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Eugen Stumpf

The existence and C1-smoothness of local center-
unstable manifolds for differential equations with
state-dependent delay

ABSTRACT. The purpose of this work is to construct C1-smooth local center-unstable
manifolds at a stationary point for a class of functional differential equations of the form
ẋ(t) = f (xt). Here the function f under consideration is defined on an open subset of the
space C1([−h, 0],Rn), h > 0, and satisfies some mild smoothness conditions which are often
fulfilled when f represents the right-hand side of a differential equation with state-dependent
delay.
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1 Introduction

The interest in delay differential equations (abbreviated by DDE, respectively DDEs) dates
back at least to the work [10] of Poisson from the year 1806. Even so, the general the-
ory started to be systematically developed only at the beginning of the second half of the
last century. During the 60th and 70th the theory of DDEs became an established field of
mathematical research. In that progress, the development of another, more abstract class
of differential equations, namely the so-called retarded functional differential equations (ab-
breviated by RFDE, respectively RFDEs), was essential. The development of the theory
of RFDEs has also been started in the second half of the last century. We point out the
fundamental work [3] and the newer edition [4] of Hale. Great parts of the theory of RFDEs
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is now as well understood as that for ordinary differential equations as presented in the
monographs [2, 5].

Different DDEs with constant as well as with time- or state-dependent delay can be rep-
resented in the more abstract form of an RFDE. Accordingly, after carrying out such a
transformation, one may ask whether basic or even far-reaching results for RFDEs may be
used to study the original differential equation with delay. It turns out that the solution
of this question is essentially dependent on the involved delays of the considered DDE. The
reason is that the representation of a DDE in the more abstract form of an RFDE may lead
to a loss of smoothness of the right-hand side if the involved delays are not constant. There-
fore, the theory of RFDEs is in general not applicable to study DDEs with state-dependent
delays and a lot of problems such as linearization and invariant manifolds for differential
equations with state-dependent delay at a stationary point stayed open for many years.

In recent times, Walther introduced a modified class of functional differential equations and
developed the fundamental theory in the series [13–15] of works under mild smoothness hy-
pothesis. The main idea of Walther’s approach is to study an abstract functional differential
equation only on a smooth submanifold, the so-called solution manifold, of a function space.
He proved that under mild smoothness assumptions the Cauchy problem is well-posed on
the solution manifold, and the solutions generate a continuous semiflow with continuously
differentiable solution operators. In particular, this framework seems to be often applic-
able in cases where the corresponding functional differential equation represents a DDE with
state-dependent delay. Additionally, in cases of applicability it solves the difficulties concern-
ing the linearization of a semiflow generated by differential equations with state-dependent
delays. As long as the problem of linearization had not been solved, heuristical methods
based on formal linearization were used for considerations as local stability and instability
of stationary points. The work [1] of Cooke and Huang is indicative for such an approach.

In connection with the semiflow from the framework in [13–15] the existence of different
types of local invariant manifolds at a stationary point is also well know by now. For
instance, in [7] Krisztin considers an abstract class of functional differential equations and
proves the existence of local unstable manifolds under a hyperbolicity condition but without
knowledge of a semiflow. However, the result in [7] is also applicable in the situation of the
semiflow discussed in [13–15]. Additionally, [7] discusses the construction of so-called fast
or strong unstable manifolds without the hyperbolicity condition. A proof of the existence
of continuously differentiable local stable and local center manifolds at stationary points is
contained in the survey paper [6] of Hartung et al. and in the work [8] of Krisztin. The
occurrence of continuously differentiable local center-stable manifolds is confirmed by Qesmi
and Walther in the recent work [11].

The aim of this work is to prove the existence and C1-smoothness of local center-unstable
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manifolds at stationary points for the semiflow from [13–15]. For this purpose, we first follow
the approach used in Hartung et al. [6] for the construction of local center manifolds, and
apply a modification of the Lyapunov-Perron method contained in Diekmann et al. [2] to
establish the existence of Lipschitz continuous local center-unstable manifolds. Hereafter,
we employ the techniques from Krisztin [8] to prove C1-smoothness.

2 The Main Result

Let h > 0, n ∈ N and ‖ · ‖Rn a norm in Rn. For abbreviation, let us denote by C the set of
all continuous functions from the interval [−h, 0] into Rn, equipped with the norm

‖ϕ‖C := max
s∈[−h,0]

‖ϕ(s)‖Rn

of uniform convergence. Analogously, we write C1 for the Banach space of all continuously
differentiable functions ϕ : [−h, 0] −→ Rn, provided with the norm ‖ϕ‖C1 := ‖ϕ‖C + ‖ϕ′‖C .

For a given function x : I −→ Rn defined on some interval I ⊆ R, and t ∈ R with [t−h, t] ⊂ I,
the segment xt of x at t is defined by the relation xt(ϑ) := x(t + ϑ), ϑ ∈ [−h, 0]; that is,
by xt we restrict the function x to [t− h, t] and shift it back to [−h, 0]. In particular, if the
function x is continuous, then clearly xt ∈ C.

Let U ⊆ C1 be an open neighborhood of the origin 0 ∈ C1 and a function f : U −→ Rn with
f(0) = 0 be given. Throughout this paper, we consider the functional differential equation

ẋ(t) = f(xt) (1)

under the following conditions on the right-hand side:

(S 1) f is continuously differentiable, and

(S 2) each derivative Df(ϕ), ϕ ∈ U , extends to a linear map

Def(ϕ) : C −→ Rn,

and the induced map
U × C 3 (ϕ, χ) 7−→ Def(ϕ)χ

is continuous.

By a solution of the differential equation (1) we understand either a continuously differen-
tiable function x : [t0 − h, te) −→ Rn with t0 < te ≤ ∞ such that xt ∈ U for t0 ≤ t < te and
Eq. (1) holds for t0 < t < te, or a continuously differentiable function x : R −→ Rn such
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that xt ∈ U and Eq. (1) holds everywhere in R. Additionally, we will consider solutions
on unbounded, right-closed intervals (−∞, te], −∞ < te, which are defined in an analogous
way.

By assumption x(t) = 0, t ∈ R, is a solution of Eq. (1) as f(0) = 0. Therefore, the closed
subset

Xf := {ϕ ∈ U | ϕ′(0) = f(ϕ)}

of C1 is not empty. Under the above conditions on f the framework developed in [13–15]
implies the following fundamental results. The solution manifold Xf is a C1-submanifold
of U ⊆ C1 with codimension n. Each ϕ ∈ Xf uniquely defines a constant t+(ϕ) > 0 and a
(in the forward time direction) non-continuable solution xϕ : [−h, t+(ϕ)) −→ Rn of Eq. (1)
with initial value xϕ0 = ϕ. All segments xϕt , 0 ≤ t < t+(ϕ) and ϕ ∈ Xf , belong to Xf and
the equations

F (t, ϕ) = xϕt

define a continuous semiflow F : Ω −→ Xf on the solution manifold Xf where

Ω = {(t, ϕ) ∈ [0,∞)×Xf | 0 ≤ t < t+(ϕ)} .

For every t ≥ 0 the solution map at time t, that is, the map

Ft : {ψ ∈ Xf | 0 ≤ t < t+(ψ)} 3 ϕ 7−→ F (t, ϕ) ∈ Xf ,

is continuously differentiable, and for each ϕ ∈ Xf the tangent space of Xf at ϕ is

TϕXf =
{
χ ∈ C1 | χ′(0) = Df(ϕ)χ

}
.

For all (t, ϕ) ∈ Ω and all χ ∈ TϕXf the derivative

DFtϕ : TϕXf −→ TFt(ϕ)Xf

satisfies the equations
DFt(ϕ)χ = vϕ,χt ,

where vϕ,χ : [−h, t+(ϕ)) −→ Rn is the solution of the (linear) initial value problem{
v̇(t) = Df(F (t, ϕ)) vt

v0 = χ
(2)

for χ ∈ TϕXf . Here a solution of the Cauchy problem (2) is a continuously differentiable
function v : [−h, te(ϕ)) −→ R such that v0 = χ, vt ∈ TF (t,ϕ)Xf for all 0 ≤ t < te(ϕ) and v
satisfies the differential equation for all 0 < t < te(ϕ).
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Obviously, we have F (t, 0) = 0 for all t ∈ R; that is, ϕ0 := 0 ∈ Xf is a stationary point of
the semiflow F . As discussed in Hartung et al. [6] the linearization of F at ϕ0 = 0 is the
strongly continuous semigroup T = {T (t)}t≥0 of bounded linear operators T (t) = D2F (t, 0),
t ≥ 0, on the Banach space

T0Xf =
{
χ ∈ C1 | χ′(0) = Df(0)χ

}
,

equipped with the norm ‖ · ‖C1 of C1. For any t ≥ 0 the action of T (t) on an element
χ ∈ T0Xf is determined by the relation T (t)χ = vχt , where vχ : [−h,∞) −→ Rn is the
unique solution of the variational equation

v̇(t) = Df(0) vt (3)

with initial value v0 = χ. The infinitesimal generator G of T is given by the linear operator

G : D(G) 3 χ 7−→ χ′ ∈ T0Xf

with domain
D(G) =

{
χ ∈ C2

∣∣χ′(0) = Df(0)χ, χ′′(0) = Df(0)χ′
}
,

where C2 denotes the set of all twice continuously differentiable functions from [−h, 0] into
Rn.

Remark 2.1 For the convenience of the reader we repeat that an RFDE on some open
subset V ⊂ R× C is an equation of the form

ẋ(t) = fe(t, xt) (4)

with a function fe : V −→ Rn. A function x is a solution of Eq. (4) on the interval [t0−h, t+),
if there are t0 ∈ R and t+ > t0 such that x : [t0 − h, t+) −→ Rn is continuous, (t, xt) ∈ V for
all t0 ≤ t < t+, and x satisfies Eq. (4) for all t0 < t < t+. Solutions on unbounded intervals
(−∞, t+) or (−∞, t+] for some t+ > −∞ are defined in an analogous way.

By assumption (S 2) on f the linear operator Df(0) may be extended to a bounded linear
operator Def(0) on the larger space C. The operator Le := Dfe(0) induces the linear
autonomous RFDE

v̇(t) = Le vt

and the solutions of the associated initial value problem{
v̇(t) = Le vt

v0 = χ
(5)
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for initial values χ ∈ C define a strongly continuous semigroup Te = {Te(t)}t≥0 on C as
shown, for instance, in Diekmann et al. [2]. The infinitesimal generator of Te is

Ge : D(Ge) 3 χ 7−→ χ′ ∈ C

with the domain
D(Ge) =

{
χ ∈ C1

∣∣χ′(0) = Le χ
}

which particularly coincides with T0Xf . We have T (t)ϕ = Te(t)ϕ for all ϕ ∈ D(Ge) and
t ≥ 0.

For the spectra σ(Ge), σ(G) ⊂ C of the generators Ge, G of both semigroups we have

σ(Ge) = σ(G)

by [6]. The spectrum σ(Ge) is given by the zeros of a familiar characteristic equation, is
discrete and contains only eigenvalues of finite rank, that is, the generalized eigenspaces are
finite-dimensional. Setting

σu(Ge) :={λ ∈ σ(Ge) | Re(λ) > 0},
σc(Ge) :={λ ∈ σ(Ge) | Re(λ) = 0}

and

σs(Ge) :={λ ∈ σ(Ge) | Re(λ) < 0},

we obtain the decomposition

σ(Ge) = σu(Ge) ∪ σc(Ge) ∪ σs(Ge).

As proven in Hale and Verduyn Lunel [5] or in Diekmann et al. [2], for each β ∈ R the
half-plane {λ ∈ C | Reλ > β} of C contains at most a finite number of elements of σ(Ge),
so that spectral parts σu(Ge), σc(Ge) are empty or finite. Hence, the associated realified
generalized eigenspaces Cu and Cc, which are called the unstable and the center space
of Ge, respectively, are finite dimensional subspaces of C. In contrast, the stable space
Cs ⊂ C of Ge, that is, the realified generalized eigenspace associated to the spectral part
σs(Ge), is infinite-dimensional. The subspaces Cu, Cc and Cs are closed, invariant under
Te(t), t ≥ 0, and provide a decomposition

C = Cu ⊕ Cc ⊕ Cs (6)

of C. The restriction of Te to the finite dimensional spaces Cu, Cc has a bounded generator
so that Te may be extended to a one-parameter group in each case.
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As a consequence of the above decomposition of C we obtain also a decomposition of the
smaller Banach space C1, namely

C1 = Cu ⊕ Cc ⊕ C1
s (7)

with the closed subspace C1
s := Cs ∩ C1 of C1.

The sets Cu, Cc lie in D(Ge) = T0Xf and coincide with the unstable and the center space of
G, respectively. The stable space of G is Cs∩T0Xf . Consequently, we have the decomposition

T0Xf = Cu ⊕ Cc ⊕ (Cs ∩ T0Xf ).

All spaces are closed subspaces of T0Xf and positively invariant under the operators T (t),
t ≥ 0, and T forms a one-parameter group on each of the finite-dimensional subspaces Cu
and Cc.

Using the notation Ccu := Cu ⊕ Cc for the center-unstable space of G, we are now able
to state our result on the existence of local center-unstable manifolds for the semiflow F at
the stationary point ϕ0 = 0.

Theorem 1 (Existence of Local Center-Unstable Manifold) Suppose in
addition to the previous assumptions on f that {λ ∈ σ(Ge) | Re(λ) ≥ 0} 6= ∅ or, equivalently,
Ccu 6= {0}. Then there are open neighborhoods Ccu,0 of 0 in Ccu and C1

s,0 of 0 in C1
s with

Ncu := Ccu,0+C1
s,0 ⊆ U , and a Lipschitz continuous map wcu : Ccu,0 −→ C1

s,0 with wcu(0) = 0,
such that the graph

Wcu :=
{
ϕ+ wcu(ϕ) | ϕ ∈ Ccu,0

}
has the following properties.

(i) The set Wcu belongs to the solution manifold Xf of Eq. (1). Moreover, Wcu is a
k-dimensional Lipschitz submanifold of Xf where k := dimCcu.

(ii) For each solution x : (−∞, 0] −→ Rn of Eq. (1) on (−∞, 0], we have{
xt | t ≤ 0

}
⊆ Ncu =⇒

{
xt| t ≤ 0

}
⊆ Wcu.

(iii) The graph Wcu is positively invariant with respect to the semiflow F relative to Ncu;
that is, if ϕ ∈ Wcu and t > 0 then{

F (s, ϕ)| 0 ≤ s ≤ t
}
⊂ Ncu =⇒

{
F (s, ϕ)| 0 ≤ s ≤ t

}
⊂ Wcu.

The submanifold Wcu of Xf is called a local center-unstable manifold of F at the sta-
tionary point ϕ0 = 0. It is C1-smooth and passes ϕ0 tangentially to the center-unstable
space Ccu as we shall have established by our next theorem.
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Theorem 2 (C1-Smoothness of Local Center-Unstable Manifold)
The map

wcu : Ccu,0 −→ C1
s,0

obtained in Theorem 1 is continuously differentiable and Dwcu(0) = 0.

In the next three sections we prove the above theorems. Even though the proofs are quite
long and at certain points technical, they are nevertheless not difficult to understand. As
mentioned in the introduction, we follow the construction of local center manifolds in Har-
tung et al. [6] and apply the Lyapunov-Perron method to obtain the existence of local
center-unstable manifolds as claimed in Theorem 1. The basic idea of this method is to
transform the differential equation (1), or more precisely, a smoothed modification of it,
into an integral equation such that the corresponding integral operator forms a parameter-
dependent contraction in an appropriate Banach space of continuous functions. The fixed
points of this contraction define a mapping whose graph forms the desired invariant manifold.

After the described construction, we follow the procedure in Krisztin [8] and show the C1-
dependence of the obtained fixed points on the parameter which leads to the continuous
differentiability of the manifolds asserted in Theorem 2.

3 Preliminaries for the Proof of Existence

For the transformation of the considered differential equation into an integral form we will
employ a variation-of-constants formula, which is established in Diekmann et al. [2] and
involves duality and adjoint semigroups. For the convenience of the reader and to make our
exposition self-contained, we repeat some of the relevant material from Diekmann et al. [2]
without proofs. Afterwards we discuss some preparatory results.

Duality and Sun-Reflexivity

Recall that for a Banach space X over R the dual space X∗ is the set of all continuous
linear functionals on X, that is, X∗ consists of all continuous linear maps from X into R.
We write x∗ for elements of X∗, and for x∗ ∈ X∗ and x ∈ X we use the notation 〈x∗, x〉 ∈ R
instead of x∗(x). Provided with the norm

‖x∗‖X∗ := sup
‖x‖X≤1

|〈x∗, x〉| ,

where ‖ · ‖X denotes the norm on X, the dual space X∗ becomes also a Banach space over
R.
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If A : D(A) −→ X is a linear operator defined on some dense linear subspace D(A) in X,
then its adjoint A∗ is defined by

D(A∗) =
{
x∗ ∈ X∗

∣∣ ∃ y∗ ∈ X∗ with 〈y∗, x〉 = 〈x∗, A x〉 for all x ∈ D(A)
}

and then for x∗ ∈ D(A∗)

A∗x∗ = y∗.

If A : X −→ X is a bounded linear operator, then for each x∗ ∈ X∗ the induced map
X 3 x 7−→ 〈x∗, A x〉 ∈ K is linear and bounded. Thus, in this case, the relations

〈A∗x∗, x〉 = 〈x∗, A x〉

for all x ∈ X and x∗ ∈ X∗ uniquely define a bounded linear operator A∗ : X∗ −→ X∗. In
particular, we have ‖A‖ = ‖A∗‖.

Consider now the Banach space C and the strongly continuous semigroup Te = {Te(t)}t≥0

of bounded linear operators defined by the solutions of the initial value problem (5). For
every t ≥ 0 the adjoint T ∗e (t) of Te(t) is a linear operator with norm ‖T ∗e (t)‖ = ‖Te(t)‖ on
the dual space C∗ of C and the family T ∗e = {T ∗e (t)}t≥0 obviously constitutes a semigroup
of operators on C∗. We also have T ∗e (0)ϕ∗ = ϕ∗ for all ϕ∗ ∈ C∗, but T ∗e is in general not
a strongly continuous semigroup. Indeed, if C∗ is equipped with the topology given by the
norm ‖ · ‖C∗ , it is not difficult to see that for ϕ∗ ∈ C∗ the induced curve

[0,∞) 3 t 7−→ T ∗(t)ϕ∗ ∈ C∗ (8)

is not necessarily continuous. However, the set of all functions ϕ� ∈ C∗ for which the curve
(8) is continuous, in other words, ϕ� ∈ C∗ with the property ‖T ∗e (t)ϕ� − ϕ�‖C∗ → 0 as
t ↘ 0, forms a closed subspace C� of C∗. Furthermore, T ∗e (t)(C�) ⊂ C� for all t ≥ 0 so
that the family of operators

T�e (t) : C� 3 ϕ� 7−→ T ∗e (t)ϕ� ∈ C�

constitutes a strongly continuous semigroup T�e on C�.

Remark 3.1 It is worth to mention that the family T ∗e of linear operators on C∗ is a weak*
continuous semigroup, and G∗e the associated weak* generator. More precisely, if the dual
space C∗ of C is equipped with the so-called weak* topology, that is, the coarsest topology
on C∗ such that for all ϕ ∈ C the functions C∗ 3 ϕ∗ 7−→ 〈ϕ∗, ϕ〉 ∈ R are continuous, then
for each ϕ∗ ∈ C∗ the induced curve (8) is continuous. In this way, T ∗e becomes a continuous
semigroup and G∗e its generator.
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Similarly, we can repeat the above process with the Banach space C� and the strongly
continuous semigroup T�e . At first, we introduce again the adjoint operators T�∗e (t) of
T�e (t), t ≥ 0, on the dual space C�∗ of C�, and afterwards we restrict the semigroup T�∗e :=

{T�∗e (t)}t≥0 to the closed subspace C��, for which the semigroup is strongly continuous.

The original Banach space C together with the strongly continuous semigroup Te is �-
reflexive in the sense that there is an isometric linear map j : C −→ C�∗ with jC = C��

and T�∗e (t)(jϕ) = j(Te(t)ϕ) for all ϕ ∈ C and t ≥ 0. We omit the embedding operator j of
C in C�∗ and simply identify the Banach space C with C�� as usual

The spectrum σ(G�∗e ) of the generator G�∗e for the semigroup T�∗e coincides with σ(Ge), and
the decomposition (6) of C results in the decomposition

C�∗ = Cu ⊕ Cc ⊕ C�∗s (9)

of C�∗, where Cu, Cc, and C�∗s are closed and invariant under T�∗e . Furthermore, there are
constants K ≥ 1, cs < 0 < cu and cc > 0 with cc < min{−cs, cu} so that the asymptotic
behavior of T�∗ on these subspaces is given by

‖Te(t)ϕ‖C ≤ Kecut‖ϕ‖C , t ≤ 0, ϕ ∈ Cu,
‖Te(t)ϕ‖C ≤ Kecc|t|‖ϕ‖C , t ∈ R, ϕ ∈ Cc,

‖T�∗e (t)ϕ�∗‖C�∗ ≤ Kecst‖ϕ�∗‖C�∗ , t ≥ 0, ϕ�∗ ∈ C�∗s .

(10)

The decompositions (7), (9) of C1 and C�∗ induce continuous projections Pu, Pc, Ps and
analogously P�∗u , P�∗c , P�∗s onto subspaces Cu, Cc, C1

s , and Cu, Cc, C�∗s , respectively. Also,
using the identification of C with C�� we see at once C1

s = C1 ∩ C�∗s .

The Variation-of-Constants Formula

Next, we proceed with recalling the variation-of-constant formula for solutions of the inho-
mogeneous linear RFDE

ẋ(t) = Le xt + q(t) (11)

with given function q : I−→ Rn on some interval I⊂ R. For this purpose, let L∞([−h, 0],Rn)

denote the Banach space of all measurable and essentially bounded functions from [−h, 0]

into Rn, provided with the norm ‖ · ‖L∞ of essential least upper bound. With the norm

‖(α, ϕ)‖Rn×L∞ := max{‖α‖Rn , ‖ϕ‖L∞},

the product space Rn×L∞([−h, 0],Rn) becomes also a Banach space, which is in particular
isometrically isomorphic to the space C�∗. Using the temporary notation k : C�∗ −→
Rn×L∞([−h, 0],Rn) for a norm-preserving isomorphism from C�∗ onto Rn×L∞([−h, 0],Rn),
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we define elements r�∗i := k−1(ei, 0) ∈ C�∗, i = 1, . . . , n, where ei is the i-th canonical basis
vector of Rn. Clearly, the family {r�∗1 , . . . , r�∗n } constitutes a basis of the linear subspace
Y �∗ := k−1(Rn × {0}) of C�∗, and the requirement l(ei) = r�∗i for i = 1, . . . , n uniquely
determines a linear bijective mapping l : Rn −→ Y �∗ with ‖l‖ = ‖l−1‖ = 1.

For reals a ≤ b ≤ c and a (norm) continuous function w : [a, b] −→ C�∗ the weak* integral∫ b

a

T�∗e (c− τ)w(τ) dτ ∈ C�∗ (12)

is defined by

〈
∫ b

a

T�∗e (c− τ)w(τ) dτ, ϕ�〉 :=

∫ b

a

〈T�∗e (c− τ)w(τ), ϕ�〉 dτ

for ϕ� ∈ C�. Furthermore, set∫ a

b

T�∗e (c− τ)w(τ) dτ := −
∫ b

a

T�∗e (c− τ)w(τ) dτ

as usual. It turns out that, under the above condition on w, this weak* integral belongs to
C (more precisely, to C�� = j(C)). Additionally, one obtains the formulas

T�∗e (t)

∫ b

a

T�∗e (c− τ)w(τ) dτ =

∫ b

a

T�∗e (c+ t− τ)w(τ) dτ (13)

for all t ≥ 0,

P�∗λ

∫ b

a

T�∗e (c− τ)w(τ) dτ =

∫ b

a

T�∗e (c− τ)P�∗λ w(τ) dτ (14)

with λ ∈ {s, c, u}, and finally the inequality∥∥∥∥∫ b

a

T�∗e (c− τ)w(τ) dτ

∥∥∥∥
C�∗
≤
∫ b

a

∥∥T�∗e (c− τ)w(τ)
∥∥
C�∗

dτ. (15)

If q : I −→ Rn is a continuous function defined on some interval I ⊆ R and if the function
x : I + [−h, 0] −→ Rn is a solution of the inhomogeneous RFDE (11), then the curve
u : I 3 t 7−→ xt ∈ C satisfies the abstract integral equation

u(t) = Te(t− s)u(s) +

∫ t

s

T�∗e (t− τ)Q(τ) dτ (16)

for all s, t ∈ I with s ≤ t, where Q : [s, t] 3 τ 7−→ l(q(τ)) ∈ Y �∗. On the other hand, if
Q : I −→ Y �∗ is continuous, and if u : I −→ C is a solution of Eq. (16) then there is a
continuous function x : I + [−h, 0] −→ Rn with xt = u(t), t ∈ I, solving the differential
equation (11) for the inhomogeneity q : I 3 τ 7−→ l−1(Q(τ)) ∈ Rn. In this sense we have a
one-to-one correspondence between solutions for Eq.s (11) and (16).
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Preliminary Results on Inhomogeneous Linear Equations

As the last step to prepare the construction of local center-unstable manifolds for Eq. (1),
we establish the existence and some properties of special solutions of the integral equation
(16). In doing so, we will need certain Banach spaces which are introduced below.

Let X be a Banach space with norm ‖ · ‖X . For every η ≥ 0 we define the linear space

Cη((−∞, 0], X) =

{
g ∈ C((−∞, 0], X)

∣∣∣ sup
s∈(−∞,0]

eηs ‖g(s)‖X <∞
}

where C((−∞, 0], X) denotes the Banach space of all continuous functions from the interval
(−∞, 0] into X. Providing Cη((−∞, 0], X) with the weighted supremum norm given by

‖g‖Cη = sup
s∈(−∞,0]

eηs‖g(t)‖X ,

we obtain a one-parameter family of Banach spaces with the scaling property

Cη1((−∞, 0], X) ⊆ Cη2((−∞, 0], X)

for all η1 ≤ η2 and
‖g‖Cη1 ≥ ‖g‖Cη2

for all g ∈ Cη1((−∞, 0], X). To simplify notation, we use the abbreviations Yη, C0
η , and C1

η ,
for the spaces Cη((−∞, 0], Y �∗), Cη((−∞, 0], C), and Cη((−∞, 0], C1), respectively, which
are mainly regarded in the sequel.

