): F \in \rho\right\}$ we get $B \cap t\left(c l_{N_{t}}(A)\right) \neq \emptyset$ by hypothesis. Note, that $c l_{N_{t}}(A) \subset t(A) \in \mathcal{B}^{X}$ is valid. Consequently $B \cap t(t(A)) \neq$ \emptyset follows, and $B \cap t(A) \neq \emptyset$ results according to (b- t_{5}), showing our made assertion.
to $\left(\operatorname{esd}_{7}\right): \rho_{1} \vee \rho_{2} \in N_{t}(B)$ and without restriction $B \neq \emptyset$ with $\rho_{1} \neq \emptyset \neq \rho_{2}$ imply $B \in$ $\sec \left\{t(F): F \in\left(\rho_{1} \vee \rho_{2}\right) \cap \mathcal{B}^{X}\right\}$. Now, let us suppose $\rho_{1}, \rho_{2} \notin N_{t}(B)$. Hence there exists $F_{1} \in \rho_{1} \cap \mathcal{B}^{X} B \cap t\left(F_{1}\right)=\emptyset$ and $F_{2} \in \rho_{2} \cap \mathcal{B}^{X} B \cap t\left(F_{2}\right)=\emptyset$. But $F_{1} \cup F_{2} \in\left(\rho_{1} \vee \rho_{2}\right) \cap \mathcal{B}^{X}$, since \mathcal{B}^{X} is bornology and
$\emptyset=\left(B \cap t\left(F_{1}\right)\right) \cup\left(B \cap t\left(F_{2}\right)\right)=B \cap\left(t\left(F_{1}\right) \cup t\left(F_{2}\right)\right)=B \cap t\left(F_{1} \cup F_{2}\right)$
according to (b-t t_{4}) and (b- t_{6}), respectively which contradicts.
to $\left(\operatorname{esd}_{8}\right)$: evident.
to $\left(\operatorname{esd}_{9}\right): B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\rho \cap \mathcal{B}^{X} \in N_{t}(B), \rho \subset \underline{P} X$ imply $B \in \sec \{t(F): F \in(\rho \cap$ $\left.\left.\mathcal{B}^{X}\right) \cap \mathcal{B}^{X}\right\}$, and $\rho \in N_{t}(B)$ results. To show the equality $t=c l_{N_{t}}$ is valid let without restriction $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$, then $x \in c l_{N_{t}}(B)$ is equivalent to the statement $\{B\} \in N_{t}(\{x\})$, which is further equivalent to $\{x\} \in \sec \left\{t(F): F \in B \cap \mathcal{B}^{X}\right\}$, at last resulting into the statement $x \in t(B)$ as equivalent to above.

Remark 1.7 As an interpretation of this Lemma we keep hold that every b-topological space is induced by a certain esd-space.

As a next step in our research we will introduce the concept of b-proximal spaces and related facts.

Definition 1.8 For a bornology \mathcal{B}^{X} a relation $\delta \subset \mathcal{B}^{X} \times \mathcal{B}^{X}$ is called b-proximal, and the triple $\left(X, \mathcal{B}^{X}, \delta\right)$ a b-proximal space iff δ satisfies the following conditions, i.e.
$\left(\mathrm{b}-\mathrm{p}_{1}\right) B \in \mathcal{B}^{X}$ implies $\operatorname{cl}_{\delta}(B) \in \mathcal{B}^{X}$, where $\operatorname{cl}_{\delta}(B):=\{x \in X:\{x\} \delta B\} ;$
$\left(\mathrm{b}-\mathrm{p}_{2}\right) \emptyset \bar{\delta} D$ and $B \bar{\delta} \emptyset$ for each $B, D \in \mathcal{B}^{X}$;
$\left(\mathrm{b}-\mathrm{p}_{3}\right) B \delta\left(D_{1} \cup D_{2}\right)$ iff $B \delta D_{1}$ or $B \delta D_{2}$ for each $B, D_{1}, D_{2} \in \mathcal{B}^{X}$;
(b-p $\left.{ }_{4}\right) x \in X$ implies $\{x\} \delta\{x\}$;
(b-p $\left.)_{5}\right) B_{1} \subset B \in \mathcal{B}^{X}$ and $B_{1} \delta D$ imply $B \delta D$ for each $D \in \mathcal{B}^{X}$;
(b-p $\left.\mathrm{p}_{6}\right) B_{1} \delta D$ and $D \subset \operatorname{cl}_{\delta}(B), B \in \mathcal{B}^{X}$ imply $B_{1} \delta B$.
(Hereby, $\bar{\delta}$ denotes the negation of $\delta)$. For b-proximal spaces $\left(X, \mathcal{B}^{X}, \delta\right),\left(Y, \mathcal{B}^{Y}, \gamma\right)$ a function $f: X \longrightarrow Y$ is called b-proximal map iff f is bi-bounded and satisfies the following condition, i.e.
(prox) $B \delta D$ implies $f[B] \gamma f[D]$. We denote by b-PX the corresponding category.
Remark 1.9 If \mathcal{B}^{X} is saturated, then a b-proximal space $\left(X, \mathcal{B}^{X}, \delta\right)$ may be considered as a generalized proximity space and vice versa [14]. In special cases LEADER proximities as well as LODATO proximities then can be easily recovered.

Proposition 1.10 For a b-topological space $\left(X, \mathcal{B}^{X}, t\right)$ we set: $B \delta_{t} D$ iff $B \cap t(D) \neq \emptyset$ for each $B, D \in \mathcal{B}^{X}$. Then $\left(X, \mathcal{B}^{X}, \delta_{t}\right)$ defines a b-proximal space which additionally is additive by satisfying
(add) $\left(B_{1} \cup B_{2}\right) \delta D, B_{1}, B_{2}, D \in \mathcal{B}^{X}$ imply $B_{1} \delta D$ or $B_{2} \delta D$.

Proof: straight forward.

Definition 1.11 A b-proximal space $\left(X, \mathcal{B}^{X}, \delta\right)$ is called symmetric iff in addition holds
(s) $B_{1} \delta B_{2}$ implies $B_{2} \delta B_{1}$ for each $B_{1}, B_{2} \in \mathcal{B}^{X}$.

Remark 1.12 Here, we only note that if \mathcal{B}^{X} is saturated, then $\left(X, \mathcal{B}^{X}, \delta\right)$ can be essentially considered as a LODATO proximity space [20] and vice versa. We denote by b-SPX the corresponding full subcategory of b-PX.

2 b-TOP, b-PX and b-SPX as fully embedded subcategories of ESD

Now, firstly let us start with the objects of b-PX.
Lemma 2.1 For a b-proximal space $\left(X, \mathcal{B}^{X}, \delta\right)$ we set: $N_{\delta}(\emptyset):=\{\emptyset\}$ and $N_{\delta}(B):=\{\rho \subset$ $\left.\underline{P} X: \rho \cap \mathcal{B}^{X} \subset \delta(B)\right\}$, where $\delta(B):=\left\{D \in \mathcal{B}^{X}: B \delta D\right\}$, otherwise. Then $\left(X, \mathcal{B}^{X}, N_{\delta}\right)$ is an esd-space.

Proof: Straight forward. Here, we only will verify the validity of the axioms $\left(\operatorname{esd}_{6}\right),\left(\operatorname{esd}_{7}\right)$ and $\left(\mathrm{esd}_{8}\right)$ in definition 1.1.
to $\left(\operatorname{esd}_{6}\right)$: For $\rho \subset \underline{P} X$ let $\left\{c l_{N_{\delta}}(F): F \in \delta\right\} \in N_{\delta}(B)$, we have to verify $\rho \cap \mathcal{B}^{X} \subset \delta(B)$. $A \in \rho \cap \mathcal{B}^{X}$ implies $c l_{N_{\delta}}(A) \in\left\{c l_{N_{\delta}}(F): F \in \rho\right\}$. Since $A \in \mathcal{B}^{X}$ we claim $c l_{N_{\delta}}(A) \subset c l_{\delta}(A)$, hence $c l_{N_{\delta}}(A) \in \mathcal{B}^{X}$. By hypothesis $c l_{N_{\delta}}(A) \in \delta(B)$ follows, showing that $B \delta c l_{N_{\delta}}(A) \subset c l_{\delta}(A)$ is valid. But δ is satisfying (b-p6), and $B \delta A$ results, hence $A \in \delta(B)$ follows.
to $\left(\operatorname{esd}_{7}\right)$: Without restriction let $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\rho_{1} \vee \rho_{2} \in N_{\delta}(B), \rho_{1} \neq \emptyset \neq \rho_{2}$. If supposing $\rho_{1}, \rho_{2} \notin N_{\delta}(B)$ we get $F_{1}, F_{2} \notin \delta(B)$ for some $F_{1} \in \rho_{1} \cap \mathcal{B}^{X}$ and $F_{2} \in \rho_{2} \cap \mathcal{B}^{X}$. Hence $B \bar{\delta} F_{1}$ and $B \bar{\delta} F_{2}$ implying $B \bar{\delta}\left(F_{1} \cup F_{2}\right)$ according to (b-p $\left.{ }_{3}\right)$, note that \mathcal{B}^{X} is bornology. But $F_{1} \cup F_{2} \in\left(\rho_{1} \cup \rho_{2}\right) \cap \mathcal{B}^{X}$ leads us to a contradiction.
to $\left(\operatorname{esd}_{8}\right): B \in \mathcal{B}^{X}$ implies $c l_{\delta}(B) \in \mathcal{B}^{X}$. We will show that $c l_{N_{\delta}}(B) \subset c l_{\delta}(B)$, then by $\left(\mathrm{b}_{1}\right)$ we get the desired result. $x \in c l_{N_{\delta}}(B)$ implies $\{B\} \in N_{\delta}(\{x\})$, hence $\{B\} \subset$ $\delta(\{x\})$, and $\{x\} \delta B$ results, showing that $x \in \operatorname{cl}_{\delta}(B)$ is valid.

Definition 2.2 An esd-space $\left(X, \mathcal{B}^{X}, N\right)$ is called conic iff N satisfies the condition (con) $B \in \mathcal{B}^{X}$ implies $\bigcup\{\rho \subset \underline{P} X: \rho \in N(B)\} \in N(B)$.

Example 2.3 According to Lemma 1.6 we state that the esd-space $\left(X, \mathcal{B}^{X}, N_{t}\right)$ is conic.
Remark 2.4 Here, we note that the esd-space $\left(X, \mathcal{B}^{X}, N_{\delta}\right)$ is conic, too. But in general this property must not be necessary fulfilled, if, par example we look at the near subdensity spaces considered in [19].

Lemma 2.5 For a conic esd-space $\left(Y, \mathcal{B}^{Y}, M\right)$ we put $B \gamma_{M} D$ iff $\{D\} \in M(B)$ for sets $B, D \in \mathcal{B}^{Y}$. Then $\left(Y, \mathcal{B}^{Y}, \gamma_{M}\right)$ is a b-proximal space such that $N_{\gamma_{M}}=M$.

Proof: Straight forward. Here, we only will verify the validity of axiom (b-p6) in definition 1.8.
to (b-p6): $B_{1} \delta D$ and $D \subset \operatorname{cl}_{\gamma_{M}}(B), B \in \mathcal{B}^{Y}$ imply $\{D\} \in M\left(B_{1}\right)$, hence $\left\{\operatorname{cl}_{M}(B)\right\} \ll$ $\left\{c l_{\gamma_{M}}(B)\right\} \ll\{D\}$ follows, and $\left\{c l_{M}(B)\right\} \in M\left(B_{1}\right)$ is valid. We get $\{B\} \in$ $M\left(B_{1}\right)$, according to $\left(\operatorname{esd}_{6}\right)$ which results in $B_{1} \gamma_{M} B$. It remains to prove the equality $N_{\gamma_{M}}=M$. Without restriction let $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\rho \in N_{\gamma_{M}}(B)$, hence $\rho \cap \mathcal{B}^{X} \subset \gamma_{M}(B)$. Now, we will show that $\gamma_{M}(B) \subset \bigcup\{\sigma: \sigma \in M(B)\}$ holds. $D \in \gamma_{M}(B)$ implies $B \gamma_{M} D$, hence $\{D\} \in M(B)$ is valid with $D \in\{D\}$, and $D \in \bigcup\{\sigma: \sigma \in M(B)\}$ follows. Consequently, $\rho \cap \mathcal{B}^{X} \in M(B)$ can be deduced by applying $\left(\operatorname{esd}_{1}\right)$, resulting into $\rho \in M(B)$ according to $\left(\operatorname{esd}_{9}\right)$. The reverse case is easily to verify.

Theorem 2.6 The full subcategory CON-ESD of ESD, whose objects are the conic esdspaces is isomorphic to the category b-PX.

Proof: Taking into account former results we further note that for a given b-proximal space $\left(X, \mathcal{B}^{X}, \delta\right)$ the equality $\gamma_{N_{\delta}}=\delta$ is valid. Moreover, we claim that for each b-proximal map f between b-proximal spaces f is bibsd-map between the corresponding esd-spaces and vice versa.

Definition 2.7 A conic esd- space $\left(X, \mathcal{B}^{X}, N\right)$ is called proximal iff N satisfies the condition
(px) $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\rho \in N(B)$ imply $\{B\} \in \bigcap\left\{N(F): F \in \rho \cap \mathcal{B}^{X}\right\}$.
Remark 2.8 Here, we note that for a given symmetric b-proximal space $\left(X, \mathcal{B}^{X}, \delta\right)$ the corresponding esd-space $\left(X, \mathcal{B}^{X}, N_{\delta}\right)$ is proximal. Because for $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\rho \in N_{\delta}(B)$ we have $\rho \cap \mathcal{B}^{X} \subset \delta(B)$. Then, $F \in \rho \cap \mathcal{B}^{X}$ implies $\{B\} \in N_{\delta}(F)$. Since by hypothesis $B \delta F$ is valid $F \delta B$ results, because δ is symmetric.

Corollary 2.9 The full subcategory $\mathbf{P X}-\mathbf{E S D}$ of $\boldsymbol{C O N}-\mathbf{E S D}$, whose objects are the proximal esd-spaces is isomorphic to the category $\boldsymbol{b}-\boldsymbol{S P X}$.

Proof: Here, we only note that for a given proximal esd-space the corresponding b-proximal space is symmetric.

Proposition 2.10 Every proximal esd-space $\left(X, \mathcal{B}^{X}, N\right)$ is closed by satisfying (clo) $B \in \mathcal{B}^{X}$ implies $N\left(c_{N}(B)\right)=N(B)$.

