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Abdeldjebbar Kandouci, Abdelmadjid Ezzine, Benamar Chouaf

A New Criterion of Stability for Stochastic Networks
With Two Stations and Two Heterogeneous Servers

ABSTRACT. We introduce and study a new notion of stability of a stochastic fluid model
in terms of random stopping times (partially building on ideas used by Stolyar [10] in his
deterministic setting). It may be viewed as an analog of the original criterion for random T ’s
(which may differ for different ϕ’s). In particular, it is shown that our notion of stability is
equivalent to Lp-stability for some p > 1. We consider an example of a polling system with
tow stations and two servers in which the corresponding fluid model may be unstable in the
sense as it was written in ([10]) but stable from the generalised viewpoint that we adopt.

KEY WORDS. stability, queueing networks, polling systems.

1 Introduction

In a number of papers, the fluid approximation approach was used for the instability analysis
of queueing models. Dai [2] and Meyn [9] proved that if all fluid limits are unstable, then the
underlying Markov process is transient. Bramson [1] showed that a Markov process may be
transient even if some of its fluid limits are stable. One should note that in order to establish
the positive recurrence of a Markov process, it is sufficient (and in certain sense necessary)
to show some weak stability of all corresponding fluid limits.

Kumar and Meyn [7] considered stochastic fluid limits and proposed the following notion of
stability : a fluid model is Lp-stable, p > 0 if

supϕE|ϕ(t)|p → 0 as t→ +∞ .

They showed the equivalence of the L2-stability of the fluid model and several notions of
stability for the underlying Markov process.

This paper is organised as follows. We introduce and study the notion of stability of a
stochastic fluid model in terms of random stopping times (partially building on ideas used
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by Stolyar in his deterministic setting). It may be viewed as an analog of the original
criterion for random T ’s ( which may differ for different ϕ’s). In particular, it is shown that
our notion of stability is equivalent to Lp-stability for some p > 1.

We consider an example of a polling system with tow stations and two servers in which the
corresponding fluid model may be unstable in the sense as it was written in ([10]), i.e.

∃T ′
> 0, ∃ε ∈ (0, 1] : |ϕ(T

′
)| ≤ 1− ε a.s., (1)

for any fluid limit ϕ, but stable from the generalised viewpoint that we adopt.

It shows that even simple queueing systems may exhibit a kind of fluid behavior (basically
random bifurcations) that cannot be captured by deterministic fluid models, but neverthe-
less, is essential for stability analysis. This kind of behavior has already been described by
Malyshev et al. in a number of papers about ”random walks” in ZN

+ (see [8] and the list of
references therein).

1.1 Positive recurrence of a Markov process via stability of its fluid limits

Let χ be a complete metric space with a metric ρ, and B the σ− algebra generated by open
sets. Let 0 ∈ χ be a fixed element. For x ∈ χ, put |x| = ρ(x,0). In what follows, we make
the following assumptions.

Assumption 1.1 (i) for any constant K ≥ 0, the set

A(K) = {x ∈ χ : |x| ≤ K}

is compact;

(ii) for any constant c ≥ 0, a mapping x→ c ∗ x is defined such that

(1) c ∗ 0 = 0 for any c ≥ 0;

(2) ρ(c ∗ x1, c ∗ x2) = cρ(x1, x2) for any c ≥ 0 and x1, x2 ∈ χ;

(3) if cn → c, then cn∗x→ c∗x for any x (and, therefore, the convergence is uniform
on any set A(K).)

In fact, in (i) it is sufficient to assume that the set A(1) is compact. For simplicity, we will

write
x

c
instead

1

c
∗ x.

Let Z = {z1, ..., zd} be a finite set with natural discrete topology. For each M > 0, denote
by D[0,M ] the space of χ×Z-valued cadlag (right-continuous with LHS limits) functions

f(t) = (f 1(t), f2(t)), t ∈ [0,M ]
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endowed with the skorohod J1-metric :

dM(f1, f2) = inf
g∈∆

{ sup
t∈[0,M ]

[|g(t)− t|+ ρ(f 1
1 (g(t)), f1

2 (t)) + 11(f2
1 (g(t)) 6=f2

2 (t))]},

where

∆ = {g : [0,M ] → [0,M ], g monotone continious, g(0) = 0, g(M) = M}.

Let D[0,∞) denote a space of χ×Z-valued cadlag functions on [0,∞) with the metric

d(f1, f2) =
∞∑
1

2−M dM(f1,M , f2,M)

1 + dM(f1,M , f2,M)
,

where fi,M is a restriction of fi in [0,M ], i = 1, 2.

Let χ′ be a closed subset of χ, and P (t, x, z, B) a probabilistic transition kernel. Here
t ≥ 0, x ∈ χ′

, z ∈ Z, B ∈ Z ′
, where Z ′ is a σ-algebra in χ′ ×Z generated by open sets.

For (x, z) ∈ χ′ ×Z, let

(X,Z)(x,z) = {(X,Z)(x,z)(t), t ≥ 0}

be a χ′ ×Z-valued time-homogeneous Markov process with transition kernel P , a.s. cadlag
paths, and the initial state (X,Z)(x,z)(0) = (x, z). We assume further that the process
satisfies the strong Markov property.

Remark 1.1 One can introduce a more general description of a Markov process with in-
finite (either countable or not) ”index set” Z. In this case, a lot of additional technicalities
arise. Within this paper, we decided to confine ourselves only to finite set Z.

Definition 1.1 A Markov process (X,Z) = {(X,Z)(x,z)} is positive recurrent (with re-
spect to the semi norm |.|) if there exists a finite K such that the set

B = B(K) = {(x, z) : |x| ≤ K} ⊂ χ
′

is positive recurrent, i.e for some δ > 0,

1. for all (x, z) ∈ χ′ ×Z,

η(x,z)(B) = inf{t ≥ δ : (X,Z)(x,z)(t) ∈ B} <∞ a.s.;

2. sup
(x,z)∈B

Eη(x,z)(B) <∞.
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For x ∈ χ′
, z, r ∈ Z, let

Y (x,z)
r (t) =

∫ t

0

11(Z(x,z)(u)=r)du, t ≥ 0

be the process couting the sejourn time of the 2nd coordinate at r.

For each (x, z) ∈ χ′ ×Z, |x| > 0, introduce a family of scaled processes

X̃(x,z) = {X̃(x,z)(t) =
X(x,z)(|x|t)

|x|
, t ≥ 0}

and for each r ∈ Z,

Ỹ (x,z)
r = {Ỹ (x,z)

r (t) =
Y

(x,z)
r (|x|t)
|x|

, t ≥ 0}

Definition 1.2 We call the family

(X̃, Ỹ ) = {X̃(x,z), Ỹ (x,z)
r , r ∈ Z}x∈χ′ ,|x|≥1,z∈Z

relatively compact (at infinity) if, for each sequence

(X̃(xn,zn), Ỹ (xn,zn)
r , r ∈ Z), |xn| → ∞, zn ∈ Z

there exists a subsequence (X̃(xnk
,znk

), Ỹ
(xnk

,znk
)

r , r ∈ Z) that converges weakly (in Skorohod
topology) to some limit process

ϕ = {ϕ(t), t ≥ 0},

which is called a fluid limit.

For any t ≥ 0 and fluid limit ϕ, the values of ϕ(t) lie in χ× Rd
+.

Put ϕ(t) = (x(t), y(t)) and y(t) = {yz(t)}z∈Z , where x(t) ∈ χ and y(t) ∈ Rd
+.

Note that
∑

z yz(t) = t for any fluid limit and for any t.

Denote by Φ = ϕ the family of all fluid limits ϕ (or, equivalently, the family of their
distributions).

Lemma 1.1 If the family (X̃, Ỹ ) is relatively compact, then the family Φ is compact (i.e.
any sequence of fluid limits contains a convergent subsequence).

The following assumption applies for the rest of this section.

Assumption 1.2 The family of processes {X(x,z), (x, z) ∈ χ′ ×Z} is such that
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1. for all t > 0 and (x, z) ∈ χ′ ×Z,

E|X(x,z)(t)| <∞

and moreover, for any K and any z,

sup
|x|≤K

E|X(x,z)(t)| <∞;

2. for all 0 ≤ u < t, the family of random variables

{ρ(X̃(x,z)(u), X̃(x,z)(t)); |x| ≥ 1; z ∈ Z}

is uniformly integrable (U.I), and for any z,

lim sup
|x|→∞

P{ sup
u′ ,t′∈[u,t]

ρ(X̃(x,z)(u
′
), X̃(x,z)(t

′
)) > C(t− u)} = 0, (2)

where C is a finite constant that does not depend on u, t.

Theorem 1.1 [4] Assume that for some ε > 0, there exists a finite constant T such that

sup
ϕ∈Φ

E|x(T )| < 1− ε.

Then, the underlying Markov process (X,Z) is positive recurrent.

Remark 1.2 The Lp-stability implies conditions of theorem 1.1. Indeed, take any T > 0

such that supϕ E|x(T )|p < 1 and apply the Hölder inequality.

Fix t ≥ 0, and on the event {|x(t)| > 0}, introduce the shift transformation ϕ→ ϕt = (xt, yt)

as follows :
xt(u) =

x(t+ u|x(t)|)
|x(t)|

;

for r ∈ Z,

yt
r(u) =

yr(t+ u|x(t)|)− yr(t)

|x(t)|
.

Along with Markov processes with fixed initial values, we consider processes with random
initial values (x, z). For such processes, one can define fluid limits as follows. Consider a
sequence

(X̃(xn,zn), Ỹ (xn,zn)
r , r ∈ Z), where |xn| → ∞,

in probability, zn ∈ Z. By assumption 1.2, it contains a subsequence

(X̃(xnk
,znk

), Ỹ
(xnk

,znk
r , r ∈ Z)

that converges weakly (in the Skorohod topology) to some limit process, which is also called
a fluid limit. The family of all such fluid limits (or, equivalently, of their distributions) is
denoted by Φ̃. Introduce the following :



8 A. Kandouci, A. Ezzine, B. Chouaf

Assumption 1.3 For any ϕ ∈ Φ̃, t ≥ 0, z ∈ Z, the right derivative vz(t) = y
′
z(t + 0)

exists a.s. on the event {|x(t) > 0|}.

Put v(t) = {vz(t)}z∈Z and define the set

V = {{vz}z∈Z : vz ≥ 0,∀z and
∑
z∈Z

vz = 1}.

For any stopping time τ , put

vτ (t) = v(τ + t), t ≥ 0, if |x(τ + t)| > 0.

For a set U and a fluid limit ϕ ∈ Φ̃, put

β = βϕ = inf{t ≥ 0 : |x(t)| = 0 ∨ (xt(0), vt(0)) ∈ U}. (3)

Denote χ1 = {x ∈ χ : |x| = 1}.

We are ready now to formulate and prove the main result which we will make use in section
1.2.

Theorem 1.2 Let Assumption 1.3 hold. Assume that there exist ε > 0 and a measurable
set U ⊆ χ1 ×V such that for each ϕ ∈ Φ,

1. the stopping time βϕ is admissible ;

2. if (x(0), v(0)) ∈ U a.s., then E|x(β)| ≤ 1− ε;

3. the family of random variables {βϕ, ϕ ∈ Φ} is uniformly integrable.

Then, for some ε > 0 and for any ϕ ∈ Φ, there exists a stopping time τϕ such that

E|x(τϕ)| ≤ 1− ε (4)

and
lim

K→∞
sup
ϕ∈Φ

KP{τϕ > K} = 0.

In particular, the conditions of theorem 1.1 are satisfied and therefore the underlying Markov
process (X,Z) is positive recurrent.

Proof: By the total the total probability law, conditions of the theorem imply that

• a stopping time βϕ is admissible for any ϕ ∈ Φ̃

• the family {βϕ, ϕ ∈ Φ̃} is uniformly integrable.
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Let Φ0 = {ϕ ∈ Φ̃ : (x(0), v(0)) ∈ U} and Φ1 = Φ̃ \ Φ0.

If ϕ ∈ Φ0, put τϕ = βϕ.

Otherwise, put c = supϕ∈Φ1
E|x(βϕ)| and

l = min{n ≥ 0 : (1− ε)nc ≤ 1}+ 2.

For ϕ ∈ Φ1, on define τϕ via the following recursive procedure.

Put T0 = 0, ϕ(0) = ϕ, T1 = βϕ, ϕ(1) = (x(1), y(1)) = ϕT1

and for i ∈ {1, . . . , l − 1}, if |x(i)(0)| > 0 then put

Ti+1 = Ti + |x(i)(0)|βϕ(i) , ϕ(i+1) = ϕTi+1 .

Denote Γ = min(l,min{i : |x(i)(0)| = 0}) and τϕ = TΓ.

Then (4) follows from inequalities

E|x(TΓ)| ≡ E{|x(TΓ)|11(|x(TΓ)|>0)}
= E{|x(Tl)|11(|x(Tl)|>0)}
≤ E{|x(Tl)|11(|x(Tl−1)|>0)}
≤ (1− ε)E{|x(Tl−1)|11(|x(Tl−1)|>0)}
...

≤ (1− ε)l−1E|x(T1)|
≤ (1− ε)l−1c

≤ 1− ε.

Let us show uniform integrability of {τϕ, ϕ ∈ Φ}. For any u ≥ 1,

E{TΓ11(TΓ>u)} ≤
l∑

i=1

E{Ti11(Γ≥i)11(Ti≥u)}.

Set g(u) = supϕ E{βϕ11(βϕ≥u)}. Then, g(u) → 0 as u→∞.

One can see that for i = 1,

E{T111(Γ≥1)11(T1≥u)} ≤ g(u).
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Further, for any v ≥ 1 and u ≥ v(2 + C),

E{T211(Γ≥2)11(T2≥u)} ≤ E{[T1 + (1 + C.T1)βϕT1 ]11(Γ≥2)11(T1+(1+CT1)β
ϕT1

≥u)}

≤ E{v[1 + (1 + C).T1]11(T1≥ u−v
v(1+C)

)}+

+ E{E{βϕT111(β
ϕT1

≥v)/T1, x(T1)}[1 + (1 + C)T1]11(Γ≥2)}

≤ vP{T1 ≥
u− v

v(1 + C)
}+ (1 + C)vE{T111(T1≥ u−v

v(1+C)
)}+

+ g(v)E{1 + (1 + C)T1}

≤ (2 + C)v.g(
u− v

v(1 + C)
) + g(v)[1 + (1 + C)g(0)]

uniformly in Φ̃. Take v = v(u) such that

v →∞ and v.g(
u− v

v(1 + C)
) → 0 as u→∞.

The proof is completed by induction. �

1.2 Application to the study of the stability of a polling system

Consider an open polling system with two stations and two ”heterogenous” servers. With
each station i = 1, 2 an input stream of customers is associated, that has i.i.d interarrival
times with common distribution function F

(0)
i (t) and finite positive mean λ−1

i . The inputs
to different stations i = 1, 2 are mutually independent. For i,m ∈ {1, 2}, server m has a
station i i.i.d service times with common distribution function F

(m)
i (t) and finite positive

mean (µ
(m)
i )−1. Both servers follow the so-called exhaustive service policy : after completing

a service, a server either starts the service of a new customer (if there is any), or leaves
the station ; after a finite ”walking” (”switch-over”) period, the server arrives to the other
station. For server m, walking times from station i1 to station i2 form an i.i.d sequence of
non-negative random variables with finite mean W (m)(i1, i2) (either i1 = 1; i2 = 2, or i1 = 2;
i2 = 1). If a server arrives to a station with empty queue, it becomes ”passive” and waits
there for the first customer. If during this period the other server arrives to this station, it
becomes passive, too, and waits for the second customer to arrive to this station.

This system can be analysed via the fluid approximation approach. In order to avoid the
surplus of technical details, we make the following

Assumption 1.4 The distribution functions F (m)
i , i = 1, 2;m = 0, 1, 2 are exponential;

λ1 = λ2 = 1 ; all the walking times are equal to zero a.s. (W (m)(i1, i2) = 0,m = 1, 2).

Consider a right-continuous time-homogeneous Markov process

{X(t);Z(t)} = {(Q1(t), Q2(t)), (Z
(1), Z(2)(t))}, t ≥ 0,
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where

• Qi(t) is the queue length at station i = 1, 2 (including the customers being served),

• for m = 1, 2, Z(m)(t) ∈ {−2,−1, 1, 2} is the position of server m at time instant t;
Z(m)(t) = i means that server m is serving (”active”) at station i;Z(m)(t) = −i means
that server m is waiting (”passive”) at station i.

With necessity, we have to assume that Qi(t) ≥ 1 if at least one of Z(m)(t) equals i, and
Qi(t) ≥ 2 if Z(1)(t) = Z(2)(t) = i.

Under Assumption 1.4, a server cannot become passive if there at least two customers in the
whole system.

Here X(t) take its values in

χ
′
= {0, 1, · · · } × {0, 1, · · · } ⊂ χ ≡ R2

+

and Z(t) in
Z = {−2,−1, 1, 2} × {−2,−1, 1, 2}.

Put 0 = ((0, 0)). For x(m) = (x
(m)
1 , x(m)

2 ) ∈ χ, m = 1, 2, introduce the metric

ρ(x(1), x(2)) =
2∑

i=1

|x(1)
i − x

(2)
i |.

Then, |x| = x1 + x2 for x = (x1, x2) ∈ χ.

The process (X,Z) is piecewise deterministic (in fact, piecewise constant) and, therefore,
possesses the strong Markov property.

Put
C = 3 + µ

(1)
1 + µ

(2)
1 + µ

(1)
2 + µ

(2)
2 .