From now on, let us denote by P�∗cu the projection of C�∗ along C�∗s onto the center-unstable
space Ccu, that is, P�∗cu := P�∗u +P�∗c . For a given function Q : (−∞, 0] −→ Y �∗ we formally
introduce a mapping KcuQ from (−∞, 0] into C�∗ by

(KcuQ)(t) =

∫ t

0

T�∗e (t− τ)P�∗cu Q(τ) dτ +

∫ t

−∞
T�∗e (t− τ)P�∗s Q(τ) dτ (17)

for t ≤ 0. Note that the right-hand side of Eq. (17) may not be well-defined for arbitrary
Q. However, in our next result we show that for maps Q ∈ Yη with η ∈ R such that
cc < η < min{−cs, cu} the integrals in (17) do not only exist, but the functions KcuQ form
also solutions for the abstract integral equation (16).

Proposition 3.2 Let η ∈ R with cc < η < min{−cs, cu} be given. Then Eq. (17)
induces a bounded linear map

K̃ : Yη 3 Q 7−→ KcuQ ∈ C0
η .

In addition, for every Q ∈ Yη the function u = K̃Q is a solution of the integral equation

u(t) = Te(t− s)u(s) +

∫ t

s

T�∗e (t− τ)Q(τ) dτ (18)

for −∞ < s ≤ t ≤ 0, and the only one in C0
η satisfying P�∗cu u(0) = 0.
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Proof: The proof falls naturally into three parts. In the first one, we show that, under the
stated assumption on η ∈ R, the formal expression (17) forms indeed a well-defined mapping
KcuQ from (−∞, 0] into C for all Q ∈ Yη. Afterwards we prove that K̃ is a bounded linear
operator and finally we conclude the part of the proposition concerning the abstract integral
equation. From now on to the end of the proof, we fix η ∈ R with cc < η < min{−cs, cu}.

1. In order to see (KcuQ)(t) ∈ C for all Q ∈ Yη and t ≤ 0, recall that for given Q ∈ Yη and
t ≤ 0 both ∫ t

0

T�∗e (t− τ)P�∗cu Q(τ) dτ = −
∫ 0

t

T�∗e (−τ)T�∗e (t)P�∗cu Q(τ) dτ

and

I(s) :=

∫ t

s

T�∗e (t− τ)P�∗s Q(τ) dτ

with s ≤ t belong to C. Hence, it remains to prove the convergence of I(s) in C as s→ −∞.
To show this, we assume {sk}k∈N ⊂ (−∞, t] with sk → −∞ as k →∞. Then, by inequality
(15) and the estimate (10) for the action of T�∗e on the center space,

‖I(sk2)− I(sk1)‖C�∗ =

∥∥∥∥∥
∫ sk1

sk2

T�∗e (t− τ)P�∗s Q(τ) dτ

∥∥∥∥∥
C�∗

≤
∫ sk1

sk2

∥∥T�∗e (t− τ)P�∗s Q(τ)
∥∥
C�∗

dτ

≤ K
∥∥P�∗s ∥∥∫ sk1

sk2

ecs(t−τ) ‖Q(τ)‖C�∗ dτ

≤ ecstK
∥∥P�∗s ∥∥∫ sk1

sk2

e−(cs+η)τeητ‖Q(τ)‖C�∗dτ

≤ ecstK‖P�∗s ‖‖Q‖Yη
∫ sk1

sk2

e−(cs+η)τ dτ

≤ −e
cst

cs + η
K‖P�∗s ‖‖Q‖Yη

[
e−(cs+η)sk1 − e−(cs+η)sk2

]
≤ −e

cst

cs + η
K‖P�∗s ‖‖Q‖Yηe−(cs+η)sk1

for all k1, k2 ∈ N with sk1 ≥ sk2 . Thus, {I(sk)}k∈N constitutes a Cauchy sequence in C.
In particular, I := limk→∞ I(sk) exists. Furthermore, in the same manner we see that
for any another given sequence {s̃k}k∈N ⊂ (−∞, t] of reals with s̃k → −∞, we also have
‖I(s̃k) − I‖C�∗ → 0 as k → ∞. This implies the desired conclusion I = lims→−∞ I(s).
Hence, (KcuQ)(t) ∈ C for all Q ∈ Yη and t ≤ 0.

2. The technical results in Diekmann et al. [2, Chapter III.2] on the continuous dependence
of the weak* star integral on parameters and estimates (10) enable to show that the induced
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curve (−∞, 0] 3 t 7−→ (KcuQ)(t) ∈ C is continuous for every Q ∈ Yη. Consequently, Eq.
(17) defines by Q 7−→ KcuQ a mapping from Yη into C((−∞, 0], C). This map is also
linear. In addition, we claim KcuQ ∈ C0

η for all Q ∈ Yη. To this end, consider the apparent
inequality

eηt‖(KcuQ)(t)‖C�∗ ≤ eηt
∥∥∥∥∫ t

0

T�∗e (t− τ)P�∗c Q(τ) dτ

∥∥∥∥
C�∗

+ eηt
∥∥∥∥∫ t

0

T�∗e (t− τ)P�∗u Q(τ) dτ

∥∥∥∥
C�∗

+ eηt
∥∥∥∥ ∫ t

−∞
T�∗e (t− τ)P�∗s Q(τ) dτ

∥∥∥∥
C�∗

for fixed Q ∈ Yη and t ≤ 0. Using the inequalities (15) and (10) as in the part above, we
estimate the first term on the right-hand side by

eηt
∥∥∥∥∫ t

0

T�∗e (t− τ)P�∗c Q(τ) dτ

∥∥∥∥
C�∗
≤ −eηt

∫ t

0

∥∥T�∗e (t− τ)P�∗c Q(τ)
∥∥
C�∗

dτ

≤ −Keηt
∫ t

0

ecc|t−τ |‖P�∗c Q(τ)‖C�∗dτ

= −K
∫ t

0

e(cc−η)(τ−t)eητ
∥∥P�∗c Q(τ)

∥∥
C�∗

dτ

≤ −K‖P�∗c ‖
∫ t

0

e(cc−η)(τ−t)eητ‖Q(τ)‖C�∗dτ

≤ K‖P�∗c ‖‖Q‖Yη
∫ 0

t

e(cc−η)(τ−t) dτ

≤ K‖P�∗c ‖‖Q‖Yη
1

η − cc
.

In the same manner we can see that

eηt
∥∥∥∥∫ t

0

T�∗e (t− τ)P�∗u Q(τ) dτ

∥∥∥∥
Y �∗
≤ K‖P�∗u ‖‖Q‖Yη

1

cu + η

and

eηt
∥∥∥∥ ∫ t

−∞
T�∗e (t− τ)P�∗s Q(τ) dτ

∥∥∥∥
Y �∗
≤ K‖P�∗s ‖‖Q‖Yη

1

−cs − η
.

Summarizing, we get

eηt‖(KcuQ)(t)‖Y �∗ ≤ K‖Q‖Yη

(
‖P�∗c ‖
η − cc

+
‖P�∗u ‖
cu + η

− ‖P
�∗
s ‖

cs + η

)
, (19)

and thus KcuQ ∈ C0
η . It follows that Q 7−→ KcuQ forms a linear mapping K̃ from Yη into

C0
η , which in particular is bounded as claimed.
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3. Given any Q ∈ Yη define δ(t, s) := (KcuQ)(t) − Te(t − s)
(
(KcuQ)(s)

)
for all reals

−∞ < s ≤ t ≤ 0. Then, by the linearity and formula (13), we get

δ(t, s) =

∫ t

0

T�∗e (t− τ)P�∗cu Q(τ) dτ +

∫ t

−∞
T�∗e (t− τ)P�∗s Q(τ) dτ

− Te(t− s)

(∫ s

0

T�∗e (s− τ)P�∗cu Q(τ) dτ +

∫ s

−∞
T�∗e (s− τ)P�∗s Q(τ) dτ

)

=

∫ t

0

T�∗e (t− τ)P�∗cu Q(τ) dτ +

∫ t

−∞
T�∗e (t− τ)P�∗s Q(τ) dτ

−
∫ s

0

T�∗e (t− τ)P�∗cu Q(τ) dτ −
∫ s

−∞
T�∗e (t− τ)P�∗s Q(τ) dτ

=

∫ t

s

T�∗e (t− τ)P�∗cu Q(τ) dτ +

∫ t

s

T�∗e (t− τ)P�∗s Q(τ) dτ

=

∫ t

s

T�∗e (t− τ)Q(τ) dτ,

which yields that u := KcuQ satisfies Eq. (18) for all −∞ < s ≤ t ≤ 0. Moreover, in view
of Eq. (14) for the relation of the weak* integrals and projections on the decomposition of
C�∗, for t = 0 we have

u(0) = (KcuQ)(0)

=

∫ 0

−∞
T�∗e (−τ)P�∗s Q(τ) dτ

= P�∗s

( ∫ 0

−∞
T�∗e (−τ) Q(τ) dτ

)

implying P�∗cu u(0) = 0.

So the assertion of the proposition follows if we are able to prove that u is the only solution of
Eq. (18) in C0

η with vanishing Ccu component at t = 0. For this purpose, suppose v ∈ C0
η is

also a solution of (18) for −∞ < s ≤ t ≤ 0 with P�∗cu v(0) = 0. Then the difference w = u−v
belongs to C0

η , has a vanishing Ccu component at t = 0, and satisfies the equation

w(t) = Te(t− s)w(s) (20)

for all −∞ < s ≤ t ≤ 0. Furthermore, w can be extended by

t 7−→

w(t), for t ≤ 0,

Te(t)w(0), for t ≥ 0
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to a solution w̃ : R −→ C of Eq. (20) for all −∞ < s ≤ t <∞. Since

sup
t≥0

e−ηt‖w(t)‖C = sup
t≥0

e−ηt‖Te(t)w(0)‖C

≤ K sup
t≥0

e−ηtecst‖w(0)‖C

= K‖w(0)‖C

due to (cs − η) < 0 we get

sup
t∈R

e−η|t|‖w̃(t)‖C ≤ sup
t≤0

eηt‖w̃(t)‖C + sup
t≥0

e−ηt‖w̃(t)‖C

= ‖w‖C0
η

+K‖w(0)‖C <∞.

Now from Diekmann et al. [2, Lemma 2.4 in Section IX.2] it follows w(0) ∈ Cu and w̃(0) ∈ Cc.
As w(0) = w̃(0) and Cu ∩ Cc = {0}, we conclude w̃(0) = w(0) = 0, and so by Eq. (20),

0 = Te(s)w(0) = Te(s)Te(−s)w(s) = Te(0)w(s) = u(s)− v(s)

for all −∞ < s ≤ 0. This completes the proof.

Next, we prove a smoothing property of the integral equation (21). This property will be
useful in combination with our preceding result.

Proposition 3.3 Suppose that Q ∈ Yη for some η ≥ 0. If u ∈ C0
η satisfies the abstract

integral equation

u(t) = Te(t− s)u(s) +

∫ t

s

T�∗e (t− τ)Q(τ) dτ (21)

for all −∞ < s ≤ t ≤ 0, then u ∈ C1
η and

‖u‖C1
η
≤
(
1 + eηh‖Le‖

)
‖u‖C0

η
+ eηh‖Q‖Yη .

Proof: Consider the mapping q : (−∞, 0] −→ Rn defined by q(t) = l−1(Q(t)), −∞ < t ≤ 0.
Of course, q ∈ C((−∞, 0],Rn). Moreover, since

sup
t∈(−∞,0]

eηt‖q(t)‖Rn = sup
t∈(−∞,0]

eηt‖l−1(Q(t))‖Rn

= sup
t∈(−∞,0]

eηt‖Q(t)‖Y �∗

= ‖Q‖Yη

we see at once q ∈ Cη((−∞, 0],Rn) with ‖q‖Cη = ‖Q‖Yη .

By assumption, u satisfies Eq. (21) such that, taking into account our discussion about the
one-to-one correspondence between solutions for (11) and (16), the function x : (∞, 0] −→ Rn

given by x(t) = u(t)(0) is a solution of the differential equation

ẋ(t) = Le xt + q(t)
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for all −∞ < t ≤ 0. Accordingly, x is everywhere continuously differentiable, xt belongs
to C1 for all −∞ < t ≤ 0, and the map (−∞, 0] 3 t 7−→ u(t) = xt ∈ C1 is continuous.
Furthermore, by the differential equation for x and the estimate for q, we have

‖ẋ(t)‖Rn ≤ ‖Le‖‖xt‖C + ‖q(t)‖Rn

≤ ‖Le‖‖u(t)‖C + e−ηt‖q‖Cη
≤ e−ηt(‖Le‖‖u‖C0

η
+ ‖Q‖Yη)

and therefore

sup
t∈(−∞,0]

eηt‖ẋt‖C = sup
t∈(−∞,0]

(
eηt sup

ϑ∈[−h,0]

‖ẋ(t+ ϑ)‖Rn
)

≤ (‖Le‖‖u‖C0
η

+ ‖Q‖Yη) sup
t∈(−∞,0]

(
eηt sup

ϑ∈[−h,0]

e−η(t+ϑ)

)
≤ eηh(‖Le‖‖u‖C0

η
+ ‖Q‖Yη),

for all −∞ < t ≤ 0. From this, it follows that u ∈ C1
η and

‖u‖C1
η

= sup
t∈(−∞,0]

eηt‖u(t)‖C1

= sup
t∈(−∞,0]

eηt‖xt‖C1

= sup
t∈(−∞,0]

eηt(‖xt‖C + ‖ẋt‖C)

≤ ‖u‖C0
η

+ eηh(‖Le‖‖u‖C0
η

+ ‖Q‖Yη)

as claimed.

As an easy consequence of the last two results we conclude that the formal definition (17) gen-
erates a bounded linear mapping from the Banach space Yη into C1

η for cc < η < min{−cs, cu}.

Corollary 3.4 For each η ∈ R with cc < η < min{−cs, cu}, relation (17) defines a
bounded linear mapping

Kη : Yη 3 Q 7−→ KcuQ ∈ C1
η

with

‖Kη‖ ≤ K(1 + eηh‖Le‖)

(
‖P�∗c ‖
η − cc

+
‖P�∗u ‖
cu + η

− ‖P
�∗
s ‖

cs + η

)
+ eηh.

Moreover, for all Q ∈ Yη the function u = KηQ is a solution of

u(t) = Te(t− s)u(s) +

∫ t

s

T�∗e (t− τ)Q(τ) dτ

for −∞ < s ≤ t ≤ 0, and the only one in C1
η with P�∗cu u(0) = 0.
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Proof: Apply Propositions 3.2 and 3.3, taking into account the estimate (19) for the bound
of the linear map K̃.

Remark 3.5 Observe that the bounds of the linear maps Kη in the above corollary are
given by a continuous function in η. This will be a crucial point in the proof of Theorem 2.

4 The Construction of Local Center-Unstable Manifolds

This section is devoted to the actual proof of Theorem 1 about the existence of local center-
unstable manifolds for Eq. (1). Throughout the proof, we consider the differential equation
(1) in the equivalent form

ẋ(t) = Lxt + r(xt) (22)

with the linear part

L := Df(0)

and the nonlinearity

r : U 3 ϕ 7−→ f(ϕ)− Lϕ ∈ Rn. (23)

Obviously, r also satisfies the same smoothness conditions (S 1) and (S 2) as f and we have
r(0) = 0 and Dr(0) = 0.

The proof is organized as follows. In the first part, we modify the nonlinearity r outside
a small neighborhood of the origin and assign the resulting differential equation to an ab-
stract integral equation by the variation-of-constants formula. Then, using the changes on
the nonlinearity in combination with the auxiliary conclusions of the last section, we show
that the associated integral operator forms a parameter-dependent contraction in C1

η for
an appropriate η > 0. In the final step, we prove that the graph of this contraction is an
invariant manifold for the modified differential equation and that a part of this graph also
satisfies the assertions of Theorem 1.

Smoothing Modification of the Nonlinearity

As the Banach space Ccu is finite-dimensional, there exists a norm ‖ · ‖cu on Ccu being
infinitely often continuously differentiable on Ccu\{0}. Introducing the projection operator
Pcu := Pc + Pu of C1 along C1

s onto the center-unstable space Ccu and defining

‖ϕ‖1 = max
{
‖Pcu ϕ‖cu, ‖Ps ϕ‖C1

}
(24)

for ϕ ∈ C1, we get a second norm on C1, which is equivalent to ‖ · ‖C1 .
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Let % : [0,∞) −→ R be a C∞-smooth function with %(t) = 1 for 0 ≤ t ≤ 1, 0 < %(t) < 1 for
1 < t < 2, and %(t) = 0 for all t ≥ 2. Further, let the map r̂ : C1 −→ Rn be given by

r̂(ϕ) =

r(ϕ), for ϕ ∈ U,

0, for ϕ 6∈ U.

Using these two functions, we introduce for all δ > 0 the smoothing modification

rδ : C1 3 ϕ 7−→ %

(
‖ϕcu‖cu

δ

)
· %
(
‖ϕs‖C1

δ

)
· r̂(ϕ) ∈ Rn

of the nonlinearity r, where we write ϕcu, ϕs for the components Pcu ϕ, Ps ϕ of ϕ, respectively.

For every γ > 0 let Bγ(0) = {ϕ ∈ C1 | ‖ϕ‖1 < γ} denote the open ball in C1 of radius γ
with respect to the ‖ · ‖1-norm and centered at the origin. Since U ⊂ C1 is open and r

continuously differentiable due to property (S 1), we find a sufficiently small δ0 > 0 with
B2δ0(0) ⊂ U , so that the restriction r|B2δ0

(0) of r to B2δ0(0) together with the associated
derivative Dr|B2δ0

(0) are both bounded. Subsequently, for small reals δ > 0, the modifications
of r in a neighborhood of the origin are also bounded and continuously differentiable with
bounded derivatives. More precisely, the following result holds.

Corollary 4.1 For all reals 0 < δ < δ0 the restriction of the map rδ to the strip

S :=
{
ψ ∈ C1| ‖ψs‖1 < δ

}
in C1 is a bounded, C1-smooth function with bounded derivative. Moreover,

rδ(ϕ) = %

(
‖ϕcu‖cu

δ

)
· r(ϕ)

for all ϕ ∈ S.

Proof: Given any positive constant 0 < δ < δ0 suppose that ϕ ∈ S. Then, by definition
of rδ in combination with the inequality ‖ϕs‖C1 ≤ ‖ϕs‖1 we get

rδ(ϕ) = %

(
‖ϕcu‖cu

δ

)
· %
(
‖ϕs‖C1

δ

)
· r̂(ϕ) = %

(
‖ϕcu‖cu

δ

)
· r(ϕ).

Consequently, we have rδ(ϕ) = r(ϕ) for all ϕ ∈ S with ‖ϕ‖1 ≤ δ, and rδ(ϕ) = 0 for
all ϕ ∈ S with ‖ϕ‖1 ≥ 2δ. Since r, % are C1-smooth and the norm ‖ · ‖1 continuously
differentiable on Ccu \ {0} by assumption, the restriction of rδ to the strip S is clearly also
continuously differentiable. Moreover, using the above expressions for rδ on S together with
the boundedness of r and Dr on B2δ0(0) ⊂ U , we conclude that both rδ and Drδ are bounded
on S as claimed.
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For sufficiently small δ > 0, the functions rδ are even globally bounded and Lipschitz con-
tinuous with constants continuously depending on δ, as proved in [9].

Proposition 4.2 [Proposition II.2 in Krisztin et al. [9]] Under the above assumptions
there exists δ1 ∈ (0, δ0) and a monotone increasing λ : [0, δ1] −→ [0, 1] with λ(0) = 0 and
λ(δ)↘ 0 as δ ↘ 0 such that

‖rδ(ϕ)‖Rn ≤ δ · λ(δ)

and

‖rδ(ϕ)− rδ(ψ)‖Rn ≤ λ(δ) · ‖ϕ− ψ‖C1

for all 0 < δ ≤ δ1 and ϕ, ψ ∈ C1.

Using the modification rδ of the nonlinearity r, we introduce for each 0 < δ ≤ δ1 the retarded
functional differential equation

ẋ(t) = Lxt + rδ(xt), −∞ < t ≤ 0, (25)

and the associated abstract integral equations

u(t) = Te(t− s)u(s) +

∫ t

s

T�∗e (t− τ) l(rδ(u(τ))) dτ, −∞ < s ≤ t ≤ 0. (26)

We have now a one-to-one correspondence in the following sense: If x : (−∞, 0] −→ Rn

is a continuously differentiable solution of RFDE (25), then u : (−∞, 0] 7−→ xt ∈ C1 is a
solution of Eq. (26). On the other hand, for a continuous mapping u : (−∞, 0] −→ C1

satisfying integral equation (26), the function x : (−∞, 0] −→ Rn defined by x(t) = u(t)(0),
−∞ < t ≤ 0, forms a continuously differentiable solution of(25).

Center-Unstable Manifolds of the Smoothed Equation

Until the end of this section fix η ∈ R satisfying the estimate

cc < η < min{−cs, cu}. (27)

Then we find a constant 0 < δ < δ1 with

‖Kη‖ λ(δ) <
1

2
(28)

where the mappings Kη and λ are defined in Corollary 3.4 and Proposition 4.2, respectively.
Below, we construct a parameter-dependent contraction on the Banach space C1

η , such that
the fixed points will form solutions for the abstract integral equation (26). For this purpose,
we assign to Eq. (26) an integral operator. We begin with the nonlinear part.
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Corollary 4.3 Let R denote the map, which assigns to u ∈ C((−∞, 0], C1) the mapping
(−∞, 0] 3 s 7−→ l(rδ(u(s))) ∈ Y �∗ in C((−∞, 0], Y �∗). Then R maps C1

η into Yη, and the
induced mapping Rδη : C1

η 3 u 7−→ R(u) ∈ Yη satisfies

‖Rδη(u)‖Yη ≤ δ λ(δ) (29)

and

‖Rδη(u)−Rδη(v)‖Yη ≤ λ(δ)‖u− v‖C1
η

(30)

for all u, v ∈ C1.

Proof: First, note that R indeed assigns a continuous function from (−∞, 0] into Y �∗ to
a function u ∈ C((−∞, 0], C1), as the mappings l and rδ are continuous. Given u ∈ C1

η ,
Proposition 4.2 implies

sup
t∈(−∞,0]

eηt‖R(u)(t)‖Y �∗ = sup
t∈(−∞,0]

eηt‖l(rδ(u(t)))‖Y �∗

= sup
t∈(−∞,0]

eηt‖rδ(u(t))‖Rn

≤ sup
t∈(−∞,0]

eηtδλ(δ)

= δλ(δ).

This shows R(C1
η) ⊂ Yη and in particular the boundedness of Rδη by δλ(δ) as claimed.

Using the Lipschitz continuity of rδ from Proposition 4.2, we also see that Rδη is Lipschitz
continuous with Lipschitz constant λ(δ), and the corollary follows.

Remark 4.4 The mapping R : C((−∞, 0], C1) −→ C((−∞, 0], Y �∗) in the last result is
called the substitution or the Nemitsky operator of the map C1 3 ϕ 7−→ l(rδ(ϕ)) ∈ Y �∗

on (−∞, 0].

Next, we consider the linear part of the integral equation (26) and prove that it constitutes
a bounded linear operator from the center-unstable space into C1

η .

Corollary 4.5 For each ϕ ∈ Ccu, the curve (−∞, 0] 3 t 7−→ Te(t)ϕ ∈ C1 belongs to C1
η ,

and Sη : C1 ⊃ Ccu −→ C1
η defined by (Sη ϕ)(t) = Te(t)ϕ for ϕ ∈ Ccu and t ≤ 0 is a bounded

linear operator with
‖Sη‖ ≤ K

(
‖P�∗c ‖+ ‖P�∗u ‖

)
. (31)

Proof: To start with, recall that Te defines a group on Ccu ⊂ C1 and coincides with T .
Thus, for all ϕ ∈ Ccu, the curve (−∞, 0] 3 t 7−→ Te(t)ϕ ∈ Ccu takes values in C1 and is in
fact a continuous map from (−∞, 0] into C1. Furthermore, we have

‖Te(t)ϕ‖C1 = ‖Te(t)ϕ‖C +
∥∥ d
dt
Te(t)ϕ

∥∥
C
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and
d
dt

(Te(t)ϕ) = Te(t)Ge ϕ = Te(t)ϕ
′

for ϕ ∈ Ccu. Hence, by the exponential trichotomy under our assumption (27), it follows

sup
t∈(−∞,0]

eηt‖Te(t)ϕ‖C1 = sup
t∈(−∞,0]

eηt
(
‖Te(t)ϕ‖C + ‖Te(t)ϕ′‖C

)
≤ sup

t∈(−∞,0]

eηt
(
‖Te(t)P�∗c ϕ‖C + ‖Te(t)P�∗u ϕ‖C

+ ‖Te(t)P�∗c ϕ′‖C + ‖Te(t)P�∗u ϕ′‖C
)

≤ sup
t∈(−∞,0]

eηt
(
‖Te(t)P�∗c ϕ‖C + ‖Te(t)P�∗c ϕ′‖C

)
+ sup

t∈(−∞,0]

eηt
(
‖Te(t)P�∗u ϕ‖C + ‖Te(t)P�∗u ϕ′‖C

)
≤ K sup

t∈(−∞,0]

e−(cc−η)t
(
‖P�∗c ϕ‖C + ‖P�∗c ϕ′‖C

)
+K sup

t∈(−∞,0]

e(η+cu)t
(
‖P�∗u ϕ‖C + ‖P�∗u ϕ′‖C

)
≤ K‖P�∗c ‖

(
|ϕ‖C + ‖ϕ′|C

)
+

K‖P�∗u ‖
(
‖ϕ‖C + ‖ϕ′‖C

)
= K

(
‖P�∗c ‖+ ‖P�∗u ‖

)
‖ϕ‖C1 .