Proof: Without restriction let $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\rho \in N\left(c l_{N}(B)\right)$, we will show that $\rho \cap \mathcal{B}^{X} \subset$ $\cup\{\sigma: \sigma \in N(B)\}$ is valid. $F \in \rho \cap \mathcal{B}^{X}$ implies $\left\{c l_{N}(B)\right\} \in N(F)$, since $\left(X, \mathcal{B}^{X}, N\right)$ is
proximal. Then $\{B\} \in N(F)$ follows by applying $\left(\operatorname{esd}_{6}\right)$, and $\{F\} \in N(B)$ results with respect to (px). Consequently, $F \in \cup\{\sigma: \sigma \in N(B)\}$ is valid, showing that $\rho \cap \mathcal{B}^{X} \in N(B)$, according to $\left(\operatorname{esd}_{1}\right)$. But this induce $\rho \in N(B)$ by applying $\left(\operatorname{esd}_{9}\right)$. The reverse inclusion then can be easily verified with respect to $\left(\operatorname{esd}_{5}\right)$.

Proposition 2.11 Every proximal esd-space $\left(X, \mathcal{B}^{X}, N\right)$ is linked by satisfying
(lik) $\rho \in N\left(B_{1} \cup B_{2}\right), B_{1}, B_{2} \in \mathcal{B}^{X}$ imply $\{F\} \in N\left(B_{1}\right) \cup N\left(B_{2}\right) \forall F \in \rho \cap \mathcal{B}^{X}$.

Proof: evident.
Definition 2.12 A conic esd-space $\left(X, \mathcal{B}^{X}, N\right)$ is called covered iff N satisfies the condition
(cov) $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\rho \in N(B)$ imply $B \in \sec \left\{c_{N}(F): F \in \rho \cap \mathcal{B}^{X}\right\}$.
Example 2.13 With respect to example 2.3 we note that $\left(X, \mathcal{B}^{X}, N_{t}\right)$ is a covered esdspace.

Lemma 2.14 For a covered esd-space $\left(X, \mathcal{B}^{X}, N\right)$ the restriction of $c l_{M}$ on \mathcal{B}^{X}, denoted by $c l_{M}^{b}$ is a b-topology on \mathcal{B}^{X} such that $N_{c l_{M}^{b}}=M$.

Proof: Firstly, we only will verify the validity of the axioms $\left(b-\mathrm{t}_{5}\right)$ and $\left(\mathrm{b}-\mathrm{t}_{6}\right)$, respectively in definition 1.3. Then, the remaining is clear.
to $\left(\mathrm{b}-\mathrm{t}_{5}\right): x \in \operatorname{cl}_{M}^{b}\left(c l_{M}^{b}(B)\right), B \in \mathcal{B}^{X}$ imply $\left\{c l_{M}^{b}(B)\right\} \in M(\{x\})$, hence $\left\{c l_{M}(B)\right\} \in M(\{x\})$ is valid, and $\{B\} \in M(\{x\})$ results, according to $\left(\operatorname{esd}_{6}\right)$. But then $x \in c l_{M}(B)=$ $c l_{M}^{b}(B)$ follows.
to $\left(\mathrm{b}-\mathrm{t}_{6}\right): B_{1}, B_{2} \in \mathcal{B}^{X}$ and without restriction let $B_{1} \neq \emptyset \neq B_{2} \cdot x \in c l_{M}^{b}\left(B_{1} \cup B_{2}\right)$ implies $\left\{B_{1} \cup B_{2}\right\} \in M(\{x\})$, by paying attention to the fact that \mathcal{B}^{X} is bornology. Since $\left\{B_{1}\right\} \vee\left\{B_{2}\right\}=\left\{B_{1} \cup B_{2}\right\}$, we get $\left\{B_{1}\right\} \in M(\{x\})$ or $\left\{B_{2}\right\} \in M(\{x\})$ by applying $\left(\operatorname{esd}_{7}\right)$, resulting into $x \in c l_{M}^{b}\left(B_{1}\right) \cup c l_{M}^{b}\left(B_{2}\right)$. In showing the equality $N_{c l_{M}^{b}}=M$ let without restriction $B \in \mathcal{B}^{X} \backslash\{\emptyset\} . \quad \rho \in N_{c l_{M}^{b}}(B)$ implies $B \in \sec \left\{c l_{M}^{b}(F)\right.$: $\left.F \in \rho \cap \mathcal{B}^{X}\right\}$, which is the same as $B \in \sec \left\{\operatorname{cl}_{M}(F): F \in \rho \cap \mathcal{B}^{X}\right\}$. Since $\left(X, \mathcal{B}^{X}, M\right)$ is conic, we know that $\bigcup\{\sigma: \sigma \in M(B)\} \in M(B)$. Thus, it remains to verify $\rho \cap \mathcal{B}^{X} \subset \cup\{\sigma: \sigma \in M(B)\}$, because then $\rho \cap \mathcal{B}^{X} \in M(B)$ follows, according to $\left(\operatorname{esd}_{1}\right)$, and $\rho \in M(B)$ is valid by applying $\left(\operatorname{esd}_{9}\right)$. $F \in \rho \cap \mathcal{B}^{X}$ implies $B \cap c l_{M}(F) \neq \emptyset$, hence $x \in \operatorname{cl}_{M}(F)$ for some $x \in B$. Consequently, $\{F\} \in M(\{x\}) \subset M(B)$ follows, showing that $F \in \bigcup\{\sigma: \sigma \in M(B)\}$, which put an end of this. Then, the reverse inclusion is easily to verify.

Theorem 2.15 The full subcategory COV-ESD of CON-ESD, whose objects are the covered esd-spaces is isomorphic to the category b-TOP.

Proof: Taking into account former results we further note that for each b-continuous map f between b-topological spaces f is bibsd-map between the corresponding esd-spaces and vice versa.

Theorem 2.16 The category $\mathbf{C O N} \boldsymbol{E S D}$ is bireflective in $\boldsymbol{E S D}$.

Proof: For an esd-space $\left(X, \mathcal{B}^{X}, N\right)$ we set: $N^{C}(\emptyset):=\{\emptyset\}$ and $N^{C}(B):=\{\mathcal{A} \subset \underline{P} X$: $\left.\left\{c l_{N}(A): A \in \mathcal{A} \cap \mathcal{B}^{X}\right\} \subset \bigcup\{\rho: \rho \in N(B)\}\right\}$, otherwise. Then $\left(X, \mathcal{B}^{X}, N^{C}\right)$ is conic esdspace, and $\underline{1}_{X}:\left(X, \mathcal{B}^{X}, N\right) \longrightarrow\left(X, \mathcal{B}^{X}, N^{C}\right)$ is bibsd-map. In the following we only will verify the validity of the axioms $\left(\operatorname{esd}_{6}\right),\left(\operatorname{esd}_{7}\right)$ in definition 1.1 and that of axiom (con) in definition 2.2. Then the remaining statements are obvious.
to $\left(\operatorname{esd}_{6}\right):\left\{c l_{N^{C}}(A): A \in \mathcal{A}\right\} \in N^{C}(B), B \in \mathcal{B}^{X} \backslash\{\emptyset\}, \mathcal{A} \subset \underline{P} X$ imply $\left\{c l_{N}(F): F \in\right.$ $\left.\left\{c l_{N^{C}}(A): A \in \mathcal{A}\right\} \cap \mathcal{B}^{X}\right\} \subset \bigcup\{\rho: \rho \in N(B)\}$. We will show that $\left\{\operatorname{cl}_{N}(A): A \in\right.$ $\left.\mathcal{A} \cap \mathcal{B}^{X}\right\} \subset \bigcup\{\rho: \rho \in N(B)\} . A \in \mathcal{A} \cap \mathcal{B}^{X}$ implies $l_{N}\left(c l_{N^{C}}(A)\right) \in \bigcup\{\rho: \rho \in$ $N(B)\}$, since $c l_{N^{C}}(A) \in \mathcal{B}^{X}$. Further we have the inclusion $c l_{N^{C}}(A) \subset c l_{N}(A)$ is valid: $x \in c l_{N^{C}}(A)$ implies $\{A\} \in N^{C}(\{x\})$, hence $c l_{N}(A) \in \rho$ for some $\rho \in$ $N(\{x\}) .\left\{c l_{N}(A)\right\} \in N(\{x\})$ holds by applying $\left(\operatorname{esd}_{1}\right)$, and $\{A\} \in N(\{x\})$ results according to $\left(\operatorname{esd}_{6}\right)$, hence $x \in c l_{N}(A)$ follows. By hypothesis $c l_{N}\left(c l_{N^{C}}(A)\right) \in \sigma$ for some $\sigma \in N(B)$, and $\left\{c l_{N}(A)\right\} \in N(B)$ follows by applying (esd ${ }_{6}$), again. Consequently our assertion holds.
to (esd_{7}): Let $\mathcal{A}_{1} \vee \mathcal{A}_{2} \in N^{C}(B)$ and without restriction $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ with $\mathcal{A}_{1} \neq \emptyset \neq \mathcal{A}_{2}$. Then $\left\{c l_{N}(A): A \in\left(\mathcal{A}_{1} \vee \mathcal{A}_{2}\right) \cap \mathcal{B}^{X}\right\} \subset \bigcup\{\rho: \rho \in N(B)\}$ follows. If supposing $\mathcal{A}_{1}, \mathcal{A}_{2} \notin N^{C}(B)$ we can choose $A_{1} \in \mathcal{A}_{1} \cap \mathcal{B}^{X}$ with $c_{N}\left(A_{1}\right) \notin \bigcup\{\rho: \rho \in N(B)\}$ and $A_{2} \in \mathcal{A}_{2} \cap \mathcal{B}^{X}$ with $c_{N}\left(A_{2}\right) \notin \bigcup\{\rho: \rho \in N(B)\}$. Consequently, $A_{1} \cup A_{2} \in$ $\left(\mathcal{A}_{1} \vee \mathcal{A}_{2}\right) \cap \mathcal{B}^{X}$ follows, since \mathcal{B}^{X} is bornology. By hypothesis $c_{N}\left(A_{1} \cup A_{2}\right) \in \mathcal{A}$ for some $\mathcal{A} \in N(B)$, hence $\left\{c l_{N}\left(A_{1} \cup A_{2}\right)\right\} \in N(B)$ is valid. But $\left\{c l_{N}\left(A_{1}\right)\right\} \vee$ $\left\{c l_{N}\left(A_{2}\right)\right\}=\left\{c l_{N}\left(A_{1} \cup A_{2}\right)\right\}$ is holding, and consequently $\left\{\operatorname{cl}_{N}\left(A_{1}\right)\right\} \in N(B)$ or $\left\{c l_{N}\left(A_{2}\right)\right\} \in N(B)$ follows by applying $\left(\operatorname{esd}_{7}\right)$ which contradicts.
to (con): Without restriction let $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$. We have to verify $\bigcup\left\{\mathcal{A}: \mathcal{A} \in N^{C}(B)\right\} \in$ $N^{C}(B)$, which means that $\left\{c l_{N}(F): F \in \bigcup\left\{\mathcal{A}: \mathcal{A} \in N^{C}(B)\right\} \cap \mathcal{B}^{X}\right\} \subset \bigcup\{\rho:$ $\rho \in N(B)\}$. Now, let $c l_{N}(F)$ be given for $F \in \bigcup\left\{\mathcal{A}: \mathcal{A} \in N^{C}(B)\right\} \cap \mathcal{B}^{X}$ hence $F \in \mathcal{A}$ for some $\mathcal{A} \in N^{C}(B)$. By hypothesis there exists $\rho \in N(B)$ with $c l_{N}(F) \in \rho^{\prime}$, and $c l_{N}(F) \in \bigcup\{\rho: \rho \in N(B)\}$ results. Now, let $\left(Y, \mathcal{B}^{Y}, M\right)$ be a conic esd-space and $f:\left(X, \mathcal{B}^{X}, N\right) \longrightarrow\left(Y, \mathcal{B}^{Y}, M\right)$ be a bibsd-map, we have to
show $f:\left(X, \mathcal{B}^{X}, N^{C}\right) \longrightarrow\left(Y, \mathcal{B}^{Y}, M\right)$ is bibsd-map, too. Since by hypothesis f is bi-bounded, we will now verify the validity of axiom (sd) in definition 1.1.
to (sd): Without restriction let $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\mathcal{A} \in N^{C}(B)$, hence by definition $\left\{c_{N}(A): A \in \mathcal{A} \cap \mathcal{B}^{X}\right\} \subset \bigcup\{\rho: \rho \in N(B)\}$ is valid. It suffices to show $f \mathcal{A} \cap \mathcal{B}^{Y} \in M(f[B])$. Therefore its being enough to verify the validity of the inclusion $f \mathcal{A} \cap \mathcal{B}^{Y} \subset \bigcup\{\mathcal{M}: \mathcal{M} \in M(f[B])\} . D \in f \mathcal{A} \cap \mathcal{B}^{Y}$ implies $D=f[A]$ for some $A \in \mathcal{A}$. Then $A \subset f^{-1}[f[A]]=f^{-1}[D] \in \mathcal{B}^{X}$, and $A \in \mathcal{B}^{X}$ follows. Hence $c l_{N}(A) \in \rho$ for some $\rho \in N(B)$ by hypothesis. Consequently, $f \rho \in M(f[B])$ follows with $f\left[c l_{N}(A)\right] \in f \rho$. Since $c l_{M}(f[A]) \supset f\left[c l_{N}(A)\right]$ we get $\left\{\operatorname{cl}_{M}(f[A])\right\} \in M(f[B])$, and $\{D\}=\{f[A]\} \in M(f[B])$ results, according to $\left(\operatorname{esd}_{6}\right)$. But then $f \mathcal{A} \cap \mathcal{B}^{Y} \in M(f[A])$ is valid, since by hypothesis $\left(Y, \mathcal{B}^{Y}, M\right)$ is conic, and at last $f \mathcal{A} \in M(f[B])$ can be deduced by applying $\left(\operatorname{esd}_{9}\right)$.

Theorem 2.17 The category COV-ESD is bicoreflective in CON-ESD.