Assumption 1.2 holds for the process (X,Z). Indeed, for any t ≥ 0, K > 0, and z ∈ Z,

sup
|x|≤K

E|X(x,z)(t)| ≤ K + 2t <∞;

For any 0 ≤ u < t, z ∈ Z, |x| ≥ 1,

ρ(X̃(x,z)(u), X̃(x,z)(t)) ≤st

|x|∑
i=1

πi

|x|
,

where r.v.’s π1, π2, . . . are i.i.d and have Poisson distribution with parameter (C − 1)(t− u).
Therefore, the family

{ρ(X̃(x,z)(u), X̃(x,z)(t)), z ∈ Z, |x| ≥ 1}
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is uniformly integrable.

Since
|x|∑
i=1

πi

|x|
−→ (C − 1)(t− u) a.s. as |x| → ∞,

then, (2) holds.

Note that if µ(1)
i + µ

(2)
i ≤ 1 for some i = 1, 2, then the polling system cannot be stable.

Indeed, for i = 1, 2 and for any ∆ > 0 and K > 0, we denote by τ the first moment after
∆ when the queue length at station i becomes smaller than K. If both servers start at
station i with the queue length Q ≥ K, then τ is either infinite with positive probability (if
µ

(1)
i + µ

(2)
i < 1) or finite, but with infinite mean (if µ(1)

i + µ
(2)
i = 1).

Similarly, the polling system cannot be stable if either

max(µ
(1)
1 , µ

(2)
2 ) ≤ 1 or max(µ

(2)
1 , µ

(1)
2 ) ≤ 1.

Let us number the stations and the servers so that

µ
(1)
1 = min{µ(m)

i ; i,m = 1, 2}.

Then, the polling model may be stable in one of the following cases :

(A1) µ
(1)
1 > 1,

(A2.1) µ
(1)
1 ≤ 1, µ

(2)
1 > 1, µ

(1)
2 > 1, µ

(2)
2 > 1,

(A3.1) µ
(1)
1 ≤ 1, µ

(2)
1 > 1, µ

(1)
2 ≤ 1, µ

(2)
2 > 1,

(A4.1) µ
(1)
1 ≤ 1, µ

(2)
1 ≤ 1, µ

(1)
1 + µ

(2)
1 > 1, µ

(1)
2 > 1, µ

(2)
2 > 1.

We need some additional notations. First, for m, i = 1, 2, let

p
(m)
i = (1− µ

(m)
i

µ
(1)
i + µ

(2)
i

).max(0, 1− µ
(m)
i ).

Then put

c11 =
1

µ
(1)
1 + µ

(2)
1 − 1

, c22 =
1

µ
(1)
2 + µ

(2)
2 − 1

, c12 =
1− µ

(1)
1

µ
(2)
2 − 1

,

c21 =
1− µ

(1)
2

µ2
1 − 1

11
(µ

(2)
1 >1≥µ1

2)
+

1− µ
(2)
1

µ1
2 − 1

11
(µ

(1)
2 >1≥µ2

1)
.
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Introduce the families of conditions as follows :

Condition (A2). Inequalities (A2.1) and

c11(c22(1− p
(1)
1 ) + c12p

(1)
1 ) < 1.

Condition (A3). Inequalities (A3.1) and

(1− c11c12p
(1)
1 )+.(1− c22c21p

(1)
2 )+ > c11c22(1− p

(1)
1 )(1− p

(1)
2 ),

where a+ = max(a, o).

Condition (A4). Inequalities (A4.1) and

c11(c22(1− p
(1)
1 − p

(2)
1 ) + c12p

(1)
1 + c21p

(2)
1 ) < 1. (5)

Theorem 1.3 [4] Under Assumption 1.4, if one of conditions A1-A4 is satisfied, then
the process (X,Z) is positive recurrent and ergodic.

Remark 1.3 If the service times are ”server-independent” (i.e. µ(1)
i = µ

(2)
i = µi, i = 1, 2),

then, the stability condition
1

µ1

+
1

µ2

< 2 (6)

is well known and may be easily obtained via the criterion (1). In this case, one can check
that (6) holds if and only if either (A1), or (A4) is satisfied. Similarly, if the service times
are ”station-independent” (i.e. µ(m)

1 = µ
(m)
2 = µm, m = 1, 2 ), then the stability condition

µ(1) + µ(2) > 2 holds if and only if (A1) or (A3) is validated.

We complete this paper with the following theorem, we assume that the set U consists only
of one point (1, 0, 1, 1) and the r.v.’s β and β0 are defined by (3).

Theorem 1.4 Assume that any of conditions (A2.1)-(A4.1) holds. If

1 ≤ E|x0(β0)| <∞ and E log |x0(β0)| < 0, (7)

then

1. for any fluid limit ϕ

γ = γϕ = inf{t > 0 : |x(t)| = 0} <∞ a.s.; (8)

and for any non-flashing fluid limit,

Eγ = ∞; (9)
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2. with any fluid limit ϕ = (x, y) one can associate an infinite sequence {γϕ
(l)} of r.v.’s

such that γ(l)
ϕ →∞ a.s. as l→∞, and

|x(γ(l)
ϕ )| = 0 a.s. for any n; (10)

3. the underlying Markov process is recurrent.

Proof: 1. Put |x0(β0)| = q1(β0) = u0 > 0 a.s. for any n = 0, 1, ..., set

βn+1 = inf{t > βn : q2(t) = 0, z(1)(t) = z(2)(t) = 1}

and put γ0 = limn→∞ βn ≤ ∞. It follows from Theorem 1.3 that |x0(t)| > 0 for any
t < γ0 and q1(βn) may be represented in the form

q1(βn) =
n∏

j=0

uj,

where {uj} are i.i.d.

Put δ0 = β0 and, for n ≥ 1,

δn =
βn − βn−1

q1(βn−1)
.

Then, {δn} form an i.i.d sequence, δn does not depend on u0, · · · , un−1 for any n, and

γ0 = δ0 +
∞∑
i=1

δi

i−1∏
j=0

uj.

Since all r.v’s are a.s. strictly positive,

Eγ0 = Eδ0(1 +
∞∑

j=1

(Eu0)
j)

is infinite if Eu0 ≥ 1. On the other hand, if E log u0 = −c < 0, then

i∏
j=0

uj = exp{
i∑

j=0

log uj} → 0 a.s. as i→∞.

Set

ν = min{i :
k−1∑
j=0

log uj ≤ −ck/2, ∀k ≥ i} <∞ a.s.

Then

γ0 ≤ δ0 +
ν−1∑
i=1

δi

i−1∏
j=0

uj +
∞∑
i=1

δiexp{−c(i− 1)/2} <∞ a.s.
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and

|x0(γ0)| = lim
n→∞

|x0(βn)| = lim
n→∞

n∏
j=0

uj = 0 a.s.

Take now any other non-flashing fluid limit ϕ. Note that either γϕ = β or ϕβ has the same
distribution as ϕ0. Therefore, one can represent γ = γϕ in the form

γ = β + |x(β)|.γ̃0,

where γ̃0 is distributed like γ0 and does not depend on x(β).

Note that
P(γ > β) = P(|x(β)| > 0) > 0.

Therefore, under conditions (7), γ is finite a.s. and Eγ = ∞.

2. Consider any fluid limit ϕ = (x,y). For any t > 0, if |x(t)| = q > 0, then |x(t+γϕt .q)| = 0

a.s., that proves (10).

3. Consider the ordinary birth-death process U(t) with constant birth and death intensities
λ and µ respectively, and initial size U(0) = 1.

Set
η = inf{t > 0 : U(t) = 0} and H(λ, µ) = E(η11(δ<∞)).

The following is well-known :

1. If λ 6= µ, then H(λ, µ) <∞.

2. If λ < µ, then
sup
t≥0

E{U(t)11(δ>t)} ≤ H(λ, µ) <∞.

The state space of the Markov process (X,Z) is countable, and any two states communicate.
It is sufficient to show that there exists a constant K such that the random variable

β(1)(x, z,K) = inf{t > 0 : Q
(x,z)
1 (t) +Q

(x,z)
2 (t) ≤ K}

is finite a.s. for any couple x = (n1, n2) of non-negative integers and for any z ∈ Z.

It is easy to see that β(2)(x, z) = inf{t > 0 : Q
(xn,z)
2 (t) = 0,

Z(1)(t) = Z(2)(t) = 1, Z(1)(t− 0) = 2 ∨ Z(2)(t− 0) = 2}

is finite a.s. (here the symbol ∨ stands for the union of two events).

Set
β(x, z) = min{β(1)(x, z, 1), β(2)(x, z)} and βn = β((n, 0), (1, 1)).
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Set z = (1, 1), xn = (n, 0), tend n to infinity, and denote by ϕ the weak limit of the process
(X̃(xn,z), Ỹ (xn,z)).

For any constant c > 0,

min(
βn

n
, c) → min(β, c) weakly.

Here, β ≡ β0 is defined in the statement of the theorem).

Therefore, βn/n→ β and
Q

(xn,z)
1 (βn)

n
−→ q1(β) weakly.

Assume we have proved uniform integrability of (log(Q
(xn,z)
1 (βn)/n))+.

Then,

lim
n→∞

supE log(
max(1, Q

(xn,z)
1 (βn) +Q

(xn,z)
2 (βn))

n
) ≤ E log q1(β)

(since Q(xn,z)
2 (βn) ≤ 1 a.s. ) and there exists K such that

sup
n≥K

E log(
max(1, Q

(xn,z)
1 (βn) +Q

(xn,z)
2 (βn))

n
) ≤ −ε

for some ε > 0.

Start with any initial value (x, z), put κ1 = β(1)(x, z,K) and for k = 1, 2, . . . ,

κk+1 = inf{t > κk : (Q
(xn,z)
2 (t) = 0, Z(1)(t) = Z(2)(t) = 1,

(Z(1)(t− 0) = 2 ∨ Z(2)(t− 0) = 2)) ∨ (Q
(xn,z)
1 (t) +Q

(xn,z)
2 (t) ≤ 1)}.

Denote Q(k) = Q
(x,z)
1 (κk) +Q

(x,z)
2 (κk). Then

E(log
Q(k + 1)

Q(k)
/Q(k) > K) ≤ −ε

and, therefore,

γ(x, z) = min{k : Q(k) ≤ K} and β(1)(x, z,K) ≤ κγ(x,z) are finite a.s. Thus, the Markov
process is recurrent.

We give now the proof of uniform integrability for a sequence of random variables

{(log(Q
(xn,z)
1 (βn)/n))+, n ≥ 1}.

The proof is based on similar arguments in cases A2.1-A4.1.

Consider case (A3.1), as the most complicated one.

Let αn = inf{t > 0 : Z(1)(t) 6= 1 ∨ Z(2)(t) 6= 1}. Then αn ≤ βn a.s. and

EQ(xn,z)
2 (αn) = (n− 1)c11.
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Put D = {Q(x,z)
1 (βn) +Q

(x,z)
2 (βn) ≤ 1}. Denote by D the complement of D, that is,

D = {both servers stop not on the time interval [0, βn]}.

From the total probability law,

EQ(xn,z)
1 (βn) = E{Q(xn,z)

1 (βn)11D}+ E{Q(xn,z)
1 (βn)11B−1}+

+ E{Q(xn,z)
1 (βn)11B̃−1

}+
∞∑
i=0

E{Q(xn,z)
1 (βn)11D | Bi}P(Bi)+

+
∞∑
i=0

E{Q(xn,z)
1 (βn)11D | B̃i}P(B̃i),

where the events Bi and B̃i describe the dynamics of servers within the time interval [0, βn].

Namely,

B−1 = { server 2 stays at station 1 all the time ; server 1 switches to station 2 only once and
returns to station 1 at time instant βn};

for i ≥ 0,

Bi = { first, both servers switch to station 2 (in any order); second, server 2 switches to
station 1 and returs back i times ; finally, both servers switch to station 1 (in any order)};

B̃−1 = { server 1 stays at station 1 all the time; server 2 switches to station 2 only once and
return back at time instant βn};

for i ≥ 0,

B̃i = { first, both servers switch to station 2 (in any order); second, servers 1 and 2 switche
to station 1 and returs back several times (alternatively) ; after the last return of server 1 to
station 2, server 2 visits station 1 i times ; finally, both servers return to station 1 (in any
order)}.

Then
E{Q(xn,z)

1 (βn)11D} ≤ 1;

and routine (but space-consuming) calculations show that following inequalities are valid :

E{Q(xn,z)
1 (βn)11DB−1

} ≤H(1, µ
(2)
1 ) <∞;

E{Q(xn,z)
1 (βn)11DB̃−1

} ≤(n− 1)c11c12 + 1;

E{Q(xn,z)
1 (βn)11D | B0} ≤((n− 1)c11 + c21)max(c12, c22) + c12;

E{Q(xn,z)
1 (βn)11D | Bi} ≤((n− 1)c11 + c21)max(c12, c22)(c21c22)

i + c12;

E{Q(xn,z)
1 (βn)11D | B̃i} ≤H(1, µ

(2)
2 )(c21c22)

i + c12
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for all i ≥ 0.

Thus, sup
n≥2

E

(
Q

(xn,z)
1 (βn)

n

)δ

is finite for any δ ∈ (0, 1] such that

(c21c22)
δ µ

(2)
2

µ
(1)
2 + µ

(2)
2

< 1.

Therefore, the random variables

(
log

(
Q

(xn,z)
1 (βn)

n

))+

are uniformly integrable. �

Prospects (future works) :

1. We will consider a same polling system but with λ1 6= λ2 and a walking times
W (m)(i1, i2) 6= 0.

2. We will seek the conditions of transience for this new system.
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Arif Rafiq

Implicit fixed point iterations

ABSTRACT. Let K be a compact convex subset of a real Hilbert space H; T : K → K a
continuous hemicontractive map. Let {αn} be a real sequence in [0, 1] satisfying appropriate
conditions, then for arbitrary x0 ∈ K and {vn} in K, the sequence {xn} defined iteratively
by xn = αnxn−1 + (1− αn)Tvn, n ≥ 1 converges strongly to a fixed point of T .

We also establish a strong convergence of an implicit iteration process to a common fixed
point for a finite family of ψ−uniformly pseudocontractive and ψ−uniformly accretive map-
pings in real Banach spaces.

The results presented in this paper extend and improve the corresponding results of Refs.
[4, 9, 19, 20, 22, 25, 44].

KEY WORDS. Implicit iteration process, Mann iteration, ψ−uniformly pseudocontractive
and ψ−uniformly accretive mappings, Common fixed point, Banach space, Hilbert Space

1 Fundamentals

We assume that E is a real Banach space and K be a nonempty convex subset of E. Let J
denote the normalized duality mapping from E to 2E∗ defined by

J(x) = {f ∗ ∈ E∗ : 〈x, f ∗〉 = ||x||2 and ||f ∗|| = ||x||},

where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized duality pairing. We
shall denote the single-valued duality map by j.

Let Ψ := {ψ | ψ : [0,∞) → [0,∞) is a strictly increasing mapping such that ψ(0) = 0}.

Definition 1 A mapping T : K → K is called ψ−uniformly pseudocontractive if there
exist mapping ψ ∈ Ψ and j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ||x− y||2 − ψ(||x− y||), ∀x, y ∈ K. (1.1)
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Definition 2 A mapping S : D(S) ⊂ E → E is called ψ−uniformly accretive if there
exist mapping ψ ∈ Ψ and j(x− y) ∈ J(x− y) such that

〈Sx− Sy, j(x− y)〉 ≥ ψ(||x− y||), ∀x, y ∈ E. (1.2)

Remark 1 a) Taking ψ(a) := ψ(a)a, ∀a ∈ [0,∞), (ψ ∈ Ψ), we get the usual definitions
of ψ− pseudocontractive and ψ− accretive mappings.

b) Taking ψ(a) := γa2; γ ∈ (0, 1), ∀a ∈ [0,∞), (ψ ∈ Ψ), we get the usual definitions of
strongly pseudocontractive and strongly accretive mappings.

c) T is ψ−uniformly pseudocontractive iff S = I − T is ψ−uniformly accretive.

d) It is known that T is strongly pseudocontractive if and only if (I − T ) is strongly
accretive.

Let H be a Hilbert space.

Definition 3 A mapping T : H → H is said to be pseudocontractive (see e.g., [1, 2]) if

||Tx− Ty||2 ≤ ||x− y||2 + ||(I − T )x− (I − T )y||2, ∀x, y ∈ H (1.3)

and is said to be strongly pseudocontractive if there exists k ∈ (0, 1) such that

||Tx− Ty||2 ≤ ||x− y||2 + k||(I − T )x− (I − T )y||2, ∀x, y ∈ H. (1.4)

Definition 4 Let F (T ) := {x ∈ H : Tx = x} and let K be a nonempty subset of H. A
map T : K → K is called hemicontractive if F (T ) 6= ∅ and

||Tx− x∗||2 ≤ ||x− x∗||2 + ||x− Tx||2 ∀ x ∈ H, x∗ ∈ F (T ). (1.5)

Remark 2 It is easy to see that the class of pseudocontractive maps with fixed points is a
subclass of the class of hemicontractions. The following example, due to Rhoades [35], shows
that the inclusion is proper. For x ∈ [0, 1], define T : [0, 1] → [0, 1] by Tx = (1 − x

2
3 )

3
2 . It

is shown in [35] that T is not Lipschitz and so cannot be nonexpansive. A straightforward
computation (see e.g., [38]) shows that T is pseudocontractive. For the importance of fixed
points of pseudocontractions the reader may consult [2].

We shall make use of the following results.

Lemma 1 [40] Suppose that {ρn}, {σn} are two sequences of nonnegative numbers such
that for some real number N0 ≥ 1,

ρn+1 ≤ ρn + σn ∀n ≥ N0.
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(a) If
∑
σn <∞, then, lim ρn exists.