Accordingly, Sηϕ ∈ C1
η for ϕ ∈ Ccu, and thus Sη is well-defined. In addition, the mapping

Sη is obviously linear by definition, and

‖Sηϕ‖C1
η
≤ K(‖P�∗c ‖+ ‖P�∗u ‖)

for ‖ϕ‖C1 ≤ 1. Therefore, inequality (31) holds and this completes the proof.

Using Corollaries 3.4, 4.3, and 4.5 to guarantee the well-definedness, we introduce the map-
ping Gη from the product space C1

η × Ccu into C1
η given by

Gη(u, ϕ) := Sη ϕ+Kη ◦Rδη(u). (32)

In the next proposition we prove that each function ϕ ∈ Ccu uniquely determines a solution
of u = Gη(u, ϕ) in C1

η .

Proposition 4.6 For each ϕ ∈ Ccu, the mapping Gη( · , ϕ) : C1
η −→ C1

η has exactly one
fixed point u = u(ϕ). Moreover, the associated solution operator

ũη : Ccu 3 ϕ 7−→ u(ϕ) ∈ C1
η (33)

of u = Gη(u, ϕ) is (globally) Lipschitz continuous.
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Proof: We begin with the claim that, for given ϕ ∈ Ccu, Gη( · , ϕ) maps sufficiently large
closed balls centered at the origin into themselves. Indeed, for fixed ϕ ∈ Ccu we find a
positive real γ > 0 with 2‖Sη‖ ‖ϕ‖C1 ≤ γ so that both estimates (28) and (30) together
imply

‖Gη(u, ϕ)‖C1
η

= ‖Sη ϕ+Kη ◦Rδη(u)‖C1
η

≤ ‖Sη ϕ‖C1
η

+ ‖Kη ◦Rδη(u)‖C1
η

≤ ‖Sη‖‖ϕ‖C1 + λ(δ)‖Kη‖ ‖u‖C1
η

≤ γ

2
+
γ

2
= γ

for all u ∈ C1
η with ‖u‖C1

η
≤ γ. Hence, Gη( · , ϕ) maps

{
u ∈ C1

η | ‖u‖C1
η
≤ γ

}
into itself. The

mapping Gη( · , ϕ), ϕ ∈ Ccu, is also a contraction since, by application of (28) and (30),

‖Gη(u, ϕ)− Gη(v, ϕ)‖C1
η

= ‖Kη ◦Rδη(u)−Kη ◦Rδη(v)‖C1
η

≤ ‖Kη‖ ‖Rδη(u)−Rδη(v)‖Yη
≤ λ(δ)‖Kη‖ ‖u− v‖C1

η

≤ 1

2
‖u− v‖C1

η

for all u, v ∈ C1
η . Consequently, using the Banach contraction principle, we find a unique

u(ϕ) ∈ C1
η satisfying u = Gη(u, ϕ).

To see the global Lipschitz continuity of ũη : Ccu 3 ϕ 7−→ u(ϕ) ∈ C1
η , assume ϕ, ψ ∈ Ccu.

Using the two inequalities (28) and (30) once more, we see

‖ũη(ϕ)− ũη(ψ)‖C1
η

= ‖Gη(ũη(ϕ), ϕ)− Gη(ũη(ψ), ψ)‖C1
η

= ‖Sη(ϕ− ψ) +Kη ◦Rδη(ũη(ϕ))−Kη ◦Rδη(ũη(ψ))‖C1
η

≤ ‖Sη‖ ‖ϕ− ψ‖C1 + ‖Kη‖ ‖Rδη(ũη(ϕ))−Rδη(ũη(ψ))‖Yη
≤ ‖Sη‖ ‖ϕ− ψ‖C1 + λ(δ) ‖Kη‖ ‖ũη(ϕ)− ũη(ψ)‖C1

η

≤ ‖Sη‖ ‖ϕ− ψ‖C1 +
1

2
‖ũη(ϕ)− ũη(ψ)‖C1

η
.

Therefore
‖ũη(ϕ)− ũη(ψ)‖C1

η
≤ 2‖Sη‖ ‖ϕ− ψ‖C1 ,

which completes the proof.

For all ϕ ∈ Ccu, the associated fixed point ũ(ϕ) of the last proposition forms a solution of
Eq. (26) in C1

η with the property that its component in the center-unstable space at t = 0

is just given by ϕ, as shown in the following.

Corollary 4.7 For all ϕ ∈ Ccu the mapping ũη(ϕ) is a solution of the abstract integral
equation (26) with Pcu(ũη(ϕ)(0)) = ϕ.
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Proof: The proof is straightforward. Given ϕ ∈ Ccu define z = ũη(ϕ)−Sη ϕ. By Corollary
3.4, we have

z(t) = Te(t− s) z(s) +

∫ t

s

T�∗e (t− τ)Rδη(ũη(ϕ))(τ) dτ, −∞ < s ≤ t ≤ 0,

and Pcu z(0) = P�∗cu z(0) = 0. From this we conclude

ũη(ϕ)(t)− Te(t)ϕ = ũη(ϕ)(t)− (Sη ϕ)(t)

= z(t)

= Te(t− s) z(s) +

∫ t

s

T�∗e (t− τ)Rδη(ũη(ϕ))(τ) dτ

= Te(t− s) ũη(ϕ)(s)− Te(t− s)(Sηϕ)(s)

+

∫ t

s

T�∗e (t− τ)Rδη(ũη(ϕ))(τ) dτ

= Te(t− s) ũη(ϕ)(s)− Te(t)ϕ+

∫ t

s

T�∗e (t− τ)Rδη(ũη(ϕ))(τ) dτ

for all −∞ < s ≤ t ≤ 0 and

Pcu(ũη(ϕ)(0))− ϕ = Pcu(ũη(ϕ)(0))− Pcu ϕ
= Pcu(ũη(ϕ)(0))− Pcu((Sηϕ)(0))

= Pcu z(0) = 0

Adding Te(t)ϕ and ϕ, respectively, yields the assertion.

By the discussed one-to-one correspondence of solutions for the differential equation (25)
and the associated abstract integral equation (26), the above corollary shows that for all
ϕ ∈ Ccu there exists a continuously differentiable function x : (−∞, 0] −→ Rn satisfying
xt = ũ(ϕ)(t) for −∞ < t ≤ 0 and solving Eq. (26) on (−∞, 0]. The set W η consisting of all
segments of these solutions at time t = 0, that is, the set

W η :=
{
ũη(ϕ)(0) | ϕ ∈ Ccu

}
,

is called the global center-unstable manifold of RFDE (25) at the stationary point
0 ∈ C1. Note that W η can also be represented as the graph of the operator

wη : Ccu 3 ϕ 7−→ Ps(ũη(ϕ)(0)) ∈ C1
s .

Indeed, applying Corollary 4.7, we see at once

W η =
{
ϕ+ wη(ϕ) | ϕ ∈ Ccu

}
.

We close this subsection with the conclusion that the values of every solution v ∈ C1
η of the

abstract integral equation (26) belong to the global center-unstable manifold W η.
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Proposition 4.8 Suppose that v ∈ C1
η is a solution of Eq. (26). Then

v(t) ∈ W η

for all t ≤ 0.

Proof: Assuming v ∈ C1
η satisfies the abstract integral equation

u(t) = Te(t− s)u(s) +

∫ t

s

T�∗e (t− τ) l(rδ(u(τ))) dτ

for −∞ < s ≤ t ≤ 0, we begin with the claim that v(0) ∈ W η. In order to see this, let
z : (−∞, 0] −→ C1 be defined by z(t) = v(t)− Te(t)Pcu v(0). As

sup
t∈(−∞,0]

eηt‖z(t)‖C1 = sup
t∈(−∞,0]

eηt‖v(t)− Te(t)Pcu v(0)‖C1

≤ sup
t∈(−∞,0]

eηt‖v(t)‖C1

+ sup
t∈(−∞,0]

eηt‖Te(t)Pcu v(0)‖C1

≤ ‖v‖C1
η

+ sup
t∈(−∞,0]

eηt‖Te(t)Pc v(0)‖C1

+ sup
t∈(−∞,0]

eηt‖Te(t)Pu v(0)‖C1

≤ ‖v‖C1
η

+K sup
t∈(−∞,0]

e−(cc−η)t‖Pc v(0)‖C1

+K sup
t∈(−∞,0]

e(cu+η)t‖Pu v(0)‖C1

≤ ‖v‖C1
η

+K‖Pc‖ ‖v(0)‖C1 +K‖Pu‖‖v(0)‖C1

≤
(
1 +K‖Pc‖+K‖Pu‖

)
‖v‖C1

η
<∞,

we have z ∈ C1
η . Moreover, for all s ≤ t ≤ 0, we have

z(t) = v(t)− Te(t)Pcu v(0)

= Te(t− s) v(s) +

∫ t

s

T�∗e (t− τ) l(rδ(v(τ))) dτ − Te(t)Pcu v(0)

= Te(t− s) v(s)− Te(t− s)Te(s)Pcu v(0) +

∫ t

s

T�∗e (t− τ) l(rδ(v(τ))) dτ

= Te(t− s) z(s) +

∫ t

s

T�∗e (t− τ) l(rδ(v(τ))) dτ.

Since furthermore Rδη(v) ∈ Yη by Corollary 4.3 and P�∗cu z(0) = Pcu z(0) = 0, we obtain
z = K ◦Rδη(v) due to Corollary 3.4. Hence, by definition

v(t) = z(t) + Te(t)Pcu v(0) = (Kη ◦Rδη(v))(t) + Te(t)Pcu v(0)
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for all t ≤ 0, or equivalently,

v = Kη ◦Rδη(v) + Sη(Pcu v(0)) = G(v, Pcu v(0)).

This implies v(0) = G(v, Pcu v(0))(0) = ũη(Pcu v(0))(0) ∈ W η as claimed.

The proof of v(t) ∈ W η as t < 0 may now be reduced to the above claim as follows. For
given t0 < 0 consider the translation

v̂ : (−∞, 0] 3 s 7−→ v(t0 + s) ∈ C1.

Obviously, we have v̂ ∈ C1
η and v̂ is a solution of Eq. (26). Therefore v(−t0) = v̂(0) ∈ W η

by the above claim. This completes the proof.

Remark 4.9 Note that by application of the above result we easily deduce the identity

ũη(ϕ)(t) = ũη(Pcu ũη(ϕ)(t))(0)

for all ϕ ∈ Ccu and t ≤ 0.

Proof of Theorem 1

In this final part of the present section we complete the proof of Theorem 1 on the existence
of Lipschitz continuous local center-unstable manifolds. We conclude that in a neighborhood
of the origin, the global center-unstable manifold W η of Eq. (25) has the properties asserted
in Theorem 1.

Our proof starts with the following series of definitions depending on the constant δ > 0

from condition (28):

Ccu,0 :=
{
ϕ ∈ Ccu | ‖ϕ‖1 < δ

}
,

C1
s,0 :=

{
ϕ ∈ C1

s | ‖ϕ‖1 < δ
}
,

Ncu := Ccu,0 + C1
s,0,

wcu := wη
∣∣
Ccu,0

,

and

Wcu :=
{
ϕ+ wcu(ϕ) | ϕ ∈ Ccu,0

}
.
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Given an open neighborhood V of 0 in Xf , note that one may choose δ > 0 with Wcu ⊂ V .
Applying Corollary 3.4 and estimate (29) of Corollary 4.3, we obtain for all ϕ ∈ Ccu,0

‖wcu(ϕ)‖1 = ‖wη(ϕ)‖1

= ‖Ps(ũη(ϕ)(0))‖C1

= ‖ũη(ϕ)(0)− Pcu(ũη(ϕ)(0))‖C1

= ‖Gη(ũη(ϕ), ϕ)(0)− Pcu(Gη(ũη(ϕ), ϕ)(0))‖C1

= ‖(Sη ϕ)(0) + (Kη ◦Rδη(ũ(ϕ)))(0)− Pcu((Sη ϕ)(0))

− Pcu((Kη ◦Rδη(ũ(ϕ)))(0))‖C1

= ‖(Kη ◦Rδη(ũ(ϕ)))(0)‖C1

≤ ‖Kη ◦Rδη(ũ(ϕ))‖C1
η

≤ ‖Kη‖‖Rδη(ũ(ϕ))‖Yη
≤ ‖Kη‖δλ(δ),

(34)

and thus, wcu(Ccu,0) ⊂ C1
s,0 by assumption (28). The mapping wcu is also Lipschitz continu-

ous, because for all ϕ, ψ ∈ Ccu,0 we have

‖wcu(ϕ)− wcu(ψ)‖C1 = ‖wη(ϕ)− wη(ψ)‖C1

= ‖Ps(ũη(ϕ)(0))− Ps(ũη(ψ)(0))‖C1

≤ ‖Ps‖‖ũη(ϕ)(0)− ũη(ψ)(0)‖C1

≤ ‖Ps‖‖ũη(ϕ)− ũη(ψ)‖C1
η

and the operator ũη is (globally) Lipschitz continuous due to Proposition 4.6. Moreover,
since Gη(0, 0) = 0 by definition, we have ũη(0) = 0 and hence wcu(0) = 0. Consequently,
Theorem 1 follows if we verify properties (i) - (iii) for Wcu, which is done below.

Proof of Assertion (ii): Assuming that x : (−∞, 0] −→ Rn is a solution of the differential
equation (1) with xt ∈ Ncu, t ≤ 0, we have to show xt ∈ Wcu for all t ≤ 0. To this
end, notice that by definition ‖Pcu xt‖1 < δ and ‖Ps xt‖1 < δ so that Corollary 4.1 yields
r(xt) = rδ(xt) for all t ≤ 0. Therefore x satisfies the smoothed differential equation (25) as
well. Setting u(t) = xt, t ≤ 0, we consequently obtain a solution of the smoothed abstract
integral equation (26). In particular, as u is bounded on (−∞, 0], we conclude that u ∈ C1

η ,
and hence u(t) ∈ W η, t ≤ 0, by Proposition 4.8. This implies xt ∈ Wcu for all t ≤ 0, which
is the desired conclusion.

Proof of Assertion (iii): Assume that for a function ϕ ∈ Wcu and tN > 0 we have
{F (t, ϕ) | 0 ≤ s ≤ tN} ⊂ Ncu. To deduce {F (t, ϕ) | 0 ≤ s ≤ tN} ⊂ Wcu from this, consider
the function

v(t) =

ũη(Pcu ϕ)(tN + t), for t ≤ −tN ,

F (tN + t, ϕ), for − tN ≤ t ≤ 0,
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where ũη(Pcu ϕ) ∈ C1
η is the solution of Eq. (26) with ũη(Pcu ϕ)(0) = ϕ from Corollary 4.7.

As v takes values in C1, it is continuous at the questionable point t = −tN in view of the
limits

lim
t↗−tN

v(t) = lim
t↗−tN

ũη(Pcu ϕ)(tN + t) = ũη(Pcu ϕ)(0) = ϕ

and
lim

t↘−tN
v(t) = lim

t↘−tN
F (tN + t, ϕ) = F (0, ϕ) = ϕ.

In addition, v is bounded in the ‖ · ‖C1
η
-norm due to

sup
t∈(−∞,0]

eηt‖v(t)‖C1 ≤ max

{
‖ũη(Pcu ϕ)‖C1

η
, max
t∈[0,tN ]

‖F (t, ϕ)‖C1

}
<∞,

we have v ∈ C1
η . Moreover, we claim that v is also a solution of Eq. (26). Indeed, suppose

s, t ∈ (−∞, 0] with s ≤ t. Then the cases s ≤ t ≤ −tN < 0 and −tN ≤ s ≤ t ≤ 0 are
obvious, whereas in the situation s ≤ −tN ≤ t ≤ 0, we get

v(t)− Te(t− s) v(s) = v(t)− Te(t+ tN)Te(−tN − s) v(s)

= Te(t+ tN) v(−tN) +

∫ t

−tN
T�∗e (t− τ) l(rδ(v(τ))) dτ

− Te(t+ tN)Te(−tN − s) v(s)

= Te(t+ tN)
(
v(−tN)− Te(−tN − s) v(s)

)
+

∫ t

−tN
T�∗e (t− τ) l(rδ(v(τ))) dτ

= Te(t+ tN)

∫ −tN
s

T�∗e (−tN − τ) l(rδ(v(τ))) dτ

+

∫ t

−tN
T�∗e (−tN − τ) l(rδ(v(τ))) dτ

=

∫ −tN
s

T�∗e (t− τ) l(rδ(v(τ))) dτ +

∫ t

−tN
T�∗e (t− τ) l(rδ(v(τ))) dτ

=

∫ t

s

T�∗e (t− τ) l(rδ(v(τ))) dτ .

Thus, v is a solution of Eq. (26) in C1
η as claimed.

Now Proposition 4.8 shows v(t) ∈ W η for all t ≤ 0. Consequently, for constants 0 ≤ t ≤ tN

we have
F (t, ϕ) = v(t− tN) ∈ Ncu ∩W η,

and hence F (t, ϕ) ∈ Wcu, which proves our assertion.

Proof of Assertion (i): It remains to prove that Wcu is contained in the solution manifold
Xf of Eq. (1), and that Wcu forms a Lipschitz submanifold of dimension dimCcu. For the
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first part, let ϕ ∈ Wcu be given. Then from Corollary 4.7 it follows that the equations
xt = ũη(Pcu ϕ)(t), t ≤ 0, define a continuously differentiable function x : (−∞, 0] −→ Rn

satisfying the smoothed differential equation (26) on (−∞, 0] and x0 = ϕ. In particular,
ϕ̇(0) = Lϕ + rδ(ϕ). As ϕ ∈ Wcu ⊂ Ncu and in addition rδ = r on Ncu due to Corollary 4.1
we conclude

ϕ̇(0) = Lϕ+ r(ϕ) = f(ϕ) ∈ Xf .

This proves Wcu ⊂ Xf .

To see the second part of the assertion, we consider an n-dimensional complementary space
E of Y = T0Xf in the Banach space C1. We claim that there is no loss of generality in
assuming E ⊂ C1

s . In fact, let {e1, . . . , en} denote a basis of E. Then by the decomposition
C1 = Ccu ⊕ C1

s according to Eq. (7) we get for each i = 1, . . . , n

ei = ui + si

with uniquely determined ui ∈ Ccu and si ∈ C1
s . As the center-unstable space Ccu is

contained in Y , we conclude that si 6∈ Y for all i = 1, . . . , n.

Define vectors êi = ei − ui for i = 1, . . . , n and suppose we have
n∑
i=1

λi êi = 0

with reals λi, i = 1, . . . , n. Using the definition of êi, we obtain

E 3
n∑
i=1

λi ei =
n∑
i=1

λi ui ∈ Ccu.

Since Ccu∩E = {0} it follows λi = 0 for all i ∈ {1, . . . , n}. Thus, the elements êi, i = 1, . . . , n,
generate an n-dimensional subspace Ê of C1, which is complementary to Y in C1. In
particular, Ê ⊂ C1

s .

In view of the above, we suppose now that indeed E ⊂ C1
s , which leads to

C1
s = E ⊕ (C1

s ∩ Y ),

Y = Ccu ⊕ (C1
s ∩ Y ),

and

C1 = E ⊕ (C1
s ∩ Y )⊕ Ccu = E ⊕ Y.

Let PY : C1 −→ C1 denote the projection operator of the Banach space C1 onto Y along
E. Then we find an open neighborhood V of 0 in Xf such that the restriction of PY to
V forms a manifold chart of Xf with a C1-smooth inverse mapping from Y0 = PY (V ) onto
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V . Additionally, we may assume that δ > 0 is sufficient small such that Wcu ⊂ V and
PY Wcu ⊂ Y0. Consequently, we shall have established the assertion if we prove that PY Wcu

is an dimCcu-dimensional Lipschitz submanifold of the Banach space Y . But this is clear,
since

PYWcu =
{
PY (ϕ+ wcu(ϕ)) |ϕ ∈ Ccu,0

}
=
{
ϕ+ PY wcu(ϕ) | ϕ ∈ Ccu,0

}
and wcu(ϕ) ∈ C1

s for all ϕ ∈ Ccu,0. Therefore, for every ϕ ∈ Ccu,0 we obviously have
PYwcu(ϕ) ∈ C1

s ∩ Y , so that PYWcu is the graph of the map{
ϕ ∈ Ccu | ‖ϕ‖1 < δ

}
3 χ 7−→ PY wcu(χ) ∈ C1

s ∩ Y.

In particular, the above map is Lipschitz continuous. This finishes the proof of the assertion
(i) and so of Theorem 1 as a whole.

5 The C1-Smoothness of Local Center-Unstable Manifolds

Having proved the existence of local center-unstable manifolds in the last section, below we
establish Theorem 2, asserting the C1-smoothness of these manifolds. For this purpose, we
follow very closely the procedure in the proof of smoothness of local center manifolds in
Krisztin [8] and show that the technique also works in our situation.

Auxiliary Results

The main idea of the proof for Theorem 2 is to employ the following abstract lemma stating
under which conditions the fixed points of a parameter-dependent contraction form a C1-
smooth mapping of the involved parameter.

Lemma 5.1 (Lemma II.8 in Krisztin et al. [9]) Let X, Λ denote two Ba-
nach spaces over R, let P ⊂ Λ be open, and let a map ξ : X × P −→ X and a real
κ ∈ [0, 1) be given satisfying

‖ξ(x, p)− ξ(x̃, p)‖X ≤ κ‖x− x̃‖X

for all x, x̃ ∈ X and all p ∈ P. Consider a convex subsetM of X and a map Φ : P −→M
with the property that for every p ∈ P, the element Φ(p) is the unique fixed point of the
induced map ξ(·, p) : X −→ X. Furthermore, suppose that the following hypotheses hold.

(i) The restriction ξ0 = ξ
∣∣
M×P of the mapping ξ has a partial derivative

D2ξ0 :M×P −→ L(Λ, X),

and D2ξ0 is continuous.
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(ii) There exist a Banach space X1 over R and a continuous injective map j : X −→ X1

such that the composed map k = j ◦ ξ0 is continuously differentiable with respect toM
in the sense that there is a continuous map

B :M×P −→ L(X,X1)

such that for every (x, p) ∈M×P and every ε∗ > 0 one finds a real δ∗ > 0 guaranteeing∥∥k(x̃, p)− k(x, p)−B(x, p)
(
x̃− x

)∥∥
X1
≤ ε∗ ‖x̃− x‖X

for all x̃ ∈M with ‖x̃− x‖X ≤ δ̃.

(iii) There exist maps

ξ(1) :M×P −→ L(X,X)

and

ξ
(1)
1 :M×P −→ L(X1, X1)

such that
B(x, p) x̃ =

(
j ◦ ξ(1)(x, p)

)
(x̃) =

(
ξ

(1)
1 (x, p) ◦ j

)
(x̃)

for all (x, p, x̃) ∈M×P ×X and ∥∥ξ(1)(x, p)
∥∥ ≤ κ

as well as ∥∥∥ξ(1)
1 (x, p)

∥∥∥ ≤ κ

onM×P.

(iv) The map
M×P 3 (x, p) 7−→ j ◦ ξ(1)(x, p) ∈ L(X,X1)

is continuous.

Then the map j ◦ Φ : P −→ X1 is continuously differentiable and its derivative satisfies

D(j ◦ Φ)(p) = ξ
(1)
1 (Φ(p), p) ◦D(j ◦ Φ)(p) + j ◦D2ξ0(Φ(p), p)

for all p ∈ P.

To verify the hypotheses of the last lemma in our situation, we will need another auxiliary
result on some smoothness properties of Nemitsky operators between scaled Banach spaces.
This result is a negligible modification of Lemma II.6 in Krisztin et al. [9] and Lemma 3.1
in Krisztin [8].
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Lemma 5.2 Given any two Banach spaces E, F over R, consider for a real η ≥ 0

the scaled Banach spaces Eη := Cη((−∞, 0], E) and Fη := Cη((−∞, 0], F ). Further, let
q : U −→ F be a continuous and bounded map defined on some subset U ⊂ E and let
M((−∞, 0], U), M((−∞, 0], F ) denote the sets of all mappings from the interval (−∞, 0]

into U , F , respectively. Then for the induced substitution operator

q̃ : M((−∞, 0], U) −→M((−∞, 0], F )

defined by
q̃(u)(t) = q(u(t))

for all u ∈M((−∞, 0], U) and t ≤ 0 the following holds.

(i) If η, η̃ ≥ 0, then q̃(M((−∞, 0], U) ∩ Eη) ⊂ Fη̃.

(ii) If U is open, if q is continuously differentiable with a bounded derivative Dq and 0 ≤
η ≤ η̃, then, for all u ∈ C((−∞, 0], U), the linear map

A(u) : M((−∞, 0], E) −→M((−∞, 0], F ),

given by
A(u)(v)(t) := Dq(u(t))v(t)

for v ∈M((−∞, 0], E) and t ≤ 0, satisfies

A(u)(Eη) ⊂ Fη̃

and
sup
‖v‖Eη≤1

‖A(u)(v)‖Fη̃ ≤ sup
x∈U
‖Dq(x)‖,

the induced linear maps
Aηη̃(u) : Eη −→ Fη̃

are continuous and in case η < η̃, the map

Aηη̃ :
(
C((−∞, 0], U) ∩ Eη

)
3 u 7−→ Aηη̃(u) ∈ L(Eη, Fη̃)

is continuous as well.

(iii) If additionally to the hypothesis stated above there holds η < η̃ and the set U is convex,
then for every ε̃ > 0 and u ∈ C((−∞, 0], U)∩Eη there exists δ̃ > 0 such that for every
v ∈ C((−∞, 0], U) ∩ Eη with ‖v − u‖Eη < δ̃ we have

‖q̃(v)− q̃(u)− Aηη̃(u)(v − u)‖Fη̃ ≤ ε̃ ‖v − u‖Eη .
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Proof: We adopt the proof of Lemma 3.1 in Krisztin [8] which falls naturally into three
steps.