Proof: For a conic esd-space $\left(X, \mathcal{B}^{X}, N\right)$ we set: $N^{C V}(\emptyset):=\{\emptyset\}$ and $N^{C V}(B):=\{\rho \subset \underline{P} X$: $\left.B \in \sec \left\{\operatorname{cl}_{N}(F): F \in \rho \cap \mathcal{B}^{X}\right\}\right\}$, otherwise. Then $\left(X, \mathcal{B}^{X}, N^{C V}\right)$ is a covered esd-space, and $\underline{1}_{X}:\left(X, \mathcal{B}^{X}, N^{C V}\right) \longrightarrow\left(X, \mathcal{B}^{X}, N\right)$ is bibsd-map. It is straight forward to verify that $\left(X, \mathcal{B}^{X}, N^{C V}\right)$ is a covered esd-space. In showing that $\underline{1}_{X}$ is bibsd-map let $\rho \in N^{C V}(B)$ and without restriction $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$. Consequently, $B \in \sec \left\{c_{N}(F): F \in \rho \cap \mathcal{B}^{X}\right\}$ holds by definition of $N^{C V}$. Now, we will verify that $\rho \cap \mathcal{B}^{X}$ is a subset of $\bigcup\{\mathcal{A}: \mathcal{A} \in N(B)\}$. $F \in \rho \cap \mathcal{B}^{X}$ implies the existence of an element $x \in B$ with $x \in c l_{N}(F)$. Hence $\{F\} \in$ $N(\{x\}) \subset N(B)$ follows, showing that $F \in \bigcup\{\mathcal{A}: \mathcal{A} \in N(B)\}$ is valid. Now, let $\left(Y, \mathcal{B}^{Y}, M\right)$ be a covered esd-space and $f:\left(Y, \mathcal{B}^{Y}, M\right) \longrightarrow\left(X, \mathcal{B}^{X}, N\right)$ be a bibsd-map, we have to show $f:\left(Y, \mathcal{B}^{Y}, M\right) \longrightarrow\left(X, \mathcal{B}^{X}, N^{C V}\right)$ is bibsd-map, too. Since by hypothesis f is bi-bounded we will verify the validity of axiom (sd) in definition 1.1. Without restriction let $B \in \mathcal{B}^{Y} \backslash\{\emptyset\}$ and $\rho \in M(B)$, hence $B \in \sec \left\{c_{M}(F): F \in \rho \cap \mathcal{B}^{Y}\right\}$. For $A \in f \rho \cap \mathcal{B}^{X}$ we have $A=f[F]$ for some $F \in \rho$ with $f^{-1}[A] \in \mathcal{B}^{Y}$, since f is bi-bounded. Consequently, $F \in \mathcal{B}^{Y}$ is valid, and we can choose $y \in C l_{M}(F)$ for some $y \in B$ by hypothesis. But f also satisfies (sd) in definition 1.1, hence $f(y) \in c l_{N}(A) \cap f[B]$ results, concluding the proof.

3 Topological extensions and related esd-spaces

We will now consider the problem for finding a one-to-one correspondence between certain topological extensions and their related esd-spaces. This question arises from a problem formulated by LODATO in 1966 as follows:

He asked for an axiomatization of the following binary nearness relation on the power set of a set X : there exists an embedding of X into a topological space Y such that subsets A and B are near in X iff their closures meet in Y.

Now, we will generalize and solve this problem for esd-spaces, involving also LODATO's result as a special case. At first, we define the category BTEXT of so-called bornotopological extensions - shortly btop-extensions - and related morphisms (see also [19]).

Definition 3.1 Objects of BTEXT are triples $E:=\left(e, \mathcal{B}^{X}, Y\right)$, where $X:=\left(X, t_{X}\right)$, $Y:=\left(Y, t_{Y}\right)$ are topological spaces (given by closure operators t_{X} respectively t_{Y}) with bornology \mathcal{B}^{X}, so that iff $B \in \mathcal{B}^{X}$ then $t_{X}(B) \in \mathcal{B}^{X}$ also holds.
$e: X \longrightarrow Y$ is a function satisfying the following conditions:
(btx ${ }_{1}$) $B \in \mathcal{B}^{X}$ implies $t_{X}(B)=e^{-1}\left[t_{y}(e[B])\right]$, where e^{-1} denotes the inverse image under e; ($\left.\mathrm{btx}_{1}\right) t_{Y}(e[X])=Y$, which means that the image of X under e is dense in Y.

Morphisms in BTEXT have the form $(f, g):\left(e, \mathcal{B}^{X}, Y\right) \longrightarrow\left(e^{\prime}, \mathcal{B}^{X^{\prime}}, Y^{\prime}\right)$, where $f: X \longrightarrow$ $X^{\prime} g: Y \longrightarrow Y^{\prime}$ are continuous maps such that f is bi-bounded, and the following diagram commutes

If $(f, g):\left(e, \mathcal{B}^{X}, Y\right) \longrightarrow\left(e^{\prime}, \mathcal{B}^{X^{\prime}}, Y^{\prime}\right)$ and $\left(f^{\prime}, g^{\prime}\right):\left(e^{\prime}, \mathcal{B}^{X^{\prime}}, Y^{\prime}\right) \longrightarrow\left(e^{\prime \prime}, \mathcal{B}^{X^{\prime \prime}}, Y^{\prime \prime}\right)$ are BTEXT-morphisms, then they can be composed according to the rule $\left(f^{\prime}, g^{\prime}\right) \circ(f, g):=$ $\left(f^{\prime} \circ f, g^{\prime} \circ g\right):\left(e, \mathcal{B}^{X}, Y\right) \longrightarrow\left(e^{\prime \prime}, \mathcal{B}^{X^{\prime \prime}}, Y^{\prime \prime}\right)$, where "०" denotes the composition of maps.

Remark 3.2 Observe, that axiom (btx_{1}) in this definition is automatically satisfied if e : $X \longrightarrow Y$ is a topological embedding. Moreover, we admit an ordinary bornology \mathcal{B}^{X}, which need not be necessary coincide with the power set $\underline{P} X$.

Definition 3.3 We call such an extension $E:=\left(e, \mathcal{B}^{X}, Y\right)$
(i) strict iff E satisfies the condition
(st) $\left\{t_{Y}(e[A]): A \subset X\right\}$ forms a base for the closed subsets of Y [1];
(ii) symmetric iff E satisfies the condition

$$
\text { (sy) } x \in X \text { and } y \in t_{Y}(\{e(x)\}) \text { imply } e(x) \in t_{Y}(\{y\}) \text { [3]. }
$$

Example 3.4 For a symmetric bornotopological extension $E:=\left(e, \mathcal{B}^{X}, Y\right)$ we consider the triple $\left(X, \mathcal{B}^{X}, N^{e}\right)$, where N^{e} is defined by setting:
$N^{e}(\emptyset):=\{\emptyset\}$ and
$N^{e}(B):=\left\{\rho \subset \underline{P} X: t_{Y}(e[B]) \in \sec \left\{t_{Y}(e[F]): F \in \rho \cap \mathcal{B}^{X}\right\}\right\}$, otherwise.
Then $\left(X, \mathcal{B}^{X}, N^{e}\right)$ is a proximal esd-space such that for each $B \in \mathcal{B}^{X} c l_{N^{e}}(B)=t_{X}(B)$.
Proof: Firstly, we will verify the above cited equality. Without restriction let $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$.
to " \subset ": $x \in \operatorname{cl}_{N^{e}}(B)$ implies $\{B\} \in N^{e}(\{x\})$, hence $t_{Y}(\{e(x)\}) \cap t_{Y}(e[B]) \neq \emptyset$. Then we can choose $y \in t_{Y}(e[B])$ with $y \in t_{Y}(\{e(x)\})$. Since by hypothesis E is symmetric, we get $e(x) \in t_{Y}(\{y\})$. But then $e(x) \in t_{Y}(e[B])$ is valid, because t is topological. Consequently, $x \in t_{X}(B)$ follows by applying (btx ${ }_{1}$) in definition 3.1.
to " \supset ": $x \in t_{X}(B)$ implies $e(x) \in t_{Y}(e[B])$ according to (btx ${ }_{1}$), hence $\{B\} \in N^{e}(\{x\})$ follows, resulting into $x \in c l_{N^{e}}(B)$. Further, we only will verify the validity of the axioms $\left(\operatorname{esd}_{6}\right)$ and $\left(\operatorname{esd}_{7}\right)$, respectively. Then the remaining statements are clear.
to $\left(\operatorname{esd}_{6}\right):\left\{c l_{N^{e}}(F): F \in \rho\right\} \in N^{e}(B), B \in \mathcal{B}^{X} \backslash\{\emptyset\}, \rho \subset \underline{P} X$ imply $t_{Y}(e[B]) \in \sec \left\{t_{Y}(e[A])\right.$:
$\left.A \in\left\{c l_{N^{e}}(F): F \in \rho\right\} \cap \mathcal{B}^{X}\right\}$. Then $F^{\prime} \in \rho \cap \mathcal{B}^{X}$ implies $c l_{N^{e}}\left(F^{\prime}\right) \in\left\{c l_{N^{e}}(F):\right.$ $F \in \rho\} \cap \mathcal{B}^{X}$, because $c l_{N^{e}}\left(F^{\prime}\right)=t_{X}\left(F^{\prime}\right) \in \mathcal{B}^{X}$ by definition 3.1. By hypothesis $t_{Y}(e[B]) \cap t_{Y}\left(e\left[t_{X}\left(F^{\prime}\right)\right]\right) \neq \emptyset$ follows. But $e\left[t_{X}\left(F^{\prime}\right)\right] \subset t_{Y}\left(e\left[F^{\prime}\right]\right)$ holds by apply$\operatorname{ing}\left(\mathrm{btx}_{1}\right)$, and $t_{Y}\left(e\left[t_{X}\left(F^{\prime}\right)\right]\right) \subset t_{Y}\left(e\left[F^{\prime}\right]\right)$ can be deduced, since t_{Y} is topological, resulting into $\rho \in N^{e}(B)$.
to $\left(\operatorname{esd}_{7}\right)$: Let $\rho_{1} \vee \rho_{2} \in N^{e}(B)$ and without restriction $\rho_{1} \neq \emptyset \neq \rho_{2}, B \neq \emptyset$. By definition we get $t_{Y}(e[B]) \in \sec \left\{t_{Y}(e[F]): F \in\left(\rho_{1} \vee \rho_{2}\right) \cap \mathcal{B}^{X}\right\}$. If supposing $\rho_{1}, \rho_{2} \notin N^{e}(B)$. Then we can choose $F_{1} \in \rho_{1} \cap \mathcal{B}^{X}$ with $t_{Y}(e[B]) \cap t_{Y}\left(e\left[F_{1}\right]\right)=\emptyset$ and $F_{2} \in \rho_{2} \cap \mathcal{B}^{X}$ with $t_{Y}(e[B]) \cap t_{Y}\left(e\left[F_{2}\right]\right)=\emptyset$. Hence $F_{1} \cup F_{2} \in\left(\rho_{1} \vee \rho_{2}\right) \cap \mathcal{B}^{X}$, since \mathcal{B}^{X} is bornology. Consequently, $t_{Y}(e[B]) \cap t_{Y}\left(e\left[F_{1} \cup F_{2}\right]\right) \neq \emptyset$ results. On the other hand we have $\emptyset=t_{Y}(e[B]) \cap\left(t_{Y}\left(e\left[F_{1}\right]\right) \cup t_{Y}\left(e\left[F_{2}\right]\right)\right)=t_{Y}(e[B]) \cap t_{Y}\left(e\left[F_{1}\right] \cup e\left[F_{2}\right]\right)=$ $t_{Y}(e[B]) \cap t_{Y}\left(e\left[F_{1} \cup F_{2}\right]\right)$, which contradicts.

Definition 3.5 For a proximal esd-space $\left(X, \mathcal{B}^{X}, N\right)$ and for $B \in \mathcal{B}^{X} \sigma \subset \underline{P} X$ is called B-bunch in N iff σ satisfies the following conditions:
$\left(\mathrm{bun}_{1}\right) \emptyset \notin \sigma$;
$\left(\right.$ bun $\left._{2}\right) F_{1} \cup F_{2} \in \sigma$ iff $F_{1} \in \sigma$ or $F_{2} \in \sigma$;
$\left(\mathrm{bun}_{3}\right) B \in \sigma \in N(B)$;
$\left(\right.$ bun $\left._{4}\right) A \in \sigma$ and $A \subset \operatorname{cl}_{N}(F): F \in \mathcal{B}^{X}$ imply $F \in \sigma$;
$\left(\right.$ bun $\left._{5}\right) A \in \sigma \cap \mathcal{B}^{X}$ implies $\{A\} \in \bigcap\left\{N(F): F \in \sigma \cap \mathcal{B}^{X}\right\}$.

Proposition 3.6 For a proximal esd-space $\left(X, \mathcal{B}^{X}, N\right)$ and for $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ with $x \in B$ $x_{N}:=\left\{A \subset X: x \in \operatorname{cl}_{N}(A)\right\}$ is a B-bunch in N. Moreover, x_{N} is maximal element in $N(\{x\}) \backslash\{\emptyset\}$, ordered by inclusion.

Proof: Evidently, x_{N} is satisfying $\left(\right.$ bun $\left._{1}\right)$ and $\left(\right.$ bun $\left._{2}\right) . B \in x_{N}$, since $\{B\} \ll\{\{x\}\} \in$ $N(\{x\}) \subset N(B)$ and $\left(\operatorname{esd}_{6}\right)$ are holding.
to $\left(\right.$ bun $\left._{4}\right): A \in x_{N}$ and $A \subset c l_{N}(F), F \in \mathcal{B}^{X}$ imply $x \in c l_{N}(A)$, hence $x \in c l_{N}(F)$ follows, showing that $F \in x_{N}$ is valid.
to $\left(\right.$ bun $\left._{5}\right): A \in x_{N} \cap \mathcal{B}^{X}$ and $F \in x_{N} \cap \mathcal{B}^{X}$ imply $\{A\} \in N(\{x\}) \subset N\left(c l_{N}(F)\right)=N(F)$, according to proposition 2.10.

Now, let $\sigma \in N(\{x\}) \backslash\{\emptyset\}$ with $x_{N} \subset \sigma$. For $F \in \sigma$ we have $\{F\} \in N(\{x\})$, and $x \in c l_{N}(F)$ follows, showing that $\sigma=x_{N}$ holds.

Definition 3.7 A proximal esd-space $\left(X, \mathcal{B}^{X}, N\right)$ is called a bunch space iff N satisfies the condition
(bun) $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\rho \in N(B)$ imply $\forall F \in \rho \cap \mathcal{B}^{X} \exists B$-bunch σ in N with $F \in \sigma$.
Proposition 3.8 The esd-space $\left(X, \mathcal{B}^{X}, N^{e}\right)$ is a bunch space.