(b) If
∑
σn <∞ and {ρn} has a subsequence converging to zero, then lim ρn = 0.

Lemma 2 [20] For all x, y ∈ H and λ ∈ [0, 1], the following well-known identity holds:

||(1− λ)x+ λy||2 = (1− λ)||x||2 + λ||y||2 − λ(1− λ)||x− y||2.

Lemma 3 [42] Let J : E → 2E be the normalized duality mapping. Then for any x, y ∈
E, we have

||x+ y||2 ≤ ||x||2 + 2〈y, j(x+ y)〉, ∀j(x+ y) ∈ J(x+ y).

Lemma 4 [23] Let {θn} be a sequence of nonnegative real numbers, {λn} be a real se-
quence satisfying

0 ≤ λn ≤ 1,
∞∑

n=0

λn = ∞

and let ψ ∈ Ψ. If there exists a positive integer n0 such that

θ2
n+1 ≤ θ2

n − λnψ(θn+1) + σn,

for all n ≥ n0, with σn ≥ 0, ∀n ∈ N, and σn = 0(λn), then limn→∞ θn = 0.

2 Implicit Mann iteration process in Hilbert spaces

In the last ten years or so, numerous papers have been published on the iterative approxima-
tion of fixed points of Lipschitz strongly pseudocontractive (and correspondingly Lipschitz
strongly accretive) maps using the Mann iteration process (see e.g., [22]). Results which
had been known only in Hilbert spaces and only for Lipschitz maps have been extended
to more general Banach spaces (see e.g., [5–16, 21, 30–38, 40, 41, 43, 45] and the refer-
ences cited therein) and to more general classes of maps (see e.g., [6–16, 19, 21, 27–34, 36–
38, 40, 41, 43, 45] and the references cited therein). This success, however, has not carried
over to arbitrary Lipschitz pseudocontraction T even when the domain of the operator T is
a a compact convex subset of a Hilbert space. In fact, it is still an open question whether or
not the Mann iteration process converges under this setting. In 1974, Ishikawa introduced
an iteration process which, in some sense, is more general than that of Mann and which
converges, under this setting, to a fixed point of T . He proved the following theorem.

Theorem 1 If K is a compact convex subset of a Hilbert space H, T : K 7→ K is
a Lipschitzian pseudocontractive map and x0 is any point in K, then the sequence {xn}
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converges strongly to a fixed point of T , where xn is defined iteratively for each positive
integer n ≥ 0 by

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn, (2.1)

where {αn}, {βn} are sequences of positive numbers satisfying the conditions

(i) 0 ≤ αn ≤ βn < 1; (ii) lim
n→∞

βn = 0; (iii)
∑
n≥0

αnβn = ∞.

Since its publication in 1974, Theorem 1, as far as we know, has never been extended to more
general Banach spaces. In [27], Qihou extended the theorem to the slightly more general class
of Lipschitz hemicontractions and in [28] he proved, under the setting of Theorem 1, that
the convergence of the recursion formula (2.1) to a fixed point of T when T is a continuous
hemicontractive map, under the additional hypothesis that the number of fixed points of T is
finite. The iteration process (2.1) is generally referred to as the Ishikawa iteration process
in light of [20]. Another iteration process which has been studied extensively in connection
with fixed points of pseudocontractive maps is the following:

For K a convex subset of a real normed space H, and T : K → K, the sequence {xn} is
defined iteratively by x1 ∈ K,

xn+1 = (1− cn)xn + cnTxn, n ≥ 1, (2.2)

where {cn} is a real sequence satisfying the following conditions:

(iv) 0 ≤ cn < 1; (v) lim
n→∞

cn = 0; (vi)
∞∑

n=1

cn = ∞.

The iteration process (2.2) is generally referred to as the Mann iteration process in light of
[22].

In 1995, Liu [21] introduced what he called Ishikawa and Mann iteration processes with
errors as follows:

(1-a) For K a nonempty subset of H and T : K → E, the sequence {xn} defined by

x1 ∈ K,

xn+1 = (1− αn)xn + αnTyn + un,

yn = (1− βn)xn + βnTxn + vn, n ≥ 1, (2.3)

where, {αn}, {βn} are sequences in [0,1] satisfying appropriate conditions and∑
||un|| <∞,

∑
||vn|| <∞ is called the Ishikawa Iteration process with errors.
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(1-b) With K, H and T as in part (1-a), the sequence {xn} defined by

x1 ∈ K,

xn+1 = (1− αn)xn + αnTxn + un, n ≥ 1, (2.4)

where {αn} is a sequence in [0,1] satisfying appropriate conditions and
∑
||un|| <∞,

is called the Mann iteration process with errors.

While it is known that consideration of error terms in iterative processes is an important
part of the theory, it is also clear that the iteration processes with errors introduced by
Liu in (1-a) and (1-b) are unsatisfactory. The occurrence of errors is random so that
the conditions imposed on the error terms in (1-a) and (1-b) which imply, in particular,
that they tend to zero as n tends to infinity are, therefore, unreasonable. In 1997, Y.
Xu [43] introduced the following more satisfactory definitions.

(1-c) Let K be a nonempty convex subset of H and T : K → K a mapping. For any given
x1 ∈ K, the sequence {xn} defined iteratively by

xn+1 = anxn + bnTyn + cnun,

yn = a
′

nxn + b
′

nTxn + c
′

nvn, n ≥ 1, (2.5)

where {un}, {vn} are bounded sequences in K and {an}, {bn}, {cn}, {a
′
n}, {b

′
n} and {c′n}

are sequences in [0, 1] such that an + bn + cn = a
′
n + b

′
n + c

′
n = 1 ∀ n ≥ 1 is called the

Ishikawa iteration sequence with errors in the sense of Xu.

(1-d) If, with the same notations and definitions as in (1-c), b′n = c
′
n = 0, for all integers

n ≥ 1, then the sequence {xn} now defined by

x1 ∈ K

xn+1 = anxn + bnTxn + cnun, n ≥ 1, (2.6)

is called the Mann iteration sequence with errors in the sense of Xu. We remark that
if K is bounded (as is generally the case), the error terms un, vn are arbitrary in K.

In [9], Chidume and Chika Moore proved the following theorem.

Theorem 2 Let K be a compact convex subset of a real Hilbert space H; T : K → K a
continuous hemicontractive map. Let {an}, {bn}, {cn}, {a

′
n}, {b

′
n} and {c′n} be real sequences

in [0, 1] satisfying the following conditions:

(vii) an + bn + cn = 1 = a
′
n + b

′
n + c

′
n ∀ n ≥ 1;

(viii) lim
n→∞

bn = lim
n→∞

b
′
n = 0;
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(ix)
∑
cn <∞;

∑
c
′
n <∞;

(x)
∑
αnβn = ∞;

∑
αnβnδn <∞, where δn := ||Txn − Tyn||2;

(xi) 0 ≤ αn ≤ βn < 1 ∀ n ≥ 1, where αn := bn + cn; βn := b
′
n + c

′
n.

For arbitrary x1 ∈ K, define the sequence {xn} iteratively by

xn+1 = anxn + bnTyn + cnun,

yn = a
′

nxn + b
′

nTxn + c
′

nvn, n ≥ 1,

where {un}, {vn} are arbitrary sequences in K. Then, {xn} converges strongly to a fixed
point of T .

They also gave the following remark in [9].

Remark 3 d) In connection with the iterative approximation of fixed points of pseu-
docontractions, the following question is still open. Does the Mann iteration process
always converge for continuous pseudocontractions, or for even Lipschitz pseudocon-
tractions?

e) Let H be a Banach space and K be a nonempty compact convex subset of H. Let
T : K → K be a Lipschitz pseudocontractive map. Under this setting, even for H, as
a Hilbert space, the answer to the above question is not known. There is, however, an
example [19] of a discontinuous pseudocontractive map T with a unique fixed point
for which the Mann iteration process does not always converge to the fixed point of T .
Let H be the complex plane and K := {z ∈ H : |z| ≤ 1}. Define T : K → K by

T (reiθ) =

{
2rei(θ+π

3
), for 0 ≤ r ≤ 1

2
,

ei(θ+ 2π
3

), for 1
2
< r ≤ 1.

Then, zero is the only fixed point of T . It is shown in [15] that T is pseudocontractive
and that with cn = 1

n+1
, the sequence {zn} defined by zn+1 = (1−cn)zn+cnTzn, z0 ∈ K,

n ≥ 1, does not converge to zero. Since the T in this example is not continuous, the
above question remains open.

In [10], Chidume and Mutangadura, provide an example of a Lipschitz pseudocontractive
map with a unique fixed point for which the Mann iteration sequence failed to converge and
they stated there ”This resolves a long standing open problem”.

We introduce the following Mann type implicit iteration process associated with continuous
hemicontractive mappings to have a strong convergence in the setting of Hilbert spaces.
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Let K be a closed convex subset of a real normed space H and T : K → K be a mapping.
For a sequence {vn} in K, define {xn} in the following way:

x0 ∈ K,

xn = αnxn−1 + (1− αn)Tvn, (2.7)

where {αn} be a real sequence in [0, 1] satisfying some appropriate conditions.

Now we prove our main results.

Theorem 3 Let K be a compact convex subset of a real Hilbert space H; T : K → K

a continuous hemicontractive map. Let {αn} be a real sequence in [0, 1] satisfying {αn} ⊂
[δ, 1− δ] for some δ ∈ (0, 1). For arbitrary x0 ∈ K and {vn} in K, define the sequence {xn}
by (2.7) satisfying

∑
n≥1

‖vn − xn‖ <∞ . Then {xn} converges strongly to a fixed point of T .

Proof: The existence of a fixed point of T follows from Schauders fixed point theorem. Let
x∗ ∈ K be a fixed point of T and M = dim(K). Using the fact that T is hemicontractive
we obtain

‖Tvn − x∗‖2 ≤ ‖vn − x∗‖2 + ‖vn − Tvn‖2. (2.8)

With the help of (2.7), Lemma 2 and (2.8), we obtain the following estimates:

‖xn − x∗‖2 = ‖αnxn−1 + (1− αn)Tvn − x∗‖2

= ‖αn(xn−1 − x∗) + (1− αn)(Tvn − x∗)‖2

= αn ‖xn−1 − x∗‖2 + (1− αn) ‖Tvn − x∗‖2

−αn(1− αn) ‖xn−1 − Tvn‖2 . (2.9)

Substituting (2.8) in (2.9), we get

‖xn − x∗‖2 ≤ αn ‖xn−1 − x∗‖2 + (1− αn) ‖vn − x∗‖2

+(1− αn) ‖vn − Tvn‖2 − αn(1− αn) ‖xn−1 − Tvn‖2 . (2.10)

Also

‖vn − x∗‖2 ≤ ‖vn − xn‖2 + ‖xn − x∗‖2

+2M ‖xn − x∗‖ ‖vn − xn‖
≤ ‖vn − xn‖2 + ‖xn − x∗‖2

+2M ‖vn − xn‖ , (2.11)

‖vn − Tvn‖2 ≤ ‖vn − xn‖2 + ‖xn − Tvn‖2

+2M ‖xn − Tvn‖ ‖vn − xn‖
≤ ‖vn − xn‖2 + ‖xn − Tvn‖2

+2M ‖vn − xn‖ , (2.12)



28 A. Rafiq

and

‖xn − Tvn‖2 = ‖αnxn−1 + (1− αn)Tvn − Tvn‖2

= α2
n ‖xn−1 − Tvn‖2 . (2.13)

Substituting (2.11-2.13) in (2.10), we get

‖xn − x∗‖2 ≤ αn ‖xn−1 − x∗‖2 + (1− αn)(‖vn − xn‖2

+ ‖xn − x∗‖2 + 2M ‖vn − xn‖)
+(1− αn)(‖vn − xn‖2 + α2

n ‖xn−1 − Tvn‖2 + 2M ‖vn − xn‖)
−αn(1− αn) ‖xn−1 − Tvn‖2 ,

implies

‖xn − x∗‖2 ≤ ‖xn−1 − x∗‖2 + 2
1− αn

αn

‖vn − xn‖2 + 4M
1− αn

αn

‖vn − xn‖

−(1− αn)2 ‖xn−1 − Tvn‖2 ,

and from the condition {αn} ⊂ [δ, 1− δ] for some δ ∈ (0, 1), we conclude that the inequality

‖xn − x∗‖2 ≤ ‖xn−1 − x∗‖2 − δ2 ‖xn−1 − Tvn‖2 + δn, (2.14)

holds for all fixed points x∗ of T provided

δn = 2
1− δ

δ
‖vn − xn‖2 + 4M

1− δ

δ
‖vn − xn‖ .

Moreover
δ2 ‖xn−1 − Tvn‖2 ≤ ‖xn−1 − x∗‖2 − ‖xn − x∗‖2 + δn,

and thus

δ2

∞∑
j=1

‖xj−1 − Tvj‖2 ≤
∞∑

j=1

(‖xj−1 − x∗‖2 − ‖xj − x∗‖2) +
∞∑

j=1

δj

= ‖x0 − x∗‖2 +
∞∑

j=1

δj.

Hence due to the condition
∑

n≥1 ‖vn − xn‖ <∞, we obtain

∞∑
j=1

‖xj−1 − Tvj‖2 <∞. (2.15)

It implies that
lim

n→∞
‖xn−1 − Tvn‖ = 0.
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From (2.13) it further implies that

lim
n→∞

‖xn − Tvn‖ = 0.

Also the condition
∑

n≥1 ‖vn − xn‖ <∞ implies lim
n→∞

‖vn − xn‖ = 0 and the continuity of T
further implies that lim

n→∞
‖Tvn − Txn‖ = 0. Now from

‖xn − Txn‖ ≤ ‖xn − Tvn‖+ ‖Tvn − Txn‖ ,

implies that
lim

n→∞
‖xn − Txn‖ = 0.

By compactness of K this immediately implies that there is a subsequence {xnj
} of {xn}

which converges to a fixed point of T , say y∗. Since (2.14) holds for all fixed points of T we
have

‖xn − y∗‖2 ≤ ‖xn−1 − y∗‖2 − δ2 ‖xn−1 − Tvn‖2 + δn,

and in view of (2.15) and Lemma 1 we conclude that ‖xn−y∗‖ → 0 as n→∞, i.e., xn → y∗

as n→∞. The proof is complete.

Corollary 1 Let H, K, T , be as in Theorem 3 and {αn} be a real sequence in [0, 1]

satisfying {αn} ⊂ [δ, 1− δ] for some δ ∈ (0, 1). Let PK : H → K be the projection operator
of H onto K. For arbitrary x0 ∈ K and {vn} in K, define the sequence {xn} by

xn = PK(αnxn−1 + (1− αn)Tvn), n ≥ 1,

satisfying
∑

n≥1 ‖vn − xn‖ <∞. Then {xn} converges strongly to a fixed point of T .

Proof: The operator PK is nonexpansive (see e.g., [1]). K is a Chebyshev subset of H so
that, PK is a single-valued map. Hence, we have the following estimate:

‖xn − x∗‖2 = ‖PK(αnxn−1 + (1− αn)Tvn)− PKx
∗‖2

≤ ‖αnxn−1 + (1− αn)Tvn − x∗‖2

= ‖αn(xn−1 − x∗) + (1− αn) (Tvn − x∗) ‖2

≤ αn ‖xn−1 − x∗‖2 + (1− αn)(‖vn − xn‖2

+ ‖xn − x∗‖2 + 2M ‖vn − xn‖)
+(1− αn)(‖vn − xn‖2 + α2

n ‖xn−1 − Tvn‖2 + 2M ‖vn − xn‖)
−αn(1− αn) ‖xn−1 − Tvn‖2 ,

implies

‖xn − x∗‖2 ≤ ‖xn−1 − x∗‖2 + 2
1− αn

αn

‖vn − xn‖2 + 4M
1− αn

αn

‖vn − xn‖

−(1− αn)2 ‖xn−1 − Tvn‖2 .

The set K ∪ T (K) is compact and so the sequence {‖xn − Txn‖} is bounded. The rest of
the argument follows exactly as in the proof of Theorem 3 and the proof is complete.
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3 Multi-step iterations in Hilbert spaces

Let K be a nonempty closed convex subset of a real normed space H and T1, T2, ..., Tp :

K → K (p ≥ 2) be a family of selfmappings.

Algorithm 1 For a given x0 ∈ K, compute the sequence {xn} by the implicit iteration
process of arbitrary fixed order p ≥ 2,

xn = αnxn−1 + (1− αn)T1y
1
n,

yi
n = βi

nxn−1 + (1− βi
n)Ti+1y

i+1
n ; i = 1, 2, ..., p− 2,

yp−1
n = βp−1

n xn−1 + (1− βp−1
n )Tpxn, n ≥ 1, (3.1)

which is called the multi-step implicit iteration process, where {αn}, {βi
n} ⊂ [0, 1], i = 1, 2,

..., p− 1.

For p = 3, we obtain the following three-step implicit iteration process:

Algorithm 2 For a given x0 ∈ K, compute the sequence {xn} by the iteration process

xn = αnxn−1 + (1− αn)T1y
1
n, ,

y1
n = β1

nxn−1 + (1− β1
n)T2y

2
n,

y2
n = β2

nxn−1 + (1− β2
n)T3xn, n ≥ 1, (3.2)

where {αn} , {β1
n} and {β2

n} are three real sequences in [0, 1] satisfying some certain condi-
tions.