1. The proof of (i). Assuming u ∈ (M((−∞, 0], U)∩Eη), we see at once that the continuity
of u and q implies the one of

(−∞, 0] 3 t 7−→ q̃(u)(t) = q(u(t)) ∈ F.

Moreover, the boundedness of q leads to

sup
t∈(−∞,0]

eη̃t‖q(u(t))‖F ≤ sup
t∈(−∞,0]

eη̃t sup
t∈(−∞,0]

‖q(u(t))‖F ≤ sup
x∈U
‖q(x)‖F <∞,

and thus ‖q̃(u)‖Fη̃ <∞. Consequently, we have q̃(u) ∈ Fη̃, which is the desired conclusion.

2. The proof of (ii). We begin with the observation that for all elements u ∈ C((−∞, 0], U)

the map A(u) is well-defined, linear and that under the stated assumption the image A(u)v ∈
M((−∞, 0], F ) of an element v ∈ Eη, that is, the map

[0,∞) 3 t 7−→ Dq(u(t)) v(t) ∈ F,

is continuous. As in this situation we also have

eη̃t ‖Dq(u(t)) v(t)‖F ≤ e(η̃−η)teηt ‖v(t)‖E sup
x∈U
‖Dq(x)‖

≤ sup
t∈(−∞,0]

eηt‖v(t)‖E sup
x∈U
‖Dq(x)‖

≤ ‖v‖Eη sup
x∈U
‖Dq(x)‖ <∞

due to the boundedness of Dq on U , we conclude A(u)(Eη) ⊂ Fη̃ and additionally

sup
‖v‖Eη≤1

‖A(u)v‖Fη̃ ≤ sup
x∈U
‖Dq(x)‖.

In particular, this shows the continuity of the maps Aηη̃ : Eη 7−→ Fη̃.

The only point remaining of assertion (ii) concerns the continuity of the map

Aηη̃ : C((−∞, 0], U) ∩ Eη 3 u 7−→ Aηη̃(u) ∈ L(Eη, Fη̃)

in case η < η̃. To see this, choose u ∈ C((−∞, 0], U) ∩ Eη and let ε̃ > 0 be given. As η < η̃

and Dq is bounded on U , there clearly is a real t0 < 0 satisfying

2e(η̃−η)t sup
x∈U
‖Dq(x)‖ < ε̃

for all t ≤ t0. Furthermore, in view of the continuity of u and Dq we find a constant δ̃ > 0

such that
Bt(u) =

{
y ∈ E

∣∣ ‖y − u(t)‖E < δ̃e−ηt0
}
⊂ U
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as t0 ≤ t ≤ 0 and such that additionally

‖Dq(y)−Dq(u(t))‖ < ε̃

holds for all y ∈ Bt. Consequently, if ũ ∈ C((−∞, 0], U) ∩ Eη with ‖ũ − u‖Eη < δ̃, and if
v ∈ Eη with ‖v‖Eη ≤ 1, then the above estimates yield

eη̃t
∥∥(Dq(ũ(t))−Dq(u(t))

)
v(t)

∥∥
F
≤ ε̃

for all t ≤ 0. Indeed, in case t ≤ t0 we see

eη̃t
∥∥(Dq(ũ(t))−Dq(u(t))

)
v(t)

∥∥
F
≤ 2e(η̃−η)teηt‖v(t)‖E sup

x∈U
‖Dq(x)‖

≤ 2e(η̃−η)t‖v‖Eη sup
x∈U
‖Dq(x)‖

< ε̃,

whereas, for t0 < t ≤ 0, we first conclude

‖ũ(t)− u(t)‖E < δ̃e−ηt < δ̃e−ηt0

and hence

eη̃t
∥∥(Dq(ũ(t))−Dq(u(t))

)
v(t)

∥∥
F
≤ e(η̃−η)teηt‖v(t)‖E‖Dq(ũ(t))−Dq(u(t))‖
≤ ‖v‖Eη ‖Dq(ũ(t))−Dq(u(t))‖
< ε̃.

This shows
‖Aηη̃(ũ)− Aηη̃(u)‖ ≤ ε̃,

and the continuity of Aηη̃ is proved.

3. The proof of (iii). Note that from the additional assumption on the convexity of the open
set U in E it is easy to check that the set C((−∞, 0], U) ∩ Eη is convex as well. Hence, for
all u, v ∈ C((−∞, 0], U) ∩ Eη and all t ≤ 0 we have

eη̃t
∥∥q(v(t))− q(u(t))−Dq(u(t))

(
v(t)− u(t)

)∥∥
F

= eη̃t
∥∥∥∥∫ 1

0

(
Dq
(
sv(t) + (1− s)u(t)

)
−Dq

(
u(t)

))(
v(t)− u(t)

)
ds

∥∥∥∥
F

≤ e(η̃−η)teηt‖v(t)− u(t)‖E
· max
s∈[0,1]

∥∥Dq(sv(t) + (1− s)u(t)
)
−Dq

(
u(t)

)∥∥
≤ e(η̃−η)t‖v − u‖Eη

· max
s∈[0,1]

∥∥Dq(s v(t) + (1− s)u(t)
)
−Dq

(
u(t)

)∥∥ .

(35)
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Fix u ∈ C((−∞, 0], E) ∩ Eη and ε̃ > 0. Then, using η < η̃, we find constants t0 < 0 and
δ̃ ≥ 0 as in the last part. Let now an arbitrary v ∈ C((−∞, 0], U) ∩ Eη with ‖v − u‖Eη < δ̃

be given. Then, in the situation t ≤ t0, the estimate (35) and the choice of the real t0 yield

eη̃t
∥∥ q(v(t))− q(u(t))−Dq(u(t))

(
v(t)− u(t)

)∥∥
F

≤ e(η̃−η)t‖v − u‖Eη
· max
s∈[0,1]

∥∥Dq(sv(t) + (1− s)u(t)
)
−Dq

(
u(t)

)∥∥
≤ 2e(η̃−η)t max

x∈U
‖Dq(x)‖‖v − u‖Eη

< ε̃‖v − u‖Eη
On the other hand, if t0 < t ≤ 0, then we have

‖v(t)− u(t)‖E ≤ δ̃e−ηt < δ̃e−ηt0 .

This implies sv(t) + (1− s)u(t) ∈ Bt(u) for all 0 ≤ s ≤ 1 and hence, by inequality (35), we
get again

eη̃t
∥∥ q(v(t))− q(u(t))−Dq(u(t))

(
v(t)− u(t)

)∥∥
F

≤ e(η̃−η)t‖v − u‖Eη
· max
s∈[0,1]

∥∥Dq(sv(t) + (1− s)u(t)
)
−Dq

(
u(t)

)∥∥
< ε̃e(η̃−η)t‖v − u‖Eη
< ε̃‖v − u‖Eη .

Combining these yields∥∥ q̃(v)− q̃(u)− Aηη̃(u)
(
v − u

)∥∥
Fη̃
≤ ε̃ ‖v − u‖Eη ,

and the proof is complete.

Proof of Theorem 2

After the preparatory results above, we return to the local center-unstable manifolds from
the last section and prove Theorem 2.

We start our proof with the observation that an important, but probably inconspicuous point
of our construction of the invariant manifolds in the foregoing section was the choice of a
constant η > 0 satisfying condition (27), that is,

cc < η < min{−cs, cu},

and hereafter the choice of a second constant 0 < δ < δ1 satisfying condition (28), that is,

‖Kη‖λ(δ) <
1

2
.
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Now, recall from Corollary 3.4 that Kη is a bounded linear map from the Banach space Yη
into C1

η . Moreover, the bound of Kη satisfies the inequality

‖Kη‖ < c(η) (36)

with the continuous map c : (cc,min{−cs, cu}) −→ [0,∞) given by

c(η) = K
(

1 + eηh‖Le‖
)(‖P�∗c ‖

η − cc
+
‖P�∗u ‖
cu + η

− ‖P
�∗
s ‖

cs + η

)
+ eηh.

Hence, fixing a constant η1 > 0 with cc < η1 < min{−cu, cs} and additionally a constant
0 < δ < δ1 with

c(η1)λ(δ) <
1

2
,

we clearly find a real cc < η0 < η1 such that the estimate

c(η)λ(δ) <
1

2
(37)

is fulfilled for all η0 ≤ η ≤ η1. As an immediate consequence, we see that for any η0 ≤ η ≤ η1

the pair (η, δ) satisfies both conditions (27), (28), and thus the construction in the last
section works for any such choice of constants.

Below, we show the assertion of Theorem 2 for the map wη1 . Hereby, remember that wη1

may be also written as the composition

wη1 = Ps ◦ ev0 ◦ ũη1

with the projection operator Ps of C1 along the center-unstable space Ccu onto C1
s , the

evaluation map
ev0 : C1

η1
3 u 7−→ u(0) ∈ C1

and the fixed point operator ũη1 : Ccu −→ C1
η1

defined by (33). Since Ps and ev0 are both
bounded linear maps, for a conclusion on the C1-smoothness of wη1 we are obviously reduced
to proving the continuous differentiability of ũη1 on Ccu. By application of Lemmata 5.1,
5.2, we show that ũη1 is indeed continuously differentiable on Ccu in the following.

Consider the open neighborhood

Oδ :=
{
ψ ∈ C1 | ‖Ps ψ‖1 < δ

}
of the origin in C1. The set Oδ is clearly convex, and from Corollary 4.1 and Proposition
4.2 we see that the restriction of the function rδ to Oδ is bounded, C1-smooth and has a
bounded derivative with

sup
ϕ∈Oδ
‖Drδ(ϕ)‖ ≤ λ(δ).
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Additionally, we claim {
ũη(ϕ)(t)

∣∣ϕ ∈ Ccu, t ≤ 0
}
⊂ Oδ

for all η0 ≤ η ≤ η1. Indeed, combining the inequalities (29), (36) and (37) yields

‖wη(ϕ)‖1 = ‖Ps ũη(ϕ)(0)‖C1

=
∥∥(Kη ◦Rδη(ũη(ϕ))

)
(0)
∥∥
C1

≤
∥∥(Kη ◦Rδη(ũη(ϕ))

)∥∥
C1
η

≤ ‖Kη‖ ‖Rδη(ũη(ϕ))‖Yη
≤ c(η) δ λ(δ)

< δ

as ϕ ∈ Ccu and η0 ≤ η ≤ η1. Thus, in view of Remark 4.9 we obtain

‖Ps ũη(ϕ)(t)‖1 = ‖Ps ũη(Pcu ũη(ϕ)(t))(0)‖1 = ‖wη(Pcu ũη(ϕ)(t))‖1 < δ

for all (ϕ, η, t) ∈ Ccu × [η0, η1] × (−∞, 0], as claimed. Now, setting E := C1, F := Y �∗,
O := Oδ, q := l ◦ rδ, η := η0, η̃ := η1 and applying Lemma 5.2, we conclude that the linear
maps

A(u) : M((−∞, 0], C1) −→M((−∞, 0], Y �∗)

define a continuous map Aη0η1 from the convex set

M :=
{
u ∈ C1

η0
| u(t) ∈ Oδ for all t ∈ (−∞, 0]

}
into the Banach space L(C1

η0
, Yη1). In addition, we see that Aη0η1 has the property that for

every point u ∈M and every real ε̃ > 0 there is a constant δ̃(ε̃) > 0 such that for all v ∈M
with ‖v − u‖C1

η0
≤ δ̃ we have Rδη1(u), Rδη1(v) ∈ Yη1 and∥∥Rδη1(u)−Rδη1(v)− Aη0η1(u)

(
v − u

)∥∥
Yη1
≤ ε̃‖v − u‖C1

η0
. (38)

Next, we are going to employ Lemma 5.1. To this end, we regard the inclusion map

jη0η1 : C1
η0
3 u 7−→ u ∈ C1

η1
.

As η0 < η1, this map obviously is well-defined and is trivially linear and bounded. Moreover,
for all ϕ ∈ Ccu, jη0η1 maps the fixed point ũη0(ϕ) of Gη0( · , ϕ) defined in Proposition 4.6 onto
the fixed point ũη1(ϕ) of Gη1( · , ϕ). Indeed, since for a given ϕ ∈ Ccu we have

Gη1(jη0η1(ũη0(ϕ)), ϕ) = Sη1 ϕ+Kη1 ◦Rδη1(jη0η1(ũη0(ϕ)))

= Te( · )ϕ+KcuR(ũη0(ϕ))

= jη0η1

(
Sη0 ϕ+Kη0 ◦Rδη0(ũη0(ϕ))

)
= jη0η1

(
Gη0(ũη0(ϕ), ϕ)

)
= jη0η1(ũη0(ϕ)),
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jη0η1(ũη0(ϕ)) is a fixed point of Gη1( · , ϕ) : C1
η1
−→ C1

η1
and from the uniqueness of the fixed

point there actually follows

jη0η1(ũη0(ϕ)) = ũη1(ϕ).

Set X := C1
η0
, X1 := C1

η1
, Λ := P = Ccu, ξ := Gη0 , j := jη0η1 and κ := 1/2. Then we see at

once that ũη0(P ) ⊂M, and this implies that the unique fixed point of ξ( · , ϕ) : X −→ X is
given by the value Φ(ϕ) of the map

Φ : P 3 ϕ 7−→ ũη0(ϕ) ∈M.

Additionally, for each ϕ ∈ Ccu the map ξ( · , ϕ) = Gη0( · , ϕ) is Lipschitz continuous with
Lipschitz constant κ due to the proof of Proposition 4.6. Thus, for an application of Lemma
5.1 with the above choice of spaces, maps and reals it remains to confirm conditions (i) -
(iv). This point is done below in detail.

Verification of hypothesis (i): Observe that for the restriction ξ0 of the map ξ toM×P
we have

ξ0(u, ϕ) = Gη0(u, ϕ) = Sη0 ϕ+Kη0 ◦Rδη0(u).

Consequently, ξ0 is partially differentiable with respect to the second variable, and for every
(u, ϕ) ∈M×P its derivative D2ξ0(u, ϕ) ∈ L(Λ, X) is given by

D2ξ0(u, ϕ)ψ = Sη0ψ

for all ψ ∈ Ccu. Obviously, D2ξ0 : M× P −→ L(Λ, X) is a constant map and thus in
particular continuous. This shows hypothesis (i) of Lemma 5.1.

Verification of hypothesis (ii): The mapping k = j ◦ ξ0 reads

k(u, ϕ) = Sη1 ϕ+Kη1 ◦Rδη1(j(u)),

and the map

B :M×P 3 (u, ϕ) 7−→ Kη1 ◦ (Aη0η1(u)) ∈ L(X,X1)

is of course continuous as Kη1 , Aη0η1 are so. Consider next an arbitrary point (u, ϕ) ∈M×P
and ε∗ > 0. Choosing

δ∗ = δ̃

(
ε∗

1 + ‖Kη1‖

)
with the constant δ̃ from estimate (38), we find that for all points v ∈M with ‖v−u‖C1

η0
< δ∗
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we have ∥∥k(v, ϕ)− k(u, ϕ)−B(u, ϕ)
(
v − u

)∥∥
X1

=
∥∥Kη1(R(v))−Kη1(R(u))−Kη1

(
Aη0η1(u)(v − u)

)∥∥
C1
η1

≤ ‖Kη1‖
∥∥R(v)−R(u)− Aη0η1(u)

(
v − u

)∥∥
Yη1

≤ ‖Kη1‖
ε∗

1 + ‖Kη1‖
‖v − u‖C1

η0

≤ ε∗‖v − u‖C1
η0
.

Thus, condition (ii) is satisfied.

Verification of hypothesis (iii): Next we note that for every u ∈ M and all v ∈ X we
have

A(u)(v)(t) = Dq(u(t))v(t)

= D(l ◦ rδ)(u(t))v(t)

= Dl(rδ(u(t))) ◦Drδ(u(t))v(t)

= l ◦Drδ(u(t))v(t)

for t ≤ 0. Since supϕ∈Oδ ‖Drδ(ϕ)‖ ≤ λ(δ) and ‖Kη0‖ ≤ c(η0), and ‖l‖ = 1, it is obvious that
for every u ∈M, the induced map

Kη0 ◦ (Aη0η0(u)) ∈ L(X,X)

satisfies
‖Kη0 ◦ (Aη0η0(u))‖ ≤ c(η0)λ(δ).

In the same manner we see that for all u ∈M

Kη1 ◦ (Aη1η1(u)) ∈ L(X1, X1)

with
‖Kη0 ◦ (Aη1η1(u))‖ ≤ c(η1)λ(δ).

Define

ξ(1) :M×P 3 (u, ϕ) 7−→ Kη0 ◦ (Aη0η0(u)) ∈ L(X,X)

and

ξ
(1)
1 :M×P 3 (u, ϕ) 7−→ Kη1 ◦ (Aη1η1(u)) ∈ L(X1, X1).

Then, for all (u, ϕ, v) ∈M×P ×X, we get

B(u, ϕ)v =
(
Kη1 ◦ (Aη0η1(u))

)
(v)

= Kcu(A(u)v)

= j
(
ξ(1)(u, ϕ)v

)
= ξ

(1)
1 (u, ϕ)

(
j(v)

)
.
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Moreover, in view of the choice of η0, η1 and δ due to Eq. (37) we have∥∥ξ(1)(u, ϕ)
∥∥
X
≤ κ

and ∥∥∥ξ(1)
1 (u, ϕ)

∥∥∥
X1

≤ κ

for all (u, ϕ) ∈M×P . This shows that hypothesis (iii) is valid too.

Verification of hypothesis (iv): Finally, we find that the map

M×P 3 (x, p) 7−→ j ◦ ξ(1)(x, p) ∈ L(X,X1)

satisfies
j
(
ξ(1)(u, ϕ)v

)
=
(
j ◦ Kη0 ◦ (Aη0η0(u))

)
(v) = Kcu(A(u)v) = B(u, ϕ)v

for all (u, ϕ, v) ∈M×P ×X. As B is continuous, the continuity of the map

M×P 3 (x, p) −→ j ◦ ξ(1)(x, p) ∈ L(X,X1)

follows, and this is precisely condition (iv) of Lemma 5.1.

As by the above all assumptions of Lemma 5.1 are fulfilled, we conclude that the map

ũη1 = j ◦ Φ : Ccu −→ C1
η1

is in fact continuously differentiable. So, if we prove that additionally we have Dwcu(0) = 0,
the assertion of Theorem 2 follows. But this is easily seen in consideration of the formula

Dũη1(ϕ) = ξ
(1)
1 (ũη0(ϕ), ϕ) ◦Dũη1(ϕ) + j ◦D2ξ0(ũη0(ϕ), ϕ)

for the derivative of ũη1 at ϕ ∈ Ccu. Indeed, by Drδ(0) = 0, we first obtain A(0) = 0 and
ξ

(1)
1 (0, 0) = 0. Thus, in consideration of ũη0(0) = 0 we get

Dũη1(0)ψ = j ◦D2ξ0(0, 0)ψ = Sη1ψ

for all ψ ∈ Ccu. This implies

Dwη1(0)ψ =
(
Ps ◦ ev0 ◦Dũη1(0)

)
(ψ) = Psψ = 0

on Ccu. Consequently, we get
Dwη1(0) = 0

and this completes the proof of Theorem 2.
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The partial derivatives of de Rham’s singular
function and power sums of binary digital sums

ABSTRACT. This note is a supplement to the paper [9] on the partial derivatives Tn of de
Rham’s function Ra(x) with respect to the parameter a at a = 1/2. In particular, T0(x) = x

and T1(x) = 2T (x) where T is Takagi’s continuous nowhere differentiable function. We
present a new representation of Tn. From this we derive a limit relation at dyadic rational
points. Moreover, we show that real linear combinations of Tn with n ≥ 1 are nowhere
differentiable. Thus we are able to prove that the functions which appear e.g. in the well
known formula of Coquet for power sums of binary digital sums are nowhere differentiable.
Finally, we derive a corresponding formula for power sums of the number of zeros.

KEY WORDS. De Rham’s singular function, Takagi’s continuous nowhere differentiable
function, functional equations, binary digital sums, number of zeros, Stirling numbers.

1 Introduction

For a fixed parameter a ∈ (0, 1) the system of functional equations

f
(
x
2

)
= af(x),

f
(
x+1

2

)
= a+ (1− a)f(x)

 (x ∈ [0, 1]) (1.1)

has a unique bounded solution f = Ra(x) with Ra(0) = 0 and Ra(1) = 1, cf. [6]. It is
R1/2(x) = x, but for a 6= 1

2
de Rham’s function Ra(x) is a strictly singular function which

is also called Lebesgue singular function, cf. e.g. [1]. In [2] it was shown that for ` ∈ N and
n = 0, 1, . . . , 2` it holds

Ra

( n
2`

)
= a`

n−1∑
j=0

qs(j) (1.2)

where q = (1−a)/a and where s(j) denotes the number of ones in the binary representation
of j. As consequence of (1.2) it was shown in [9] that for q > 0 it holds

N−1∑
j=0

qs(j) = NαGq(log2N) (1.3)
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where α = log2(1+q) and where Gq(u) is a continuous, 1-periodic function which is connected
with de Rham’s function by

Gq(u) = auRa(2
u) (u ≤ 0) (1.4)

where a = 1
1+q

. Formula (1.3) was the start point for the proof of explicit formulas for digital
sums. For the binomial sum

Bk(N) =
N−1∑
j=0

(
s(j)

k

)
(1.5)

with integer k ≥ 1 it holds the formula ([9])

1

N
Bk(N) =

1

k!

(
log2N

2

)k
+

1

k!

k−1∑
`=0

(log2N)`Fk,`(log2N) (1.6)

and for the power sum

Sk(N) =
N−1∑
j=0

s(j)k (1.7)

with k ≥ 1 it holds the formula of Coquet [3], (cf. also [5], [11] and [9])

1

N
Sk(N) =

(
log2N

2

)k
+

k−1∑
`=0

(log2N)`Gk,`(log2N) (1.8)

where Fk,`(u) and Gk,`(u) are continuous, 1-periodic functions. In this note we show that the
functions Fk,`(u) and Gk,`(u) are nowhere differentiable. (For Gk,`(u) this is already known
from [5]). In case k = 1 both formulas yield the well-known formula of Trollope-Delange
([13], [4]) for the sum of digits

1

N

N−1∑
j=0

s(j) =
1

2
log2N + F1 (log2N) (1.9)

where the 1-periodic function F1(u) is connected with Takagi’s function T (x) by

F1(u) = −u
2
− 1

2u+1
T (2u) (u ≤ 0), (1.10)

cf. [8, Theorem 2.1]. In [9] the functions Fk,`(u) and Gk,`(u) were expressed by means of the
partial derivatives of de Rham’s function Ra(x) with respect to the parameter a at a = 1

2
,

i.e.
Tn(x) =

∂n

∂an
Ra(x)

∣∣∣∣
a=1/2

(x ∈ [0, 1]). (1.11)

In particular, T0(x) = x and T1(x) = 2T (x) where T is the Takagi function, cf. [9]. We show
that for 0 < x ≤ 1 we have

1

x
Tn(x) = (−2)n(log2 x)n +

n−1∑
ν=0

(log2 x)νgn,ν(log2 x)
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where the functions gn,ν(u) are 1-periodic, continuous and nowhere differentiable. At dyadic
points x = k

2`
it hold the one-sided limits

lim
h→+0

Tn(x+ h)− Tn(x)

h(log2
1
h
)n

= 2n

and
lim
h→−0

Tn(x+ h)− Tn(x)

|h|(log2
1
|h|)

n
= (−1)n+12n.

Finally, if s0(j) denotes the number of zeros in the binary expansion of j then

1

N

N−1∑
j=1

s0(j)k =

(
log2N

2

)k
+

(−1)k−1

N
+

k−1∑
`=0

(log2N)`Hk,`(log2N) (1.12)

where Hk,`(u) are 1-periodic continuous, nowhere differentiable functions.

In this note we use the Stirling numbers of first and second kind s(1)
k,`, s

(2)
k,` given by

k!

(
x

k

)
=

k∑
`=0

s
(1)
k,`x

` (1.13)

and

xk =
k∑
`=0

s
(2)
k,` `!

(
x

`

)
. (1.14)

These numbers are integers. In particular, s(1)
k,0 = s

(2)
k,0 = 0 for k ≥ 1 and s(1)

k,k = s
(2)
k,k = 1 for

k ≥ 0.

2 Partial derivatives

In [9] were introduced the partial derivatives of de Rham’s function Ra(x) at a = 1
2
, i.e.

Tn(x) =
∂n

∂an
Ra(x)

∣∣∣∣
a=1/2

(x ∈ [0, 1]). (2.1)

Thus T0(x) = x and T1(x) = 2T (x) where T is Takagi’s function. For n ≥ 1 the function Tn
is continuous and has the symmetry property

Tn(1− x) = (−1)n+1Tn(x) (2.2)

and for n ≥ 2 it satisfies the functional equations

Tn
(
x
2

)
= nTn−1(x) + 1

2
Tn(x)

Tn
(
x+1

2

)
= −nTn−1(x) + 1

2
Tn(x)

 (x ∈ [0, 1]). (2.3)
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In [1] were investigated the functions

T̃n(x) =
1

n!
Tn(x), (2.4)

there with the notation Tn(x). For every ε > 0 there exist constants Cn,ε such that if
0 ≤ x < x+ y ≤ 1, then

|T̃n(x+ y)− T̃n(x)| ≤ Cn,εy
1−ε, (2.5)

cf. [1]. By [9, Proposition 4.2] we know that for n ≥ 1 the derivatives (2.1) of de Rham’s
function Ra satisfy the functional relations

Tn

(
k + x

2`

)
= Tn

(
k

2`

)
+

n∑
ν=0

aνTν(x) (2.6)

where ` ∈ N, k = 0, 1, . . . , 2` − 1, x ∈ [0, 1], T0(x) = x and where aν are the constants

aν =

(
n

ν

)
∂n−ν

∂an−ν
a`−s(k)(1− a)s(k)

∣∣∣∣
a=1/2

(2.7)

which depend on n, k and `. In particular, an = 1/2`. Moreover, for k = 0, 1, . . . , 2` it holds

Tn

(
k

2`

)
=

n!