Proof: For $B \in \mathcal{B}^{X} \backslash\{\emptyset\}, \rho \in N^{e}(B)$ let $F \in \rho \cap \mathcal{B}^{X}$, hence by definition $t_{Y}(e[B]) \cap t_{Y}(e[F]) \neq$ \emptyset holds, so that we can choose $y_{F} \in t_{Y}(e[B]) \cap t_{Y}(e[F])$. Now, we put $t\left(y_{F}\right):=\left\{A \subset X: y_{F} \in\right.$ $\left.t_{Y}(e[A])\right\}$, hence $F \in t\left(y_{F}\right) \cdot t\left(y_{F}\right)$ is a B-bunch in N^{e}, since $\emptyset \notin t\left(y_{F}\right)$, and for $A_{1} \cup A_{2} \in t\left(y_{F}\right)$ we have $y_{F} \in t_{Y}\left(A_{1} \cup A_{2}\right)=t_{Y}\left(A_{1}\right) \cup t_{Y}\left(A_{2}\right)$, showing that $A_{1} \in t\left(y_{F}\right)$ or $A_{2} \in t\left(y_{F}\right)$ is valid. If $A_{1} \in t\left(y_{F}\right)$ and $A_{1} \subset A_{2} \subset X$, then $y_{F} \in t_{y}\left(e\left[A_{1}\right]\right)$ is valid with $t_{Y}\left(e\left[A_{1}\right]\right) \subset t_{Y}\left(e\left[A_{2}\right]\right)$, and consequently $y_{F} \in t_{Y}\left(e\left[A_{2}\right]\right)$ follows, resulting into $A_{2} \in t\left(y_{F}\right)$. By definition $B \in t\left(y_{F}\right)$ holds, and $t\left(y_{F}\right) \in N^{e}(B)$, because for $A \in t\left(y_{F}\right) \cap \mathcal{B}^{X}$ we have $y_{F} \in t_{Y}(e[A]) \cap t_{Y}(e[B])$. Now, let $A \in t\left(y_{F}\right)$ and $A \subset c l_{N^{e}}(F), F \in \mathcal{B}^{X}$, hence $y_{F} \in t_{y}(e[A]) \subset t_{Y}\left(e\left[c l_{N^{e}}(F)\right]\right)=$ $t_{Y}\left(e\left[t_{X}(F)\right]\right) \subset t_{Y}(e[F])$ follows by applying (btx $)_{1}$. Consequently, $F \in t\left(y_{F}\right)$ results. At last let $A \in t\left(y_{F}\right) \cap \mathcal{B}^{X}$ and $F \in t\left(y_{F}\right) \cap \mathcal{B}^{X}$, then $\{A\} \in N^{e}(F)$ follows, because $y_{F} \in$ $t_{Y}(e[A]) \cap t_{Y}(e[F])$ is valid. The above arguments are showing that $\left(X, \mathcal{B}^{X}, N^{e}\right)$ is bunch space.

Convention 3.9 By SYBTEXT we denote the full subcategory of BTEXT, whose objects are the symmetric btop-extensions and by $B \boldsymbol{U} N$ the full subcategory of $\boldsymbol{P X} \boldsymbol{X} \boldsymbol{E S D}$ whose objects are the bunch spaces.

Theorem 3.10 Let $H: S \boldsymbol{Y B T E X T} \longrightarrow \boldsymbol{B U N}$ be defined by
(a) for a SYBTEXT-object $E:=\left(e, \mathcal{B}^{X}, Y\right)$ we put $H(E):=\left(X, \mathcal{B}^{X}, N^{e}\right)$;
(b) for a BTEXT-morphism $(f, g): E \longrightarrow E^{\prime}$ we put $H(f, g):=f$.

Then $H: S Y B T E X T \longrightarrow B U N$ is a functor.

Proof: We already know that the image of H lies in $\boldsymbol{B} \boldsymbol{U} \boldsymbol{N}$. Now, let $(f, g):\left(e, \mathcal{B}^{X}, Y\right) \longrightarrow$ $\left(e^{\prime}, \mathcal{B}^{X^{\prime}}, Y^{\prime}\right)$ be a $\boldsymbol{B T E X T}$-morphism: it has to be shown that f is bibsd-map.
By hypothesis f is bi-bounded. Without restriction let $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\rho \in N^{e}(B)$, we have to verify that $f \rho \in N^{e^{\prime}}(f[B])$. For showing this statement let $A \in f \rho \cap \mathcal{B}^{X^{\prime}}$, then we claim $t_{Y^{\prime}}\left(e^{\prime}[f[B]]\right) \cap t_{Y^{\prime}}\left(e^{\prime}[A]\right) \neq \emptyset$, which would prove our assertion. We have $A \in \mathcal{B}^{X^{\prime}}$ with $A=f[F]$ for some $F \in \rho$. By hypothesis we get $t_{Y}(e[B]) \cap t_{Y}(e[F]) \neq \emptyset$. Note, that F is also an element of \mathcal{B}^{X}, since $F \subset f^{-1}[f[F]]=f^{-1}[A] \in \mathcal{B}^{X}$ is valid, and f is bi-bounded. Now, we can choose an element $y \in t_{Y}(e[B]) \cap t_{Y}(e[F])$. Consequently, $g(y) \in g\left[t_{Y}(e[B])\right] \cap g\left[t_{Y}(e[F])\right]$ follows.

But the proposed diagram (see 3.1) commutes so that $t_{Y^{\prime}}(g[e[B]])=t_{Y^{\prime}}\left(e^{\prime}[f[B]]\right)$ and $t_{Y^{\prime}}\left(e^{\prime}[A]\right)=t_{Y^{\prime}}\left(g[e[F]]=t_{Y^{\prime}}\left(e^{\prime}[f[F]]\right)\right.$ are valid, which put an end of this. Evidently, H fulfills the remaining properties for being a functor.

4 Strict bornotopological extensions

In the previous section we have found a functor H from $\boldsymbol{S Y B T E X T}$ to $\boldsymbol{B U N}$. Now, we are going to introduce a related one in the opposite direction.

Lemma 4.1 Let $\left(X, \mathcal{B}^{X}, N\right)$ be a proximal esd-space. We set: $X^{b}:=\{\sigma \subset \underline{P} X: \sigma$ is B-bunch in N for some $\left.B \in \mathcal{B}^{X} \backslash\{\emptyset\}\right\}$, and for each $A^{b} \subset X^{b}$ we put: $t_{X^{b}}\left(A^{b}\right):=\{\sigma \in$ $\left.X^{b}: \triangle A^{b} \subset \sigma\right\}$, where $\triangle A^{b}:=\left\{F \in \mathcal{B}^{X}: \forall \sigma \in A^{b} F \in \sigma\right\}$. (By convention $\triangle A^{b}=\mathcal{B}^{X}$ if $\left.A^{b}=\emptyset\right)$. Then $t_{X^{b}}: \underline{P} X^{b} \longrightarrow \underline{P} X^{b}$ is a topological closure operator.

Proof: Firstly, we note that $t_{X^{b}}(\emptyset)=\emptyset$, since $\emptyset \notin \sigma$ for each $\sigma \in X^{b}$. Now, let A^{b} be a subset of X^{b} and consider $\sigma \in A^{b}$. Then $F \in \triangle A^{b}$ implies $F \in \sigma$, hence $A^{b} \subset t_{X^{b}}\left(A^{b}\right)$ is valid. If $A_{1}^{b} \subset A_{2}^{b}$, then $\triangle A_{2}^{b} \subset \triangle_{1}^{b}$ implying $t_{X^{b}}\left(A_{1}^{b}\right) \subset t_{X^{b}}\left(A_{2}^{b}\right)$. For arbitrary subsets $A_{1}^{b}, A_{2}^{b} \subset X^{b}$ we consider an element $\sigma \in X^{b}$ such that $\sigma \notin t_{X^{b}}\left(A_{1}^{b}\right) \cup t_{X^{b}}\left(A_{2}^{b}\right)$. Then we get $\triangle A_{1}^{b} \not \subset \sigma$ and $\triangle A_{2}^{b} \not \subset \sigma$. We can choose $F_{1} \in \triangle A_{1}^{b}$ with $F_{1} \notin \sigma$ and $F_{2} \in \triangle A_{2}^{b}$ with $F_{2} \notin \sigma$. By $\left(\right.$ bun $\left._{2}\right)$ we get $F_{1} \cup F_{2} \notin \sigma$. On the other hand $F_{1} \cup F_{2} \in \mathcal{B}^{X}$, since \mathcal{B}^{X} is bornology, and $F_{1} \cup F_{2} \in \triangle A_{1}^{b} \cap \triangle A_{2}^{b} \subset \triangle\left(A_{1}^{b} \cup A_{2}^{b}\right)$ imply $\sigma \notin t_{X^{b}}\left(A_{1}^{b} \cup A_{2}^{b}\right)$. At last, let σ be an element of $t_{X^{b}}\left(t_{X^{b}}\left(A^{b}\right)\right), A^{b} \subset X^{b}$, and suppose $\sigma \notin t_{X^{b}}\left(A^{b}\right)$. We can choose $F \in \triangle A^{b}$, with $F \notin \sigma$. By assumption we have $\Delta t_{X^{b}}\left(A^{b}\right) \subset \sigma$, hence $F \notin \triangle t_{X^{b}}\left(A^{b}\right)$. Consequently, there exists $\sigma_{1} \in t_{X^{b}}\left(A^{b}\right)$ with $F \notin \sigma_{1}$. But this implies $\triangle A^{b} \subset \sigma_{1}$, and $F \in \sigma_{1}$ results, which contradicts.

Theorem 4.2 For proximal esd-spaces $\left(X, \mathcal{B}^{X}, N\right),\left(Y, \mathcal{B}^{Y}, M\right)$ let $f: X \longrightarrow Y$ be a bibsd-map. Define a function $f^{b}: X^{b} \longrightarrow Y^{b}$ by setting for each $\sigma \in X^{b}: f^{b}(\sigma):=\{D \subset Y$: $\left.f^{-1}\left[c_{M}(D)\right] \in \sigma\right\}$. Then the following statements are valid:
(1) f^{b} is a continuous map from $\left(X^{b}, t_{X^{b}}\right)$ to $\left(Y^{b}, t_{Y^{b}}\right)$;
(2) the composites $f^{b} \circ e_{X}$ and $e_{Y} \circ f$ coincide, where $e_{X}: X \longrightarrow X^{b}$ denotes that function which assigns the $\{x\}$-bunch x_{N} to each $x \in X$.

Proof: First, let σ be a B-bunch in N. We will show that $f^{b}(\sigma)$ is a $f[B]$-bunch in M. It is easy to verify that $f^{b}(\sigma)$ satisfies the conditions (bun $)$ and (bun $)_{2}$, respectively (see 3.4). In order to establish $\left(\right.$ bun $\left._{3}\right)$ we observe that $B \in \sigma \in N(B)$ is valid by hypothesis. Since $c l_{M}(f[B]) \supset f[B]$ we have $f^{-1}\left[c l_{M}(f[B])\right] \supset f^{-1}[f[B]] \supset B$. Then $f[B] \in f^{b}(\sigma)$ results by applying (bun $)_{1}$. In showing $f^{b}(\sigma) \in M(f[B])$, we will verify that $\left\{\operatorname{cl}_{M}(D)\right.$: $\left.D \in f^{b}(\sigma)\right\} \ll f \sigma$ (note, that f is satisfying (sd) in definition 1.1). For any $D \in f^{b}(\sigma)$ we have $f^{-1}\left[c l_{M}(D)\right] \in \sigma$, hence $c l_{M}(D) \supset f\left[f^{-1}\left[c l_{M}(D)\right]\right] \in f \sigma$. By applying $\left(\operatorname{esd}_{6}\right)$ we obtain the desired result. Now, let $D \in f^{b}(\sigma)$ and $D \subset c l_{M}(F), F \in \mathcal{B}^{Y}$. We have to show that $f^{-1}\left[c l_{M}(F)\right] \in \sigma$. By hypothesis $f^{-1}\left[c l_{M}(D)\right] \in \sigma$ is valid. $f^{-1}\left[c l_{M}(F)\right] \in \mathcal{B}^{X}$ holds by applying $\left(\operatorname{esd}_{8}\right)$ and since f is bi-bounded. Consequently, $f^{-1}\left[c l_{M}(D)\right] \subset c l_{N}\left(f^{-1}\left[c l_{M}(D)\right]\right) \subset$ $c l_{N}\left(f^{-1}\left[c l_{M}(F)\right]\right)$ follows, leading us to the desired result by applying (bun ${ }_{4}$) for σ. At last let $D \in f^{b}(\sigma) \cap \mathcal{B}^{Y}$. For $F \in f^{b}(\sigma) \cap \mathcal{B}^{Y}$ we have to show that $\{D\} \in M(F)$ is valid. Since M is proximal, therefore it suffices to prove $\{F\} \in M(D)$. By hypothesis $f^{-1}\left[c l_{M}(D)\right] \in \sigma \cap \mathcal{B}^{X}$, note that f is bi-bounded. On the other hand if $F \in f^{b}(\sigma) \cap \mathcal{B}^{Y}$ we also have $f^{-1}\left[c l_{M}(F)\right] \in \sigma \cap \mathcal{B}^{X}$. But σ satisfies (bun $_{5}$), hence $\left\{f^{-1}\left[c l_{M}(F)\right]\right\} \in N\left(f^{-1}\left[c l_{M}(D)\right]\right)$ is valid. Consequently, $\left\{c l_{M}(F)\right\} \in M\left(c l_{M}(D)\right)$ follows, since f satisfies (sd) and by applying $\left(\operatorname{esd}_{5}\right)$. But then $\{F\} \in M(D)$ results according to $\left(\operatorname{esd}_{6}\right)$ and proposition 2.10. Taking all these facts into account we conclude that $f^{b}(\sigma)$ defines a $f[B]$-bunch in M, and thus $f^{b}(\sigma) \in Y^{b}$ is valid.
to (1): Let $A^{b} \subset X^{b}, \sigma \in t_{X^{b}}\left(A^{b}\right)$ and suppose $f(\sigma) \notin t_{Y^{b}}\left(f^{b}\left[A^{b}\right]\right)$. Then $\triangle f^{b}\left[A^{b}\right] \not \subset f^{b}(\sigma)$, hence $D \notin f^{b}(\sigma)$ for some $D \in \triangle f^{b}\left[A^{b}\right]$, which means $f^{-1}\left[c l_{M}(D)\right] \notin \sigma$. But $\triangle A^{b} \subset \sigma$ implies $f^{-1}\left[c_{M}(D)\right] \notin \sigma_{1}$ for some $\sigma_{1} \in A^{b}$. Consequently, $D \notin f^{b}\left(\sigma_{1}\right)$ results, which contradicts, because $D \in \triangle f^{b}\left[A^{b}\right]$ is valid.
to (2): Now, let x be an element of X. We will prove the validity of the equation $f^{b}\left(e_{X}(x)\right)=$ $e_{Y}(f(x))$. To this end let $D \in e_{Y}(f(x))$. Then $f(x) \in c l_{M}(D)$ follows, and $x \in$ $f^{-1}\left[c l_{M}(D)\right]$ is valid. Consequently, $f^{-1}\left[c_{M}(D)\right] \in x_{N}=e_{X}(x)$ holds, and $D \in$ $f^{b}\left(e_{X}(x)\right)$ results, proving the inclusion $e_{Y}(f(x)) \subset f^{b}\left(e_{X}(x)\right)$. Conversely, we note that $\left\{c l_{M}(D): D \in f^{b}\left(e_{X}(x)\right)\right\} \ll f e_{X}(x) \in M(\{f(x)\})$, since by supposition f satisfies (sd). But $e_{Y}(f(x))$ is maximal in $M(\{f(x)\}) \backslash\{\emptyset\}$, and thus we obtain the desired result.