For p = 2, we obtain the following two-step implicit iteration process:

Algorithm 3 For a given x0 ∈ K, compute the sequence {xn} by the iteration process

xn = αnxn−1 + (1− αn)T1y
1
n,

y1
n = β1

nxn−1 + (1− β1
n)T2xn, n ≥ 1, (3.3)

where {αn} and {β1
n} are two real sequences in [0, 1] satisfying some certain conditions.

If T1 = T, T2 = I, β1
n = 0 in (3.3), we obtain the implicit Mann iteration process:

Algorithm 4 For any given x0 ∈ K, compute the sequence {xn} by the iteration process

xn = αnxn−1 + (1− αn)Txn, n ≥ 1, (3.4)

where {αn} is a real sequence in [0, 1] satisfying some certain conditions.
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Theorem 4 Let K be a compact convex subset of a real Hilbert space H and T1, T2, . . . , Tp

(p ≥ 2) be selfmappings of K. Let T1 be a continuous hemicontractive map. Let {αn},
{βi

n} ⊂ [0, 1], i = 1, 2, . . . , p − 1 be real sequences in [0, 1] satisfying {αn} ⊂ [δ, 1 − δ] for
some δ ∈ (0, 1) and

∑
n≥1(1− β1

n) <∞. For arbitrary x0 ∈ K, define the sequence {xn} by

(3.1). Then {xn} converges strongly to the common fixed point of
p⋂

i=1

F (Ti) 6= φ.

Proof: By applying Theorem 3 under assumption that T1 is continuous hemicontractive,
we obtain Theorem 4 which proves strong convergence of the iteration process defined by
(3.1). Consider by taking T1 = T and vn = y1

n,

‖vn − xn‖ =
∥∥y1

n − xn

∥∥
=

∥∥β1
nxn−1 + (1− β1

n)T2y
2
n − xn

∥∥
=

∥∥β1
n (xn−1 − xn) + (1− β1

n)
(
T2y

2
n − xn

)∥∥
≤ β1

n ‖xn−1 − xn‖+ (1− β1
n)
∥∥T2y

2
n − xn

∥∥
≤ β1

n ‖xn−1 − xn‖+M(1− β1
n), (3.5)

and

‖xn−1 − xn‖ = ‖xn−1 − αnxn−1 − (1− αn)Tvn‖
= (1− αn) ‖xn−1 − Tvn‖ . (3.6)

From (3.5) and (3.6), we have

‖vn − xn‖ ≤ β1
n(1− αn) ‖xn−1 − Tvn‖+M(1− β1

n)

≤ β1
n(1− δ) ‖xn−1 − Tvn‖+M(1− β1

n).

Now from (2.15) and the condition
∑

n≥1(1− β1
n) <∞, it can be easily seen that∑

n≥1 ‖vn − xn‖ <∞.

Corollary 2 Let K be a compact convex subset of a real Hilbert space H; T : K → K

a hemicontractive map. Let {αn} be a real sequence in [0, 1] satisfying {αn} ⊂ [δ, 1 − δ]

for some δ ∈ (0, 1). For arbitrary x0 ∈ K, define the sequence {xn} by (3.4). Then {xn}
converges strongly to a fixed point of T .

4 Implicit iteration process for a finite family of ψ-uniformly pseu-
docontractive mappings

Let E be a real Banach space and K be a nonempty closed convex subset of E. Let {Ti : i

∈ I} be N self-mappings of K.
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In 2001, Xu and Ori [44] introduced the following implicit iteration process for a finite family
of nonexpansive mappings {Ti : i ∈ I} (here I = {1, 2, ..., N}), with {αn} a real sequence in
(0, 1), and an initial point x0 ∈ K :

x1 = α1x0 + (1− α1)T1x1,

x2 = α2x1 + (1− α2)T2x2,
...

xN = αNxN−1 + (1− αN)TNxN ,

xN+1 = αN+1xN + (1− αN+1)T1xN+1,
...

which can written in the following compact form:

xn = αnxn−1 + (1− αn)Tnxn, ∀n ≥ 1, (4.1)

where Tn = Tn (mod N) (here the (mod N) function takes values in I). Xu and Ori proved
the weak convergence of this process to a common fixed point of the finite family defined
in a Hilbert space. They further remarked that it is yet unclear what assumptions on the
mappings and/or the parameters {αn} are sufficient to guarantee the strong convergence of
the sequence {xn}.

In [24], Oslilike proved the following theorem.

Theorem 5 Let E be a real Banach space and K be a nonempty closed convex subset of

E. Let {Ti : i ∈ I} be N strictly pseudocontractive self-mappings of K with F =
N⋂

i=1

F (Ti) 6=

φ. Let {αn}∞n=1 be a real sequence satisfying the conditions:

(i) 0 < αn < 1,

(ii)
∑∞

n=1(1− αn) = ∞,

(iii)
∑∞

n=1(1− αn)2 <∞.

From arbitrary x0 ∈ K, define the sequence {xn} by the implicit iteration process (4.1). Then
{xn} converges strongly to a common fixed point of the mappings {Ti : i ∈ I} if and only if
lim

n→∞
d(xn, F ) = 0.

Definition 5 [24] A normed space E is said to satisfy Opial’s condition if for any se-
quence {xn} in E, xn ⇀ x implies that lim supn→∞ ‖xn − x‖ < lim supn→∞ ‖xn − y‖ for all
y ∈ E with y 6= x.
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In [4], Chen et al proved the following theorem.

Theorem 6 Let K be a nonempty closed convex subset of a q-uniformly smooth and
p-uniformly convex Banach space E that has the Opial property. Let s be any element in
(0, 1) and let {Ti}N

i=1be a finite family of strictly pseudocontractive self-maps of K such that
{Ti}N

i=1, have at least one common fixed point. For any point x0 in K and any sequence
{αn}∞n=1 in (0, s), define the sequence {xn} by the implicit iteration process (4.1). Then {xn}
converges weakly to a common fixed point of {Ti}N

i=1.

The purpose of this section is to study the strong convergence of the implicit iteration
process (4.1) to a common fixed point for a finite family of ψ−uniformly pseudocontractive
and ψ−uniformly accretive mappings in real Banach spaces.

Theorem 7 Let {T1, T2, . . . , TN} : K → K be N, ψ−uniformly pseudocontractive map-

pings with F =
N⋂

i=1

F (Ti) 6= φ. From arbitrary x0 ∈ K, define the sequence {xn} by the

implicit iteration process (4.1) satisfying
∑∞

n=1(1 − αn) = ∞ and lim
n→∞

(1 − αn) = 0. If
the sequence {Tnxn} is bounded, then {xn} converges strongly to a common fixed point of
{T1, T2, ..., TN}.

Proof: Since each Ti is ψ−uniformly pseudocontractive, we have from (1.1)

〈Tix− Tiy, j(x− y)〉 ≤ ||x− y||2 − ψ(||x− y||), i = 1, 2, . . . , N . (4.2)

We know that the mappings {T1, T2, . . . , TN} have a common fixed point in K, say w, then

the fixed point set F =
N⋂

i=1

F (Ti) 6= φ is nonempty. We will show that w is the unique fixed

point of F . Suppose there exists q ∈ F (T1) such that w 6= q i.e., ‖w − q‖ > 0. Then

ψ(‖w − q‖) > 0. (AR)

Since ψ is strictly increasing with ψ(0) = 0. Then, from the definition of ψ−uniformly
pseudocontractive mapping,

||w − q||2 = 〈w − q, j(w − q)〉 = 〈T1w − T1q, j(w − q)〉
≤ ||w − q||2 − ψ(||w − q||),

implies
ψ(||w − q||) ≤ 0,

contracditing (AR), which implies the uniqueness. Hence F (T1) = {w}. Similarly we can
prove that F (Ti) = {w}; i = 2, 3, . . . , N . Thus F = {w}.
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Since the sequence {Tnxn} is bounded, we set

M1 = ||x0 − w||+ sup
n≥1

||Tnxn − w||.

Obviously M1 <∞.

It is clear that ||x0−w|| ≤M1. Let ||xn−1−w|| ≤M1. Next we will prove that ||xn−w|| ≤M1.

Consider

||xn − w|| = ||αnxn−1 + (1− αn)Tnxn − w||
= ||αn(xn−1 − w) + (1− αn)(Tnxn − w)||
≤ αn||xn−1 − w||+ (1− αn)||Tnxn − w||
≤ αnM1 + (1− αn)M1

= M1.

So, from the above discussion, we can conclude that the sequence {xn −w} is bounded. Let
M2 = sup

n≥1
||xn − w||.

Denote M = M1 +M2. Obviously M <∞.

The real function f : [0,∞) → [0,∞), defined by f(t) = t2 is increasing and convex. For all
λ ∈ [0, 1] and t1, t2 > 0 we have

((1− λ)t1 + λt2)
2 ≤ (1− λ)t21 + λt22. (4.3)

Consider

||xn − w||2 = ||αnxn−1 + (1− αn)Tnxn − w||2

= ||αn(xn−1 − w) + (1− αn)(Tnxn − w)||2

≤ [αn ‖xn−1 − w‖+ (1− αn) ‖Tnxn − w‖]2

≤ αn ‖xn−1 − w‖2 + (1− αn) ‖Tnxn − w‖2

≤ ‖xn−1 − w‖2 +M2(1− αn). (4.4)

From Lemma 3 and (4.1), we have

‖xn − w‖2 = ‖αnxn−1 + (1− αn)Tnxn − w‖2

= ‖αn(xn−1 − w) + (1− αn) (Tnxn − w)‖2

≤ αn
2||xn−1 − w||2 + 2 (1− αn) 〈Tnxn − w, j(xn − w)〉

≤ αn
2||xn−1 − w||2 + 2 (1− αn) ‖xn − w‖2

−2 (1− αn)ψ(‖xn − w‖), (4.5)
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Substituting (4.4) in (4.5), we get

‖xn − w‖2 ≤ [α2
n + 2(1− αn)]||xn−1 − w||2 − 2(1− αn)ψ(‖xn − w‖)

+2M2(1− αn)2

=
[
1 + (1− αn)2

]
||xn−1 − w||2 − 2(1− αn)ψ(‖xn − w‖)

+2M2(1− αn)2

≤ ||xn−1 − w||2 − 2(1− αn)ψ(‖xn − w‖) + 3M2(1− αn)2. (4.6)

Denote

θn = ||xn−1 − w||,
λn = 2(1− αn),

σn = 3M2(1− αn)2.

Condition lim
n→∞

(1 − αn) = 0 assures the existence of n0 ∈ N such that λn = 2(1 − αn) ≤ 1,

for all n ≥ n0. Now with the help of
∑∞

n=1(1−αn) = ∞ and Lemma 4, we obtain from (4.6)
that

lim
n→∞

||xn − w|| = 0,

completing the proof.

Remark 4 Theorem 7 extend and improve the Theorems 5-6 in the following directions:

� The strictly pseudocontractive mappings are replaced by the more general ψ−uniformly
pseudocontractive and ψ−uniformly accretive mappings;

� Theorem 7 holds in real Banach space whereas the results of Theorem 6 are in q-
uniformly smooth and p-uniformly convex Banach space;

� We do not need the assumption lim
n→∞

d(xn, F ) as in Theorem 5.

� One can easily see that if we take αn = 1− 1
nσ ; 0 < σ < 1, then

∑
(1− αn) = ∞, but∑

(1− αn)2 = ∞. Hence the conclusion of Theorem 5 is false.
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Manfred Krüppel

On the extrema and the improper derivatives of
Takagi’s continuous nowhere differentiable function

ABSTRACT. In this paper we derive functional relations for Takagi’s continuous nowhere
differentiable function T , and we give an explicit representation of T at dyadic points. As
application of these functional relations we derive a limit relation at dyadic points which
implies that at these points T attains locally minima. Further, T is maximal on a perfect set
of Lebesgue measure zero. Though the points, where T has a locally maximum, are dense
it is remarkable that there is no point where T has a proper maximum. Moreover, we verify
the existence of the improper derivatives T ′(x) = +∞ or T ′(x) = −∞ for rational x which
have an odd length of period in the binary representation. Finally we investigate one-side
upper and lower derivatives.

KEY WORDS. Takagi’s continuous nowhere differentiable function, functional equations,
improper derivatives, upper and lower derivatives.

1 Introduction

In 1903, T. Takagi [4] discovered an example of a continuous, nowhere differentiable function
that was simpler than a well-known example of K. Weierstrass. Takagi’s function T is defined
by

T (x) =
∞∑

n=0

∆ (2nx)

2n
(x ∈ R) (1.1)

where ∆(x) = dist(x,Z) is an periodic function with period 1. This function T satisfies for
0 ≤ x ≤ 1 the following system of functional equations

T
(x

2

)
=
x

2
+

1

2
T (x), T

(
1 + x

2

)
=

1− x

2
+

1

2
T (x), (1.2)

cf. [3], [2], [7]. The graph of the Takagi function is illustrated in Figure 1.
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Figure 1: The graph of the Takagi function

For Takagi’s function we derive functional relations and give some applications for it. First
we show that at dyadic points x = k

2` , (k, ` ∈ Z), there exists the limit

lim
h→0

T (x+ h)− T (x)

|h| log2
1
|h|

= 1. (1.3)

Consequently, T has at all dyadic points a locally minimum, and its point out that only
these points are locally minima of T (Proposition 4.1). It holds max T = 2

3
and the set M

of points x ∈ [0, 1] with T (x) = 2
3

is given by

M =

{
∞∑

k=1

ak

4k
: ak ∈ {1, 2}

}
,

which is a perfect set of measure zero (Proposition 4.2). Further, the set of points where
T is locally maximal is a set of first category with Lebesgue measure zero, and there is no
point where T has a proper locally maximum (Proposition 4.4).

A further consequence of (1.3) is the fact that at each dyadic point x there exist the right-
side improper derivative T ′+(x) = +∞ and the left-side improper derivative T ′−(x) = −∞.
We give a simple criterion for the existence of the improper derivatives T ′(x) = +∞ and
T ′(x) = −∞ (Proposition 5.3). In particular, for rational x with odd length of period in the
binary representation always there exists the improper derivative (Proposition 5.4).
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Moreover, we investigate the four derivatives

D+(x) = lim sup
h→+0

T (x+ h)− T (x)

h
, D+(x) = lim inf

h→+0

T (x+ h)− T (x)

h
,

D−(x) = lim sup
h→−0

T (x+ h)− T (x)

h
, D−(x) = lim inf

h→−0

T (x+ h)− T (x)

h
,

cf. [5], p. 354. We show that if for x ∈ R the right-side derivatives D+(x) and D+(x) are
finite then

D+(x)−D+(x) ≥ 2. (1.4)

In view of the symmetry T (1 − x) = T (x) this is true also for the left-side derivatives.
Furthermore, if all four derivatives are finite then for the upper and lower derivatives

D(x) = lim sup
h→0

T (x+ h)− T (x)

h
= max {D+(x), D−(x)} (1.5)

D(x) = lim inf
h→0

T (x+ h)− T (x)

h
= min {D+(x), D−(x)} (1.6)

it holds
D(x)−D(x) ≥ 3. (1.7)

We show that the estimates (1.4) and (1.7) are best possible.

In the textbook [3] you can find in detail investigations on Takagi’s function. Unfortunately
the representation contains errors which we correct in Section 7.3.

2 Functional relations

In order to derive functional relations for Takagi’s function we use the binary sum-of-digit
function s(k) which for integers k ≥ 0 with the dyadic representation k = a0a1 . . . am,
aj ∈ {0, 1}, is defined by

s(k) =
m∑

j=0

aj (2.1)

and which has the properties s(2k) = s(k) and s(2k + 1) = s(k) + 1.

Proposition 2.1 For ` ∈ N, k = 0, 1, . . . , 2` − 1, x ∈ [0, 1], the Takagi function T

satisfies the functional equations

T

(
k + x

2`

)
= T

(
k

2`

)
+
`− 2s(k)

2`
x+

1

2`
T (x) (2.2)

and
T

(
k − x

2`

)
= T

(
k

2`

)
+

2s(k − 1)− `

2`
x+

1

2`
T (x). (2.3)
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Moreover, for x = n
2` with n = 0, . . . , 2` the function T has the representation

T
( n

2`

)
=
n`

2`
− 1

2`−1

n−1∑
k=0

s(k). (2.4)

Proof: Equation (2.2) for ` = 1 turns over into (1.2). Assume that (2.2) is true for an
integer ` ≥ 1. Replacing x by x

2
and applying (1.2) we get

T

(
2k + x

2`+1

)
= T

(
k

2`

)
+
`− 2s(k)

2`

x

2
+

1

2`
T
(x

2

)
= T

(
2k

2`+1

)
+
`− 2s(k)

2`+1
x+

x

2`+1
+

1

2`+1
T (x).

In view of s(2k) = s(k) we obtain (2.2) with 2k instead of k and ` + 1 instead of `. If we
replace x by x+1

2
in (2.2) then in view of (1.2) we obtain

T

(
2k + 1 + x

2`+1

)
= T

(
k

2`

)
+
`− 2s(k)

2`

x+ 1

2
+

1

2`
T

(
x+ 1

2

)
= T

(
k

2`

)
+
`− 2s(2k)

2`+1
(x+ 1) +

1− x

2`+1
+

1

2`+1
T (x).

For x = 0 we find in view of T (0) = 0

T

(
2k + 1

2`+1

)
= T

(
k

2`

)
+
`− 2s(2k)

2`+1
− 1

2`+1

and it follows

T

(
2k + 1 + x

2`+1

)
= T

(
2k + 1

2`

)
+
`+ 1− 2s(2k + 1)

2`+1
x+

1

2`+1
T (x)

where we have used s(2k + 1) = s(k) + 1, so that (2.2) is proved by induction.