2`−n

k−1∑
j=0

n∑
r=0

(−1)r
(
s(j)

r

)(
`− s(j)
n− r

)
. (2.8)

Proposition 2.1 For ` ∈ N, k = 0, 1, . . . , 2` − 1, x ∈ [0, 1] we have

Tn

(
k − x

2`

)
= Tn

(
k

2`

)
+

n∑
ν=0

bνTν(x) (2.9)

where bν are the constants

bν = (−1)ν+1

(
n

ν

)
∂n−ν

∂an−ν
a`−s(k−1)(1− a)s(k−1)

∣∣∣∣
a=1/2

(2.10)

which depend on n, k and `. In particular, bn = (−1)n+1/2`.

Proof: If we denote the coefficients (2.7) more precisely by aν,k (for fixed n and `) then
from (2.6) with k − 1 instead of k and 1− x instead of x we get

Tn

(
k − x

2`

)
= Tn

(
k − 1

2`

)
+

n∑
ν=0

aν,k−1Tν(1− x)

= Tn

(
k − 1

2`

)
+ a0,k−1 +

n∑
ν=0

(−1)ν+1aν,k−1Tν(x)

where we have used (2.2) and T0(x) = x. For x = 0 it follows

Tn

(
k

2`

)
= Tn

(
k − 1

2`

)
+ a0,k−1

and hence (2.9) with the coefficients bν given by (2.10).
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3 Non-differentiability of linear combinations of Tn

The following proposition is a generalization of [1, Theorem 1.5] to linear combinations

fn(x) =
n∑
ν=1

cνT̃ν(x) =
n∑
ν=1

cν
ν!
Tν(x) (x ∈ [0, 1]) (3.1)

with certain constants c1, . . . , cn. We will modify a bit the nice proof in [1] where we use
largely the same notations.

Proposition 3.1 If cn 6= 0 then the function fn(x) from (3.1) is nowhere differentiable.

Proof: For x0 ∈ [0, 1) and positive integers k we put jk = [2kx0] such that 0 ≤ jk ≤ 2k− 1

and
jk
2k
≤ x0 <

jk + 1

2k
, k ∈ N. (3.2)

Observe that jk+1 = 2jk or jk+1 = 2jk + 1 where A = {k : jk+1 = 2jk} is always infinite and
N \ A = {k : jk+1 = 2jk + 1} is finite if and only if x0 is dyadic rational.

For an arbitrary function f : [0, 1] 7→ R we define

∆f (k, j) :=
f((j + 1) · 2−k)− f(j · 2−k)

2−k
k ∈ N, j = 0, 1, . . . , 2k − 1. (3.3)

Let be Kn the set of all functions (3.1) with cn 6= 0. We show by induction on n that for no
f ∈ Kn the limit

lim
k→∞

∆f (k, jk) (3.4)

exists. For n = 1 this is true since each f ∈ K1 has the form f(x) = c1T̃1(x) = 2c1T (x) with
c1 6= 0 and the Takagi function T (x) for which the nonexistence of the limit is well known
(cf. [12]). Assume for a fixed n ≥ 2 that for no f ∈ Kn−1 the limit (3.4) exists. Now we
consider the function fn(x) from (3.1) with cn 6= 0 which belongs to Kn and assume that
there exists a finite number λ such that

lim
k→∞

∆fn(k, jk) = λ. (3.5)

It follows
lim

k→∞,k∈A
∆fn(k + 1, 2jk) = λ (3.6)

and
lim

k→∞,k 6∈A
∆fn(k + 1, 2jk + 1) = λ (3.7)

whenever N \ A is infinite, cf. [1].
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Put ∆ν(k, j) = ∆T̃ν
(k, j) then ∆0(k, j) = 1 since T̃0(x) = x and by (3.1) we have

∆fn(k, j) =
n∑
ν=1

cν∆ν(k, j).

In view of
∆ν(k + 1, 2j)−∆ν(k + 1, 2j + 1) = 4∆ν−1(k, j), (ν ≥ 1) (3.8)

cf. [1], we find

∆fn(k + 1, 2jk)−∆fn(k + 1, 2jk + 1) =
n∑
ν=1

4cν∆ν−1(k, jk)

= 4c1∆0(k, jk) +
n−1∑
µ=1

4cµ+1∆µ(k, jk)

and hence
∆fn(k + 1, 2jk)−∆fn(k + 1, 2jk + 1) = 4c1 + ∆f (k, jk) (3.9)

where f is the function
f(x) = 4c2T̃1(x) + · · ·+ 4cnT̃n−1(x). (3.10)

Obviously,
∆fn(k + 1, 2jk) + ∆fn(k + 1, 2jk + 1) = 2∆fn(k, jk). (3.11)

Now we consider two cases:

1. If x0 is not dyadic rational, i.e. N \ A is infinite, then (3.5), (3.6) and (3.7) imply

lim
k→∞

∆fn(k + 1, 2jk) = lim
k→∞

∆fn(k + 1, 2jk + 1) = λ.

2. If x0 is dyadic rational, i.e. N \ A is finite, then there exists k0 such that jk+1 = 2jk for
k > k0 and (3.6) can be written as

lim
k→∞

∆fn(k + 1, 2jk) = λ. (3.12)

Now, (3.11), (3.5) and (3.12) imply

lim
k→∞

∆fn(k + 1, 2jk + 1) = λ.

So in both cases from (3.9) we get limk→∞∆f (k, jk) = −4c1 for f from (3.10) which belongs
to Kn−1 since cn 6= 0. This is a contradiction to the induction hypothesis. Thus fn(x) with
cn 6= 0 is not differentiable at x0 ∈ [0, 1) which is valid also at x0 = 1 in view of (2.2).

Remark 3.2 The proof makes use of the recursion (3.8) which in [1] was derived by a
system of infinitely many difference equations for the functions T̃n(x), cf. [1, Corollary 2.5].
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Theorem 3.3 If gν(x) (ν = 1, . . . , n) are differentiable functions for x ∈ [0, 1] then the
function

f(x) =
n∑
ν=1

gν(x)Tν(x) (x ∈ [0, 1])

is differentiable at a point x0 if and only if gν(x0) = 0 for ν = 1, . . . , n.

Proof: For x0 ∈ [0, 1] we consider h 6= 0 such that also x0 + h ∈ [0, 1]. Obviously,

f(x0 + h)− f(x0)

h
= Σ1 + Σ2

where

Σ1 =
n∑
ν=1

gν(x0 + h)− gν(x0)

h
Tν(x0 + h), Σ2 =

n∑
ν=1

gν(x0)
Tν(x0 + h)− Tν(x0)

h
.

Note that Σ1 converges as h → 0 since gν(x) is differentiable and Tν(x) is continuous and
that Σ2 is convergent by Proposition 3.1 if and only if gν(x0) = 0 for all ν = 1, . . . , n.

4 Relations to periodic functions

In [9] were introduced the continuous, 1-periodic functions Fk(u) given for u ≤ 0 by

Fk(u) =
∂k

∂qk
auRa(2

u)

∣∣∣∣
q=1

(u ≤ 0). (4.1)

In particular, F0(u) = 1 and F1(u) is the function from (1.10) which appears in the formula
(1.9) of Trollope-Delange. For k ≥ 1 the 1-periodic functions Fk(u) have the representations

Fk(u) =
1

2u+k

k∑
`=0

Pk,`(u)

2`
T`(2

u) (u ≤ 0) (4.2)

with the binomial polynomials

Pk,`(u) = (−1)k
k!

`!

(
u+ k − 1

k − `

)
(0 ≤ ` ≤ k) (4.3)

of degree k − ` and the partial derivatives T` from (2.1). In particular,

Pk,0(u) = (−1)ku(u+ 1) · · · (u+ k − 1), Pk,k(u) = (−1)k, (4.4)

cf. [9, Proposition 5.1]. From (2.4), (2.5) and (4.2) it follows

Proposition 4.1 For h > 0 and ε > 0 we have

|Fk(u+ h)− Fk(u)| ≤ Ak,εh
1−ε

with a constant Ak,ε.
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A consequence of Theorem 3.3 and (4.2) is the following

Proposition 4.2 If the functions hk(u) are differentiable then

F (u) =
n∑
k=1

hk(u)Fk(u)

is differentiable at u0 if and only if hk(u0) = 0 for all k ∈ {1, 2, . . . , n}.

If we put Pk,`(u) = 0 for ` > k then for n ∈ N equation (4.2) can also be written in the
matrix form

(1, 2F1(u), . . . , 2nFn(u))> = An

(
1

2u
,

1

2u+1
T1(u), . . . ,

1

2u+n
Tn(u)

)>
(4.5)

with the lower triangular matrix An = (Pk,`(u)), 0 ≤ k, ` ≤ n.

Lemma 4.3 For arbitrary integer n ≥ 1 the matrix An is invertible and for the inverse
matrix it holds A−1

n = An.

Proof: We have to show that Bn = (bk,`) = A2
n is the unit matrix, i.e. bk,` = δk,`. We have

bk,` =
n∑
j=0

Pk,j(u)Pj,`(u) =
k∑
j=`

Pk,j(u)Pj,`(u)

and hence bk,` = 0 for 0 ≤ k ≤ `− 1. In view of P`,`(u) = (−1)` we get b`,` = 1. Now let be
k ≥ `+ 1. Note that

Pk,`(u) = (−1)k
(
k

`

)
(u+ k − 1)(u+ k − 2) · · · (u+ `)

so that
Pk,j(u)Pj,`(u) = (−1)k+j

(
k

j

)(
j

`

)
(u+ k − 1)(u+ k − 2) · · · (u− `)

and therefore

bk,` = (−1)k(u− k − 1)(u− k − 2) · · · (u− `)
k∑
j=`

(−1)j
(
k

j

)(
j

`

)
.

Now (
k

j

)(
j

`

)
=

(
k

`

)(
k − `
j − `

)
and

k∑
j=`

(−1)j
(
k − `
j − `

)
= (−1)`(1− 1)k−` = 0.

Hence bk,` = 0 for k ≥ `+ 1.
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As consequence we get from (4.5)

Proposition 4.4 The partial derivatives (2.1) of de Rham’s function Ra(x) have the
representations

1

2u+k
Tk(2

u) =
k∑
`=0

Pk,`(u)2`F`(u) (u ≤ 0) (4.6)

with the polynomials (4.3) and the 1-periodic functions (4.1).

Remark 4.5 According to P1,0(u) = −u, P1,1(u) = −1, F0(u) = 1 and F1(u) in (1.9) we
get

1

2u+1
T1(2u) = −u− 2F1(u) (u ≤ 0).

Putting x = 2u and using the fact that T1(x) = 2T (x) where T (x) is the Takagi function,
we find

1

x
T (x) = − log2 x− 2F1(log2 x) (0 < x ≤ 1), (4.7)

cf. [8, Formula (2.5)].

By means of (4.6) we can give a new representation of Tn using the explicit representation
of the polynomials Pk,`(u) of degree k − `

Pk,`(u) =
k−∑̀
j=0

ck,`,ju
j. (4.8)

In view of (4.3) and the Stirling numbers of first kind s(1)
k,` given by (1.13) it is easy to compute

the coefficients

ck,`,j = (−1)k
(
k

`

) k−`−j∑
r=0

s
(1)
k−`,j+r

(
j + r

r

)
(k − 1)r. (4.9)

In particular, the coefficient of uk−` reads

ck,`,k−` = (−1)k
(
k

`

)
(4.10)

which can be seen directly from (4.3).

Theorem 4.6 For n ≥ 1 the derivatives (2.1) of de Rham’s function Ra have the repre-
sentations

1

x
Tn(x) = (−2)n(log2 x)n +

n−1∑
ν=0

(log2 x)νgn,ν(log2 x) (0 < x ≤ 1) (4.11)

where gn,ν(u) are 1-periodic functions given by

gn,ν(u) = 2n
n−ν∑
`=0

cn,`,ν2
`F`(u) (4.12)

with the coefficients from (4.9). They are continuous and nowhere differentiable.
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Proof: For u ≤ 0 we have by (4.6) and (4.8)

1

2u+k
Tk(2

u) =
k∑
`=0

k−∑̀
j=0

ck,`,ju
j2`F`(u)

=
k∑
j=0

k−j∑
`=0

ck,`,ju
j2`F`(u).

For k = n we get

1

2u+n
Tn(2u) =

n∑
ν=0

uν
n−ν∑
`=0

cn,`,ν2
`F`(u)

= (−1)nun +
n−1∑
ν=0

uν
n−ν∑
`=0

cn,`,ν2
`F`(u)

where we have used that cn,0,n = (−1)n and F0(u) = 1. With u = log2 x it follows (4.11)
with (4.12). Obviously, the function gn,ν(u) is 1-periodic and continuous. By (4.12) we have

gn,ν(u) = 22n−νcn,n−ν,νFn−ν(u) + 2n
n−ν−1∑
`=0

cn,`,ν2
`F`(u)

where according to (4.10) it is cn,n−ν,ν = (−1)n
(
n
ν

)
6= 0. Therefore, by Proposition 4.2 the

function gn,ν(u) is nowhere differentiable.

5 Limit relations

For the Takagi function T it is known that at each dyadic point x = k
2`

it holds

lim
h→0

T (x+ h)− T (x)

h log2
1
h

= 1, (5.1)

cf. [7, Proposition 3.2]. We remember T1(x) = 2T (x) so that the following result is a gener-
alization of (5.1).

Proposition 5.1 For n ≥ 1 the derivatives (2.1) of de Rham’s function Ra satisfy at
each dyadic rational point x = k

2`
the limit relations

lim
h→+0

Tn(x+ h)− Tn(x)

h(log2
1
h
)n

= 2n (5.2)

and
lim
h→−0

Tn(x+ h)− Tn(x)

|h|(log2
1
|h|)

n
= (−1)n+12n. (5.3)
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Proof: For x = 0 equation (5.2) is a consequence of Theorem 4.6. Let x = k
2`

and
0 < h < 1/2`. According to (2.6) we have

Tn(x+ h)− Tn(x) =
n∑
ν=0

aνTν(2
`h)

where an = 1/2` so that

Tn(x+ h)− Tn(x)

h(log2
1
h
)n

=
Tn(2`h)

2`h(log2
1
h
)n

+
n−1∑
ν=0

aν
Tν(2

`h)

h(log2
1
h
)n
.

In view of (log2
1
h
)ν ∼ (log2

1
2`h

)ν as h→ 0 it follows (5.2) by Proposition 4.6.

According to (2.9) we have

Tn(x− h)− Tn(x) =
n∑
ν=0

bνTν(2
`h)

where bn = (−1)n+1/2` and hence

Tn(x− h)− Tn(x)

h(log2
1
h
)n

= (−1)n+1 Tn(2`h)

2`h(log2
1
h
)n

+
n−1∑
ν=0

bν
Tν(2

`h)

h(log2
1
h
)n

which implies (5.3).

Remark 5.2 Relations (5.2) and (5.3) imply that at dyadic rational points x = k
2`

there
exists the improper derivative

lim
h→0

Tn(x+ h)− Tn(x)

h
= +∞,

whenever n ≥ 2 is even, whereas for odd n it holds

lim
h→0

Tn(x+ h)− Tn(x)

|h|
= +∞,

i.e. Tn with odd n has at x a local minimum. Note that in case n = 3 there are further
points x where T3 has a local minimum, cf. Theorem 6.24 in [1].

Start point for the proof of (5.1) in [7] was the fact that for 0 < x ≤ 1
2
the Takagi function

T satisfies the estimate
x log2

1

x
≤ T (x) ≤ x log2

1

x
+ cx (5.4)

with a constant c < 2
3
, cf. [7, Lemma 3.1]. By [10, Lemma 2.1] the estimate (5.4) is valid for

0 < x ≤ 1.
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Proposition 5.3 The Takagi function T satisfies for 0 < x ≤ 1 the estimate (5.4) with
the optimal constant c = 2− log2 3 = 0, 415 . . . where on the right-hand side we have equality
if and only if x = 1

3
· 21−` (` = 0, 1, 2, . . .).

Proof: For the Takagi function T we know that
1

x
T (x) = − log2 x− 2F1(log2 x) (0 < x ≤ 1)

where F1(u) is the the fractal function in (1.9), cf. (4.7). The assertion follows by Proposition
2.2 and Proposition 2.5 in [8] in view of c = −2 minF1(.) = −2( log 3

log 4
− 1) = 2− log2 3.

Proposition 5.4 For n ≥ 1 the 1-periodic functions Fn(u) given by (4.2) for u ≤ 0

satisfy at each point u with 2u = k
2`

the limit relations

lim
h→+0

Fn(u+ h)− Fn(u)

h(log2
1
h
)n

=
(−1)n

2n
ln 2 (5.5)

and
lim
h→−0

Fn(u+ h)− Fn(u)

|h|(log2
1
|h|)

n
=
−1

2n
ln 2. (5.6)

Proof: For 2u = k
2`
< 1 and h > 0 such that 2u+h ≤ 1 we have

1

2u+h
Tn(2u+h)− 1

2u
Tn(2u) =

1

2u
{
Tn(2u+h)− Tn(2u)

}
+

1

2u

(
1

2h
− 1

)
Tn(2u+h)

and by (5.2) the asymptotic relation
1

2u+h
Tn(2u+h)− 1

2u
Tn(2u) ∼ 2n(2h − 1)

(
log2

1

2u+h − 2u

)n
(h→ +0).

In view of (2h − 1)/h→ ln 2 as h→ 0 as well as

log2

1

2u+h − 2u
= −u+ log2

1

2h − 1

and
log2

1

2h − 1
= log2

h

2h − 1
+ log2

1

h
∼ log2

1

h
(h→ +0)

we get
1

2u+h
Tn(2u+h)− 1

2u
Tn(2u) ∼ 2nh ln 2

(
log2

1

h

)n
(h→ +0).

By (4.2) we have

Fn(u) =
1

2u+n

(−1)n

2n
Tn(2u) +

1

2u+n

n−1∑
`=0

Pn,`(u)

2`
T`(2

u) (u ≤ 0)

and it follows
Fn(u+ h)− Fn(u)

h(log2
1
h
)n

∼ (−1)n

2n
ln 2

Tn(2u+h)− Tn(2u)

h(log2
1
h
)n

(h→ +0).

Hence (5.2) implies (5.5) at u with 2u = k
2`
< 1 which is true for arbitrary u with 2u = k

2`

since Fk(u) is an 1-periodic function.
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6 Binomial and Power sums

In [9] it was shown that for integer k ≥ 1 it holds

∂k

∂qk
Nα =

Nα

(1 + q)k

k∑
`=1

(log2N)`ak,` (6.1)

with certain coefficients ak,` which satisfy a recurrence relation. However, we have overlooked
that ak,` is the Stirling number s(1)

k,` of first kind, given by (1.13). By a hint of L. Berg this
can be seen as follows: We have Nα = (1 + q)β with β = log2N and hence

∂k

∂qk
Nα = β(β − 1) · · · (β − k + 1)(1 + q)β−k.

In view of (1.13) it follows (6.1) with

ak,` = s
(1)
k,`. (6.2)

Theorem 6.1 For the binary binomial sum (1.5) with integer k ≥ 1 we have the explicit
formula

1

N
Bk(N) =

1

k!

(
log2N

2

)k
+

1

k!

k−1∑
`=0

(log2N)`Fk,`(log2N) (6.3)

where

Fk,`(u) =
1

2`

(
k

`

)
Fk−`(u) +

k−`−1∑
j=0

(
k

j

)
s

(1)
k−j,`

2k−j
Fj(u) (6.4)

with the Stirling numbers of first kind s
(1)
k,` and the 1-periodic functions Fk(u) from (4.1).

In particular, Fk,0(u) = Fk(u) and Fk,k(u) = 1/2k. For ` < k the functions Fk,`(u) are
continuous, nowhere differentiable and of period 1.

Proof: In view of (6.2) and s(1)
`,` = 1 the representation (6.3) with (6.4) is already proved

in [9, Theorem 5.3] where Fk,`(u) (` < k) is continuous and of period 1. By Proposition 4.2
the function Fk,`(u) is nowhere differentiable since the coefficient of Fk−`(u) is different from
zero.

Remarks 6.2 1. By Proposition 5.4 it holds that if 2u is dyadic rational then for ` < k

the functions Fk,` from (6.4) satisfy the limit relations

lim
h→+0

Fk,`(u+ h)− Fk,`(u)

h(log2
1
h
)k−`

=
(−1)k−`

2k

(
k

`

)
ln 2 (6.5)

and
lim
h→−0

Fk,`(u+ h)− Fk,`(u)

|h|(log2
1
|h|)

k−` =
−1

2k

(
k

`

)
ln 2. (6.6)
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2. In case k = 1 formula (6.3) yields the formula (1.9) of Trollope-Delange and in case k = 2

we get

1

N
B2(N) =

1

2

(
log2N

2

)2

+
log2N

2

{
−1

4
+ F1(log2N)

}
+

1

2
F2(log2N).

(In the corresponding formula in [9, p. 702] the term 1
2
F1(L) is to cancel and in the previous

formula the term
(
m
2

)
F1(u) is to replace by

(
m−1

2

)
F1(u)).

Next, we consider the formula (1.8) of Coquet for the sum of digital power sums.

Theorem 6.3 For the power sum (1.7) it holds the formula of Coquet

1

N
Sk(N) =

(
log2N

2

)k
+

k−1∑
`=0

(log2N)`Gk,`(log2N) (6.7)

where

Gk,`(u) =
k−∑̀
j=0

k∑
n=`+j

(
n

j

)
s

(1)
n−j,`

2n−j
s

(2)
k,nFj(u) (6.8)

with the Stirling numbers of the first and second kind given by (1.13), (1.14) and the 1-
periodic functions Fj(u) from (4.1). So Gk,k(u) = 1/2k and for ` < k they are continuous,
nowhere differentiable 1-periodic functions which can be written as

Gk,`(u) =
1

2`

(
k

`

)
Fk−`(u) +

k−`−1∑
j=0

ajFj(u) (6.9)

with certain constants aj which depend on k and `.

Proof: In view of (6.2) the representation (6.7) with (6.8) is already proved in [9, Theorem
6.1] where Gk,`(u) is continuous and of period 1. Obviously, the function Gk,`(u) has the
form

Gk,`(u) =
k−∑̀
j=0

ajFj(u)

where the constants aj depend on k and `. From (6.8) we get for the main coefficient ak−`
the term

ak−` =

(
k

`

)
s

(1)
`,`

2`
s

(2)
k,k =

1

2`

(
k

`

)
which yields representation (6.9). By Proposition 4.2 the function Gk,`(u) (` < k) is nowhere
differentiable since ak−` 6= 0.
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Remarks 6.4 1. In view of (6.9) the statements for Fk,` in Remarks 6.2/1. are valid also
for the functions Gk,`.

2. In case k = 1 formula (6.7) yields the formula of Trollope-Delange (1.9) and in case k = 2

we get the formula of Coquet [3]

1

N
S2(N) =

(
log2N

2

)2

+ log2N

{
1

4
+ F1(log2N)

}
+G(log2N)

where G(u) = F1(u) + F2(u).

Proposition 6.5 For every integer k ≥ 1 we have

∂k

∂tk
NαGq(log2N)

∣∣∣∣
t=0

= N

(
log2N

2

)k
+N

k−1∑
`=0

(log2N)`Gk,`(log2N)

where q = et and α = log2(1 + et).

Proof: With q = et we get from (1.3)

N−1∑
j=0

ets(j) = NαGq(log2N) (6.10)

where α = log2(1 + et) and where the 1-periodic function Gq is connected with de Rham’s
function by (1.4) with a = 1

1+q
. It follows

N−1∑
j=0

s(j)k =
∂k

∂tk
NαGq(log2N)

∣∣∣∣
t=0

and by (6.7) the assertion.

7 The number of zeros

If 2n ≤ j < 2n+1 then the number of zeros is s0(j) = n + 1 − s(j) where s(j) denotes the
number of ones.

Lemma 7.1 For q > 0 and 2n ≤ N < 2n+1 we have

N−1∑
j=1

(
1

q

)s0(j)

=
1

qn+1
NαGq(log2N)− q +

(
q − 1

q

)(
1 +

1

q

)n
(7.1)

where α = log2(1 + q) and where Gq(u) is a continuous, 1-periodic function given by (1.4).
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Proof: By formula (1.2) we get for 2n ≤ N < 2n+1

Ra

(
N

2n+1

)
−Ra

(
1

2

)
= an+1

N−1∑
j=2n

qs(j)

= an+1qn+1

N−1∑
j=2n

(
1

q

)s0(j)

.

Moreover, (1.2) yields Ra(1/2
r) = ar. If 2r−1 ≤ j < 2r the number of zeros is s0(j) = r−s(j)

and by (1.2) we get

Ra

(
2r

2n

)
−Ra

(
2r−1

2n

)
= an

2r−1∑
j=2r−1

qs(j)

= anqr
2r−1∑
j=2r−1

(
1

q

)s0(j)

and hence
2r−1∑
j=2r−1

(
1

q

)s0(j)

=
1

a`qr
(
an−r − an−r+1

)
=

1− a
(aq)r

=
1

(aq)r−1
.

In view of aq = 1− a and

n∑
r=1

1

(aq)r−1
=

1− 1
(aq)n

1− 1
aq

= −q
(

1− 1

(aq)n

)
= −q +

1

anqn−1

we get
N−1∑
j=1

(
1

q

)s0(j)

=
1

(1− a)n+1
Ra

(
N

2n+1

)
− 1

anqn+1
− q +

1

anqn−1

i.e.
N−1∑
j=1

(
1

q

)s0(j)

=
1

qn+1an+1
Ra

(
N

2n+1

)
− q +

q2 + 1

anqn−1
.