Theorem 4.3 We obtain a functor $G: B U N$ to SYBTEXT by setting:
(a) $G\left(X, \mathcal{B}^{X}, N\right):=\left(e_{X}, \mathcal{B}^{X}, X^{b}\right)$ for any bunch space $\left(X, \mathcal{B}^{X}, N\right)$ with $X:=\left(X, c l_{N}\right)$ and $X^{b}:=\left(X^{b}, t_{X^{b}}\right) ;$
(b) $G(f):=\left(f, f^{b}\right)$ for any bibsd-map $f:\left(X, \mathcal{B}^{X}, N\right) \longrightarrow\left(Y, \mathcal{B}^{Y}, M\right)$.

Proof: With respect to $\left(\operatorname{esd}_{6}\right), c l_{N}$ is topological closure operator, and by Lemma 4.1 this also holds for $t_{X^{b}}$. Therefore we get topological spaces with bornology \mathcal{B}^{X}, and $e_{X}: X \longrightarrow$ X^{b} is a map according to theorem 4.2. Moreover, e_{X} is a function satisfying (btx x_{1}) and (btx ${ }_{2}$), respectively.

To establish (btx_{1}) let $B \in \mathcal{B}^{X}$ and suppose $x \in \operatorname{cl}_{N}(B)$. Then we get $\triangle e_{X}[B] \subset x_{N}$, hence $e_{X}(x) \in t_{X^{b}}\left(e_{X}[B]\right)$, which means $x \in e_{X}^{-1}\left[t_{X^{b}}\left(e_{X}[B]\right)\right.$. Conversely, let x be an element of $e_{X}^{-1}\left[t_{X^{b}}\left(e_{X}[B]\right)\right]$. Then by definition we have $\triangle e_{X}[B] \subset x_{N}$. Since $B \in \triangle e_{X}[B]$ we get $x \in c l_{N}(B)$. To establish (btx_{2}) let $\sigma \in X^{b}$ and suppose $\sigma \notin t_{X^{b}}\left(e_{X}[X]\right)$. By definition we get $\triangle e_{X}[X] \not \subset \sigma$, so that there exists a set $F \in \triangle e_{X}[X]$ with $F \notin \sigma$. But then $X \subset c l_{N}(F)$ follows. Since $B \in \sigma$ for some $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ we get $B \subset c l_{N}(F)$, hence $F \in \sigma$, because σ is satisfying $\left(\right.$ bun $\left._{4}\right)$. But this contradicts, and $\sigma \in t_{X^{b}}\left(e_{X}[X]\right)$ is valid. Moreover, we have that f and f^{b} are continuous maps (see also theorem 4.2), and the diagram

Finally, this establishes that the composition of bibsd-maps is preserved by G. In showing $\left(e_{X}, \mathcal{B}^{X}, X^{b}\right)$ is symmetric, let x be an element of X such that $\sigma \in t_{X^{b}}\left(\left\{e_{X}(x)\right\}\right)$. We have to prove $x_{N} \in t_{X^{b}}(\{\sigma\})$. By hypothesis we have $x_{N} \cap \mathcal{B} \subset \sigma$ and must show that $\triangle\{\sigma\} \subset x_{N}$. To this end let $F \in \triangle\{\sigma\}$, hence $F \in \sigma \cap \mathcal{B}^{X}$ follows. We already know that $\{x\} \in \sigma$ is valid, and consequently $\{F\} \in N(\{x\})$ follows by applying (bun $)_{5}$). But this implies $x \in c l_{N}(F)$, and $F \in x_{N}$ results. At last we will show that the image of G also is contained in $\boldsymbol{S T}$ SYBTEXT the full subcategory of SYBTEXT, whose objects are the strict symmetric bornotopological extensions.

Corollary 4.4 The image of G is contained in ST-SYBTEXT.
Proof: Consider $\sigma \notin X^{b}$ and let A^{b} be closed in X^{b} with $\sigma \notin A^{b}$. Then $\sigma \notin t_{X^{b}}\left(A^{b}\right)$, hence $\triangle A^{b} \not \subset \sigma$. We can find some $F \in \triangle A^{b}$ such that $F \notin \sigma$. Now, for each $\sigma_{1} \in A^{b}$ we have $F \in \sigma_{1}$, which implies $\triangle e_{X}[F] \subset \sigma_{1}$, because $D \in \triangle e_{X}[F]$ implies $F \subset c l_{N}(D)$ with $D \in \mathcal{B}^{X}$, and σ_{1} satisfies $\left(\right.$ bun $\left._{4}\right)$. Therefore we conclude $\sigma_{1} \in t_{X^{b}}\left(e_{X}[F]\right)$, and $A^{b} \subset t_{X^{b}}\left(e_{X}[F]\right)$
results. On the other hand, since $F \notin \sigma$ we have $\triangle e_{X}[F] \not \subset \sigma$, hence $\sigma \notin t_{X^{b}}\left(e_{X}[F]\right)$, and $t_{X^{b}}\left(e_{X}[F]\right) \subset A^{b}$ results, which put an end of this.

Theorem 4.5 Let $H: S Y B T E X T \longrightarrow B U N$ and $G: B U N \longrightarrow S Y B T E X T$ be the above defined functors. For each object $\left(X, \mathcal{B}^{X}, N\right)$ of $\boldsymbol{B} \boldsymbol{U N}$ let $t_{\left(\mathcal{B}^{X}, N\right)}$ denote the identity map id $_{X}: H\left(G\left(X, \mathcal{B}^{X}, N\right)\right) \longrightarrow\left(X, \mathcal{B}^{X}, N\right)$. Then $t: H \circ G \longrightarrow 1_{B U N}$ is natural equivalence from $H \circ G$ to the identity functor $1_{B U N}$, i.e. id $X_{X}: H\left(G\left(X, \mathcal{B}^{X}, N\right)\right) \longrightarrow\left(X, \mathcal{B}^{X}, N\right)$ is bibsdmap in both directions for each object $\left(X, \mathcal{B}^{X}, N\right)$, and the following diagram commutes for each bibsd-map $f:\left(X, \mathcal{B}^{X}, N\right) \longrightarrow\left(Y, \mathcal{B}^{Y}, M\right)$:

Proof: The commutativity of the diagram is obvious, because of $H(G(f))=f$. It remains to prove that $i d_{X}: H\left(G\left(X, \mathcal{B}^{X}, N\right)\right) \longrightarrow\left(X, \mathcal{B}^{X}, N\right)$ is bibsd-map in both directions. Since $H\left(G\left(X, \mathcal{B}^{X}, N\right)\right)=\left(X, \mathcal{B}^{X}, N^{e_{X}}\right)$ by definition of G respectively H, it suffices to show that for each $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ we have $N^{e_{X}}(B) \subset N(B) \subset N^{e_{X}}(B)$. To this end assume $\rho \in$ $N^{e_{X}}(B), B \neq \emptyset$. Then $t_{X^{b}}\left(e_{X}[B]\right) \in \sec \left\{t_{X^{b}}(F): F \in \rho \cap \mathcal{B}^{X}\right\}$. Now, we will show that $\rho \cap \mathcal{B}^{X}$ is subset of $\bigcup\{\mathcal{A}: \mathcal{A} \in N(B)\}$. Note, that $\left(X, \mathcal{B}^{X}, N\right)$ is conic by assumption. $F \in \rho \cap \mathcal{B}^{X}$ implies the existence of $\sigma \in t_{X^{b}}(B) \cap t_{X^{b}}(F)$, hence $\triangle e_{X}[B], \Delta e_{X}[F] \subset \sigma$ are valid. Consequently, $B, F \in \sigma \cap \mathcal{B}^{X}$ result, and $\{F\} \in N(B)$ follows, since σ satisfies (bun ${ }_{5}$). Consequently, $F \in \bigcup\{\mathcal{A}: \mathcal{A} \in N(B)\}$ is valid, showing that $\rho \cap \mathcal{B}^{X} \in N(B)$. But then $\rho \in N(B)$ follows by applying ($\left.\operatorname{esd}_{9}\right)$. Conversely, let $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\rho \in N(B)$. We have to verify $t_{X^{b}}\left(e_{X}[B]\right) \in \sec \left\{t_{X^{b}}(F): F \in \rho \cap \mathcal{B}^{X}\right\} \cdot F \in \rho \cap \mathcal{B}^{X}$ implies the existence of a B-bunch σ in N with $F \in \sigma$, according to (bun). Now, we claim that the following statements are valid, i.e.
(a) $\sigma \in t_{X^{b}}\left(e_{X}[B]\right)$;
(b) $\sigma \in t_{X^{b}}\left(e_{X}[F]\right)$.
to (a): We have to check that the inclusion $\triangle e_{X}[B] \subset \sigma$ is valid. $A \in \triangle e_{X}[B]$ implies $B \subset \operatorname{cl}_{N}(A)$. Since $B \in \sigma$ we get $c l_{N}(A) \in \sigma$, and $A \in \sigma$ results, according to (bun ${ }_{4}$). Note, that $A \in \mathcal{B}^{X}$ by definition.
to (b): We must show that the inclusion $\triangle e_{X}[F] \subset \sigma$ is valid. But by hypothesis we know that $F \in \sigma$ holds, hence this proving is as above.

Corollary 4.6 For a btop- T_{1} extension $E:=\left(e, \mathcal{B}^{X}, Y\right)$, where e is topological embedding and $Y T_{1}$-space, then $\left(X, \mathcal{B}^{X}, N^{e}\right)$ is separated by satisfying
(sep) $x, z \in X$ and $\{\{z\}\} \in N^{e}(\{x\})$ imply $x=z$.
Proof: For $x, z \in X$ with $\{\{z\}\} \in N^{e}(\{x\})$ there exists $y \in t_{Y}(\{e(x)\}) \cap t_{Y}(\{e(z)\})$. By hypothesis $e(x)=y=e(z)$ follows, and $x=z$ results, because e is injective.

Corollary 4.7 For a separated proximal esd-space $\left(X, \mathcal{B}^{X}, N\right)$ the function $e_{X}: X \longrightarrow$ X^{b} is injective.

Proof: For $x, z \in X$ let $e_{X}(x)=e_{X}(z)$, hence $z \in c l_{N}(\{x\})$, and $\{\{x\}\} \in N(\{z\})$ follows. By hypothesis $x=z$ results.

Remark 4.8 In making the main theorem of this paper more transparent we state that a proximal esd-space $\left(X, \mathcal{B}^{X}, N\right)$ is a bunch space iff it can be considered as subspace of a topological space Y, such that the B-collections in N for non-empty bounded sets B are characterized by the fact that their closures of bounded members in Y meet the closure of B in Y. In case if \mathcal{B}^{X} is saturated, then proximal esd-spaces essentially coincide with LODATO proximity spaces up to isomorphism. Hence the main theorem generalizes the one of LODATO, presented by him in the past and where symmetric generalized proximities are playing an important role, especially those arising from a family of bunches on a set X.
Diagram of used categories

[^0]
References

[1] Banaschewski, B. : Extensions of Topological Spaces. Canadian Math. Bull. 7 (1964), 1-23
[2] Bartsch, R. : Compactness properties for some hyperspaces and function spaces. Shaker Verlag, Aachen (2002)
[3] Bentley, H. L. : Nearness spaces and extension of topological spaces. In: Studies in Topology, Academic Press, NY (1975), 47-66
[4] Deák, J. : Extending a family of screens in a contiguity space. Topology with applications; Szekszárd, Hungary (1993), 121-133
[5] Dimov, G., and Ivanova, E. : On some categories arising in the theory of locally compact extensions. Math. Pannonica 19/2 (2008), 219-239
[6] Doîtchînov, D. : Compactly determined extensions of topological spaces. SERDICA Bulgarice Math. Pub. 11 (1985), 269-286
[7] Herrlich, H. : A concept of nearness. General Topology and its Appl. 5 (1974), 191-212
[8] Hogbe - Nlend, H. : Bornologies and functional analysis. Amsterdam, North-Holland Pub. Co (1977)
[9] Hǔsek, M. : Categorical connections between generalized proximity spaces and compactifications. Contributions to extension theory of topological structures (Proc. Symp. Berlin 1967) Berlin (1969), 127-132
[10] Ivanova, V. M., and Ivanov, A. : Contiguity spaces and bicompact extensions. Dokl. Akad. Nauk SSSR 127 (1959), 20-22
[11] Kent, D.C., and Min, W. K. : Neighbourhood spaces. IJMMS 32:7 (2002), 387-399
[12] Leseberg, D. : Supernearness, a common concept of supertopologies and nearness. Top. Appl. 123 (2002). 145-156
[13] Leseberg, D. : Bounded Topology : a convenient foundation for Topology. http://www.digibib.tu-bs.de/?docid=00029438, FU Berlin (2009)
[14] Leseberg, D. : Improved nearness research. Math. Pannonica, preprint
[15] Leseberg, D. : Improved nearness research II. Rostock. Math. Kolloq. 66 (2011), 87-102
[16] Leseberg, D. : Improved nearness research III. Int. J. of Mathematical Sciences and Applications vol. 1, No2 (May 2011), 1-14
[17] Leseberg, D. : Improved nearness research IV. Quaest. Math. preprint
[18] Leseberg, D. : Bounded proximities and related nearness. Quaest. Math. 36 (2013), 381-387
[19] Leseberg, D. : Extensions in Bounded Topology. Mathematics for Applications, preprint
[20] Lodato, M. W. : On topologically induced generalized proximity relations II. Pacific Journal of Math. vol. 17, No 1 (1966), 131-135
[21] Naimpally, S. : Proximity approach to problems in Topology and Analysis. München, Oldenburg (2009)
[22] Poppe, H. : On locally defined topological notions. Q+A in General Topology 13 (1995), 39-53
[23] Smirnov, Y. M. : On the completeness of proximity spaces. Dokl. Akad. Nauk. SSSR 88 (1953), 761-794 (in Russian). MR 15 \# 144
received: July 9, 2014

Author:

Dieter Leseberg
Department of Mathematics and Informatics
Free University of Berlin
Germany
e-mail: leseberg@zedat.fu-berlin.de

Vietoris hyperspaces as quotients of natural function spaces

Abstract

Hyperspaces form a powerful tool in some branches of mathematics: lots of fractal and other geometric objects can be viewed as fixed points of some functions in suitable hyperspaces - as well as interesting classes of formal languages in theoretical computer sciences, for example (to illustrate the wide scope of this concept). Moreover, there are many connections between hyperspaces and function spaces in topology. Thus results from hyperspaces help to get new results in function spaces and vice versa.