From (2.2) with k− 1 instead of k and 1− x instead of x we get in view of the symmetry of
T the equation

T

(
k − x

2`

)
= T

(
k − 1

2`

)
+
`− 2s(k − 1)

2`
(1− x) +

1

2`
T (x) (0 ≤ x ≤ 1). (2.5)

It follows for x = 0 that

T

(
k

2`

)
= T

(
k − 1

2`

)
+
`− 2s(k − 1)

2`
,

so that (2.5) can be written as (2.3). Finally, equation (2.4) follows from (2.2) for x = 1 and
by summation in view of T (0) = T (1) = 0. �
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Corollary 2.2 For ` ∈ N, k = 1, . . . , 2` − 1, x ∈ [0, 1], the Takagi function T satisfies

T

(
k + x

2`

)
− T

(
k − x

2`

)
=
`− s(k)− s(k − 1)

2`−1
x. (2.6)

For k = ` = 1 this means the symmetry of T with respect to 1
2
.

It is easy to see that the partial sum

S`(x) =
`−1∑
n=0

∆(2nx)

2n
(2.7)

of Takagi’s function T from (1.1) is linear in the intervals

Ik` =

[
k

2`
,
k + 1

2`

]
(2.8)

where ` ∈ N and k ∈ {0, 1, . . . , 2` − 1}. Moreover, for n ≥ ` and k ∈ {0, 1, . . . , 2`} we have
Sn( k

2` ) = S`(
k
2` ) and hence also T ( k

2` ) = S`(
k
2` ), cf. Figure 2.

Figure 2: The partial sums S1, S2, S3

Proposition 2.3 For ` ∈ N, k = 0, 1, . . . , 2` − 1, the partial sum (2.7) of (1.1) is linear
in the interval (2.8) and it holds

S`

(
k + x

2`

)
= S`

(
k

2`

)
+
`− 2s(k)

2`
x (x ∈ [0, 1]). (2.9)
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Proof: Clearly, S`(x) is linear in Ik` so that

S`

(
k + x

2`

)
= S`

(
k

2`

)
+ ax (x ∈ [0, 1]).

In view of T ( k
2` ) = S`(

k
2` ) and T (k+1

2` ) = S`(
k+1
2` ) we obtain from (2.2) with x = 1 that

S`

(
k + 1

2`

)
− S`

(
k

2`

)
=
`− 2s(k)

2`

which implies the assertion. �

3 A limit relation at dyadic points

In order to derive the limit relation (1.3) first we show

Lemma 3.1 For 0 < x ≤ 1
2

the Takagi function T satisfies the estimate

x log2

1

x
≤ T (x) ≤ x log2

1

x
+ cx (3.1)

with a constant c < 2
3
.

Proof: For 0 < x ≤ 1
2

we put

C(x) =
T (x)

x log2
1
x

and we show that for 1
2`+1 < x ≤ 1

2` (` ∈ N) it holds

1 ≤ C(x) ≤ 1 +
c

`+ 1
. (3.2)

Applying (1.2) we obtain

C
(x

2

)
log2

2

x
=

2

x
T
(x

2

)
= 1 + C(x) log2

1

x

which implies {
C
(x

2

)
− 1
}

log2

2

x
= {C(x)− 1} log2

1

x
. (3.3)

1. First we show that C(x) ≥ 1 for 1
4
≤ x ≤ 1

2
. We use the estimate T (x) ≥ S3(x) where

the partial sum S3(x) from (2.7) has for 1
4
≤ x ≤ 1

2
the form

S3(x) =


1
2

+ x for 1
4
≤ x ≤ 3

8

1− x for 3
8
≤ x ≤ 1

2
,
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cf. Figure 2. For 1
4
< x < 3

8
we have for the function f(x) = x log2

1
x

f ′(x) =
−1 + log 1

x

log 2
<

log 4
e

log 2
< 1 = S ′3(x)

so that from S3(
1
4
) = f(1

4
) = 1

2
it follows S3(x) ≥ f(x). For 3

8
< x < 1

2
we have

f ′(x) =
−1− log x

log 2
>
− log e

2

log 2
> −1 = S ′3(x)

so that from S3(
1
2
) = f(1

2
) = 1

2
it follows S3(x) ≥ f(x). So we have T (x) ≥ S3(x) ≥ f(x) for

1
4
≤ x ≤ 1

2
, i.e. C(x) ≥ 1 for these x. The relation (3.3) implies that C(x) ≥ 1 is valid for

all x ∈ (0, 1
2
].

2. Next we show that (3.2) is valid for ` = 1. Since 1
f(x)

is increasing for 0 < x < 1
e

and
decreasing for 1

e
< x, it follows that in interval [1

4
, 1

2
] the function 1

f(x)
is maximal for x = 1

4

or for x = 1
2
. Because of f(1

4
) = f(1

2
) = 1

2
it follows in view of T (1

4
) < 2

3
and T (1

2
) < 2

3
that

C(x) < 4
3

for 1
4
≤ x ≤ 1

2
, i.e. (3.2) is true for ` = 1 with a constant c < 2

3
. If (3.2) is true for

a certain ` ∈ N then by (3.3) we have

C
(

x
2

)
− 1

C(x)− 1
=

log2
1
x

1 + log2
1
x

= 1− 1

1 + log2
1
x

≤ 1− 1

`+ 2

for 1
2`+1 ≤ x ≤ 1

2` . This implies

C
(x

2

)
− 1 ≤ {C(x)− 1}`+ 1

`+ 2
≤ c

`+ 2

for 1
2`+2 ≤ x

2
≤ 1

2`+1 , i.e. (3.2) is valid also for `+ 1 and hence by induction for all ` ∈ N.

Finally, for 1
2`+1 < x we have `+ 1 > log2

1
x
, so that for the right hand side of (3.2) we get

C(x) ≤ 1 +
c

`+ 1
≤ 1 +

c

log2
1
x

which yields the assertion. �

Proposition 3.2 The Takagi function T satisfies at each dyadic point x = k
2` the limit

relation
lim
h→0

T (x+ h)− T (x)

|h| log2
1
|h|

= 1.

Proof: For x = 0 the limit relation is a consequence of Lemma 3.1. Let x = k
2` (` ∈ N, 0 ≤

k ≤ 2` − 1), and 0 < h < 1
2` . According to (2.2) we have

T (x+ h)− T (x) = {`− 2s(k)}h+
1

2`
T (2`h)
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and
T (x+ h)− T (x)

h log2
1
h

=
`− 2s(k)

log2
1
h

+
1

2`h

T (2`h)

log2
1
h

With t = 2`h the last term can be written as
T (t)

t log2
2`

t

=
T (t)

t log2
1
t
(1− `

log2 t
)
→ 1 (t→ +0).

We obtain the same limit for
T (x− h)− T (x)

−h log2
1
h

by means of (2.3) which yields the assertion. �

4 The extreme values of Takagi’s function

Clearly, since Takagi’s function T is continuous and nowhere differentiable there is no interval
where T is monotone. The function T has at the point x0 a locally maximum if T (x0) ≥ T (x)

for all x of a certain neighbourhood U of x0. If even T (x0) > T (x) for x ∈ U with x 6= x0

then T has at x0 a proper locally maximum. Analogous notations are used for a proper
locally minimum, cf. e.g. [3].

Proposition 4.1 The Takagi function T attains its locally minima exactly at the dyadic
points x = k

2` where all these T (x) are proper minima.

Proof: The limit relation (1.3) implies

lim
h→0

T (x+ h)− T (x)

|h|
= +∞

so that T has at each dyadic point a proper locally minimum. Now let x ∈ [0, 1] be a
nondyadic point then for arbitrary ` ∈ N there is k ∈ {0, 1, . . . , 2`−1} such that k

2` < x < k+1
2` ,

i.e. x = t k
2` + (1 − t)k+1

2` with a certain t ∈ (0, 1). For the partial sum S`(x) from (2.7) it
holds T ( k

2` ) = S`(
k
2` ) and T (k+1

2` ) = S`(
k+1
2` ), and T (x) > S`(x) = tS`(

k
2` ) + (1 − t)S`(

k+1
2` ).

This implies T (x) > min {T ( k
2` ), T (k+1

2` )} so that T cannot have a proper minimum at x. �

Next we investigate the global maxima of Takagi’s function.

Proposition 4.2 We have maxT = 2
3

and the set M of points x ∈ [0, 1] with T (x) = 2
3

is given by

M =

{
x =

∞∑
k=1

ak

4k
: ak ∈ {1, 2}

}
. (4.1)

M is a perfect set of measure zero with minM = 1
3

and maxM = 2
3
.
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Proof: By means of the partial sum S2(x) from (2.7) the series (1.1) can be written as

T (x) =
∞∑

n=0

S2(4
nx)

4n
(x ∈ R). (4.2)

Since S2(x) is 1-periodic and has in [0, 1] the form

S2(x) =


2x for 0 ≤ x < 1

4

1
2

for 1
4
≤ x < 3

4

2− 2x for 3
4
≤ x ≤ 1,

(4.3)

cf. Figure 2, it follows that

T (x) ≤ 1

2

∞∑
n=0

1

4n
=

2

3

and that T (x) = 2
3

if and only if S2(4
nx) = 1

2
for all n ∈ N. According to (4.3) this is

valid for x ∈ [0, 1] exactly for x ∈ M from (4.1). M is a perfect set since for x ∈ M with
given ak in (4.1) also xn = x + 3−2an

4n ∈ M (exchange of the digits 1 and 2) and xn → x

as n → ∞. Moreover, M has the measure zero, since the representations of x ∈ M do not
contain at least one digit, here 0 and 3, cf. [5], p. 329-330. From (4.1) we get minM = 1

3

and maxM = 2
3
. �

In order to investigate the locally maxima of Takagi’s function we determine the maxima of
it in the closed intervals (2.8).

Proposition 4.3 For ` ∈ N, k = 0, 1, . . . , 2` − 1 the set Ak` of points in Ik` from (2.8),
where T (x) is maximal, is a perfect set of measure zero so that it is nowhere dense in [0, 1].
For the maximum it holds

max
x∈Ik`

T (x) =

 T
(

k
2`

)
+ 2

3·4s(k) 2s(k) ≥ `

T
(

k+1
2`

)
+ 2

3·4`−s(k) 2s(k) < `

with s(k) from (2.1).

Proof: According to Proposition 2.3 in the interval Ik` it holds relation (2.9), so that S` is
linear in Ik` with the slope p = `− 2s(k). In case p = 0 we get from (2.2) that

T

(
k + x

2`

)
= T

(
k

2`

)
+

1

2`
T (x) (x ∈ [0, 1]).

According to Proposition 4.2 it follows that T attains its maximum in Ik` on a nowhere dense
perfect set Ak` with measure |Ak`| = 0, and for the maximal value we have

max
x∈Ik`

T (x) = T

(
k

2`

)
+

2

3

1

2`
.
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This is the assertion in case ` = 2s(k).

In case p < 0 the partial sum S` is strictly decreasing in Ik`. The partial sum S`+|p| is
decreasing in Ik`, where more precisely we have S`+|p|(x) = S`(

k
2` ) for x ∈ I2|p|k,`+|p| ⊂ Ik`

and S`+|p|(x) < S`(
k
2` ) for all another x in Ik`. Therefore, the maximum of T in Ik` we find

in I2|p|k,`+|p| where in view of Proposition 2.1 we have

T

(
2|p|k + x

2`+|p|

)
= T

(
k

2`

)
+

1

2`+|p|T (x) (x ∈ [0, 1]).

Thus, for the maximum of T in Ik` we have in view of ` + |p| = 2s(k) and Proposition 4.2
that

max
x∈Ik`

T (x) = T

(
k

2`

)
+

2

3

1

4s(k)
.

Finally, if p > 0 then the partial sum S` is strictly increasing in Ik`, and S`+p is increasing.
Now, in this case we have S`+p(x) = S`(

k+1
2` ) for x ∈ I2p(k+1)−1,`+p and S`+p(x) < S`(

k+1
2` ) for

all another x in Ik`. Therefore, the maximum of T in Ik` we find in I2p(k+1)−1,`+p where in
view of Proposition 2.1 we have

T

(
2p(k + 1)− x

2`+p

)
= T

(
k + 1

2`

)
+

1

2`+p
T (x) (x ∈ [0, 1]).

As before it follows in view of `+ p = 2`− 2s(k) that

max
x∈Ik`

T (x) = T

(
k + 1

2`

)
+

2

3

1

4`−s(k)
.

According to Proposition 4.2 the set Ak` where T is maximal in Ik` is a nowhere dense set
of measure zero. �

It follows from Proposition 4.3 and (2.4) that the maximum of T in Ik` has the form 1
3

m
2n

with certain integers m,n. As consequence we get

Proposition 4.4 The set A ⊆ [0, 1], where T attains its locally maxima, is a set of
first category, i.e. it is representable as union of at most countable many perfect nowhere
dense sets. This set A has the power c and the measure zero. For x ∈ A the values are
T (x) = 1

3
m
2n with certain n ∈ N0 and m ∈ {1, 2, . . . , 2n+1}. There is no point where T has a

proper maximum.

5 Improper derivatives

As already mentioned in the introduction formula (1.3) implies that for dyadic points x = k
2`

it holds
lim

h→+0

T (x+ h)− T (x)

h
= +∞
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and
lim

h→−0

T (x+ h)− T (x)

h
= −∞.

Hence, T has at all dyadic points x the one-side improper derivatives T ′+(x) = +∞ and
T ′−(x) = −∞.

For arbitrary numbers x, y ∈ [0, 1] we consider the dyadic representations

x = ξ0, ξ1ξ2 . . . , y = η0, η1η2 . . . (5.1)

with ξ0 = η0 = 0 and ξn, ηn ∈ {0, 1}, and we put

xn = 0, ξnξn+1 . . . , yn = 0, ηnηn+1 . . . (5.2)

for n ≥ 0.

Proposition 5.1 Let x and y are different points in [0, 1] with ξν = ην for ν < n ∈ N.
Then also xn and yn are different, and we have

T (x)− T (y)

x− y
=

n−1∑
ν=0

(−1)ξν +
T (xn)− T (yn)

xn − yn

. (5.3)

In particular, if ην = 1− ξν for ν ≥ n, i.e. xn + yn = 1, then we have |x− y| ≤ 1
2n and

T (x)− T (y)

x− y
=

n−1∑
ν=0

(−1)ξν . (5.4)

Proof: We put kn = [2n−1x], i.e. kn =
∑n−1

ν=0 2n−νξν then we have

x =
2kn + xn

2n
, y =

2kn + yn

2n

and
x− y =

xn − yn

2n
. (5.5)

From equation (2.2) we get

T (x) = T

(
2kn + xn

2n

)
= T

(
2kn

2n

)
+
n− 2s(2kn)

2n
xn +

1

2n
T (xn)

and
T (y) = T

(
2kn + yn

2n

)
= T

(
2kn

2n

)
+
n− 2s(2kn)

2n
yn +

1

2n
T (yn).

It follows
T (x)− T (y)

x− y
= n− 2s(2kn) +

T (xn)− T (yn)

xn − yn

and the relations (5.5) and 1− 2ξν = (−1)ξν for ν = 0, . . . n− 1 yield the assertion (5.3). In
case yn = 1− xn we have T (xn) = T (1− xn) = T (yn), and hence (5.4). �
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Corollary 5.2 Formula (5.4) implies:
1. There is no point where T has a finite derivative since as n → ∞ the right-hand side is
not convergent to a finite value.
2. If there exists the improper derivative T ′(x) = +∞ then

∞∑
k=0

(−1)ξk = +∞ (5.6)

and if T ′(x) = −∞ then
∞∑

k=0

(−1)ξk = −∞. (5.7)

Proposition 5.3 If in the dyadic representation of the number x the number of both
zeros and ones which occur one after the other is bounded then (5.6) implies the existence of
the improper derivative T ′(x) = +∞, and (5.7) implies T ′(x) = −∞.

Proof: For y 6= x let n be the smallest integer such that ηn = ξn, cf. (5.1). Then by
Proposition 5.1 it holds∣∣∣∣∣T (x)− T (y)

x− y
−

n−1∑
ν=0

(−1)ξν

∣∣∣∣∣ =

∣∣∣∣T (xn)− T (yn)

xn − yn

∣∣∣∣
with xn, yn from (5.2). If d denotes the maximal number of equals digits ξν which occur one
after the other then in case ξn = 1, ηn = 0 we have xn >

1
2

+ 1
2d+3 and yn <

1
4

+ 1
8

+ . . . = 1
2

so that |xn − yn| > 1
2d+3 . In case ξn = 0, ηn = 1 we have xn <

1
4

+ . . .+ 1
2d+2 = 1

2
− 1

2d+3 and
yn ≥ 1

2
so that |xn − yn| > 1

2d+3 , too. Hence∣∣∣∣T (xn)− T (yn)

xn − yn

∣∣∣∣ < 2

3
2d+3.

This implies the assertion. �

So for rational x we summarize

Proposition 5.4 For the Takagi function T we have the following statements at rational
points x:
1. If x = k

2` is a dyadic point then T ′+(x) = +∞ and T ′−(x) = −∞.
2. If x 6= k

2` has a dyadic representation with the period ξk+1 . . . ξk+p then it holds:

ξk+1 + ξk+2 + . . .+ ξk+p


< p

2
=⇒ T ′(x) = +∞

> p
2

=⇒ T ′(x) = −∞

= p
2

=⇒ T ′(x) does not exists.

In the last case, where p must be even, D(x) from (1.5) and D(x) from (1.6) are finite.
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Remark 5.5 It follows from Proposition 5.4 that for rational x with an odd length of
period in the dyadic representation always there exists the improper derivative T ′(x). For
instance x1 = 1

7
= 0, 001001 . . . has the period 001 and hence there exists the improper

derivative T ′(x1) = +∞, and x2 = 6
7

= 0, 110110 . . . has the period 110 and hence there
exists the improper derivative T ′(x2) = −∞.