Hence
N−1∑
j=1

(
1

q

)s0(j)

=
1

qn+1
NαGq(log2N)− q +

q2 + 1

anqn−1

with a = 1
1+q

which yields the representation (7.1).
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With q = et we get from (7.1)

N−1∑
j=1

e−ts0(j) = e−t(n+1)NαGq(log2N)− et + (et − e−t)(1 + e−t)n (7.2)

where α = log2(1 + et) and n = [log2N ] since 2n ≤ N ≤ 2n+1 − 1 and it follows for every
integer k ≥ 1

(−1)k
N−1∑
j=1

s0(j)k = Ak(N) +Bk(N)− 1 (7.3)

where

Ak(N) =
∂k

∂tk
[
e−t(n+1)NαGq(log2N)

]∣∣∣∣
t=0

(7.4)

and

Bk(N) =
∂k

∂tk
[
(et − e−t)(1 + e−t)n

]∣∣∣∣
t=0

. (7.5)

Lemma 7.2 For (7.4) we have the representations

Ak(N) = (−1)kN

(
log2N

2

)k
+N

k−1∑
`=0

(log2N)`Ak,`(log2N) (7.6)

where Ak,`(u) are 1-periodic function given for 0 ≤ u < 1 by

Ak,`(u) =
∑̀
i=0

(−1)i
k∑

m=i

(
k

m

)(
m

i

)
(u− 1)m−iGk−m,`−i(u) (7.7)

with the functions Gk,`(u) from (6.8).

Proof: We put L = log2N . Observe that

∂k

∂tk
[
e−t(n+1)NαGq(L)

]
=

k∑
m=0

(
k

m

)
(−n− 1)me−t(n+1) ∂

k−m

∂tk−m
[NαGq(L)] .

It follows by (7.4) and Proposition 6.5 with n = [log2N ]

Ak(N) =
k∑

m=0

(
k

m

)
(−n− 1)mN

k−m∑
j=0

LjGk−m,j(L)

with the 1-periodic functions Gk−m,j(u) from (6.8). For 2n ≤ N ≤ 2n+1 − 1 we write N =

2n+uN with 0 ≤ uN < 1. In view of L = log2N = n + uN we have Gk−m,j(L) = Gk−m,j(uN)

and

Ak(N) = N
k∑

m=0

(
k

m

)
(uN − 1− L)m

k−m∑
j=0

LjGk−m,j(uN).
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We want to sort the right-hand side by powers of L = log2N . From

Ak(N) = N
k∑

m=0

(
k

m

) m∑
i=0

(
m

i

)
(uN − 1)m−i(−L)i

k−m∑
j=0

LjGk−m,j(uN)

we get

Ak(N) = N
k∑
`=0

L`Ak,`(uN)

with

Ak,`(u) =
∑
i+j=`

(−1)i
k∑

m=i

(
k

m

)(
m

i

)
(u− 1)m−iGk−m,j(u)

which can be written as (7.7). In particular,

Ak,k(u) =
k∑
i=0

(−1)i
(
k

i

)
Gk−i,k−i(u) =

k∑
i=0

(−1)i
(
k

i

)
1

2k−i
=

1

2k

k∑
i=0

(
k

i

)
(−2)i =

(−1)k

2k

where we have used (6.9) and F0(u) = 1. If we continue the functions Ak,`(u) to 1-periodic
functions on R then we also get Ak,`(uN) = Ak,`(L) since uN = L−n, and it follows (7.6).

Remark 7.3 In particular, for 0 ≤ u < 1 we get by (7.7) in case k = 1

A1,0(u) = u− 1 + F1(u)

and in case k = 2

A2,0(u) = u2 − 2u+ 2 + (1− 2u)F1(u) + F2(u),

A2,1(u) =
1

4
− (u− 1)− F1(u)

where we have used (6.8) with the 1-periodic functions Fj(u) from (4.1).

Now, for integer k ≥ 1 we compute (7.5). Applying Leibniz formula it is easy to see that

Bk(N) = 2n
k−1∑
i=0

bk,in
i (7.8)

with certain coefficients bk,i. The first sums read

B1(N) = 2 · 2n, B2(N) = −2n · 2n, B3(N) = (n2 + 2n+ 2)2n. (7.9)
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Lemma 7.4 For (7.5) we have the representations

Bk(N) = N

k−1∑
`=0

(log2N)`Bk,`(log2N) (7.10)

where Bk,`(u) are 1-periodic functions given for 0 ≤ u < 1 by

Bk,`(u) =
1

2u

k−1∑
i=`

bk,i

(
i

`

)
(−u)i−` (7.11)

with the numbers bk,i from (7.8).

Proof: Starting with (7.8) we prove (7.10) with (7.11). As before we write N = 2n+uN

with 0 ≤ uN < 1 so that L = log2N = n+ uN , 2n = 2L−uN = N/2uN and

ni = (L− uN)i =
i∑

`=0

(
i

`

)
L`(−uN)i−`.

From (7.8) we get

Bk(N) = N
k−1∑
`=0

(log2N)`Bk,`(uN)

with Bk,`(u) from (7.11) for 0 ≤ u < 1. If we Bk,` continue to 1-periodic functions on R then
we have Bk,`(log2N) = Bk,`(uN) since N = 2n+uN . So we get (7.10) with (7.11).

Remark 7.5 In particular, for 0 ≥ u < 1 we get by (7.11), (7.8) and (7.9) in case k = 1

B1,0(u) = 2 · 1

2u

and in case k = 2

B2,0(u) =
u

2u−1
, B2,1(u) = − 1

2u−1
.

Lemma 7.6 For ` < k the 1-periodic function Ak,`(u) given for 0 ≤ u < 1 by (7.7) is
nowhere differentiable.

Proof: We apply Proposition 4.2. According to (7.7) and (6.9) the function Ak,`(u) has
the form

Ak,`(u) =
k−∑̀
j=0

hj(u)Fj(u) (0 ≤ u < 1)

where

hk−`(u) =
∑̀
i=0

(−1)i
(
k

i

)
1

2k−i

(
k − i
`− i

)
.
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In view of (
k

i

)(
k − i
`− i

)
=

(
k

`

)(
`

i

)
we get

hk−`(u) =
1

2k

(
k

`

)∑̀
i=0

(−2)i
(
`

i

)
= (−1)`

1

2k

(
k

`

)
such that hk−`(u) 6= 0 for 0 ≤ u < 1. By Proposition 4.2 the function Ak,`(u) is nowhere
differentiable.

Theorem 7.7 If s0(j) denotes the number of zeros in the binary expansion of the integer
j then for integer k ≥ 1 we have

1

N

N−1∑
j=1

s0(j)k =

(
log2N

2

)k
+

(−1)k−1

N
+

k−1∑
`=0

(log2N)`Hk,`(log2N) (7.12)

where
Hk,`(u) = (−1)kAk,`(u) + (−1)kBk,`(u) (7.13)

with the functions Ak,` from (7.6) and Bk,` from (7.10). They are 1-periodic functions which
are continuous and nowhere differentiable.

Proof: The representation (7.12) follows from (7.3) in view of (7.6), (7.10) and (7.13) where
Hk,k(u) = 1/2k since Bk,k(u) = 0. For ` < k the functions Ak,`(u) are nowhere differentiable
(Lemma 7.6) and Bk,`(u) from (7.11) are differentiable in [0,1) so that Hk,`(u) are nowhere
differentiable. By Lemma 7.2 we know that the 1-periodic functions Hk,`(u) are continuous
in [0, 1) and that Hk,`(1− 0) there exist. It remains to show that Hk,`(1− 0) = Hk,`(1). For
that we show that for integer n it holds

S(n) =
k∑
`=0

n`{Hk,`(1)−Hk,`(1− 0)} = o(1) (n→∞)

which is possible only if Hk,`(1) −Hk,`(1 − 0) = 0 for ` = k, k − 1, . . . , 0. We write S(n) =

Σ1(n) + Σ2(n) where

Σ1(n) =
k∑
`=0

n`{Hk,`(1)−Hk,`(1 + log2(1− 2−n)},

Σ2(n) =
k∑
`=0

n`{Hk,`(1 + log2(1− 2−n)−Hk,`(1− 0)}

and investigate both sums separately.
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1. Using (7.12) we get for s0(N − 1)k the representation

k∑
`=0

{
N(log2N)`Hk,`(log2N)− (N − 1)(log2(N − 1))`Hk,`(log2(N − 1))

}
.

As N →∞ we get the asymptotic equation

1

N
s0(N − 1)k =

k∑
`=0

(log2N)` {Hk,`(log2N)−Hk,`(log2(N − 1))}+ o(1)

since in view of

(log2(N − 1))` = (log2N + log2(1− 1/N))` = (log2N)` +
(log2N)`−1

N
O(1)

and (log2N)`−1/N → 0 we have

(log2(N − 1))`Hk,`(log2(N − 1)) = (log2N)`Hk,`(log2(N − 1)) + o(1).

We choose N = 2n with integer n. Note that s0(2n − 1) = 0 so that

0 =
k∑
`=0

n`{Hk,`(n)−Hk,`(log2(2n − 1))}+ o(1) (n→∞),

and in view of log2(2n−1) = n+log2(1−2−n) and Hk,`(u+1) = Hk,`(u) we get Σ1(n) = o(1)

as n→∞.

2. Now, we consider the sum Σ2(n). In view of (7.13), (7.6), (7.7), (6.8) and the fact that
Bk,`(u) are continuous differentiable in [0, 1) (Lemma 7.2) we conclude that each function
Hk,` can be written as

Hk,`(u) =
k−∑̀
j=0

fj(u)Fj(u) (0 ≤ u < 1)

with certain continuous differentiable functions fj(u) which depend on k and `. By Proposi-
tion 4.1 the functions Fj(u) are Hölder continuous with Hölder exponents 1− ε where ε > 0.
It follows that for 0 ≤ u < 1 the function Hk,`(u) is Hölder continuous which is true for
0 ≤ u ≤ 1 if we choose Hk,`(1− 0) for u = 1. So we get

|Hk,`(1− 0)−Hk,`(1 + log2(1− 2−n))| ≤ Cε| log2(1− 2−n)|1−ε

with ε > 0 and in view of | log2(1 − 2−n)| ∼ 2−n and n`/2n(1−ε) = o(1) as n → ∞ we get
Σ2(n) = o(n).

Consequently, S(n) = o(n) as n→∞ and the functions Hk,`(u) are continuous.
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Remark 7.8 In view of Remarks 7.3 and 7.5 we get in case k = 1 the known representation

1

N

N−1∑
j=1

s0(j) =
1

2
log2N +

1

N
+H1,0(log2N)

with the 1-periodic function H1,0(u), given for 0 ≤ u < 1 by

H1,0(u) =
1− u

2
− 21−u +

1

2u
T (2u−1)

cf. [8, Theorem 3.2], and in case k = 2

1

N

N−1∑
j=1

(s0(j))2 =

(
1

2
log2N

)2

− 1

N
+H2,0(log2N) + log2NH2,1(log2N)

with the 1-periodic functions H2,0(u), H2,1(u), given for 0 ≤ u < 1 by

H2,0(u) = u2 − 2u+ 2 + (1− 2u)F1(u) + F2(u) +
u

2u−1

and
H2,1(u) =

1

4
− (u− 1)− 1

2u−1
− F1(u).
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René Bartsch, Harry Poppe

Compactness in function spaces with splitting
topologies

1 Introduction

Let (X, τ), (Y, σ) be topological spaces, and let be ∅ 6= A ⊆ P(X). We consider the set-open
topology τA for Y X or for C(X, Y ), generated by the family A, and we assume that τp ⊆ τA

holds, where τp denotes the pointwise topology. For H ⊆ C(X, Y ) we want to characterize
the τA-compactness of H. We will need the condition that H is evenly continuous on each
A ∈ A. Hence we consider both sets C(X, Y ) and C(A, Y ) and of course we can link these
spaces by the map qA : qA(f) := f|A, the restriction of f to the subspace (A, τ|A) of (X, τ).
So we have qA : C(X, Y )→ C(A, Y ).

Using these maps, we give a new and interesting proof of a ”final” kind of the Ascoli theorem,
as former derived by use of hyperspaces in [1].

Most notions used here are standard and explanations can be found in standard books on
general topology such as [3], [4], [5]. Concerning some more special notions we refer to [2],
more explanations can be found in [6] and [1], too.

2 The continuity of the map qA

Now let be B ⊆ X with ∅ 6= B 6= X; let A ⊆ P(X), B ⊆ P(B), A 6= ∅ and B 6= ∅. Then
we can consider the set-open topologies τA on Y X and τB on Y B respectively, and for fixed
B we have our map qB : Y X → Y B : qB(f) := f|B. Here at first the question arises, when is
qB : (Y X , τA) → (Y B, τB) continuous? (Remark: If qB : (Y X , τA) → (Y B, τB) is continuous,
then qB : (C(X, Y ), τA)→ (Y B, τB) is continuous, and we know that qB(C(X, Y )) ⊆ C(B, Y )

so we find qB : (C(X, Y ), τA)→ (C(B, Y ), τB) being continuous.)

Proposition 2.1 If B ⊆ A holds, then qB : (Y X , τA)→ (Y B, τB) is continuous.
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Proof: For the generating subbase-elements of our topologies we use the symbols (Z, V )B :=

{g ∈ Y B| g(Z) ⊆ V } and (Z, V )X := {f ∈ Y X | f(Z) ⊆ V } with elements Z of B or A,
respectively, and open subsets V of Y .

To prove continuity of qB, it is enough to show that the preimage of every subbase element of
τB belongs to τA, so let Z ∈ B ⊆ P(B) and V ∈ σ be given. Then we have q−1

B ((Z, V )B) =

{f ∈ Y X | f|B ∈ (Z, V )B} = {f ∈ Y X | f|B(Z) ⊆ V } = {f ∈ Y X | f(Z) ⊆ V } = (Z, V )X ∈
τA.

Some options to define suitable families A,B:

1. Let E be a property, which is defined for subsets of topological spaces (such as compact-
ness, relative compactness or closedness, for example; but even such ”non-topological”
defined things as finiteness may be considered). The family of all subsets of a topo-
logical space (X, τ) having property E w.r.t. τ is denoted by E(X, τ).1 Then we can
define A := E(X, τ) and B := E(B, τ|B).

2. We start with a family A ⊆ P(X) and define ∀B ∈ A : AB := {A ∈ A | A ⊆ B}.

3 Basic lemmas

We provide a few lemmas, which are very useful for our considerations.

Lemma 3.1 Let (X, τ) a topological space, (Y, σ) a Hausdorff topological space. Let ζ
be a topology (lim a convergence structure) on C(X, Y ) with τp ≤ ζ (τp ≤ lim) and let
H ⊆ C(X, Y ) be compact w.r.t. ζ (resp. lim). The H is τp-closed in Y X .

Proof: Because of τp ≤ ζ (τp ≤ lim) the compactness of H w.r.t. τp follows from assumtion.
So, H is τp-closed in Y X as a compact subset of the Hausdorff-space (Y X , τp).

Lemma 3.2 Let (X, τ), (Y, σ) topological spaces; let ∅ 6= B ⊆ X and ∅ 6= B ⊆ P(B) be
given with the properties:

(1) ∀Z ⊆ B : Z is τ|B-closed =⇒ Z ∈ B and

(2) ∀f ∈ C(B, Y ) : f(B) is a T3-subspace of Y .

Then the set-open topology τB is conjoining for C(B, Y ).
1Although any dependence of our property E on τ is not required, it remains still allowed, so, we respect τ

as a parameter. Somewhat more precise: such an ”property” E is just a map from the class of all topological
spaces to the class of all sets fulfilling the condition, that the image E(X, τ) of every topological space (X, τ)
is a subset of P(X).
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Proof: We will show, that the evaluation map

ω : B × C(B, Y )→ Y : ω(x, f) := f(x)

is continuous w.r.t. τ × τB, σ. For arbitrary x ∈ B and f ∈ C(B, Y ) let V ∈ σ be given with
ω(x, f) ∈ V . Because f(B) is T3 by assumtion and V ∩ f(B) is open in f(B), there exist a
closed subset Z of f(B) and an open subset W of f(B) such that

f(x) ∈ W ⊆ Z ⊆ f(B) ∩ V .

since f : B → (Y, σ) ist continuous, it is continuous, too, viewed as a map from B onto f(B)

w.r.t. σ|f(B). Thus f−1(Z) is closed and f−1(W ) is open in B, and of course, x ∈ f−1(W )

holds. So, by assumption (1), we have f−1(Z) ∈ B and consequently (f−1(Z), V ) ∈ τB. Now,
f(f−1(Z)) ⊆ Z ⊆ V implies f ∈ (f−1(Z), V ), so (f−1(Z), V ) is an open τB-neighborhood
of f in C(B, Y ) and obviously, f−1(W ) is an open neighborhood of x in B. Now we have
ω(f−1(W )× (f−1(Z), V )) ⊆ V , thus ω is continuous.

Lemma 3.3 Let (X, τ), (Y, σ) be topological spaces; let ∅ 6= A ⊆ P(X) be given and for
every B ∈ A let AB be a subset of P(B) such that B ∈ AB. Now we consider a filter F on
Y X and a function f ∈ Y X . Assume

∀B ∈ A : qB(F)
τAB−→ f|B .

Then we have F τA−→ f in Y X .

Proof: The sets (B, V )X with B ∈ A and V ∈ σ form a subbase of τA, so we have to show,
that F contains all such neighborhoods of f .

To do this, let B ∈ A, V ∈ σ with f ∈ (B, V )X be given; we have f(B) ⊆ V and hence
f|B(B) ⊆ V ; by this way f|B = qB(f) ∈ (B, V )B = {h ∈ Y B| h(B) ⊆ V }; since B ∈ AB,
(B, V )B is an open subbase-element of τAB in Y B. Since qB(F) −→ f|B w.r.t. τAB , there
exists A ∈ F such that qB(A) ⊆ (B, V )B and so follows A ⊆ (B, V )X implying (B, V )X ∈ F .

4 τA-compactness

Now, we want to formulate and prove the compactness criterion.

Proposition 4.1 Let (X, τ), (Y, σ) be topological spaces, let H ⊆ C(X, Y ) and let ∅ 6=
A ⊆ P(X) be given. Moreover, for every B ∈ A let BB be a nonempty subset of P(B).
Assume τp ≤ τA.
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1. If H is τA-compact and if

(i) (Y, σ) is Hausdorff,

(ii) ∀B ∈ A : BB ⊆ A,

(iii) ∀B ∈ A, Z ⊆ B : Z τ|B-closed =⇒ Z ∈ BB,

(iv) ∀B ∈ A, f ∈ C(B, Y ) : f(B) is a T3-subspace of Y

hold, then we have:

(a) ∀x ∈ X : H(x) is relatively compact in Y .

(b) H is evenly continuous on each B ∈ A.

(c) H is τp-closed in Y X .

2. Let (a), (b), (c) be true and let hold

(ii) ∀B ∈ A : BB ⊆ A,

(v) ∀B ∈ A : B ∈ BB,

(vi) ∀B ∈ A : the set-open topology τBB is splitting in C(B, Y ).

Then H is τA-compact in C(X, Y ).

Proof: (1) By lemma 3.1 we get (c); moreover by the proof of lemma 3.1 we know that H is
τp-compact, too, and hence H is τp-relatively compact in Y X , but then we obtain (a) by the
Tychonoff-theorem for relatively compact sets (see [2], [1]). Now by condition (ii) and by
proposition 2.1 we get: ∀B ∈ A : qB(H) is τBB -compact in C(B, Y ). (iii) and (iv) yield that
τBB is conjoining and hence H is evenly continuous on B since Y is Hausdorff (see theorem
32 in [2]). Thus we got (b).

(2) By (a), H is τp-relatively compact in Y X and hence τp-compact by (c). Let F be an
ultrafilter on C(X, Y ) such that H ∈ F ; by the τp-compactness of H there exists f ∈ H
with F τp→ f ; now, for all B ∈ A the map qB : (C(X, Y ), τp) → (C(B, Y ), τp) is continuous,
implying that qB(F)

τp→ qB(f) = f|B in C(B, Y ) yielding by (b) that qB(F)
c→ qB(f) in

C(B, Y ) holds. By (vi) we get qB(F)
τBB→ qB(f), thus F τA→ f , by lemma 3.3 - showing that

H is τA-compact.

Assume A := {A ⊆ X| A compact} and for all B ∈ A let BB := {Z ⊆ B| Z compact}.
Then for the families A, BB the assumptions (ii) ... (vi) are obviously valid. So, we get:

Corollary 4.2 Let (X, τ), (Y, σ) be topological spaces, (Y, σ) Hausdorff. Let
H ⊆ C(X, Y ) be given and consider the compact-open topology τco on C(X, Y ). Then are
equivalent:
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(1) H is τco-compact.

(2) (a) ∀x ∈ X : H(x) is relatively compact in Y ,

(b) H is evenly continuous on every compact set K ⊆ X,

(c) H is in Y X τp-closed.
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A.Georgieva, H.Kiskinov

Existence of solutions of nonlinear differential
equations with generalized dichotomous linear part in
a Banach space

ABSTRACT. A generalization of the well known dichotomies for a class of homogeneous
differential equations in an arbitrary Banach space is introduced. The aim of this paper is
the consideration of the nonlinear differential equation with generalized dichotomous linear
part. By the help of the fixpoint principle of Banach and Schauder-Tychonoff are found
sufficient conditions for the existence of solutions of the nonlinear equation.

KEY WORDS. Ordinary Differential Equations, Generalized Dichotomy

1 Introduction

The notion of exponential and ordinary dichotomy is fundamental in the qualitative theory
of ordinary differential equations. It is considered in detail for example in the monographs
[2], [3],[6–8].

In the given paper we use a (M,N,R) dichotomy, introduced in [5], which is a generalization
of all dichotomies known by the authors.

It is considered a nonlinear differential equation with generalized dichotomous linear part.
A nonlinear operator, acting in the phase space is introduced. Sufficient conditions for the
existence of fixed point of this operator are found. These fixed points are solutions of the
differential equation.

2 Problem statement

Let X is an arbitrary Banach space with norm |.| and identity I and let J = [c,∞) where
c ∈ R. Let L(X) is the space of all linear bounded operators acting in X with the norm ||.||.

We consider the nonlinear differential equation

dx

dt
= A(t)x+ F (t, x), (1)
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where A(.) : J → L(X), F (., .) : J ×X → X. Let F is continuous.

By V (t) we will denote the Cauchy operator of

dx

dt
= A(t)x (2)

where A(t) ∈ L(X), t ∈ J .

We consider also the nonhomogeneous equation

dx

dt
= A(t)x+ f(t) (3)

where f(.) : J → X is continuous and bounded.

In this paper we will use the (M,N,R)-dichotomy, introduced in [5] with both following
theorems.

Let R(t) : X → X (t ∈ J) is an arbitrary bounded operator.

Lemma 1 [5] The function

x(t) =

∫ t

c

V (t)R(s)V −1(s)f(s)ds−
∫ ∞
t

V (t)(I −R(s))V −1(s)f(s)ds (4)

is a solution of the equation (3) if the integrals in (4) exist.

Following conditions are introduced

H1. | V (t)R(s)V −1(s)z |≤M(t, s, z), t ≥ s, z ∈ X

H2. | V (t)(I −R(s))V −1(s)z |≤ N(t, s, z), t < s, z ∈ X

For all considered cases the right hand part of (H1) and (H2) will have the formM(t, s, z) = ϕ1(t)ϕ2(s) | z |, (t ≥ s), z ∈ X

N(t, s, z) = ψ1(t)ψ2(s) | z |, (t < s), z ∈ X
(5)

where ϕ1(t), ϕ2(t), ψ1(t), ψ2(t) are positive scalar functions. We set

α(t) = max{ϕ1(t), ψ1(t), 1},

µ(t) = min{ϕ1(t), ψ1(t)},

β(t) = max{ϕ2(t), ψ2(t)} (t ∈ J).

Definition 1 We call the equation (2) be a (M,N,R) - dichotomous if the conditions
(H1), (H2) are fulfilled.
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Let a(t) is an arbitrary positive scalar function. We consider the following Banach spaces :

Ka = {g : J → X : sup
t∈J

a(t)

∫ t

c

M(t, s, g(s))ds <∞}

with the norm

| g |Ka = sup
t∈J

a(t)

∫ t

c

M(t, s, g(s))ds,

La = {g : J → X : sup
t∈J

a(t)

∫ ∞
t

N(t, s, g(s))ds <∞}

with the norm
| g |La = sup

t∈J
a(t)

∫ ∞
t

N(t, s, g(s))ds,

Ca = {g : J → X : sup
t∈J

a(t) | g(t) |<∞}

with the norm
| g |Ca = sup

t∈J
a(t) | g(t) |

and
Ta = {g : J → X :

∫ ∞
c

a(s) | g(s) | ds <∞}

with the norm
| g |Ta =

∫ ∞
c

a(s) | g(s) | ds.

The case, when X = R+ will be denoted with T̄a :

T̄a = {g : J → R+ :

∫ ∞
c

a(s)g(s)ds <∞}

with the norm
| g |T̄a =

∫ ∞
c

a(s)g(s)ds.

Theorem 1 [5] Let the equation (2) is (M,N,R) - dichotomous. Then for every function
f ∈ Ka

⋂
La the equation (3) has a solution in the space Ca.

Corollary 1 [5] Let the equation (1) is (M,N,R) - dichotomous of the form (5).

Then for every function f ∈ Tβ the equation (2) has a solution in the space Cα−1 and the
following estimates hold

sup
t∈J

α−1(t) | x(t) |≤
∫ t

c

β(s) | f(s) | ds+

∫ ∞
t

β(s) | f(s) | ds <∞
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Theorem 2 [5] Let the equation (2) is (M,N,R) - dichotomous.

Then following estimates hold

| x1(t) |≤M(t, s, x1(s)), t ≥ s ≥ c (6)

for all solutions x1(t) of (1) ,(t ≥ c), which started in the set⋂
s∈J

Fix R(s)

and
| x2(t) |≤ N(t, s, x2(s)), c ≤ t < s (7)

for all solutions x2(t) of (1) ,(t ≥ c), which started in the set⋂
s∈J

Fix(I −R(s))

(By FixS we denote the set of all fixed points of the map S, S : X → X.)

Remark 1 Let R(t) = P ,where P : X → X is a projector.

For
M(t, s, z) = K1e

−
∫ t
s δ1(τ)dτ |z| (t ≥ s, z ∈ X)

N(t, s, z) = K2e
−

∫ s
t δ1(τ)dτ |z| (s > t, z ∈ X)

where K1, K2 are positive constants and δ1, δ2 are continuous real-valued functions on J , we
obtain the exponential dichotomy of [7]:

‖ V (t)PV −1(s) ‖≤ K1e
−

∫ t
s δ1(τ)dτ (t ≥ s)

‖ V (t)(I − P )V −1(s) ‖≤ K2e
−

∫ s
t δ2(τ)dτ (s > t).