We give here a new description of the Vietoris hyperspace on the family $K(Y)$ of the nonempty compact subsets of a regular topological space Y as quotient of the space $C(\beta D, Y)$, endowed with compact-open topology $\tau_{c o}$, where βD is the Stone-Čech-compactification of a discrete space.

1 Preliminary Definitions and Results

For a given set X we denote by $\mathfrak{P}(X)$ the power set of X, by $\mathfrak{P}_{0}(X)$ the power set without the empty set. By $\mathfrak{F}(X)$ (resp. $\mathfrak{F}_{0}(X)$) we mean the set of all filters (resp. ultrafilters) on X; if φ is a filter on X, the term $\mathfrak{F}_{0}(\varphi)$ denotes the set of all ultrafilters on X, which contain φ. For $x \in X$ we denote by $\dot{x}:=\{A \subseteq X \mid x \in A\}$ the singleton filter on X, generated by $\{x\}$. With $\mathfrak{S}(X):=\{\dot{x} \mid x \in X\}$ we mean the family of all singleton filters on X.

For families $\mathfrak{A} \subseteq \mathfrak{P}(X)$ and any $M \subseteq X$ we set

$$
M^{-\mathfrak{A}}:=\{A \in \mathfrak{A} \mid A \cap M \neq \emptyset\}
$$

and

$$
M^{+\mathfrak{A}}:=\{A \in \mathfrak{A} \mid A \cap M=\emptyset\} .
$$

Then for a topological space (X, τ) on $\mathfrak{A} \subseteq \mathfrak{P}_{0}(X)$ the lower Vietoris topology $\tau_{l, \mathfrak{A}}$ is defined by the subbase $\left\{O^{-2 \mid} \mid O \in \tau\right\}$, whereas the upper Vietoris topology $\tau_{u, \mathfrak{A}}$ on \mathfrak{A} comes from the
subbase $\left\{(X \backslash O)^{+\mathfrak{A}} \mid O \in \tau\right\}$. The Vietoris topology on \mathfrak{A} is $\tau_{V, \mathfrak{A}}:=\tau_{l, \mathfrak{A}} \vee \tau_{u, \mathfrak{l} \cdot}$. In most cases \mathfrak{A} is chosen as the family $C l(X)$ of the nonempty closed, or $K(X)$ of the nonempty compact subsets of a topological space (X, τ), or as the entire $\mathfrak{P}_{0}(X)$.
The Vietoris topology on \mathfrak{A} is also generated by the standard basis consisting of all sets

$$
\left\langle U_{1}, \ldots, U_{n}\right\rangle_{\mathfrak{A}}:=\left\{A \in \mathfrak{A} \mid A \subseteq \bigcup_{i=1}^{n} U_{i} \wedge \forall i=1, \ldots, n: A \cap U_{i} \neq \emptyset\right\}
$$

with open U_{1}, \ldots, U_{n}.
Whenever there is no doubt about \mathfrak{A}, we will omit it as sub- and superscript.

We will need some basic facts about the Stone-Čech-compactification of discrete spaces.

A discrete space (D, δ) clearly is T_{4} and Hausdorff, so its Stone-Čech-compactification is homeomorphic to its Wallman extension, consisting in this case just of the set $\mathfrak{F}_{0}(D)$, where the singleton filters are identified with their generating points via $w: D \rightarrow \mathfrak{F}_{0}(D): w(x):=\dot{x}$, endowed with the topology generated from the base consisting of all sets $\mathfrak{F}_{0}(M)$, with $M \subseteq D$ (see [4], p. 176 ff).

Proposition 1.1 Let (D, δ) be a discrete topological space. Then for its Stone-Čechcompactification $\left(\beta D, \delta^{\beta}\right)$ hold
(a) For all $M \subseteq D$ in B the closure \bar{M} is clopen.
(b) δ^{β} has a base consisting of clopen sets.
(c) All clopen sets C in $\left(\beta D, \delta^{\beta}\right)$ are of the form $C=\overline{C \cap D}$.

Proof: We use the homeomorphy of $\left(\beta D, \delta^{\beta}\right)$ to the Wallman extension.
(a) $+(\mathrm{b})$ We have $\overline{w(M)}=\mathfrak{F}_{0}(M)$: from $\mathfrak{F}_{0}(M)=\mathfrak{F}_{0}(D) \backslash \mathfrak{F}_{0}(D \backslash M)$ we conclude, that $\mathfrak{F}_{0}(M)$ is closed and of course it contains $w(M)$. So, $\overline{w(M)} \subseteq \mathfrak{F}_{0}(M)$ follows. If there would be a filter $\varphi \in \mathfrak{F}_{0}(M)$ which belongs not to $\overline{w(M)}$, then there would exist a base set $\mathfrak{F}_{0}(S)$, $S \subseteq D$, of δ^{β} s.t. $\varphi \in \mathfrak{F}_{0}(S)$ and $\mathfrak{F}_{0}(S) \cap w(M)=\emptyset$. But this implies $M \cap S=\emptyset$, and thus $\mathfrak{F}_{0}(S) \cap \mathfrak{F}_{0}(M)=\emptyset$ - in contradiction to $\varphi \in \mathfrak{F}_{0}(S) \cap \mathfrak{F}_{0}(M)$. So, we have indeed $\overline{w(M)}=\mathfrak{F}_{0}(M)$, which is also open, because it belongs to our defining base of δ^{β}.
(c) Let $C \subseteq \beta D$ be clopen. Then for all $c \in C$ there exists a basic open set $\mathfrak{F}_{0}\left(M_{c}\right)$ with $M_{c} \subseteq D$, s.t. $c \in \mathfrak{F}_{0}\left(M_{c}\right) \subseteq C$, because C is open. From closedness of C automatically
follows compactness, because βD is compact, thus there are finitely many $M_{c_{1}}, \ldots, M_{c_{n}}$ with $C=\bigcup_{i=1}^{n} \mathfrak{F}_{0}\left(M_{c_{i}}\right)$. Now, for such finite union we have generally $\bigcup_{i=1}^{n} \mathfrak{F}_{0}\left(M_{c_{i}}\right)=\mathfrak{F}_{0}\left(\bigcup_{i=1}^{n} M_{c_{i}}\right)$ and it is clear, that $w\left(\bigcup_{i=1}^{n} M_{c_{i}}\right)=C \cap w(D)$ holds.

For a topological space (Y, σ) - especially, if it is not T_{0} - we define an equivalence relation on Y by

$$
x \sim y: \Leftrightarrow(\forall O \in \sigma: x \in O \leftrightarrow y \in O) .
$$

Then the quotient space $\left(Y / \sim, \sigma_{\sim}\right)$ is obviously T_{0}; we call it the T-zerofication of (Y, σ). Let $\nu: Y \rightarrow Y / \sim: \nu(y):=[y]_{\sim}$ be the canonical surjection. Because ν is continuous, the space $\left(Y / \sim, \sigma_{\sim}\right)$ is compact, whenever (Y, σ) is.

Proposition 1.2 Let (X, τ) be a Tychonoff space, (Y, σ) a compact T_{3}-space and f : $X \rightarrow Y$ a continuous function. Then there exists a continuous extension $F: \beta X \rightarrow Y$ with $F_{\mid X}=f$.

Proof: The T-zerofication $\left(Y / \sim, \sigma_{\sim}\right)$ of (Y, σ) is also T_{3} (see [3], p. 191), and of course T_{0}, so it is T_{2}. Because it is also compact, from the theorem of Stone-Čech we get a continuous extension $G: \beta X \rightarrow\left(Y / \sim, \sigma_{\sim}\right)$ of $\nu \circ f: X \rightarrow Y / \sim$, where ν is the canonical surjection from Y to Y / \sim. Now, let $\alpha: Y / \sim \rightarrow Y$ be a choice function, i.e. $\forall[y]_{\sim} \in Y_{\sim}: \alpha\left([y]_{\sim}\right) \in[y]_{\sim}$.

Then

$$
F: \beta X \rightarrow Y: F(x):=\left\{\begin{array}{cll}
f(x) & ; & x \in X \\
\alpha \circ G(x) & ; & x \in \beta X \backslash X
\end{array}\right.
$$

is continuous by [3], prop. 4.1.4(4), and is obviously an extension of f.
Proposition 1.3 Let (Y, σ) be a topological T_{3}-space, $K \subseteq Y$ compact and $O \subseteq Y$ open with $K \subseteq O$. Then an open set U exists with $K \subseteq U \subseteq \bar{U} \subseteq O$. Especially, $\bar{K} \subseteq O$ holds.

Proof: $K \subseteq O$ just means $K \cap(Y \backslash O)=\emptyset$ and $(Y \backslash O)$ is closed. Thus, by T_{3}, for every element $k \in K$ there are $U_{k}, V_{k} \in \sigma$ s.t. $k \in U_{k}, Y \backslash O \subseteq V_{k}$ and $U_{k} \cap V_{k}=\emptyset$. The U_{k} 's cover K, so by compactness a finite subcover $U_{k_{1}}, \ldots, U_{k_{n}}$ exists. Let $U:=\bigcup_{i=1}^{n} U_{k_{i}}$ and $V:=\bigcap_{i=1}^{n} V_{K_{i}}$, so U, V are open, $U \cap V=\emptyset, K \subseteq U$ and $Y \backslash O \subseteq V$ hold, i.e.

$$
K \subseteq U \subseteq Y \backslash V \subseteq O .
$$

Now, $Y \backslash V$ is closed, so we get

$$
\bar{K} \subseteq \bar{U} \subseteq \overline{Y \backslash V}=Y \backslash V \subseteq O .
$$

2 Vietoris Hyperstructure as final w.r.t. Function Spaces

Remember a wide class of function space structures, defined for Y^{X} or $C(X, Y)$: the so called set-open topologies, examined in [1], [5]. According to [5], we use the following convention: Let X and Y be sets and $A \subseteq X, B \subseteq Y$; then let be $(A, B):=\left\{f \in Y^{X} \mid f(A) \subseteq B\right\}$. Now let X be a set, (Y, σ) a topological space and $\mathfrak{A} \subseteq \mathfrak{P}_{0}(X)$. Then the topology $\tau_{\mathfrak{A}}$ on Y^{X} (resp. $C(X, Y)$), which is defined by the open subbase $\{(A, W) \mid A \in \mathfrak{A}, W \in \sigma\}$ is called the set-open topology, generated by \mathfrak{A}, or shortly the \mathfrak{A}-open topology.

We know
Lemma 2.1 [cf. [2], lemma 3.4] Let $(X, \tau),(Y, \sigma)$ be topological spaces, let $\mathfrak{A} \subseteq \mathfrak{P}_{0}(X)$ contain the singletons and $\mathcal{H} \subseteq Y^{X}$ be endowed with $\tau_{\mathfrak{A}}$. Then the map

$$
\mu_{X}: \mathcal{H} \rightarrow \mathfrak{P}_{0}(Y)^{\mathfrak{A}}: f \rightarrow \mu_{X}(f): \forall A \in \mathfrak{A}: \mu_{X}(f)(A):=f(A),
$$

is open, continuous and bijective onto its image, for $\mathfrak{P}_{0}(Y)$ is equipped with Vietoris topology σ_{V}, and $\mathfrak{P}_{0}(Y)^{\mathfrak{A}}$ with the generated pointwise topology.

Now, the pointwise topology on $\mathfrak{P}_{0}(Y)^{\mathfrak{A}}$ is just the product topology on $\prod_{A \in \mathfrak{A}} \mathfrak{P}_{0}(Y)_{A}$ (with all $\mathfrak{P}_{0}(Y)_{A}$ being copies of $\mathfrak{P}_{0}(Y)$). By chosing $\mathcal{H}:=C(X, Y), \mathfrak{A}:=K(X)$ and consequently replacing $\mathfrak{P}_{0}(Y)$ by $K(Y)$, we have the following situation:

Of course, by π_{A} we mean the canonical projection from the product to the factor $K(Y)_{A}=$ $K(Y)$.

From lemma 2.1 we get the continuity of μ_{X}, if $C(X, Y)$ is equipped with compact-open topology, thus in this case all compositions $\pi_{A} \circ \mu_{X}$ are continuous, too.

Moreover, μ_{X} is even a homeomorphism onto its image and the product structure is initial w.r.t. the projections. So, the question arises, whether or not the Vietoris topology σ_{V} on $K(Y)$ is final w.r.t. all $\pi_{A} \circ \mu_{X}$.

Lemma 2.2 Let $(X, \tau),(Y, \sigma)$ be topological spaces and let σ_{V} be the Vietoris topology on $K(Y)$. Then for every $\mathfrak{O} \in \sigma_{V}$ and every $A \in K(X)$ the set $\left(\pi_{A} \circ \mu_{X}\right)^{-1}(\mathfrak{O}) \subseteq C(X, Y)$ is open w.r.t. the compact-open topology.