Remark 5.6 We know that for dyadic points x = k
2` there exists the limit (1.3). Let us

mention that a similar argument as in the proof of Proposition 5.3 also yields (1.3) and
moreover, that for rational x 6= k

2` it holds

lim
h→0

T (x+ h)− T (x)

h log2
1
|h|

= 1− 2(ξk+1 + . . .+ ξk+p)

p

where ξk+1 . . . ξk+p is a period in the dyadic representation of x.

6 Upper and lower derivatives

Finally, we investigate the four derivatives D+(x), D+(x), D−(x), D−(x) of Takagi’s function
T , which are defined in the introduction. We begin with

Lemma 6.1 For 0 < x < 1
3

the T satisfies the inequality T (x) ≥ 2x where we have
equality if and only if x = xm with

xm =
m∑

µ=1

1

4µ
=

4m − 1

3 · 4m
(m ∈ N). (6.1)

Proof: First we show by induction on m that T (xm) = 2xm. For m = 1 we have x1 = 1
4
,

and according to (2.4) it holds T (1
4
) = 1

2
. Formula (6.1) implies xm = km

4m with km =

1 + 4 + . . .+ 4m−1 so that s(km) = m, cf. (2.1). Moreover, we have

xm+1 = xm +
1

4m+1
=

4km + 1

4m+1
. (6.2)

Assume that for a fixed m it holds

T (xm) = 2xm =
2(4m − 1)

3 · 4m

then by (2.2) with k = 4km, ` = 2m + 2 and x = 1 we get in view of s(4km) = m and
T (1) = 0 that

T

(
4km + 1

22m+2

)
= T (xm) +

2m+ 2− 2s(4km)

22m+2

=
2(4m − 1)

3 · 4m
+

2

4m+1
=

2(4m+1 − 1)

3 · 4m+1
,
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i.e. T (xm+1) = 2xm+1. It follows that T (xm+1) = T (xm) + 2(xm+1 − xm). Since xm = 4km

22m+2

and xm+1 = 4km+1
22m+2 the equation (2.2) implies in view of T (t) > 0 for 0 < t < 1

4m+1 that
T (xm + t) > T (xm) + 2t.

Lemma 6.2 The Takagi function has at the point x = 1
3

the derivatives

D+

(
1

3

)
= 0, D+

(
1

3

)
= −1, D−

(
1

3

)
= 2, D−

(
1

3

)
= 1.

Proof: We know that T (x) ≤ T (1
3
) = 2

3
and that the setM of points x in [0, 1] with T (x) = 2

3

is a perfect set. Since 1
3

= minM it follows D+(1
3
) = 0. The symmetry T (1 − x) = T (x)

implies D−(2
3
) = 0, too.

Let xν be a sequence with xν → x as ν → ∞. From the first equation in (1.2) with 2x

instead of x we get for xν 6= x and xν , x <
1
2

that

T (xν)− T (x)

xν − x
= 1 +

T (2xν)− T (2x)

2(xν − x)
. (6.3)

It follows D−(1
3
) = 1 since D−(2

3
) = 0. Moreover, Lemma 6.1 implies D−(1

3
) = 2 so that

D+(2
3
) = −2 since the symmetry of T . Now, (6.3) implies D+(1

3
) = −1. �

Proposition 6.3 If for x ∈ R the right-side derivatives D+(x) and D+(x) of the Takagi
function T are finite then we have

D+(x)−D+(x) ≥ 2

where we have equality if x has the form

x =
k

2n
+

1

3 · 2n

with k, n ∈ N0. Moreover, the upper and lower derivatives D(x) and D(x) of T satisfy the
inequality

D(x)−D(x) ≥ 3

where we have equality if x has above form.

Proof: For dyadic x = k
2` we know from Proposition 3.2 that D+T (x) = +∞. Let x be a

nondyadic point with the representation x = 0, ξ1ξ2 . . . and for n ∈ N let be y = 0, η1η2 . . .

with ην = ξν for ν ≤ n and ην = 1 − ξν for ν > n. In case ξn+1 = 0 we have y > x

since y ≥ 0, ξ1 . . . ξn1 > 0, ξ1 . . . ξn0 . . . = x and x is notdyadic. Equation (5.4) implies that
Dr(x) := D+(x)−D+(x) ≥ 1 where Dr(x) ≥ 2 and the case Dr(x) = 1 may be only possible



On the extrema and the improper derivatives . . . 55

if there is an integer n such that for ν ≥ 0 it holds ξn+2ν = 1 and ξn+2ν+1 = 0. This means
that x = x0 necessarily must be of the form x0 = 0, ξ1 . . . ξn0101 . . ., i.e.

x0 =
n∑

ν=1

ξν
2ν

+
1

2n+2

∞∑
k=0

1

4k
=

k

2n
+

1

3 · 2n

and according to (2.2) we get for 0 < |h| < 1
3·2n that

T (x0 + h)− T (x0)

h
= n− 2s(k) +

T (1
3

+ 2nh)− T (1
3
)

2nh
.

It follows Dr(x0) = Dr(
1
3
) = 2 by Lemma 6.2. Consequently, for an arbitrary nondyadic

point x we have Dr(x) ≥ 2.

As before formula (5.4) implies that S = D(x) − D(x) ≥ 2 where the case S = 2 may be
only possible if there is an integer n such that for ν ≥ 0 it holds ξn+2ν = 1 and ξn+2ν+1 = 0,
i.e. if x = x0. But for x0 we get from Lemma 6.2 as before that D(x0)−D(x0) = 3. �

7 Supplements

Finally we give three supplements.

7.1. Improper derivatives at irrational points. There exists irrational points such that
there exists the improper derivative. In order to give an example first we put x = ξ0, ξ1ξ2 . . .

where ξk is s(k) mod 2 with values from {0, 1} which is the Morse sequence, cf. [1]. Relations
s(2k) = s(k) and s(2k + 1) = s(k) + 1 imply that d = 2 is the maximal number of the same
digit which occur one after the other. For k = 2` + 1 (` = 1, 2, . . .) we have s(k) = 2 and
hence ξk = 0. We put y = η0, η1η2 . . . , where ηk = 1 for k = 2` +1 and ηk = 0 elsewhere. We
show that z = x + y is irrational and that Takagi’s function has at this point the improper
derivative T ′(z) = −∞. First we show that x is irrational. Assume the representation
x = ξ0, ξ1ξ2 . . . contains a period, i.e. there is an integer p > 1 such that ξk+p = ξk for
k ≥ k0. If s(p) ≡ 0 mod 2 then for k = 2n ≥ k0 we have s(k) = 1 but s(kp) = s(p) 6≡ s(k)

mod 2 which is impossible. In case s(p) ≡ 1 mod 2 we note that ξk+p′ = ξk for each multiply
p′ of p. In particular for p′ = (2n + 1)p with 2n > p we get s(p′) = 2s(p), and as before we
get an contradiction so that x cannot be rational. Now it follows easy that also z = ζ0, ζ1 . . .

with ζk = ξk + ηk does not have a period in view of 2`+1 + 1− (2` + 1) →∞ as `→∞. In
order to apply Proposition 5.3 we have to show that

∞∑
k=0

(−1)ξk+ηk = −∞. (7.1)
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But the sequence
∑n

k=0(−1)ξk ∈ {0,+1,−1} is bounded and ηk = 1 only for k = 2` + 1

where ξk = 0. This implies (7.1), and by Proposition 5.3 it holds T ′(z) = −∞.

7.2. An example for the case D(x) = +∞ and D(x) = −∞. In order to show that the
condition (5.6) is not sufficient for the existence of the improper derivative T ′(x) = +∞ we
use the following

Lemma 7.1 Assume that x = k+r
2n and y = k−2r

2n where k is an odd integer and 0 < r < 1
4
.

Then we have
T (x)− T (y)

x− y
= n+ 2− 2s(k)− T (r)

3r
(7.2)

with s(k) from (2.1).

Proof: According to equation (2.2) we have

T (x) = T

(
k + r

2n

)
= T

(
k

2n

)
+
n− 2s(k)

2n
r +

1

2n
T (r)

and by equation (2.3) we get

T (y) = T

(
k − 2r

2n

)
= T

(
k

2n

)
+

2s(k)− 2− n

2n
2r +

1

2n
T (2r)

where we have used that s(k − 1) = s(k)− 1 since k is an odd integer. It follows

T (x)− T (y) =
n− 2s(k)

2n
3r +

4r

2n
+
T (r)− T (2r)

2n

and in view of x− y = 3r
2n we find

T (x)− T (y)

x− y
= n− 2s(k) +

4

3
+
T (r)− T (2r)

3r

From the first equation in (1.2) we get for 0 < r < 1
4

that

T (r)− T (2r)

3r
=
T (r)− {2T (r)− 2r}

3r
= −T (r)

3r
+

2

3

and hence it follows the assertion. �

Example 7.2 For

x =
∞∑

n=1

1

2an

with an ∈ N such that an+1 ≥ 4an. Then
∑

(−1)ξν = +∞ and hence D(x) = +∞. We show
that D(x) = −∞. For this we put

x =
kn + rn

2an
, y =

kn − 2rn

2an
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with

kn = 2an

n∑
k=1

1

2ak
, rn = 2an

∞∑
k=n+1

1

2ak
,

i.e. y = x+ hn with hn = − 3
2αn rn. By Lemma 7.1 we have in view of s(kn) = n that

T (x)− T (x+ hn)

−hn

= an − 2n− T (rn)

3rn

and by Proposition 3.1 it holds

T (rn)

rn

≥ log2

1

rn

≥ an+1 − an

since 1
rn
≥ 2an+1−an . In view of an+1 ≥ 4an we get

T (x)− T (x+ hn)

−hn

≤ an − 2n− an+1 − an

3
≤ −2n

i.e. D(x) = −∞.

7.3. Some remarks to the representations in textbook [3]. The textbook [3] of
K. Strubecker: ”EINFÜHRUNG IN DIE HÖHERE MATHEMATIK”, vol. II, contains a
beautiful introduction in the foundations of the analysis. So you can find in detail a treatise
on the function f = T of T. Kakagi, among other things very interested investigations due to
W. Wunderlich [6]. Unfortunately, in the passage on Takagi’s function are misrepresentations
and since it is not planed a new edition of [3], we want to make here two remarks.

1. The first remark concern the formula (56.45) in [3]:

Dν =
f(xν)− f(x)

xν − x
=

ν∑
n=1

(−1)τn = (−1)τ1 + (−1)τ2 + . . .+ (−1)τν (7.3)

where
x = 0, τ1τ2 . . . τν . . .

and
xν = 0, τ1τ2 . . . τν−1τ

′
ντν+1 . . .

with τ ′ν = 1−τν are the dyadic representations of x and xν , respectively. This formula cannot
be correct as the following example shows. In case x = 2

3
= 0, 10101 . . . we have τ2ν = 0 and

τ2ν−1 = 1 for ν ≥ 1 and x1 = 0, 0010101 . . . = 1
6
. Now, f(x) = 2

3
and f(x1) = 1

6
+ 1

2
f(1

3
) = 1

2
,

cf. (1.2), so that
f(x1)− f(x)

x1 − x
=

1

3



58 M. Krüppel

but formula (7.3) yields integer values. Let us mention that instead of (7.3) it holds

f(xν)− f(x)

xν − x
= 1 +

ν−1∑
n=1

(−1)τn −
∞∑

k=0

τν+k+1

2k
(7.4)

which follows from Proposition 5.1.

2. The second remark concern Satz 3 and Satz 4 on p. 255. Both theorems base on formula
(7.3) which we have recognize as not correct. Moreover, xν is only a special sequence which
converges to x so that the fact lim

ν→∞
Dν = +∞ does not imply the existence of (one-side)

improper derivatives. Therefore the statements in Satz 3 and Satz 4 concerning the existence
of (one-side) improper derivatives are not proved.

On p. 255 it says literal: ”Zum Beispiel hat f(x) an der Stelle

x =
1

7
= 0, 001001001 . . . (periodisch)

nach (56.45) (i.e. (7.3)) die uneigentliche Ableitung f ′(x) = lim
ν→∞

Dν = +∞ und . . .”. By
Proposition 5.4 indeed f ′(x) = +∞, cf. also Remark 5.5. But this a not a consequence of
lim

ν→∞
Dν = +∞ as Example 7.2 shows.
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Sadek Bouroubi

Bell Numbers and Engel’s Conjecture

ABSTRACT. In this paper, we prove some new properties of the sequence of the Bell
numbers and present some results in connection with Engel’s conjecture. In addition, using
a new approach we state a stronger conjecture.

KEY WORDS. Partition lattice; Bell number; variance; mean; convexity; concavity.

1 Introduction

A partition of the set [n] = {1, 2, . . . , n} is a collection of nonempty, pairwise disjoint subsets
of [n] called blocks whose union is [n]. A partition π1 is said to refine another partition
π2, denoted by π1 ≤ π2, if every block of π1 is contained in some block of π2. Hence, the
refinement relation is a partial ordering of the set

∏
n of all partitions of [n] . The number of

partitions of [n] having exactly k blocks is the Stirling number of the second kind S (n, k).
The total number of partitions of [n] is the nth Bell number Bn. Therefore,

Bn =
n∑

k=1

S (n, k) , n ≥ 1 .

Also, recall Dobinski’s formula [1]

Bn =
1

e

∞∑
i=0

in

i!
.

Now, for all x ∈ R, we set

B (x) =
1

e

∞∑
i=0

ix

i!
, x ∈ R .

Note that the series
∑
i≥0

ix

i!
converges for all x ∈ R and B (n) = Bn for all n ∈ N.
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2 New properties of the Bell numbers

Theorem 1 Let p ∈ ]1,+∞[ and let q be the conjugate exponent of p. Then, for all
x1, x2 ∈ R, we have

B (x1 + x2) ≤ B1/p (px1)B
1/q (qx2) .

Proof: Let Z be the discrete random variable with distribution function

P (Z = i) =
1

e
· 1

i!
, i ∈ N .

Then

E(Zx) = B(x), for all x ∈ R . (1)

From Hölder’s inequality we obtain

E
(
Zx1+x2

)
≤ E1/p (Zpx1) · E1/q (Zqx2) , for all x1,x2 ∈ R .

Hence, if we use (1), the result follows immediately.

Theorem 2 For all x1, x2 ∈ R, we have

2B (x1 + x2) ≤ B (2x1) +B (2x2) .

Proof: Using the same discrete random variable in the above proof we have

E((Zx1 − Zx2)2) ≥ 0 .

Thus

2E(Zx1+x2) ≤ E(Z2x1) + E(X2x2) .

Consequently, using (1), we get

2B (x1 + x2) ≤ B (2x1) +B (2x2) .

As a consequence of Theorem 1, with x1, x2 ∈ N and p = q = 2 we obtain the first following
new property of the sequence of the Bell numbers.

Corollary 3 The inequality

B2
n+m ≤ B2nB2m

holds for every n, m ∈ N.
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Corollary 4 The sequence (Bn+1/Bn)n is increasing, and, equivalently, the sequence
(Bn)n is logarithmically convex, i.e.

B2
n+1 ≤ BnBn+2, for all n ≥ 0 .

Proof: The assertion follows from Theorem 1 with x1 = n
2
x2 = n+2

2
, and p = q = 2.

Corollary 5 The sequence (Bn)n is convex, i.e.

2Bn ≤ Bn−1 +Bn+1, for all n ≥ 1 .

Proof: This inequality follows easily from Theorem 2 with x1 = n+1
2

and x2 = n−1
2
.

Henceforth, let τn (resp. σ2
n) denote the average (resp. the variance) of the number of blocks

in a partition of the generic n-set [n], i.e.

τn =
1

Bn

n∑
k=1

kS (n, k)

and

σ2
n =

1

Bn

n∑
k=1

k2S (n, k)−

(
1

Bn

n∑
k=1

kS (n, k)

)2

.

Using the recurrence relation

S (n+ 1, k) = S (n, k − 1) + kS (n, k) (2)

we obtain

τn =
Bn+1

Bn

− 1

and

σ2
n =

Bn+2

Bn

−
(
Bn+1

Bn

)2

− 1 .

In studying Alekseev’s inequality [4] on the principal ideal of the partition lattice, it was
shown in [3] that the inequality is equivalent to

τn1 + τn2 ≥ τn1+n2 , for all n1, n2 ∈ N .

Furthermore, K. Engel [5] showed that the inequality above is true if the sequence (τn)n is
concave, and he was led to the conjecture that the sequence (τn)n is concave, i.e.

τn ≥
1

2
(τn−1 + τn+1) , for all n ≥ 1 .
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We verified the last inequality for n ≤ 1500 using a computer [3], but no general proof
has been found yet. The second purpose of this paper is to contribute to the study of this
conjecture by using a new approach.

Let, for x ∈ R,

Bn (x) =
n∑

k=0

S (n, k) xk . (3)

It is clear that (Bn (x))n is a sequence of polynomials, with B0 (x) ≡ 1 and Bn (1) = Bn (Bell
number). Recall that the polynomial Bn (x) admits n distinct roots, where only one of them
is equal to zero and all others are strictly negative. This result is due to L. N. Harper [8] and
the detailed proof can be found in [3]. From now on, let −α1 (n) , −α2 (n) , · · · ,−αn−1 (n)

denote the (n− 1) negative roots of Bn (x), and let In = {0} ∪ {−αi (n) , i = 1, ..., n− 1} .
This allows us to write

Bn (x) = x
n−1∏
i=1

(x+ αi (n)) .