For δi(t) = 0 (c ≤ t < ∞, i = 1, 2) we obtain the exponential dichotomy of [2], [3], [6], for
which case we have Ka

⋂
La = Ca by a(t) ≡ 1.

For
M(t, s, z) = Kh(t)h−1(s)|z| (t ≥ s ≥ c, , z ∈ X)

N(t, s, z) = Kk(t)k−1(s)|z| (c ≤ t ≤ s, z ∈ X)

where K is a positive constant and h, k : [0,∞) → (0,∞) are two continuous functions, we
obtain the dichotomy of [8–10]:

‖ V (t)PV −1(s) ‖≤ Kh(t)h−1(s) , (t ≥ s ≥ c)

‖ V (t)(I − P )V −1(s) ‖≤ Kk(t)k−1(s) , (c ≤ t ≤ s)

It may be also noted, that the dichotomies [1], [7–10] are a generalization of the dichotomy
in [3].
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3 Main results

By the help of the fixpoint principle of Banach we will find sufficient conditions for the
existence of solutions of the nonlinear equation (1).

Let r > 0. We introduce following conditions

H3. There exists a positive function m ∈ T̄β, such that

|F (t, x)| ≤ m(t) (|x| ≤ r, t ∈ J).

H4. There exists a positive function k ∈ T̄β, such that

|F (t, x2)− F (t, x1)| ≤ α−1(t)k(t)|x2 − x1| (|x1|, |x2| ≤ r, t ∈ J).

We set a1 = |m|T̄β , a2 = |k|T̄β .

Definition 2 We say that the equation (1) belongs to the class D(a1, a2, r) if there exists
r > 0, such that the conditions (H3) and (H4) are fulfilled.

Theorem 3 Let the linear part of (1) is (M,N,R) dichotomous with R(s) (s ∈ J) be
linear and the conditions (H1) and (H2) have the form (5).

Then there exist numbers ā1, ā2 > 0 and ρ < r with following property:

If the initial value ξ fulfilled |ξ| ≤ ρ and if the equation (1) belongs to the class D(a1, a2, r)

for a1 ∈ (0, ā1), a2 ∈ (0, ā2) then there exists an unique solution x(t) in the ball | x |Cα−1
≤ r,

i.e.
sup
t∈J

α−1(t)|x(t)| ≤ r

Proof: First we shall prove, that the operator Q, defined by the formula

(Qx)(t) = V (t)ξ +

∫ t

c

V (t)R(s)V −1(s)F (s, x(s))ds−

−
∫ ∞
t

V (t)(I −R(s))V −1(s)F (s, x(s))ds

maps the ball | x |Cα−1
≤ r into itself. Indeed we have

|(Qx)(t)| ≤ ϕ1(t)ϕ2(c)|ξ|+ ψ1(t)ψ2(c)|ξ|+
∫ t

c

ϕ1(t)ϕ2(s)m(s)ds+

∫ ∞
t

ψ1(t)ψ2(s)m(s)ds

|(Qx)(t)| ≤ α(t)(ϕ2(c) + ψ2(c))|ξ|+ α(t)

∫ ∞
c

β(s)m(s)ds
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Hence
α−1(t)|(Qx)(t)| ≤ (ϕ2(c) + ψ2(c))ρ+ a1

For sufficiently small ρ and a1, Q will map the ball | x |Cα−1
≤ r into itself.

Now we shall prove, that the operator Q is a contraction in the ball | x |Cα−1
≤ r

Indeed, we have

|(Qx1)(t)−(Qx2)(t)| ≤
∫ t

c

|V (t)R(s)V −1(s)(F (s, x1(s))− F (s, x2(s)))|ds+

+

∫ ∞
t

|V (t)(I −R(s))V −1(s)(F (s, x1(s))− F (s, x2(s)))|ds ≤

≤
∫ t

c

ϕ1(t)ϕ2(s)|F (s, x1(s))− F (s, x2(s))|ds+

+

∫ ∞
t

ψ1(t)ψ2(s)|F (s, x1(s))− F (s, x2(s))|ds ≤

≤ α(t)

∫ ∞
c

β(s)α−1(s)k(s)|x1(s)− x2(s)|ds

We obtain

α−1(t)|(Qx1)(t)− (Qx2)(t)| ≤ sup
t∈J

α−1(t)|x1(t)− x2(t)|
∫ ∞
c

β(s)k(s)ds

|Qx1 −Qx2|Cα−1
≤ |x1 − x2|Cα−1

|k|Tβ̄ = |x1 − x2|Cα−1
a2

Hence for sufficiently small a2, the operator Q is a contraction in the ball | x |Cα−1
≤ r.

The assertion of the theorem follows from the theorem of Banach - Cacciopolli [4].

Other sufficient conditions for existence of solution of the equation (1) we will find, using
the fixed point principle of Schauder-Tychonoff. In connection with its applying, we will use
a generalization of the Arzella-Ascoli’s theorem for locally convex spaces.

Let S(J,X) is the linear set of all functions, acting from J in X, which are continuous. The
set S(J,X) is a locally convex space w.r.t. the metric

ρ(u, v) = sup
c<T<∞

(1 + T )−1
max
c≤t≤T

‖u(t)− v(t)‖

1 + max
c≤t≤T

‖u(t)− v(t)‖
.

The convergence with respect to this metric coincides with the uniform convergence on each
bounded interval. For this space an analog of Arzella-Ascoli’s theorem is valid.

Lemma 2 The set H ⊂ S(J,X)is relatively compact if the intersections H(t) = {h(t) :

h ∈ H} are relatively compact subsets of X for every t ∈ J and H is equicontinuous on each
finite closed interval.
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Proof: We apply Arzella-Ascoli’s theorem to each finite and closed interval.

Let C is an unempty subset of X and let

C̃ = {u ∈ S(J,X) : u(t) ∈ C, t ∈ J}

Lemma 3 Let C is an unempty, convex and closed subset of X and the operator F maps
C̃ into itself and is continuous. Let F (C̃) is relatively compact subset of C̃.

Then F has a fixed point in C̃.

Proof: It follows from the fixed point principle of Schauder-Tychonoff [4].

Let
C(r) = {x ∈ S(J,X) : |x|Cα−1

≤ r}

Obviously C(r) is unempty, convex and closed.

Theorem 4 Let the following conditions are fulfilled:

1. Let the linear part of (1) is (M,N,R) dichotomous and the conditions (H1) and (H2)
have the form (5).

2. There exists a number r > 0 such that

sup
|u|≤r
|F (t, u)| = m(t),where m ∈ T̄β.

3. The function F (t, u) is continuous (t ∈ J, |u| ≤ r).

4. The set K(r) = {m−1(t)F (t, x) : t ∈ J, |u| ≤ r} is relatively compact.

5. R(t)u is continuous for every u ∈ X by any fixed t ∈ J .

Then for sufficient small |m|T̄β and initial value |ξ| ≤ r the nonlinear equation (1) has a
solution x ∈ C(r).

Proof: We consider the operator Q defined by the formula

(Qx)(t) = V (t)ξ +

∫ t

c

V (t)R(s)V −1(s)F (s, x(s))ds−

−
∫ ∞
t

V (t)(I −R(s))V −1(s)F (s, x(s))ds,

where (|ξ| ≤ r). First we shall prove, that Q maps C(r) into itself. Let x ∈ C(r). Then

|(Qx)(t)| ≤ ϕ1(t)ϕ2(c)|ξ|+ ψ1(t)ψ2(c)|ξ|+
∫ t

c

ϕ1(t)ϕ2(s)m(s)ds+

∫ ∞
t

ψ1(t)ψ2(s)m(s)ds
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|(Qx)(t)| ≤ α(t)(ϕ2(c) + ψ2(c))|ξ|+ α(t)

∫ ∞
c

β(s)m(s)ds

Hence
α−1(t)|(Qx)(t)| ≤ (ϕ2(c) + ψ2(c))ρ+ a1

For sufficiently small |ξ| and |m|T̄β we obtain α−1(t)|(Qx)(t)| ≤ r (t ∈ J), i.e. Q maps C(r)

into itself.

Now we shall prove that the set QC(r) is relatively compact in S(J,X). For this aim we shall
show, that the functions of QC(r) are equicontinuous on each finite closed interval [a, b].

Let a and b are fixed and t′, t′′ ∈ [a, b], t′ < t′′. Then for x ∈ C(r) we have

|(Qx)(t′)− (Qx)(t′′)| ≤ I1 + I2 + I3

where
I1 = |V (t′)ξ − V (t′′)ξ|

I2 = |
∫ t′

c

V (t′)R(s)V −1(s)F (s, x(s))ds−
∫ t′

c

V (t′′)R(s)V −1(s)F (s, x(s))ds−

−
∫ t′′

t′
V (t′′)R(s)V −1(s)F (s, x(s))ds |

I3 = |
∫ ∞
t′

V (t′)(I −R(s))V −1(s)F (s, x(s))ds−

−
∫ ∞
t′′

V (t′′)(I −R(s))V −1(s)F (s, x(s))ds |

For t′′ → t′ we have I1, I2 → 0, because V(t) is continuous in respect to t. For I3 we obtain
the estimate

I3 ≤
∞∫
t′

|V (t′)(I −R(s))V −1(s)F (s, x(s))−

− V (t′′)(I −R(s))V −1(s)F (s, x(s))|ds+

+

t′′∫
t′

|V (t′′)(I −R(s))V −1(s)F (s, x(s))|ds

(8)

For t′′ → t′ the second integral in (8) converges to zero. We will use the Lebesgue’s theorem
to prove, that the first integral in (8) by t′′ → t′ converges to zero too. Because V(t) is
continuous in respect to t we have

|V (t′)(I −R(s))V −1(s)F (s, x(s))− V (t′′)(I −R(s))V −1(s)F (s, x(s))| −→
t′′→t′

0
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From the estimates∫ ∞
c

|V (t′)(I −R(s))V −1(s)F (s, x(s))|ds+

+

∫ ∞
c

|V (t′′)(I −R(s))V −1(s)F (s, x(s))|ds ≤

≤
∫ ∞
c

ϕ1(t′)ϕ2(s)|F (s, x(s))|ds+

∫ ∞
c

ψ1(t′′)ψ2(s)|F (s, x(s))|ds ≤

≤
∫ ∞
c

α(t′)β(s)m(s)ds+

∫ ∞
c

α(t′′)β(s)m(s)ds ≤

≤ (α(t′) + α(t′′))|m|T̄β

and from the Lebesgue’s theorem follows, that the first integral in (8) converges to zero.

Let t ∈ [a, b] be fixed. We shall show, that the set (Qx)(t) (x ∈ C(r)) is relatively compact
in S(J,X).

Let ε > 0 be an arbitrary number. If the numbers T and N are large enough, we obtain the
inequality

|
∫ ∞
c

W (t, s)F (s, x(s))ds−
∫ T

c

W (t, s)FN(s, x(s))ds| < ε

where

W (t, s) =

V (t)R(s)V −1(s) t ≥ s

−V (t)(I −R(s))V −1(s) t < s

and

FN(t, u) =

F (t, u) m(t) ≤ N

0 m(t) > N

From condition 4 of the Theorem follows, that for F (s, x(s)) ∈ NK we have the inclusion∫ T

c

W (t, s)F (s, x(s))ds ∈ TN
⋃

c≤s≤T

W (t, s)K (9)

The set in the right hand of (9) is compact. Hence the set

{
∫ T

c

W (t, s)F (s, x(s))ds : x ∈ C(r)}

is compact too. From the theorem of Hausdorff follows the compactness of the set

{
∫ ∞
c

W (t, s)F (s, x(s))ds : x ∈ C(r)}

Hence the set QC(r) is relatively compact in S(J,X).

Now we shall prove that the operator Q is continuous.
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Let {zn(t)} ⊂ C(r) is an arbitrary sequence which converges to z(t) in S(J,X) and let t ∈ J
is fixed. Then

|(Qz)(t)− (Qzn)(t)| ≤
∫ t

c

|V (t)R(s)V −1(s)F (s, z(s))−

− V (t)R(s)V −1(s)F (s, zn(s))|ds+

+

∫ ∞
t

|V (t)(I −R(s))V −1(s)F (s, z(s))−

− V (t)(I −R(s))V −1(s)F (s, zn(s))|ds

(10)

Because F and V (t)R(s)V −1(s) are continuous, the first integral in (10) converges to zero,
by n→∞.

Let

J1(s) = |V (t)(I −R(s))V −1(s)F (s, z(s))− V (t)(I −R(s))V −1(s)F (s, zn(s))|

Because V (t)(I −R(s))V −1(s) is continuous, so we have

J1(s) −→
n→∞

0 for any s ≥ t.

From the estimate ∫ ∞
c

J1(s)ds ≤
∫ ∞
c

ψ1(t)ψ2(s)m(s)ds ≤ α(t)|m|T̄β

and the Lebesgue’s theorem follows, that the second integral in (10) converges to zero for
n→∞. Because QC(r) is compact it follows, that

Qzn −→
n→∞

Qz in S(J,X).

From the Schauder-Tychonoff theorem [4] it follows the existence of a fixpoint x of the
operator Q in the set C(r).

Remark 2 By dimX <∞ the condition 4 of Theorem 4 is not necessary.
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Dieter Leseberg

Improved nearness research II

ABSTRACT. When applying in consequence the new created concept ”Bounded Topology”
[8] hence ”classical structures” like nearness structures [5], convergence structures [8] and
syntopogenous structures [8] will be analyzed in connexion with neighbourhood structures
[11] or supertopologies [4], respectively. In this context ”nearness” is presented as special
paranearness, ”convergence” as special b-convergence and being ”syntopogenous” as special
case of b-syntopogenous, leading us accordingly to a general theory of his own! Now, in this
paper we will study certain superclan spaces, whichever are in one-to-one correspondence to
strict topological extensions. Here, we should mention that the presented concept is not of
utmost generality, but then the reader is referred to [9].

KEY WORDS AND PHRASES. LEADER proximity; supertopological space; LODATO
space; supernear space; superclan space; Bounded Topology

1 Basic concepts

As usual PX denotes the power set of a set X, and we use BX ⊂ PX to denote a collection
of bounded subsets of X, also known as B-sets, e.g. BX has the following properties:

(b1) ∅ ∈ BX ;

(b2) B2 ⊂ B1 ∈ BX imply B2 ∈ BX ;

(b3) x ∈ X implies {x} ∈ BX .

Then, for B-sets BX ,BY a function f : X −→ Y is called bounded iff f satisfies (b), e.g.

(b) {f [B] : B ∈ BX} ⊂ BY .
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Definition 1.1 For a set X, we call a tripel (X,BX , N) consisting of X,B-set BX and
a near-operator N : BX −→ P (P (PX)) a supernearness space (shortly supernear space) iff
the following axioms are satisfied, e.g.

(sn1) B ∈ BX and ρ2 << ρ1 ∈ N(B) imply ρ2 ∈ N(B), where ρ2 << ρ1 iff ∀F2 ∈ ρ2∃F1 ∈
ρ1 F2 ⊃ F1;

(sn2) B ∈ BX implies BX /∈ N(B) 6= ∅;

(sn3) ρ ∈ N(∅) implies ρ = ∅;

(sn4) x ∈ X implies {{x}} ∈ N({x});

(sn5) B1 ⊂ B2 ∈ BX imply N(B1) ⊂ N(B2);

(sn6) B ∈ BX and ρ1 ∨ ρ2 ∈ N(B) imply ρ1 ∈ N(B) or ρ2 ∈ N(B), where ρ1 ∨ ρ2 : ={F1 ∪
F2 : F1 ∈ ρ1, F2 ∈ ρ2};

(sn7) B ∈ BX , ρ ⊂ PX and {clN(F ) : F ∈ ρ} ∈ N(B) imply ρ ∈ N(B), where
clN(F ) : ={x ∈ X : {F} ∈ N({x})}.

If ρ ∈ N(B) for some B ∈ BX , then we call ρ a B-near collection in N . For supernear spaces
(X,BX , N), (Y,BY ,M) a bounded function f : X −→ Y is called sn-map iff it satisfies (sn),
e.g.

(sn) B ∈ BX and ρ ∈ N(B) imply {f [F ] : F ∈ ρ}=: fρ ∈M(f [B]).

We denote by SN the corresponding category.

Example 1.2 (i) For a nearness space (X, ξ) let BX be B-set. Then we consider the
tripel (X,BX , Nξ), where

Nξ(∅) : ={∅} and

Nξ(∅) : ={ρ ⊂ PX : {B} ∪ ρ ∈ ξ}, otherwise.

(ii) For a topological space (X, t) given by closure operator t let BX be B-set. Then we
consider the tripel (X,BX , Nt), where Nt(∅) : ={∅} and Nt(B) : ={ρ ⊂ PX : ∃x ∈
Bx ∈

⋂
{t(F ) : F ∈ ρ}}, otherwise.

(iii) For a LODATO space (X,BX , δ) with δ ⊂ BX×PX we consider the tripel (X,BX , Nδ),
where Nδ(∅) : ={∅} and Nδ(B) : ={ρ ⊂ PX : ρ ⊂ δ(B) and {B} ∪ ρ ⊂ ∩{δ(F ) : F ∈
ρ ∩ BX}}, otherwise, with δ(B) : ={A ⊂ X : BδA}. Hereby, following conditions must
be satisfied:
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(bp0) B ∈ BX implies clδ(B) ∈ BX , where clδ(B) : ={x ∈ X : {x}δB};

(bp1) ∅δA and Bδ∅ (e.g. ∅ is not in relation to A, and analogously this is also
holding for B;

(bp2) Bδ(A1 ∪ A2) iff BδA1 or BδA2;

(bp3) x ∈ X implies {x}δ{x};

(bp4) B1 ⊂ B2 ∈ BX and B1δA imply B2δA;

(bp5) B ∈ BX and BδA with A ⊂ clδ(C) imply BδC;

(bp6) B1 ∪B2 ∈ BX and (B1 ∪B2)δA imply B1δA or B2δA;

(bp7) A,B ⊂ X, clδ(B) ∈ BX and clδ(B)δA imply BδA;

(bp8) B1, B2 ∈ BX and B1δB2 imply B2δB1.

(iv) For a preLEADER space (X,BX , δ) with δ ⊂ BX × PX only satisfies (bp1) to (bp5)
we consider the tripel (X,BX , N δ), where N δ(B) : ={ρ ⊂ PX : ρ ⊂ δ(B)} for each
B ∈ BX .

Definition 1.3 For preLEADER spaces (X,BX , δ), (Y,BY , γ) a bounded function f :

X −→ Y is called p-map iff f satisfied (p), e.g.

(p) B ∈ BX , A ⊂ X and BδA imply f [B]γf [A]. By LOSP respectively pLESP we denote
the corresponding categories.

Definition 1.4 TEXT denotes the category, whose objects are triples E : =(e,BX , Y ) -
called topological extensions - where X : =(X, clX), Y : =(Y, clY ) are topological spaces (given
by closure operators) with B-set BX , and e : X −→ Y is a function satisfying the following
conditions:

(tx1) A ∈ PX implies clX(A) = e−1[clY (e[A])], where e−1 denotes the inverse image under
e;

(tx2) clY (e[X]) = Y , which means the image of X under e is dense in Y . Morphisms in
TEXT have the form (f, g) : (e,BX , Y ) −→ (e′,BX′ , Y ′), where f : X −→ X ′, g :

Y −→ Y ′ are continuous maps such that f is bounded, and the following diagram
commutes

X
e //

f
��

Y

g
��

X ′
e′
// Y ′

.
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If (f, g) : (e,BX , Y ) −→ (e′,BX′ , Y ′) and (f ′, g′) : (e′,BX′ , Y ′) −→ (e′′,BX′′ , Y ′′), are TEXT-
morphisms, then they can be composed according to the rule:

(f ′, g′) ◦ (f, g) : =(f ′ ◦ f, g′ ◦ g) : (e,BX , Y ) −→ (e′′,BX′′ , Y ′′),

where ”o” denotes the composition of maps.

Remark 1.5 Observe, that axiom (tx1) in this definition is automatically satisfied if e :

X −→ Y is a topological embedding. Moreover, we only admit an ordinary B-set BX on X
which need not be necessary coincide with the power PX. In addition we mention that such
an extension is called strict iff it satisfies (tx3), e.g.

(tx3) {clY (e[A]) : A ⊂ X} forms a base for the closed subsets of Y [1].

By STREXT we denote the corresponding full subcategory of TEXT.

(v) For a topological extension E : =(e,BX , Y ) we consider the tripel (X,BX , Ne), where

Ne(∅) : ={∅} and

Ne(B) : ={ρ ⊂ PX : y ∈ ∩{clY (e[F ]) : F ∈ ρ} for some y ∈ e[B]}, otherwise.

2 Some important isomorphisms

With respect to above examples, first let us focus our attention to some special classes of
supernear spaces.

Definition 2.1 A supernear space (X,BX , N) is called saturated iff BX is, e.g.

(s) X ∈ BX .

Remark 2.2 Note, that in above case BX coincide with the power PX. (Also compare
with examples (i) or (ii), respectively). Moreover, we claim that the full subcategory SNS of
SN, whose objects are the saturated supernear spaces is bireflective in SN. Concretely, for a
supernear space (X,BX , N) we put: NS(B) : =N(B) for each B ∈ BX and NS(B) : ={ρ ⊂
PX : ∃x ∈ X∃B∗ ∈ BX(x ∈ B ⊃ B∗ and ρ ∈ N({x}) ∪ N(B∗))} for each B ∈ PX \ BX ,
hence (X,PX,NS) is saturated supernear space and 1X : (X,BX , N) −→ (X,PX,NS) to
be the bireflection in demand!

Definition 2.3 A supernear space (X,BX , N) is called

(i) paranearness space (paranear space) iff it is symmetric, hence N additionally satisfies
(sy), e.g.
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(sy) B ∈ BX\{∅} and ρ ∈ N(B) imply {B} ∪ ρ ∈ ∩{N(A) : A ∈ (ρ ∩ BX) ∪ {B}};

(ii) pointed iff N satisfies (pt), e.g.

(pt) B ∈ BX\{∅} implies N(B) = ∪{N({x}) : x ∈ B}. By PN respectively PT-SN
we denote the corresponding full subcategory of SN.

Theorem 2.4 The category NEAR of nearness spaces and nearness preserving maps
is isomorphic to the full subcategory PNS of PN, whose objects are the saturated paranear
spaces.

Proof: According to example (i). Conversely, we consider for a saturated paranear space
(Y,BY ,M):

µM : ={A ⊂ PX : A ∈ ∩{M(A) : A ∈ A}}.

Theorem 2.5 The category TOP of topological spaces and continuous maps is isomor-
phic to the full subcategory PT-SNS of PT-SN, whose objects are the saturated pointed su-
pernear spaces.

Proof: According to example (ii) and by respecting (sn7) in definition 1.1.

Definition 2.6 Let be given a supernear space (X,BX , N). For B ∈ BXC ∈ GRL(X) is
called B-clan in N iff it satisfies

(cla1) B ∈ C ∈ N(B);

(cla2) A ∈ C and A ⊂ clN(F ) imply F ∈ C, where GRL(X) : ={γ ⊂ PX : γ is grill }, and
γ ⊂ PX is called grill (Choquet [3]) iff

(gri1) ∅ /∈ γ;

(gri2) G1 ∪G2 ∈ γ iff G1 ∈ γ or G2 ∈ γ.

Then (X,BX , N) is called superclan space iff N satisfies (cla), e.g.

(cla) B ∈ BX\{∅} and ρ ∈ N(B) imply the existence of B-clan C ∈ GRL(X)ρ ⊂ C.

Moreover, if (X,BX , N) ∈ PN satisfies (cla), we analogously call it paraclan space!

Remark 2.7 Here, we note that each pointed supernear space is always a superclan space
by making use of the fact that for each B ∈ BX with x ∈ B {T ⊂ X : x ∈ clN(T )}=:xN is
B-clan in N , and xN is maximal in N({x}) \ {∅}, ordered by inclusion!
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Theorem 2.8 The category BUN of bunch-determined nearness spaces and related maps
[2] is isomorphic to the full subcategory CLA-PNS of PNS, whose objects are the saturated
paraclan spaces.

Proof: Compare with theorem 2.4.

Definition 2.9 A paranear space (X,BX , N) is called round iff it satisfies (r), e.g.

(r) B ∈ BX implies clN(B) ∈ BX .

Theorem 2.10 The full subcategory R-PN of PN, whose objects are the round paranear
spaces is bireflective in PN.

Proof: For a paranear space (X,BX , N) we set:

BXN : ={D ⊂ X : ∃B ∈ BXclN(B) ⊃ D} and

Nr(∅) : ={∅} respectively

Nr(D) : ={ρ ⊂ PX : ∃B ∈ BX{D} ∪ ρ ∈ N(B)}, otherwise.

Then the tripel (X,BX , Nr) is a round paranear space and 1X : (X,BX , N) −→ (X,BX , Nr)

to be the bireflection in demand!

Corollary 2.11 If (X,BX , N) is paraclan space then (X,BXN , Nr) as well.

Definition 2.12 A round paranear space (X,BX , N) is called LOproximal iff it satisfies
(LOp), e.g.

(LOp) B ∈ BX\{∅}, ρ ∈ pN(B) and {B} ∪ ρ ⊂ ∩{pN(F ) : F ∈ ρ ∩ BX} imply ρ ∈ N(B),
where BPNA iff {A} ∈ N(B).

Theorem 2.13 The category LOSP is isomorphic to the full subcategory LO-PN of R-
PN, whose objects are the LOproximal paranear spaces.

Proof: According to example (iii). Conversely, we consider the near-relation ”pN ” as
defined in 2.12. Moreover we note that for a paranear space (X,BX , N) the near-operator
N is dense, e.g. by satisfying (d)B ⊂ X and clN(B) ∈ BX imply N(clN(B)) = N(B), and
moreover it is connected, e.g. by satisfying

(cnc) B1 ∪B2 ∈ BX implies N(B1 ∪B2) = N(B1) ∪N(B2).
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Remark 2.14 Now, we mention that in the ”saturated case” LOproximal paranear spaces
and LODATO proximity spaces [10] essentially are the same!