Proof: Let $A \in K(X)$ be given and let $F \in C l(Y)$ be a closed subset of Y. Then $\left(\pi_{A} \circ \mu_{X}\right)^{-1}\left(F^{+}\right)=\{f \in C(X, Y) \mid f(A) \subseteq Y \backslash F\}=(A, Y \backslash F) \in \tau_{c o}$. Let now $O \in \sigma$ be given, then
$\left(\pi_{A} \circ \mu_{X}\right)^{-1}\left(O^{-}\right)=\{f \in C(X, Y) \mid f(A) \cap O \neq \emptyset\}=\bigcup_{a \in A}(\{a\}, O) \in \tau_{c o}$.
So, because the F^{+}and O^{-}form a subbase of σ_{V}, for $\mathfrak{O} \in \sigma_{V}$ the preimage $\left(\pi_{A} \circ \mu_{X}\right)^{-1}(\mathfrak{D})$ is an element of $\tau_{c o}$.

Corollary 2.3 Let (Y, σ) be a topological space. For every topological space let $C(X, Y)$ be equipped with compact-open topology.

Then the Vietoris topology σ_{V} on $K(Y)$ is contained in the final topology w.r.t. all $\pi_{A} \circ \mu_{(X, \tau)}$, $(X, \tau) \in \mathcal{B}, A \in K(X, \tau)$, for every class \mathcal{B} of topological spaces.

Theorem 2.4 Let (Y, σ) be a T_{3}-space and let $\left(K(Y), \sigma_{V}\right)$ be its Vietoris Hyperspace of compact subsets. Let furthermore δ be the discrete topology on $Y \times Y$ and denote by (Z, ζ) the Stone-Čech-compactification of $(Y \times Y, \delta)$.
Then σ_{V} is the final topology on $K(Y)$ w.r.t. $\pi_{Z} \circ \mu_{Z}: C(Z, Y) \rightarrow K(Y)$, where $C(Z, Y)$ is endowed with compact-open topology $\tau_{c o}$.

Proof: From Lemma 2.2 we know that σ_{V} is contained in the final topology w.r.t. $\pi_{Z} \circ \mu_{Z}$, so we only have to show, that every open set of the final topology also belongs to σ_{V}. Let \mathfrak{O} be an open set of the final topology, i.e. $\left(\pi_{Z} \circ \mu_{Z}\right)^{-1}(\mathfrak{O}) \in \tau_{c o}$, and let $A \in \mathfrak{O}$.

We want to show, that there exist finitely many open sets $U_{1}, \ldots, U_{m} \in \sigma$ s.t.
$A \in\left\langle U_{1}, \ldots, U_{m}\right\rangle_{K(Y)} \subseteq \mathfrak{O}$.

At first, chose any surjection s from Y onto $A \subseteq Y$. Then extend it to a surjection $f_{A}: Y \times Y \rightarrow A$ by $f_{A}\left(y_{1}, y_{2}\right):=s\left(y_{1}\right)$, just meaning, that f_{A} maps such pairs with equal first component to the same image.

Now, endowing $Y \times Y$ with discrete topology, we get f_{A} being continuous. So, if (Z, ζ) denotes the Stone-Čech-compactification of the discrete $Y \times Y$, there exists a continuous extension $F_{A}: Z \rightarrow A$ of f_{A}, by proposition 1.2.

Because F_{A} is an extension of f_{A}, we have

$$
\begin{equation*}
\forall(a, b),(c, d) \in Y \times Y: a=c \Longrightarrow F_{A}(a, b)=F_{A}(c, d) . \tag{1}
\end{equation*}
$$

Because \mathfrak{O} is open in the final topology, there are finitely many compact subsets $K_{1}, \ldots, K_{n} \in$ $K(Z)$ and open subsets $O_{1}, \ldots, O_{n} \in \sigma$ s.t. $F_{A} \in \bigcap_{i=1}^{n}\left(K_{i}, O_{i}\right) \subseteq\left(\pi_{X} \circ \mu_{X}\right)^{-1}(\mathfrak{O})$.

We will improve the sets K_{i} and O_{i} a little in an appropriate manner.
(a) For each K_{i} and every $k \in K_{i}$ there is an open neighbourhood U_{k} of k, s.t. $F_{A}\left(U_{k}\right) \subseteq O_{i}$, because F_{A} is continuous. Now, ζ has a base consisting of clopen sets B of the form $B=\overline{B \cap(Y \times Y)}$. So, there exist always such a clopen $B_{k} \subseteq U_{k}$ with $k \in B_{k}$ and $F_{A}\left(B_{k}\right) \subseteq O_{i}$. The family of all $B_{k}, k \in K_{i}$ is an open cover of K_{i} and consequently there is a finite subcover $\left\{B_{k_{1}}, \ldots, B_{k_{l}}\right\}$, by compactness of K_{i}. Now let

$$
K_{i}^{\prime}:=\bigcup_{j=1}^{l} B_{k_{j}}
$$

and observe, that K_{i}^{\prime} as a finite union of clopen sets is clopen again, hence it is compact and of the form $K_{i}^{\prime}=\overline{K_{i}^{\prime} \cap(Y \times Y)}$. Furthermore we have $K_{i} \subseteq K_{i}^{\prime}$ and consequently

$$
F_{A} \in\left(K_{i}^{\prime}, O_{i}\right) \subseteq\left(K_{i}, O_{i}\right) .
$$

(b) We want to have our K 's saturated in the sense, that whenever $(a, b) \in K \cap(Y \times Y)$ holds, then $\{a\} \times Y \subseteq K$ also holds. So, let us define

$$
D_{i}:=\bigcup_{\substack{a \in Y, \exists b \in Y: \\(a, b) \in K_{i}^{\prime} \cap(Y \times Y)}}\{a\} \times Y
$$

and then $K_{i}^{\prime \prime}:=\overline{D_{i}}$. From the continuity of F_{A} follows

$$
\begin{equation*}
F_{A}\left(K_{i}^{\prime \prime}\right)=F_{A}\left(\overline{D_{i}}\right) \subseteq \overline{F_{A}\left(D_{i}\right)} \tag{2}
\end{equation*}
$$

and from (1) we get

$$
\begin{equation*}
F_{A}\left(D_{i}\right)=F_{A}\left(K_{i}^{\prime} \cap(Y \times Y)\right) . \tag{3}
\end{equation*}
$$

Of course, $F_{A}\left(K_{i}^{\prime} \cap(Y \times Y)\right) \subseteq F_{A}\left(K_{i}^{\prime}\right)$ and $F_{A}\left(K_{i}^{\prime}\right)$ is compact and fulfills $F_{A}\left(K_{i}^{\prime}\right) \subseteq$ O_{i}, so by proposition 1.3 we get from (Y, σ) being T_{3}

$$
\begin{equation*}
F_{A}\left(K_{i}^{\prime \prime}\right) \subseteq \overline{F_{A}\left(D_{i}\right)} \subseteq \overline{F_{A}\left(K_{i}^{\prime}\right)} \subseteq O_{i} \tag{4}
\end{equation*}
$$

Note, that all $K_{i}^{\prime \prime}$ are compact and clopen again, by construction as a closure of a subset of $Y \times Y$ in the Stone-Čech-compactification (Z, ζ) of the discrete $Y \times Y$. Clearly, $K_{i}^{\prime \prime} \supseteq K_{i}^{\prime}$ holds, yielding $\left(K_{i}^{\prime \prime}, O_{i}\right) \subseteq\left(K_{i}^{\prime}, O_{i}\right)$, thus

$$
\begin{equation*}
F_{A} \in \bigcap_{i=1}^{n}\left(K_{i}^{\prime \prime}, O_{i}\right) \subseteq \bigcap_{i=1}^{n}\left(K_{i}^{\prime}, O_{i}\right) . \tag{5}
\end{equation*}
$$

(c) To cover Z (resp. A) with our compact sets, we add $K_{0}^{\prime \prime}:=Z\left(\right.$ resp. $\left.O_{0}:=Y\right)$ and find of course

$$
F_{A} \in \bigcap_{i=1}^{n}\left(K_{i}^{\prime \prime}, O_{i}\right)=\bigcap_{i=0}^{n}\left(K_{i}^{\prime \prime}, O_{i}\right) .
$$

For each $z \in Z$ define

$$
I(z):=\left\{i \in\{0, \ldots, n\} \mid z \in K_{i}^{\prime \prime}\right\}
$$

and then

$$
\begin{equation*}
C(z):=\bigcap_{i \in I(z)} K_{i}^{\prime \prime} \backslash\left(\bigcup_{j \in\{0, \ldots, n\} \backslash I(z)} K_{j}^{\prime \prime}\right) \tag{6}
\end{equation*}
$$

as well as

$$
\begin{equation*}
V(z):=\bigcap_{i \in I(z)} O_{i} \tag{7}
\end{equation*}
$$

Obviously for every $z \in Z$ we have

$$
F_{A}(C(z)) \subseteq F_{A}\left(\bigcap_{i \in I(z)} K_{i}^{\prime \prime}\right) \subseteq \bigcap_{i \in I(z)} O_{i}=V(z)
$$

implying $F_{A} \in(C(z), V(z))$.
The family of all $C(z)$ covers Z, because every $z \in Z$ is contained at least in it's own $C(z)$. Observe, that different $C\left(z_{1}\right)$ and $C\left(z_{2}\right)$ are disjoint: if $y \in C\left(z_{1}\right) \cap C\left(z_{2}\right)$ exists, then $I\left(z_{1}\right)=I(y)=I\left(z_{2}\right)$ follows, implying $C\left(z_{1}\right)=C\left(z_{2}\right)$ by (6).

Obviously, there are only finitely many different sets $C(z), V(z)$, because they are uniquely determined by $I(z)$, which is a subset of $\{0, \ldots, n\}$ and this set has just finitely many subsets. So, for simplicity, let us denote them by C_{1}, \ldots, C_{m} and V_{1}, \ldots, V_{m}, respectively.

It is clear, that the C_{j} 's are clopen (thus compact) and saturated in the sense of paragraph (b), by construction (6) from just clopen saturated $K_{i}^{\prime \prime \prime}$ s.

For $G \in \bigcap_{j=1}^{m}\left(C_{j}, V_{j}\right)=\bigcap_{z \in Z}(C(z), V(z))$ we find

$$
\begin{array}{rll}
\forall i \in\{0, \ldots, n\} & : \forall z \in K_{i}^{\prime \prime} & : i \in I(z) \\
& \Longrightarrow & : G(z) \in V(z) \subseteq O_{i} \\
\Longrightarrow & G\left(K_{i}^{\prime \prime}\right) \subseteq O_{i} . &
\end{array}
$$

Consequently, we have

$$
\begin{equation*}
F_{A} \in \bigcap_{j=1}^{m}\left(C_{j}, V_{j}\right) \subseteq \bigcap_{i=0}^{n}\left(K_{i}^{\prime \prime}, O_{i}\right) \tag{8}
\end{equation*}
$$

(d) At last, let us chose for every $j=1, \ldots, m$ an open set $U_{j} \in \sigma$ s.t. $F_{A}\left(C_{j}\right) \subseteq U_{j} \subseteq$ $\overline{U_{j}} \subseteq V_{j}$ holds, as provided by proposition 1.3. Of course, we have then automatically $F_{A} \in\left(C_{j}, U_{j}\right) \subseteq\left(C_{j}, V_{j}\right)$.
So, because the C_{j} 's cover Z, the $F_{A}\left(C_{j}\right)$'s cover A, and so the U_{j} 's do.
With these $U_{j}, j=1, \ldots, m$, we show $A \in\left\langle U_{1}, \ldots, U_{j}\right\rangle_{K(Y)} \subseteq \mathfrak{O}$.
$A \in\left\langle U_{1}, \ldots, U_{m}\right\rangle_{K(Y)}$ is clear, because the U_{j} 's cover A, as seen in paragraph (d), and $\emptyset \neq F_{A}\left(C_{j}\right) \subseteq A \cap U_{j}$ for all $j=1, \ldots, m$.

Let

$$
\begin{equation*}
B \in\left\langle U_{1}, \ldots, U_{j}\right\rangle_{K(Y)} \tag{9}
\end{equation*}
$$

be given.
Because every C_{j} is nonempty clopen and saturated in the sense of paragraph (b), $C_{j} \cap(Y \times Y)$ has the cardinality of Y. So, there exists a surjection $t_{j}: C_{j} \cap(Y \times Y) \rightarrow U_{j} \cap B$ (the range is not empty by (9)).

Now, define

$$
t:(Y \times Y) \rightarrow B: t(x, y):=t_{j}(x, y) \text { for }(x, y) \in C_{j}
$$

This t is well defined, because the C_{j} 's are pairwise disjoint and cover Z by paragraph (c), and it is a surjection onto B, because the U_{j} 's cover B by (9) and the t_{j} are surjections onto $U_{j} \cap B$. Our t is continuous w.r.t. the discrete topology on $Y \times Y$, so it extends to a continuous $T: Z \rightarrow B$.

By construction we have for each $j \in\{1, \ldots, m\}$

$$
\begin{equation*}
T\left(C_{j} \cap(Y \times Y)\right) \subseteq U_{j}, \tag{10}
\end{equation*}
$$

implying $T\left(C_{j}\right)=T\left(\overline{C_{j} \cap(Y \times Y)}\right) \subseteq \overline{T\left(C_{j} \cap(Y \times Y)\right)} \subseteq \overline{U_{j}}$ by continuity, thus $T\left(C_{j}\right) \subseteq$ V_{j} by choice of U_{j} in paragraph (d).

We find $T \in \bigcap_{j=1}^{m}\left(C_{j}, V_{j}\right) \subseteq\left(\pi_{Z} \circ \mu_{Z}\right)^{-1}(\mathfrak{O})$, yielding $B=\pi_{Z} \circ \mu_{Z}(T) \in \mathfrak{O}$. This works for every $B \in\left\langle U_{1}, \ldots, U_{m}\right\rangle_{K(Y)}$, thus we have indeed $\left\langle U_{1}, \ldots, U_{m}\right\rangle_{K(Y)} \subseteq \mathfrak{O}$. Consequently, \mathfrak{O} is a union of Vietoris-open subsets of $K(Y)$, just meaning $\mathfrak{O} \in \sigma_{V}$.

Remark 2.5 Of course, $Y \times Y$ with discrete topology is homeomorphic to Y with discrete topology for infinite Y. So, we used $Y \times Y$ here just for convenience concerning the description of the „saturated" subsets within the proof. Moreover, even for finite Y this proof works fine, but wouldn't do so with Y instead of $Y \times Y$.