In this section we assume that x /∈ In. Setting

τn (x) =
Bn+1 (x)

Bn (x)
− x

and

σ2
n (x) =

Bn+2 (x)

Bn (x)
−
(
Bn+1 (x)

Bn (x)

)2

− x, (4)

we have τn (1) = τn and σ2
n (1) = σ2

n.

Theorem 6 For every n ∈ N∗,

i) τn (x) = 1 +
n−1∑
j=1

x
x+αj(n)

= n−
n−1∑
k=1

αj(n)

x+αj(n)
,

ii) σ2
n (x) = x d (τn (x)),

where d is the differential operator d
dx
·

Proof: Without restriction, we only consider here the case when x > 0.

i) It is easy to verify from (2) and (3) that

Bn+1 (x) = x (d (Bn (x)) +Bn (x)) . (5)
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It follows that

τn (x) = x
d (Bn (x))

Bn (x)

= x d (log (Bn (x)))

= x d

(
log x+

n−1∑
j=1

log (x+ αj (n))

)

= 1 +
n−1∑
j=1

x

x+ αj (n)

= n−
n−1∑
j=1

αj (n)

x+ αj (n)
.

To prove ii), we have

x d (τn (x)) = x

(
d (Bn+1 (x))

Bn (x)
− Bn+1 (x) d (Bn (x))

B2
n (x)

− 1

)
=

Bn+2 (x)− xBn+1 (x)

Bn (x)
− Bn+1 (x) (Bn+1 (x)− xBn (x))

B2
n (x)

− x

=
Bn+2 (x)

Bn (x)
−
(
Bn+1 (x)

Bn (x)

)2

− x

= σ2
n (x) .

Thus, the theorem is proved.

Corollary 7 For every n ≥ 2,

a) 1 < τn (x) < n, for each x > 0,

b) 0 < σ2
n (x) < n−1

4
, for each x > 0,

c) The sequence (Bn (x))n is logarithmically convex for x > 0 and logarithmically concave
for x < 0,

d) For every n ≥ 1, the polynomials Bn+1(x)
x

and Bn(x)
x

are coprime,

e) σ2
n+1 (x) + σ2

n−1 (x)− 2σ2
n (x) = x d (τn+1 (x) + τn−1 (x)− 2τn (x)).

Proof: a) By the fact that αj (n) is positive for every j, the inequality a) follows immediately
from i) of Theorem 6.

b) using i) and ii) of Theorem 6, we obtain

σ2
n (x) = x

n−1∑
j=1

αj (n)

(x+ αj (n))2 . (6)



66 S. Bouroubi

Thus, it is sufficient to notice that the maximum value of the function x→ αj(n)x

(x+αj(n))2
is 1

4
,

for x > 0.

c) This result is an immediate consequence of (6). Indeed, if x > 0 (resp. x < 0), then
σ2

n (x) > 0 (resp. σ2
n (x) < 0), i.e. using (4)

Bn+2 (x)Bn (x)−B2
n+1 (x)− xB2

n (x) > 0

(resp. Bn+2 (x)Bn (x)−B2
n+1 (x)− xB2

n (x) < 0) .

Hence

Bn+2 (x)Bn (x) > B2
n+1 (x) ,

(resp. Bn+2 (x)Bn (x) < B2
n+1 (x)) .

From (5), we get

Bn+1 (−αj (n)) = α2
j (n)

n−1∏
i=1
i6=j

(−αj (n) + αi (n)) 6= 0 . (7)

Thus d) is proved.

To prove e), it is sufficient to use ii) of Theorem 6.

Corollary 8 We have

2Bn < Bn+1 < (n+ 1)Bn .

Proof: Use a) of Corollary 7 and choose x = 1.

Remark 1 Note that the inequality 2Bn < Bn+1 is stronger than the convexity of the
sequence (Bn)n.

Let un (x) = τn (x) + x. Then we have the following result.

Lemma 9 For every n ≥ 3,

1

un−1 (x)
=

n−1∑
j=1

βj (n)

x+ αj (n)
,

where βj (n) ∈]0, 1[.
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Proof: We have

1

un−1 (x)
=
Bn−1 (x)

Bn (x)
=

n−2∏
i=1

(x+ αi (n− 1))

n−1∏
i=1

(x+ αi (n))

.

By a decomposition into partial fractions, we get

1

un−1 (x)
=

n−1∑
j=1

βj (n)

x+ αj (n)
,

where

βj (n) =
Bn−1 (−αj (n))

−αj (n)
n−1∏
i=1
i6=j

(−αj (n) + αi (n))

.

Moreover, from (7) we obtain

βj (n) =
−αj (n)Bn−1 (−αj (n))

Bn+1 (−αj (n))
.

On the other hand in view of (6) we have

σ2
n−1 (x) =

Bn+1 (x)

Bn−1 (x)
−
(

Bn (x)

Bn−1 (x)

)2

− x < 0, for all x < 0 and x /∈ In−1 .

Therefore

Bn−1 (x)

Bn+1 (x)
<

(
Bn (x)

Bn+1 (x)

)2

+ x

(
Bn−1 (x)

Bn+1 (x)

)2

, for all x < 0 and x /∈ In+1 .

If we replace x in the above inequality by −αj (n), then we obtain

βj (n) (1− βj (n)) > 0 ,

thus βj (n) ∈]0, 1[·

Theorem 10 For every n ≥ 2,

τn+1 (x) + τn−1 (x)− 2τn (x) = x

(
un−1 (x)

un (x)

)
d

(
un (x)

un−1 (x)

)
,

with un(x)
un−1(x)

= 1 + x
n−1∑
j=1

βj(n)

(x+αj(n))2
and βj (n) ∈]0, 1[.
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Proof: From (5) we obtain

τn (x) = x
d (Bn (x))

Bn (x)
.

Hence

τn+1 (x) + τn−1 (x)− 2τn (x) = xd (log (Bn+1 (x)) + log (Bn−1 (x))− 2 log (Bn (x)))

= xd

(
log

(
Bn+1 (x)Bn−1 (x)

B2
n (x)

))
= xd

(
log

(
un (x)

un−1 (x)

))
.

We also have

d

(
1

un−1 (x)

)
= d

(
Bn−1 (x)

Bn (x)

)
=

d (Bn−1 (x))

Bn (x)
− d (Bn (x))

Bn (x)
· Bn−1 (x)

Bn (x)

=
d (Bn−1 (x))

Bn−1 (x)
· Bn−1 (x)

Bn (x)
− d (Bn (x))

Bn (x)
· Bn−1 (x)

Bn (x)

=
1

x

1

un−1 (x)
(τn−1 (x)− τn (x))

=
1

x

(
1− un (x)

un−1 (x)

)
.

Hence

un (x)

un−1 (x)
= 1− x d

(
1

un−1 (x)

)
.

Therefore, from Lemma 9 we obtain

un (x)

un−1 (x)
= 1 + x

n−1∑
j=1

βj(n)

(x+ αj(n))2
.

This completes the proof.

3 Strong Conjecture

Recall that K. Engel conjectured that the sequence (τn)n is concave in n, i.e.

2τn − τn−1 − τn+1 ≥ 0, for every n ≥ 2 .

In this section we show that this conjecture is in fact a consequence of the following stronger
conjecture.
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Theorem 11 If the positive roots of the equation d
(

un(x)
un−1(x)

)
= 0 are less than 1, then

the sequence (τn)n is concave.

Proof: Using Theorem 10, we have

un (x)

un−1 (x)
≥ 1 when x ≥ 0 and lim

x→+∞

un (x)

un−1 (x)
= 1 .

Then, assuming that the positive roots of the equation d
(

un(x)
un−1(x)

)
= 0 are less than 1, the

function x 7→ un(x)
un−1(x)

would be necessarily decreasing in the neighborhood of 1, which means
that

τn+1 + τn−1 − 2τn =

(
un−1 (1)

un (1)

)
d

(
un (1)

un−1 (1)

)
< 0 .

Conjecture 1 For every n ≥ 1, the positive roots of the equation d
(

un(x)
un−1(x)

)
= 0 are all

less than 1.

Using Maple9, we checked this new conjecture for 2 ≤ n ≤ 400.
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Generalized Noor iterations with errors for asymptot-
ically nonexpansive mappings

ABSTRACT. In the present paper, we define and study a new three-step iterative schemes
with errors. Several strong convergence theorems of this scheme are established for asymp-
totically nonexpansive mappings. Our results extend and improve the recent ones announced
by Osilike and Aniagbosor, Cho et.al, Liu and Kang, Nammanee et al., and many others.

KEY WORDS. asymptotically nonexpansive mapping, uniformly convex Banach space,
Mann-type iteration, Ishikawa-type iteration, Noor-type iteration

1 Introduction

Let X be a real Banach space and C be a nonempty subset of X. A mapping T : C → C is
said to be asymptotically nonexpansive if there exists a sequence {kn} of real numbers with
kn ≥ 1 and limn→∞ kn = 1 such that

‖T nx− T ny‖ ≤ kn‖x− y‖,

for all x, y ∈ C and all n ≥ 1. The mapping T is called uniformly L-Lipschitzian if there
exists a positive constant L such that

‖T nx− T ny‖ ≤ L‖x− y‖,

for all x, y ∈ C and all n ≥ 1. It is easy to see that if T is asymptotically nonexpansive, then
it is uniformly L-Lipschitzian with the uniform Lipschitz constant L = sup{kn : n ≥ 1}.

In 2002, Xu and Noor [10] introduced and studied a three-step scheme to approximate fixed
points of asymptotically nonexpansive mappings in a Banach space. Glowinski and Le Tallec
[2] used three-step iterative schemes to find the approximate solutions of the elastoviscoplas-
ticity problem, liquid crystal theory, and eigenvalue computation. It has been shown in
[2] that the three-step iterative scheme gives better numerical results than the two-step and



72 W. Nilsrakoo, S. Saejung

one-step approximate iterations. Haubruge, Nguyen and Strodiot [3] studied the convergence
analysis of three-step schemes of Glowinski and Le Tallec [2] and applied these schemes to
obtain new splitting-type algorithms for solving variation inequalities, separable convex pro-
gramming and minimization of a sum of convex functions. They also proved that three-step
iterations lead to highly parallelized algorithms under certain conditions. Thus we conclude
that three-step scheme plays an important and significant part in solving various problems,
which arise in pure and applied sciences. In 2004, Cho, Zhou, and Guo [1], and Liu and
Kang [4] extended the preceding scheme to the three-step iterative scheme with errors and
gave weak and strong convergence theorems for asymptotically nonexpansive mappings in
a Banach space. Recently, Nammanee, Noor and Suantai [5] defined a three-step iterative
scheme with errors which is an extension of schemes in [1] and [4] iterations and gave some
weak and strong convergence theorems for asymptotically nonexpansive mappings in a uni-
formly convex Banach space. The authors of the present paper [6] defined a new three-step
iterative schemes and gave some strong convergence theorems for asymptotically nonexpan-
sive mappings. Inspired by the preceding iteration scheme, we define a new iteration scheme
with errors as follows.

Let C be a nonempty convex subset of a real Banach space X and T : C → C be a mapping.
Algorithm 1 For a given x1 ∈ C, compute the sequences {xn}, {yn} and {zn} by the
iterative schemes, for all n ≥ 1,

zn = a′nxn + b′nT
nxn + rnun,

yn = anxn + bnT
nxn + cnT

nzn + snvn, (1)

xn+1 = αnxn + βnT
nxn + γnT

nyn + δnT
nzn + tnwn,

where {αn}, {βn}, {γn}, {δn}, {an}, {bn}, {cn}, {a′n}, {b′n}, {rn}, {sn} and {tn} are appro-
priate sequences in [0, 1] with αn + βn + γn + δn + tn = an + bn + cn + sn = a′n + b′n + rn = 1,

and {un}, {vn} and {wn} are bounded sequences in C. The iterative schemes (1) is called
the three-step mean value iterative scheme with errors.

If βn ≡ 0, then Algorithm 1 reduces to
Algorithm 2 [5] For a given x1 ∈ C, compute the sequences {xn}, {yn} and {zn} by the
iterative schemes, for all n ≥ 1,

zn = a′nxn + b′nT
nxn + rnun,

yn = anxn + bnT
nxn + cnT

nzn + snvn, (2)

xn+1 = αnxn + γnT
nyn + δnT

nzn + tnwn,

where {αn}, {γn}, {δn}, {an}, {bn}, {cn}, {a′n}, {b′n}, {rn}, {sn} and {tn} are appropriate
sequences in [0, 1] with αn + γn + δn + tn = an + bn + cn + sn = a′n + b′n + rn = 1, and {un},
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{vn} and {wn} are bounded sequences in C. The iterative schemes (2) is called the modified
Noor iterative scheme with errors.

If βn = δn = bn ≡ 0, then Algorithm 1 reduces to
Algorithm 3 [1, 4] For a given x1 ∈ C, compute the sequences {xn}, {yn} and {zn} by the
iterative schemes, for all n ≥ 1,

zn = a′nxn + b′nT
nxn + rnun,

yn = anxn + cnT
nzn + snvn, (3)

xn+1 = αnxn + γnT
nyn + tnwn,

where {αn}, {γn}, {an}, {cn}, {a′n}, {b′n}, {rn}, {sn} and {tn} are appropriate sequences in
[0, 1] with αn + γn + tn = an + cn + sn = a′n + b′n + rn = 1, and {un}, {vn} and {wn} are
bounded sequences in C. The iterative schemes (3) is called the Noor iterative scheme with
errors.

2 Auxiliary Lemmas

For convenience, we use the notations limn ≡ limn→∞, lim infn ≡ lim infn→∞, and lim supn ≡
lim supn→∞. In the sequel, we shall need the following lemmas.

Lemma 1 ([7], Lemma 1) Let {an}, {bn} and {λn} be sequences of nonnegative real
numbers satisfying the inequality

an+1 ≤ (1 + λn)an + bn, n ≥ 1.

If
∑∞

n=1 λn <∞ and
∑∞

n=1 bn <∞, then limn an exists.

Lemma 2 Let X be a real Banach space and C be a nonempty closed convex subset of X.
Let T : C → C be an asymptotically nonexpansive mapping with the nonempty fixed-point
set F (T ) (i.e., F (T ) := {x ∈ C : x = Tx} 6= ∅) and a sequence {kn} of real numbers such
that kn ≥ 1 and

∑∞
n=1(kn− 1) <∞. Let {xn} be a sequence defined by Algorithm 1 with the

restrictions that
∑∞

n=1 tn < ∞,
∑∞

n=1 γnsn < ∞,
∑∞

n=1 γncnrn < ∞ and
∑∞

n=1 δnrn < ∞.
Then we have the following conclusions.

(i) limn ‖xn − p‖ exists for any p ∈ F (T ).

(ii) limn d(xn, F (T )) exists, where d(x, F (T )) denotes the distance from x to the fixed-point
set F (T ).
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Proof: Let p ∈ F (T ). We note that {un−p}, {vn−p}, and {wn−p} are bounded sequences
in C. Let

L = sup{kn : n ≥ 1} and M = sup{‖un − p‖, ‖vn − p‖, ‖wn − p‖ : n ≥ 1}.

By using (1), we have

‖zn − p‖ ≤ a′n‖xn − p‖+ b′n‖T nxn − p‖+ rn‖un − p‖
≤ (1− b′n)‖xn − p‖+ b′nkn‖xn − p‖+Mrn

≤ (1 + b′n(kn − 1))‖xn − p‖+Mrn

≤ kn‖xn − p‖+Mrn, (1)

‖yn − p‖ ≤ an‖xn − p‖+ bn‖T nxn − p‖+ cn‖T nzn − p‖+ sn‖vn − p‖
≤ (1− bn − cn)‖xn − p‖+ bnkn‖xn − p‖+ cnkn‖zn − p‖+Msn

≤ (1 + (bn + cn + cnkn)(kn − 1))‖xn − p‖+M(sn + cnrnkn)

≤ (1 + (L+ 2)(kn − 1))‖xn − p‖+M(sn + Lcnrn), (2)

and so

‖xn+1 − p‖ ≤ αn‖xn − p‖+ βn‖T nxn − p‖+ γn‖T nyn − p‖
+ δn‖T nzn − p‖+ tn‖wn − p‖

≤ (1− βn − γn − δn)‖xn − p‖+ βnkn‖xn − p‖
+ γnkn‖yn − p‖+ δnkn‖zn − p‖+Mtn

≤ (1 + (βn + γn + γnkn(L+ 2) + δn(kn + 1))(kn − 1))‖xn − p‖
+M(tn + γnknsn + Lγnkncnrn + δnknrn)

≤ (1 + (L2 + 3L+ 3)(kn − 1))‖xn − p‖
+M(tn + Lγnsn + L2γncnrn + Lδnrn).

By assumption, the conclusions of the lemma follow from Lemma 1. This completes the
proof.

We also need the following lemma proved by Schu [8].

Lemma 3 Let X be a uniformly convex Banach space, let {λn} be a sequence of real
numbers such that 0 < b ≤ λn ≤ c < 1 for all n ≥ 1, and let {xn} and {yn} be sequences
of X such that lim supn ‖xn‖ ≤ a, lim supn ‖yn‖ ≤ a and limn ‖λnxn + (1 − λn)yn‖ = a for
some a ≥ 0. Then limn ‖xn − yn‖ = 0.

By Schu’s Lemma, we have the following lemma.
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Lemma 4 Let {xn}, {yn} and {zn} be sequences in a uniformly convex Banach space
X. Suppose that {αn}, {βn} and {γn} are sequences in [0, 1] with αn + βn + γn = 1,
lim supn ‖xn‖ ≤ a, lim supn ‖yn‖ ≤ a, lim supn ‖zn‖ ≤ a, and limn ‖αnxn +βnyn +γnzn‖ = a,
where a ≥ 0. If lim infn αn > 0 and lim infn βn > 0, then limn ‖xn − yn‖ = 0.