Proposition 2.15 Let (Y, t) be a symmetric topological space given by closure operator
t and BX B-set with X ⊂ Y . We set BXt : ={D ⊂ X : ∃B ∈ BXt(B) ⊃ D} and DδtA iff
t(D) ∩ t(A) 6= ∅. Then (X,BXt , δt) is LODATO space.

Remark 2.16 Now, surely it seems to be of interest to characterize those LODATO spaces
whichever are induced by a topologival space Y as above so that bounded and arbitrary sets
are near iff their closures meet in Y . But this problem already has been solved under more
general conditions in [9].

Remark 2.17 Returning to nearness spaces we already know that in general subspaces of
topological nearness spaces need not to be topological again, hence Bentley [2] has called
them subtopological. But now here, we will give an extended description of this definition
in term of supernear spaces as follows:

Definition 2.18 A supernear space (X,BX , N) is called supergrill space if N satisfies
(gri), e.g.

(gri) B ∈ BX and ρ ∈ N(B) imply the existence of γ ∈ GRL(X) ∩N(B) with ρ ⊂ γ.

Remark 2.19 We point out that this definition generalize that of 2.6. Moreover, if
(X,BX , N) ∈ PN satisfies (gri), we analogously call it a paragrill space. By G-SN respec-
tively G-PN we denote the corresponding full subcategory of SN respectively PN.

Proposition 2.20 For a nearness space (X, ξ) the following statements are equivalent:

(i) (X, ξ) is subtopological;

(ii) (X,PX,Nξ) is paragrill space.

Remark 2.21 According to example (iv) we also note that (X,BX , N δ) is a supergrill
space.

Definition 2.22 A supergrill space (X,BX , N) then is called conic iff N satisfies (c),
e.g.

(c) B ∈ BX implies {F ⊂ X : ∃ρ ∈ N(B)F ∈ ρ}=:∪N(B) ∈ N(B).

Theorem 2.23 The category pLESP is isomorphic to the full subcategory CG-SN of
G-SN, whose objects are the conic supergrill spaces.

Proof: According to example (iv) in connexion with the definition of ”pN ” in 2.12.
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Definition 2.24 A preLEADER space (X,BX , δ) then is called LEADERspace iff δ in
addition satisfies (bp6) in (iii).

Remark 2.25 We point out that in the ”saturated” case LEADER spaces and LEADER
proximity spaces [6] essentially are the same. Moreover, each supertopological space [4]
(X,BX ,Θ), where Θ : BX −→ FIL(X) : ={F ⊂ PX : F is filter} satisfies the following
conditions, e.g.

(stop1) Θ(∅) = PX;

(stop2) B ∈ BX and U ∈ Θ(B) imply U ⊃ B;

(stop3) B ∈ BX and U ∈ Θ(B) imply there exists a set V ∈ Θ(B) such that always
U ∈ Θ(B′)∀B′ ∈ BXB′ ⊂ V is leading us to the preLEADER space (X,BX , δΘ)

by setting BδΘA iff A ∈ secΘ(B). If in addition (X,BX ,Θ) ∈ ASTOP [11], then
(X,BX , δΘ) is LEADER space, too. The above assignment now is ”bi-functoriell”,
hence STOP can be considered as a subcategory of CG-SN. In the second case we
note that the corresponding supergrill operator N δΘ is in addition linked, hence it
satisfies (l), e.g.

(l) B1 ∪ B2 ∈ BX and ρ ∈ N δΘ(B1 ∪ B2) imply {F} ∈ N δΘ(B1) ∪ N δΘ(B2) for
each F ∈ ρ.

Definition 2.26 A conic supergrill space (X,BX , N) then is called LEproximal iff N is
linked. By LE-SN we denote the full subcategory of SN.

Theorem 2.27 The category LE-SN is isomorphic to the full subcategory LESP of
pLESP, whose objects are the LEADER spaces.

Remark 2.28 According to 2.25 we also note that ASTOP now can be considered as
subcategory of LE-SN.

Proposition 2.29 Let (Y, t) be a topological space given by closure operator t and BX

B-set with X ⊂ Y . We set BδtA iff B ∩ t(A) 6= ∅ for each B ∈ BX and A ⊂ X. Then
(X,BX , δt) is LEADER space

Proof: straightforward.

Remark 2.30 According to 2.16 now it seems to be of interest to characterize those
LEADER spaces, whichever are included by a topological space Y as above so that a bounded
set B is near to an arbitrary one iff B intersects its closure in Y . But we will solve this
problem under more general conditions in a forthcoming paper!
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Remark 2.31 Returning to conic supergrill spaces we point out that for such a space
(X,BX , N) and for each B ∈ BX\{∅} ∪N(B) is a B-clan in N . hence, we claim that conic
supergrill spaces even are superclan spaces!

Theorem 2.32 The category CG-SN is bicoreflective in G-SN.

Proof: For a supergrill space (X,BX , N) we set for each B ∈ BX :

NC(B) : ={ρ ⊂ PX : {clN(F ) : F ∈ ρ} ⊂ ∪N(B)}.

Then (X,BX , Nc) is a conic supergrill space and 1X : (X,BX , Nc) −→ (X,BX , N) to be the
bicoreflection in demand. First, we only show that NC satisfies (sn7): Let be {clNc(A) : A ∈
A} ∈ Nc(B) for B ∈ BX , we have to verify clN(A) ∈ ∪N(B) for each A ∈ A.

A ∈ A implies clN(clNc(A)) ∈ ∪N(B) by hypothesis. We claim now that the statement
clNc(A) ⊂ clN(A) is valid. x ∈ clNc(A) implies {A} ∈ Nc({x}), hence clN(A) ∈ ∪Nc({x}).
We can find ρ ∈ N({x}) such that clN(A) ∈ ρ. Consequently {clN(A)} ∈ N({x}) follows,
which shows {A} ∈ N({x}), hence x ∈ clN(A) results.

Altogether we get clN(A) ⊃ clN(clN(A)) ⊃ clN(clNc(A)) implying clN(A) ∈ ∪N(B), since
∪N(B) ∈ GRL(X). Secondly, we prove ∪Nc(B) ∈ GRL(X) for each B ∈ BX . Let be given
B ∈ BX , evidently ∅ /∈ ∪Nc(B). Now, if F1 ∈ ∪Nc(B) and F1 ⊂ F2 ⊂ X, then there exists
ρ1 ∈ Nc(B)F1 ∈ ρ1. Consequently {clN(A) : A ∈ ρ1} ⊂ ∪N(B) follows by definition. We
put ρ2 : ={F2}, hence ρ2 ∈ NC(B), because {clN(F ) : F ∈ ρ2} = {clN(F2)} and clN(F2) ⊃
clN(F1) ∈ ∪N(B) implies clN(F2) ∈ ∪N(B). But F2 ∈ {F2} = ρ2 immediately leading us to
F2 ∈ ∪Nc(B). At last let be F1 ∪F2 ∈ ∪Nc(B), hence there exists ρ ∈ Nc(B)F1 ∪F2 ∈ ρ By
definition {clN(F ) : F ∈ ρ} ⊂ ∪N(B) is valid showing that clN(F1)∪clN(F2) ⊃ clN(F1∪F2) ∈
∪N(B). Consequently, clN(F1) ∈ ∪N(B) or clN(F2) ∈ ∪N(B) results, since ∪N(B) ∈
GRL(X). If clN(F1) ∈ ∪N(B) then we put ρ1 : ={F1},hence F1 ∈ ∪Nc(B) results.

Analogously, this also holds in the second case. Evidently, 1X : (X,BX , Nc) −→ (X,BX , N)

is sn-map. Now, let be given (Y,BY ,M) ∈ CG-SN and sn-map f : (Y,BY ,M)−→ (X,BX , N),
we have to prove f : (Y,BY ,M) −→ (X,BX , Nc) is sn-map. For B ∈ BY and ρ ∈ M(B) we
must show fρ ∈ Nc(f [B]), which means {clN(A) : A ∈ fρ} ⊂ ∪N(f [B]). A ∈ fρ implies
A = f [F ] for some F ∈ ρ. By supposition fρ ∈ N(f [B]) follows, and clN(A) = clN(f [F ]) ⊃
f [clM(F )] ⊃ f [F ] ∈ fρ ∈ ∪N(f [B]) is valid. Consequently, clN(A) ∈ ∪N(f [B]) results!

Remark 2.33 As mentioned in 2.7 we already know, that pointed supernear spaces are
superclan spaces as well. Moreover, in the next, we will show that PT-SN can be ”nicely
embedded” in SN as follows:

Theorem 2.34 PT-SN is bicoreflective subcategory of SN.
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Proof: For a supernear space (X,BX , N) we set:

NP (∅) : ={∅} and

NP (B) : =[A ⊂ PX : ∃x ∈ B∃γ ∈ N({x})∩ GRL(X){clN(A) : A ∈ A} ⊂ γ},
otherwise.

Then (X,BX , NP ) is pointed supernear space and 1X : (X,BX , NP ) −→ (X,BX , N) to be the
bicoreflection in demand. First, we will show that NP satisfies (sn7). Let be B ∈ BX\{∅}
and {clNP (A) : A ∈ A} ∈ NP (B), then we can choose x ∈ B and γ ∈ N({x})∩ GRL(X)

such that {clN(F ) : F ∈ {clNP (A) ∈ A}} ⊂ γ. In showing A ∈ NP (B) we have to verify
clN(A) ∈ γ for each A ∈ A : A ∈ A implies clN(clNP (A)) ∈ γ by hypothesis. Now,
we claim that clNP (A) ⊂ clN(A), because x ∈ clNP (A) implies {A} ∈ NP ({x}), hence
there exists γ′ ∈ N({x})∩ GRL(X){clN(A)} ⊂ γ′. Then {clN(A)} ∈ N({x}) is valid,
and consequently {A} ∈ N({x}) follows which shows x ∈ clN(A). Altogether we have
clN(A) ⊃ clN(clN(A)) ⊃ clN(clNP (A)) ∈ γ, hence clN(A) ∈ γ results! Evidently, NP fulfills
the axioms (sn1) to (sn5).

to (sn6): A1 ∨ A2 ∈ NP (B) for B ∈ BX\{∅} implies the existence of x ∈ B and γ ∈
N({x})∩ GRL(X) so that {clN(A) : A ∈ A1 ∨ A2} ⊂ γ. If supposing A1,A2 /∈
NP (B) we get {clN(A1) : A1 ∈ A1} 6⊂ γ and {clN(A2) : A2 ∈ A2} 6⊂ γ, hence
there exist A1 ∈ A1clN(A1) /∈ γ and A2 ∈ A2clN(A2) /∈ γ implying A1 ∪ A2 ∈ A
and clN(A1) ∪ clN(A2) /∈ γ. Consequently clN(A1 ∪ A2) /∈ γ follows, since γ ∈
GRL(X). On the other hand clN(A1 ∪ A2) ∈ γ by hypothesis is leading us to a
contradiction! By definition NP is pointed and 1X : (X,BX , NP ) −→ (X,BX , N))

sn-map. Now, let be given a pointed supernear space (Y,BY ,M) and sn-map
f : (Y,BY ,M) −→ (X,BX , N), we will show that f : (Y,BY ,M) −→ (X,BX , NP )

is sn-map as well. Without restriction let be B ∈ BY \ {∅} and A ∈ M(B),
hence by hypothesis there exists y ∈ B such that A ∈M({y}). Since f is sn-map
fA ∈ N({f(y)}) follows with f(y) ∈ f [B]. But f(y)N ∈ N({f(y)})∩ GRL(X),
according to 2.7. Now, for F ∈ fA we will show that clN(F ) ∈ f(y)N . F ∈ fA
implies F = f [A] for some A ∈ A. We claim {f [A]} ∈ N({f(y)}). By hypothesis
fA ∈ N({f(y)}), hence {f [A]} << fA, which shows {f [A]} ∈ N({f(y)}), and
at last fA ∈ NP (f [B]) results.
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Remark 2.35 The following diagram illustrates the relationship between important former
mentioned categories:

SN

pLESP

44

PN

OO

TOP

jj

STOP

88

LESP

OO

ASTOP

OO 77

LOSP

OO

77

LEPROX

gg

NEAR

[[

TOP

OO

LOPROX

gg OO 44

R0 − TOP

OO

gg

3 Topological extensions and related superclan spaces

Taking into account example (v), we will now consider the problem for finding a one-to-one
corresponding between certain topological extensions and their related supernear spaces. It
turns out that there exists an interesting one between pointed supernear spaces and some
strict topological extensions.

Lemma 3.1 For a topological extension (e,BX , Y ), (X,BX , Ne) is a pointed supernear
space such that clNe = clX .

Proof: First, we will show the equality of the closure operators. So, let A ∈ PX and
x ∈ clX(A). Then by (tx1) e(x) ∈ clY (e[A]) hence {A} ∈ Ne({x}), and x ∈ clNe(A)

follows. Conversely, let x ∈ clNe(A), then {A} ∈ Ne({x}). Consequently there exists
y ∈ e[{x}] = {e(x)} with y ∈ clY (e[A]). Hence y = e(x), and as a consequence of (tx1) we
get x ∈ e−1[clY (e[A])] ⊂ clX(A), which was to be proven. Secondly, it is easy to check the
axioms (sn1) to (sn6).

to (sn7): Let be {clNe(F ) : F ∈ ρ} ∈ Ne(B) for ρ ⊂ PX,B ∈ BX and without restriction
B 6= ∅, then there exists y ∈ e[B] with y ∈ ∩{clY (e[A]) : A ∈ {clNe(F ) : F ∈ ρ}}.
For F ∈ ρ we get y ∈ clY (e[clNe [F ]]) = clY (e[clX(F )]) according to the first
approved equality. Consequently, y ∈ clY (clY (e[F ])) ⊂ clY (e[F ]) results, which
shows ρ ∈ Ne(B), according to (tx1). By definition Ne is automatically pointed.
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Theorem 3.2 Let F : TEXT −→ PT-SN be defined by:

(a) For a TEXT-object (e,BX , Y ) we put F (e,BX , Y ) : =(X,BX , Ne);

(b) for a TEXT-morphism (f, g) : (e,BX , Y ) −→ (e′,BX′ , Y ′) we put F (f, g) : = f . Then
F : TEXT −→ PT-SN is a functor.

Proof: With respect to 3.1 we already know that F (e,BX , Y ) is an object of PT-SN.
Let (f, g) : (e,BX , Y ) −→ (e′,BX′ , Y ′) be a TEXT-morphism such that F (e,BX , Y ) =

(X,BX , Ne) and F (e′,BX′ , Y ′) = (X ′,BX′ , Ne′). It has to be shown that f : (X,BX , Ne) −→
(X ′,BX′ , Ne′) preserves B-near collections for each B ∈ BX . Without loss of generality, let be
B ∈ BX\{∅} and ρ ∈ Ne(B), hence there exists y ∈ e[B] such that y ∈ ∩{clY (e[F ]) : F ∈ ρ}.
Our goal is to verify that fρ ∈ Ne′(f [B]). By hypothesis we have g(y) ∈ g[e[B]] = e′[f [B]].
On the other hand let D ∈ fρ. We have to verify that g(y) ∈ clY ′(e

′[D]). As D =

f [F ] for some F ∈ ρ, y ∈ clY (e[F ]). Consequently, g(y) ∈ g(clY (e[F ])) ⊂ clY ′(g(e[F ]]) =

clY ′(e
′(f [F ])) = clY ′(e

′[D]), which results in fρ ∈ Ne′(f [B]) according to the definitions in
1.4. Then the remainder is clear.

4 Pointed supernear spaces and strict topological extensions

In the previous paragraph we have found a functor from TEXT to PT-SN. Now, we are
going to introduce a related one from PT-SN to STREXT.

Lemma 4.1 Let (X,BX , N) be a supernear space. We put XC : ={C ⊂ PX : C is B-clan
in N for some B ∈ BX}, and for each AC ⊂ XC we set: clXC (AC) : ={C ∈ XC : 4AC ⊂ C},
where 4AC : ={F ⊂ X : ∀C ∈ ACF ∈ C}, so that by convention 4AC = PX if AC = ∅.
Then clXC is a topological closure operator on XC.

Proof: First, we note that for any C ∈ XC , C /∈ clXC (∅), because ∅ /∈ C according to 2.6
and (sn2) respectively. Now, let AC1 ⊂ AC2 . Then 4AC2 ⊂ 4AC1 which yields clXC (AC1 ) ⊂
clXC (AC2 ). Further, let AC1 and AC2 be subsets of XC . Let C be an elements of XC and
suppose C /∈ clXC (AC1 ) ∪ clXC (AC2 ). Then we have 4AC1 6⊂ C and 4AC2 6⊂ C. Choose
F1 ∈ 4AC1 with F1 /∈ C and F2 ∈ 4AC2 with F2 /∈ C, hence F1 ∪ F2 /∈ C, according to 2.6.
On the other hand, we have F1 ∪ F2 ∈ 4(AC1 ∪ AC2 ), and consequently C /∈ clXC (AC1 ∪ AC2 )

results. Now, let C be the element of clXC (clXC (AC)) and suppose C /∈ clXC (AC). Choose
F ∈ 4AC F /∈ C. By hypothesis we have 4clXC (AC) ⊂ C, hence F /∈ 4clXC (AC). Choose
D ∈ clXC (AC) F /∈ D. Then 4AC ⊂ D, hence F ∈ D, which leads us to a contradiction!

Theorem 4.2 For supernear spaces (X,BX , N), (Y,BY ,M) let f : X −→ Y be a sn-
map. Define a function fC : XC −→ Y C by setting for each C ∈ XC: fC(C) : ={D ⊂ Y :

f−1[clM(D)] ∈ C}. Then the following statements are valid:
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(i) fC : (XC , clXC ) −→ (Y C , clY C ) is a continuous map;

(ii) the equality fC ◦ eX = eY ◦ f holds, where eX : X −→ XC denotes that function which
assigns the {x}-clan xN to each x ∈ X.

Proof: First, let C ∈ XC , we must show that fC(C) ∈ Y C . fC(C) ∈ GRL(Y ), since
C ∈ GRL(X) and f−1 respectively clM are compatible with finite union. By hypothesis
C ∈ N(B) for some B ∈ BX , hence fC ∈ N(f [B]), because f is sn-map. Now, we will show
that {clM(D) : D ∈ fC(C)} << fC. clM(D) for some D ∈ fC(C) implies f−1[clM(D)] ∈ C,
hence clM(D) ⊃ f [f−1[clM(D)]] ∈ fC. According to (sn7), fC(C) ∈M(f [B]) follows. f [B] ∈
fC(C), since f−1[clM(f [B])] ⊃ f−1[f [clN(B)]] ⊃ B ∈ C by hypothesis.

At last, let be D ∈ fC(C) and D ⊂ clM(F ), we have to verify F ∈ fC(C). By supposition
f−1[clM(D)] ∈ C. f−1[clM(D)] ⊂ clN(f−1[clM(F )]), because x ∈ f−1[clM(D)] implies f(x) ∈
clM(D); but clM(D) ⊂ clM(clM(F )) ⊂ clM(F ), hence f(x) ∈ clM(F ). Consequently, x ∈
f−1[clM(F )] ⊂ clN(f−1[clM(F )]) results. Since C satisfies (cla2), f−1[clM(F )] ∈ C is valid,
which shows F ∈ fC(C).

to (i): Let AC ⊂ XC , C ∈ clXC (AC) and suppose fC(C) /∈ clY C (fC [AC ]). Then 4fC [AC ] 6⊂
fC(C), hence D /∈ fC(C) for some D ∈ 4fC [AC ], which means f−1[clM(D)] /∈ C.

But 4AC ⊂ C implies f−1[clM(D)] /∈ D for some D ∈ AC . Therefore D /∈ fC(D),
which leads us to a contradiction, because D ∈ 4fC [AC ].

to (ii): Let x be an element of X. We will prove that the equality fC(eX(x)) = eY (f(x))

is valid. To this end let T ∈ eY (f(x)), hence f(x) ∈ clM(T ), and consequently x ∈
f−1[clM(T )] follows, which shows f−1[clM(T )] ∈ xN = eX(x). Thus, T ∈ fC(eX(x))

which proves the inclusion eY (f(x)) ⊂ fC(eX(x)).

Consequently, since eY (f(x)) is maximal in M({f(x)}) \ {∅} (see 2.7 and note also
that {clM(D) : D ∈ fC(eX(x))} << fxN ∈ M({f(x)}), since by hypothesis f is
sn-map) we obtain the desired equality.

Theorem 4.3 Let G : SN −→ STREXT be defined as follows:

(a) For any supernear space (X,BX , N) we put G(X,BX , N) : =(eX ,BX , XC) with
X : =(X, clN) and XC : =(XC , clXC );

(b) for any sn-map f : (X,BX , N) −→ (Y,BY ,M) we put: G(f) : =(f, fC).

Then G : SN −→ STREXT is a functor.
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Proof: With respect to (sn7) clN is topological, and by 4.1 this also holds for clXC .
Therefore we get topological spaces with B-set BX , and eX : X −→ XC is a map according
to 4.2. Now, we have to verify that (eX ,BX , XC) satisfies the axioms (tx1) to (tx3).

to (tx1): Let A be a subset of X and suppose x ∈ clN(A). Since 4eX [A] = {T ⊂ X :

A ⊂ clN(T )} we get eX(x) ∈ clXC (eX [A]), hence x ∈ e−1
X [clXC [eX [A]]] follows.

Conversely, let x be an element of e−1
X [clXC (eX [A])], then by definition we have

eX(x) ∈ clXC (eX [A]), and consequently the statement 4eX [A] ⊂ eX(x) results. In
applying the above mentioned equation we get A ∈ eX(x), which means x ∈ clN(A).

to (tx2): Let C ∈ XC and suppose C /∈ clXC (eX [X]). By definition we get 4eX [X] 6⊂ C, so
that there exists a set F ∈ 4eX [X]F /∈ C.

Consequently, the inclusion X ⊂ clN(F ) holds. By hypothesis C is B-clan for some
B ∈ BX , hence B ∈ C according to (cla1), and B ⊂ X ⊂ clN(F ) follows, which
imply F ∈ C according to (cla2). But this is a contradiction, hence C ∈ clXC (eX [X])

holds.

to (tx3): Let C ∈ XC and let AC be closed in XC with C /∈ AC . Then C /∈ clXC (AC) and
so 4AC 6⊂ C. There exists F ∈ 4AC such that F /∈ C. Now, for each D ∈ AC we
have F ∈ D, which implies 4eX [F ] ⊂ D, and so at last D ∈ clXC (eX [F ]) results.
On the other hand since F /∈ C we have 4eX [F ] 6⊂ C, and so C /∈ clXC (eX [F ]).

Now it is interesting to see, how the composite functor F ◦G works on the category PT-SN.

Theorem 4.4 Let G : PT-SN −→ TEXT and F : TEXT −→ PT-SN be the func-
tors given in theorem 3.2 and 4.3. For each object (X,BX , N) of PT-SN let t(X,BX , N)

denote the identity map t(X,BX , N) : = idX : F (G(X,BX , N)) −→ (X,BX , N). Then t :

F ◦G −→ 1PT-SN is natural equivalence from F ◦G to the identity functor 1PT-SN, i.e. idX :

F (G(X,BX , N)) −→ (X,BX , N) is in both directions a sn-map for each object (X,BX , N),
and the following diagram commutes for each sn-map f : (X,BX , N) −→ (Y,BY ,M):

F (G(X,BX , N))
idX //

F (G(f))
��

(X,BX , N)

f
��

F (G(Y,BY ,M)))
idY

// (Y,BY ,M).

Proof: The commutativity of the diagram is obvious, because F (G(f)) = f .

It remains to prove that in each case F (G(X,BX , N))
idX−−→ (X,BX , N)

idX−−→ F (G(X,BX , N))

is sn-map for any object (X,BX , N) ∈ PT-SN. To fix the notation, let N1 be such that
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F (G(X,BX , N)) = F (eX ,BX , XC) = (X,BX , N1). First we show that for each B ∈
BX\{∅}, ρ ∈ N1(B) implies ρ ∈ N(B). To this end assume that ρ ∈ N1(B), then there
exists C ∈ eX [B] such that C ∈ ∩{clXC (eX [F ]) : F ∈ ρ}. We have C = eX(x) for some
x ∈ B, hence C ∈ N(B) according to 2.7 and 4.2, respectively. ρ ⊂ C, because F ∈ ρ implies
C ∈ clXC (eX [F ]), and in consequence 4eX [F ] ⊂ C results. Since F ∈ 4eX [F ] we get F ∈ C,
which shows ρ ∈ N(B), according to (sn1). Conversely, let be B ∈ BX\{∅} and ρ ∈ N(B),
we have to show that ρ ∈ N1(B).

In assuming the above we get ρ ∈ N({x}) for some x ∈ B, since (X,BX , N) is pointed. But
xN = eX(x) ∈ eX [B]. We have to show that for each F ∈ ρ the statement xN ∈ clXC (eX [F ])

is valid. So let be F ∈ ρ and T ∈ 4eX [F ]. By hypothesis F ⊂ clN(T ) results with F ∈ xN ,
hence x ∈ clN(F ), and consequently we get T ∈ xN , which concludes the proof.

Now, in making this part of searching more transparent, we give a short characterization of
the subject as follows:

Comment 1 Let be given an arbitrary supernear space (X,BX , N). Then his property of
being pointed can be described in such a way that there exists a topological space Y in which
it is densely ”embedded”, so that non-empty B-near collections are characterized by the fact,
that its closure meet in Y by the image of an element of B. Hence, we can resume, that
pointed supernear spaces can be strictly extended in such a manner!

Corollary 4.5 If (X,BX , N) is separated, which means N satisfies (sep), e.g.

(sep) x, z ∈ X and {{z}} ∈ N({x}) imply x = z, then eX : X −→ XC is injective!
Conversely, for a T1-extension (e,BX , Y ), where e is a topological embedding, and Y
is a T1-space, then (X,BX , Ne) is separated!
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