Corollary 2.6 Let (Y, σ) be a T_{3}-space. For every topological space let $C(X, Y)$ be equipped with compact-open topology. Let \mathcal{B} be a class of topological spaces, that contains the Stone-Čech-compactification of a discrete space with cardinality at least card (Y).
Then the Vietoris topology σ_{V} on $K(Y)$ is the final topology w.r.t. all $\pi_{A} \circ \mu_{(X, \tau)},(X, \tau) \in \mathcal{B}$, $A \in K(X, \tau)$.

This characterization of the Vietoris hyperspace of the nonempty compact subsets of a regular space as a quotient (or more generally as a final object of a given class of spaces under certain mappings) includes an easy possibilty to characterize the Vietoris hyperspace of the nonempty closed subsets for Hausdorff T_{4}-spaces.

Lemma 2.7 Let (Y, σ) be a Hausdorff T_{4}-space. Then its Vietoris hyperspace on the nonempty closed subsets $\left(C l(Y), \sigma_{V}\right)$ is homeomorphic to a subspace of the Vietoris hyperspace $\left(K(\beta Y), \sigma^{\beta}\right)$ of compact subsets of the Stone-Čech-compactification of (Y, σ).

Proof:

(1) The map

$$
\alpha: C l(Y) \rightarrow K(\beta Y): \alpha(A):=\bar{A}^{\beta Y}
$$

is injective: Let $A_{1} \neq A_{2} \in C l(Y)$ be given, say w.l.o.g. $\exists a \in A_{1} \backslash A_{2}$. Because Y is Tychonoff, we get a continuous $f: Y \rightarrow[0,1]$ such that $f(a)=0$ and $f\left(A_{2}\right)=\{1\}$, and then by the theorem of Stone-Čech a continuous extension $F: \beta Y \rightarrow[0,1]$ with $F(a)=f(a)=0$ and $F\left(A_{2}\right)=f\left(A_{2}\right)=\{1\}$, thus by continuity $F\left({\overline{A_{2}}}^{\beta Y}\right) \subseteq \overline{F\left(A_{2}\right)}=\overline{\{1\}}=\{1\}$, implying $a \notin{\overline{A_{2}}}^{\beta Y}$ and consequently ${\overline{A_{1}}}^{\beta Y} \neq{\overline{A_{2}}}^{\beta Y}$.
(2) α is continuous w.r.t. to $\sigma_{V},\left(\sigma^{\beta}\right)_{V}$:

- Let $O \in \sigma^{\beta}$ and

$$
\begin{aligned}
A_{0} \in \alpha^{-1}\left(O^{-K(\beta Y)}\right) & =\left\{A \in C l(Y) \mid \bar{A}^{K(\beta Y)} \cap O \neq \emptyset\right\} \\
& =\{A \in C l(Y) \mid A \cap O \neq \emptyset\}
\end{aligned}
$$

be given.
Because Y is a dense subspace of βY, we get $\emptyset \neq O \cap Y \in \sigma$ and $A_{0} \in(O \cap$ $Y)^{-C l(Y)} \subseteq \alpha^{-1}\left(O^{-K(\beta Y)}\right)$. Thus $\alpha^{-1}\left(O^{-K(\beta Y)}\right)$ is open in σ_{V}.

- Let $O \in \sigma^{\beta}$ and

$$
A_{0} \in \alpha^{-1}\left((\beta Y \backslash O)^{+_{K(\beta Y)}}\right)=\left\{A \in C l(Y) \mid \bar{A}^{K(\beta Y)} \subseteq O\right\}
$$

be given.

Now, βY is T_{3} and ${\overline{A_{0}}}^{K(\beta Y)}$ is compact, so by proposition 1.3 we get an $U_{0} \in \sigma^{\beta}$ with ${\overline{A_{0}}}^{K(\beta Y)} \subseteq U_{0} \subseteq{\overline{U_{0}}}^{K(\beta Y)} \subseteq O$. So, we have $A_{0} \subseteq U_{0} \cap Y \in \sigma$ and furthermore $\forall A \in\left(Y \backslash U_{0}\right)^{+C l(Y)}: \bar{A}^{K(\overline{\beta Y})} \subseteq{\overline{U_{0}}}^{K(\beta Y)} \subseteq O$, yielding $A_{0} \in\left(Y \backslash U_{0}\right)^{+c l(Y)} \subseteq$ $\alpha^{-1}\left((\beta Y \backslash O)^{+K(\beta Y)}\right)$. Consequently, $\alpha^{-1}\left((\beta Y \backslash O)^{+K(\beta Y)}\right)$ is open in σ_{V}.

Note, that we didn't use T_{4} so far.
(3) α is an open map onto its image.

Let $U_{1}, \ldots, U_{n} \in \sigma$ be given.

Let $A \in\left\langle U_{1}, \ldots, U_{n}\right\rangle_{C l(Y)}$.
We have $A \subseteq \bigcup_{i=1}^{n} U_{i} \Rightarrow A \cap\left(\bigcap_{i=1}^{n}\left(Y \backslash U_{i}\right)\right)=\emptyset$. So, A and $\bigcap_{i=1}^{n}\left(Y \backslash U_{i}\right)$ are disjoint closed subsets of Y, which can be separated by a continuous function from Y to $[0,1]$, according to T_{4}. This function extends to a continuous function from βY to $[0,1]$ by the Stone-Čech theorem, yielding $\emptyset=\bar{A}^{\beta Y} \cap{\overline{\bigcap_{i=1}^{n}\left(Y \backslash U_{i}\right)}}^{\beta Y}$, so we have $\bar{A}^{\beta Y} \subseteq \beta Y \backslash\left({\overline{\bigcap_{i=1}^{n}\left(Y \backslash U_{i}\right)}}^{\beta Y}\right)$.

Furthermore, $A \cap U_{i} \neq \emptyset$ implies $A \nsubseteq Y \backslash U_{i}$, and this yields by the same argument as in (1), that $\bar{A}^{\beta Y} \nsubseteq{\overline{Y \backslash U_{i}}}^{\beta Y}$, thus $\bar{A}^{\beta Y} \cap\left(\beta Y \backslash\left(\overline{Y \backslash U_{i}^{\beta Y}}\right)\right) \neq \emptyset$.

So, let $V_{0}:=\beta Y \backslash\left({\left.\left.\overline{\bigcap_{i=1}^{n}\left(Y \backslash U_{i}\right.}\right)^{\beta Y}\right) \text { and for } i=1, \ldots, n \text { we define } V_{i}:=\beta Y \backslash}^{\beta}=\right.$ $\left(\overline{Y \backslash U_{i}}{ }^{\beta Y}\right) \in \sigma^{\beta}$.

$$
\begin{equation*}
\bigcup_{i=1}^{n} V_{i} \subseteq V_{0} \tag{11}
\end{equation*}
$$

So we get $\alpha(A) \in\left\langle V_{0}, V_{1}, \ldots, V_{n}\right\rangle_{K(\beta Y)}$ from the above.
This for all $A \in\left\langle U_{1}, \ldots, U_{n}\right\rangle_{C l(Y)}$ yields

$$
\begin{equation*}
\alpha\left(\left\langle U_{1}, \ldots, U_{n}\right\rangle_{C l(Y)}\right) \subseteq\left\langle V_{0}, V_{1}, \ldots, V_{n}\right\rangle_{K(\beta Y)} \tag{12}
\end{equation*}
$$

If otherwise $A \in C l(Y)$ is given with $\alpha(A)=\bar{A}^{\beta Y} \in\left\langle V_{0}, V_{1}, \ldots, V_{n}\right\rangle_{K(\beta Y)}$, then for $i=1, \ldots, n$ we get from $\emptyset \neq \bar{A}^{\beta Y} \cap V_{i}=\bar{A}^{\beta Y} \cap\left(\beta Y \backslash\left({\overline{Y \backslash U_{i}}}^{\beta Y}\right)\right)$, that $\bar{A}^{\beta Y} \nsubseteq{\overline{Y \backslash U_{i}}}^{\beta Y}$ and consequently $A \nsubseteq Y \backslash U_{i}$, thus $A \cap U_{i} \neq \emptyset$.

Moreover, from $\bar{A}^{\beta Y} \subseteq\left(\bigcup_{k=0}^{n} V_{k}\right)=V_{0}$ we get

$$
\left.\begin{array}{rl}
A & \subseteq Y \cap \bar{A}^{\beta Y} \subseteq Y \cap\left(\beta Y \backslash \bigcap_{i=1}^{n} Y \backslash U_{i}\right.
\end{array}\right)
$$

This yields

$$
\begin{equation*}
\alpha^{-1}\left(\left\langle V_{0}, V_{1}, \ldots, V_{n}\right\rangle_{K(\beta Y)}\right) \subseteq\left\langle U_{1}, \ldots, U_{n}\right\rangle_{C l(Y)} \tag{13}
\end{equation*}
$$

So, from (12) and (13) we get

$$
\alpha\left(\left\langle U_{1}, \ldots, U_{n}\right\rangle_{C l(Y)}\right)=\alpha(C l(Y)) \cap\left\langle V_{0}, V_{1}, \ldots, V_{n}\right\rangle_{K(\beta Y)} .
$$

References

[1] Arens, Richard, and Dugundji, James : Topologies for function spaces. In: Pac. J. Math. 1 (1951), S.5-31. http://dx.doi.org/10.2140/pjm.1951.1.5. - DOI 10.2140/pjm.1951.1.5. - ISSN 0030-8730
[2] Bartsch, René : On a nice embedding and the Ascoli theorem. In: N. Z. J. Math. 33 (2004), Nr. 1, S. 25-39. - ISSN 1179-4984/e
[3] Bartsch, René : Allgemeine Topologie. 2nd ed. Berlin: De Gruyter, 2015. - xvi + 306 S. - ISBN 978-3-11-040617-7
[4] Engelking, Ryszard : General topology. Berlin: Heldermann Verlag, 1989. - viii + 529 S. - ISBN 3-88538-006-4
[5] Poppe, Harry : Compactness in general function spaces. Berlin: VEB Deutscher Verlag der Wissenschaften, 1974
received: Juni 22, 2015

Author:

René Bartsch
Technische Universität Darmstadt
Fachbereich Mathematik
Schlossgartenstr. 7
D-64289 Darmstadt (Germany)
e-mail: rbartsch@mathematik.tu-darmstadt.de
(or math@marvinius.net)

Hints for Authors

Rostock. Math. Kolloq. appears once or twice per year.

Submission

Papers should be sent by e-mail to

```
romako@uni-rostock.de
```

or by mail to
Universität Rostock
Institut für Mathematik
Universitätsplatz 1
D-18051 Rostock
We will only consider original contributions which are related to research areas at the University of Rostock. All papers will be reviewed.

AMS-Subject-Classification

Please add one or two AMS-classification numbers which describe the content of your paper.

Manuscript Format

Papers should be written in German or English. Please send your article as a Latex-file and a pdf-file or a ps-file. The Latex-file should not contain self defined commands.

Authors Adresses

Please add the current complete adresses of all authors including first name / surname / institution / department / street / house number / postal code / place / country / e-mailaddress.

Bibliography

Current numbers within the text $([3],[4] ;[7,8,9])$ refer to the corresponding item in the bibliography at the end of the article, which has the headline References. Please follow the structure of the examples:
[3] Zariski, O., and Samuel, P.: Commutative Algebra. Princeton 1958
[4] Steinitz, E.: Algebraische Theorie der Körper. J. Reine Angew. Math. 137, 167-309 (1920)
[8] Gnedenko, B.W.: Über die Arbeiten von C.F. Gauß zur Wahrscheinlichkeitsrechnung. In: Reichardt, H. (Ed.): C.F. Gauß, Gedenkband anläßlich des 100. Todestages. S. 193-204, Leipzig 1957
Each citation should be written in the original language. Cyrillic letters must be transliterated as it is usual in libraries.

Hinweise für Autoren

Das Rostock. Math. Kolloq. erscheint ein- bis zweimal pro Jahr.

Einreichen

Senden Sie bitte Ihre Arbeiten per e-mail an

```
romako @uni-rostock.de
```

oder per Post an

> Universität Rostock
> Institut für Mathematik
> Universitätsplatz 1
> D-18051 Rostock

Wir berücksichtigen nur Originalarbeiten, die in Bezug zu einem der Rostocker Arbeitsgebiete stehen. Alle Arbeiten werden begutachtet.

AMS-Subject-Klassifikation
Bitte geben Sie zur inhaltlichen Einordnung der Arbeit ein bis zwei Klassifizierungsnummern (AMS-Subject-Classification) an.

Manuskript

Manuskripte sollen in Deutsch oder Englisch abgefasst sein. Bitte senden Sie uns Ihre Arbeit als $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ - und als PDF-Datei bzw. PS-Datei. In der $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$-Datei sollten selbst definierte Befehle vermieden werden.

Adressen der Autoren

Die aktuelle, vollständige Adresse des Autors sollte enthalten: Vornamen Name / Institution / Struktureinheit / Straße Hausnummer / Postleitzahl Ort / Land / e-mail-Adresse.

Literaturzitate

Literaturzitate sind im Text durch laufende Nummern (vgl. [3], [4]; [7, 8, 10]) zu kennzeichnen und am Schluss der Arbeit unter der Zwischenüberschrift Literatur zusammenzustellen. Hierbei ist die durch die nachfolgenden Beispiele veranschaulichte Form einzuhalten.
[3] Zariski, O., and Samuel, P.: Commutative Algebra. Princeton 1958
[4] Steinitz, E.: Algebraische Theorie der Körper. J. Reine Angew. Math. 137, 167-309 (1920)
[8] Gnedenko, B.W.: Über die Arbeiten von C.F. Gauß zur Wahrscheinlichkeitsrechnung. In: Reichardt, H. (Ed.): C.F. Gauß, Gedenkband anläßlich des 100. Todestages. S. 193-204, Leipzig 1957
Die Angaben erfolgen in Originalsprache; bei kyrillischen Buchstaben sollte die (bibliothekarische) Transliteration verwendet werden.

[^0]: legend

 | $\odot \longrightarrow \odot$ subcategory of | |
 | :--- | :--- |
 | $\boldsymbol{D} \boldsymbol{E N}$ | \triangleq density spaces |
 | $\boldsymbol{H} \boldsymbol{N}$ | \triangleq hypernear spaces |
 | $\boldsymbol{S} \boldsymbol{N}$ | \triangleq supernear spaces |