Proof: We may assume without loss of generality that αn > 0 and βn > 0 for all n ∈ N.
Let {nk} be a subsequence of {n} such that

lim
k

∥∥∥ αnk

αnk
+ βnk

xnk
+

βnk

αnk
+ βnk

ynk

∥∥∥ = lim inf
n

∥∥∥ αn

αn + βn

xn +
βn

αn + βn

yn

∥∥∥.
Then

a = lim inf
k

‖αnk
xnk

+ βnk
ynk

+ γnk
znk

‖

≤ lim inf
k

(
(αnk

+ βnk
)
∥∥∥ αnk

αnk
+ βnk

xnk
+

βnk

αnk
+ βnk

ynk

∥∥∥+ γnk
‖znk

‖
)

≤ lim inf
k

(αnk
+ βnk

)
∥∥∥ αnk

αnk
+ βnk

xnk
+

βnk

αnk
+ βnk

ynk

∥∥∥+ lim sup
k

γnk
‖znk

‖

≤ lim inf
k

(αnk
+ βnk

) lim inf
n

∥∥∥ αn

αn + βn

xn +
βn

αn + βn

yn

∥∥∥+ a lim sup
k

γnk
.

This implies that

lim inf
k

(αnk
+ βnk

)a

= (1− lim sup
k

γnk
)a

≤ lim inf
k

(αnk
+ βnk

) lim inf
n

∥∥∥ αn

αn + βn

xn +
βn

αn + βn

yn

∥∥∥.
Since lim infn(αn + βn) ≥ lim infn αn + lim infn βn > 0, it follows that

a ≤ lim inf
n

∥∥∥∥ αn

αn + βn

xn +
βn

αn + βn

yn

∥∥∥∥ ≤ lim sup
n

∥∥∥∥ αn

αn + βn

xn +
βn

αn + βn

yn

∥∥∥∥ ≤ a.

We now observe that

lim inf
n

αn

αn + βn

≥ lim inf
n

αn > 0 and lim inf
n

βn

αn + βn

≥ lim inf
n

βn > 0.

By Lemma 3, we have limn ‖xn − yn‖ = 0. This completes the proof.

The following lemmas are the important ingredients for proving our main results in the next
section.

Lemma 5 Let X be a uniformly convex Banach space and C be a nonempty closed convex
subset of X. Let T : C → C be an asymptotically nonexpansive mapping with the nonempty
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fixed-point set F (T ) and a sequence {kn} of real numbers such that kn ≥ 1 and
∑∞

n=1(kn −
1) <∞. Let {xn} be a sequence defined by Algorithm 1 with the restrictions that

∑∞
n=1 tn <

∞,
∑∞

n=1 γnsn < ∞,
∑∞

n=1 γncnrn < ∞ and
∑∞

n=1 δnrn < ∞. Then we have the following
assertions.

(i) If 0 < lim infn γn ≤ lim supn(βn + γn + δn) < 1 and lim supn(bn + cn) < 1, then
limn ‖T nxn − xn‖ = 0.

(ii) If 0 < lim infn δn ≤ lim supn(βn + γn + δn) < 1 and lim supn b
′
n < 1, then limn ‖T nxn −

xn‖ = 0.

(iii) If 0 < lim infn βn ≤ lim supn(βn + γn + δn) < 1, then limn ‖T nxn − xn‖ = 0.

Proof: Let p ∈ F (T ). By Lemma 2, we have limn ‖xn − p‖ = a for some a ≥ 0. Since
limn tn = 0,

a = lim
n
‖xn+1 − p‖

= lim
n
‖(1− βn − γn − δn)(xn − p) + βn(T nxn − p) + γn(T nyn − p)

+ δn(T nzn − p) + tn(wn − xn)‖
= lim

n
‖(1− βn − γn − δn)(xn − p) + βn(T nxn − p)

+ γn(T nyn − p) + δn(T nzn − p)‖. (3)

We first observe that

lim sup
n

‖T nxn − p‖ ≤ lim sup
n

kn‖xn − p‖ = a. (4)

To prove (i), let {mj} be a subsequence of {n}. We show that there is a subsequence {nk}
of {mj} such that limk ‖T nkynk

− xnk
‖ = 0.

As lim infn γn > 0,
∑∞

n=1 γnsn < ∞, and
∑∞

n=1 γncnrn < ∞, limn sn = cnrn = 0. By using
(2), we have

lim sup
j

‖Tmjymj
− p‖ ≤ lim sup

j
kmj

‖ymj
− p‖ ≤ a. (5)

If lim infj δmj
> 0, then limj rmj

= 0. By (1), we gives

lim sup
j

‖Tmjzmj
− p‖ ≤ lim sup

j
kmj

‖zmj
− p‖ ≤ a. (6)

It follows from (3)-(6) and Lemma 4 that

lim
j
‖Tmjymj

− xmj
‖ = 0.
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On the other hand, if lim infj δmj
= 0, then we may extract a subsequence {δnk

} of {δmj
} so

that limk δnk
= 0, it follows that

lim
k
δnk
‖xnk

− p‖ = 0 = lim
k
δnk
‖T nkznk

− p‖.

This together with (3) gives

a = lim
k
‖(1− βnk

− γnk
)(xnk

− p)

+ βnk
(T nkxnk

− p) + γnk
(T nkynk

− p)‖. (7)

It follows from (4), (5), (7), and Lemma 4 that

lim
k
‖T nkynk

− xnk
‖ = 0.

By double extract subsequence principle,

lim
n
‖(xn − p)− (T nyn − p)‖ = lim

n
‖T nyn − xn‖ = 0. (8)

It follows that limn ‖T nyn − p‖ = a. Also

a = lim inf
n

‖T nyn − p‖ ≤ lim inf
n

kn‖yn − p‖ = lim inf
n

‖yn − p‖.

From (2), we gives lim supn ‖yn − p‖ ≤ a, so that limn ‖yn − p‖ = a.

Next we prove that

lim
n
‖T nxn − xn‖ = 0, (9)

let {`j} be a subsequence of {n}. It suffices to show that there is a subsequence {nk} of {`j}
such that limk ‖T nkxnk

− xnk
‖ = 0. Since limn sn = 0,

a = lim
j
‖y`j

− p‖

= lim
j
‖(1− b`j

− c`j
)(x`j

− p) + b`j
(T `jx`j

− p)

+ c`j
(T `jz`j

− p) + s`j
(v`j

− x`j
)‖

= lim
j
‖(1− b`j

− c`j
)(x`j

− p) + b`j
(T `jx`j

− p) + c`j
(T `jz`j

− p)‖.

If lim infj c`j
> 0, by Lemma 4 and lim supn(bn + cn) < 1, then

lim
j
‖T `jz`j

− x`j
‖ = 0. (10)

On the other hand, if lim infj c`j
= 0, then we may extract a subsequence {cnk

} of {c`j
} so

that limk cnk
= 0, it follows that

lim
k
cnk
‖T nkznk

− xnk
‖ = 0. (11)
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By using (1), we have

‖T nkxnk
− xnk

‖ ≤ ‖T nkxnk
− T nkynk

‖+ ‖T nkynk
− xnk

‖
≤ knk

‖xnk
− ynk

‖+ ‖T nkynk
− xnk

‖
≤ knk

bnk
‖T nkxnk

− xnk
‖+ knk

cnk
‖T nkznk

− xnk
‖

+ knk
snk

‖vnk
− xnk

‖+ ‖T nkynk
− xnk

‖.

This together with (8), (10), and (11) gives

lim
k

(1− knk
bnk

)‖T nkxnk
− xnk

‖ = 0.

As lim infn(1− knbn) = 1− lim supn bn ≥ 1− lim supn(bn + cn) > 0, we have

lim
k
‖T nkxnk

− xnk
‖ = 0.

By double extract subsequence principle, we obtain (9) and the proof of (i) is finished.

By using a similar method, it can be shown that (ii) is satisfied.

(iii) To show that

lim
n
‖T nxn − xn‖ = 0, (12)

let {mj} be a subsequence of {n}. It suffices to show that there is a subsequence {nk} of
{mj} such that limk ‖T nkxnk

− xnk
‖ = 0. We consider the following cases.

Case 1: lim infj γmj
> 0.

Subcase 1.1: lim infj δmj
> 0. Then we obtain (3)-(6). It follows from Lemma 4 that

limj ‖Tmjxmj
− xmj

‖ = 0.

Subcase 1.2: lim infj δmj
= 0 = limk δnk

, where {δnk
} ⊂ {δmj

}. Then we obtain (7), and so

lim
k
‖T nkxnk

− xnk
‖ = 0.

Case 2: lim infj γmj
= 0. Choose {γ`k

} ⊂ {γmj
} such that limk γ`k

= 0, it follows that

lim
k
γ`k
‖x`k

− p‖ = 0 = lim
k
γ`k
‖T `ky`k

− p‖.

This together with (3) gives

a = lim
k
‖(1− β`k

− δ`k
)(x`k

− p) + β`k
(T `kx`k

− p) + δ`k
(T `kz`k

− p)‖. (13)

Subcase 2.1: lim infk δ`k
> 0. By (1), we have lim supk ‖T `kz`k

− p‖ ≤ a. It follows from
(4), (13) and Lemma 4,

lim
k
‖T `kx`k

− x`k
‖ = 0.
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Subcase 2.2: lim infk δ`k
= 0 = limi δni

, where {δni
} ⊂ {δ`k

}. It follows that

lim
i
δni
‖T nizni

− p‖ = 0.

This together with (13) gives

a = lim
i
‖(1− βni

)(xni
− p) + βni

(T nixni
− p)‖.

It follows from Lemma 3, limi ‖T nixni
− xni

‖ = 0. By double extract subsequence principle,
we obtain (12). This completes the proof.

Lemma 6 Let X be a real Banach space and C be a nonempty closed convex subset of
X. Let T : C → C be an asymptotically nonexpansive mapping with a sequence {kn} of
real numbers such that kn ≥ 1 and limn kn = 1 and, {xn} be a sequence defined in C by
Algorithm 1 with the restrictions that limn tn = limn γnsn = limn γncnrn = limn δnrn = 0. If
limn ‖T nxn − xn‖ = 0, then limn ‖Txn − xn‖ = 0.

Proof: Using (1), we have

‖T nzn − xn‖ ≤ ‖T nzn − T nxn‖+ ‖T nxn − xn‖
≤ kn‖zn − xn‖+ ‖T nxn − xn‖,
≤ (b′nkn + 1)‖T nxn − xn‖+ rnkn‖un − xn‖,

‖T nyn − xn‖ ≤ ‖T nyn − T nxn‖+ ‖T nxn − xn‖
≤ kn‖yn − xn‖+ ‖T nxn − xn‖,
≤ bnkn‖T nxn − xn‖+ cnkn‖T nzn − xn‖

+ snkn‖vn − xn‖+ ‖T nxn − xn‖
≤ (bnkn + cnb

′
nk

2
n + cnkn + 1)‖T nxn − xn‖

+ snkn‖vn − xn‖+ cnrnk
2
n‖un − xn‖,
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and so

‖xn+1 − T nxn+1‖
≤ ‖xn+1 − xn‖+ ‖T nxn+1 − T nxn‖+ ‖T nxn − xn‖
≤ (1 + kn)‖xn+1 − xn‖+ ‖T nxn − xn‖
≤ βn(1 + kn)‖T nxn − xn‖+ γn(1 + kn)‖T nyn − xn‖

+ δn(1 + kn)‖T nzn − xn‖+ tn(1 + kn)‖wn − xn‖+ ‖T nxn − xn‖
≤ βn(1 + kn)‖T nxn − xn‖

+ γn(1 + kn)(bnkn + cnb
′
nk

2
n + cnkn + 1)‖T nxn − xn‖

+ γnsnkn(1 + kn)‖vn − xn‖+ γncnrn(1 + kn)k2
n‖un − xn‖

+ δn(1 + kn)(b′nkn + 1)‖T nxn − xn‖+ δnrn(1 + kn)kn‖un − xn‖
+ tn(1 + kn)‖wn − xn‖+ ‖T nxn − xn‖ → 0.

Thus

‖xn+1 − Txn+1‖ ≤ ‖xn+1 − T n+1xn+1‖+ ‖T n+1xn+1 − Txn+1‖
≤ ‖xn+1 − T n+1xn+1‖+ k1‖T nxn+1 − xn+1‖ → 0,

which implies limn ‖Txn − xn‖ = 0. This completes the proof.

3 Main results

In this section, we establish several strong convergence theorems of the three-step mean value
iterative scheme with errors for asymptotically nonexpansive mappings.

Theorem 7 Let X be a uniformly convex Banach space and C be a nonempty closed
convex subset of X. Let T : C → C be an asymptotically nonexpansive mapping with the
nonempty fixed-point set F (T ) and a sequence {kn} of real numbers such that kn ≥ 1 and∑∞

n=1(kn − 1) <∞. Let {xn} be a sequence in C defined by Algorithm 1 with the following
restrictions:

(i) 0 < lim infn γn ≤ lim supn(βn + γn + δn) < 1,

(ii) lim supn(bn + cn) < 1, and

(iii)
∑∞

n=1 tn <∞,
∑∞

n=1 sn <∞,
∑∞

n=1 cnrn <∞,
∑∞

n=1 δnrn <∞.

If T satisfies Condition (A) with respect to the sequence {xn}, then {xn} converges strongly
to a fixed point of T .
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Let {xn} be a given sequence in C. Recall that a mapping T : C → C with the nonempty
fixed-point set F (T ) in C satisfies Condition (A) with respect to the sequence {xn} ([9]) if
there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all
r ∈ (0,∞) such that

f(d(xn, F (T ))) ≤ ‖xn − Txn‖, for all n ≥ 1.

Proof. By Lemma 5(i) and Lemma 6, we have

lim
n
‖Txn − xn‖ = 0.

Let f be a nondecreasing function corresponding to Condition (A) with respect to {xn}.
Then

f(d(xn, F (T ))) ≤ ‖Txn − xn‖ → 0,

and so
d(xn, F (T )) → 0.

Therefore, the conclusion of the theorem follows exactly from [6]. This completes the proof.

Remark 8 Suppose we rewrite our scheme by treating the additional terms as error terms
in the sense of Xu [11] in this way: x1 ∈ C,

zn = a′nxn + b′nT
nxn + rnun,

yn = anxn + cnT
nzn + (bn + sn)(

bn
bn + sn

T nxn +
sn

bn + sn

vn),

xn+1 = αnxn + γnT
nyn + (βn + δn + tn)

× (
βn

βn + δn + tn
T nxn +

δn
βn + δn + tn

T nzn +
tn

βn + δn + tn
wn),

for all n ≥ 1. To obtain a strong convergence theorem by Theorem 2.4 of [1], we are restricted
to the following

∞∑
n=1

(βn + δn + tn) <∞ and
∞∑

n=1

(bn + sn) <∞,

from which limn βn = limn δn = limn bn = 0,
∑∞

n=1 sn < ∞, and
∑∞

n=1 tn < ∞. But our
Theorem 7 still gives the result for more general restriction. For example, our result is
applicable to the case of βn = δn = bn = 1/4 and sn = tn = 1/2n.

Consequently, we obtain the following corollaries. When βn ≡ 0, we have

Corollary 9 Let X be a uniformly convex Banach space and C be a nonempty closed
convex subset of X. Let T : C → C be an asymptotically nonexpansive mapping with
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the nonempty fixed-point set and a sequence {kn} of real numbers such that kn ≥ 1 and∑∞
n=1(kn − 1) <∞. Let {xn} be a sequence in C defined by Algorithm 2 with the following

restrictions:

(i) 0 < lim infn γn ≤ lim supn(γn + δn) < 1,

(ii) lim supn(bn + cn) < 1, and

(iii)
∑∞

n=1 tn <∞,
∑∞

n=1 sn <∞,
∑∞

n=1 cnrn <∞,
∑∞

n=1 δnrn <∞.

If T satisfies Condition (A) with respect to the sequence {xn}, then {xn} converges strongly
to a fixed point of T .

When βn = δn = bn ≡ 0 in Theorem 7, we also have

Corollary 10 Let X be a uniformly convex Banach space and C be a nonempty closed
convex subset of X. Let T : C → C be an asymptotically nonexpansive mapping with
the nonempty fixed-point set and a sequence {kn} of real numbers such that kn ≥ 1 and∑∞

n=1(kn − 1) <∞. Let {xn} be a sequence in C defined by Algorithm 3 with the following
restrictions:

(i) 0 < lim infn γn ≤ lim supn γn < 1,

(ii) lim supn cn < 1, and

(iii)
∑∞

n=1 tn <∞,
∑∞

n=1 sn <∞,
∑∞

n=1 cnrn <∞.

If T satisfies Condition (A) with respect to the sequence {xn}, then {xn} converges strongly
to a fixed point of T .

Remark 11 1. Corollary 9 extends and improves Theorem 2.3 of [5] in the following
ways:

(i) The condition lim infn cn > 0 is removed.

(ii) The restriction
∑∞

n=1 rn < ∞ is weakened and replaced by
∑∞

n=1 cnrn < ∞ and∑∞
n=1 δnrn <∞.

(iii) The complete continuity imposed on T is replaced by the more general Condition
(A) with respect to {xn} (see also [1, Corollary 2.5]).

2. Corollary 10 extends and improves Theorem 2.4 of [1]. The restriction
∑∞

n=1 rn < ∞
is weakened and replaced by

∑∞
n=1 cnrn <∞.
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3. Corollary 10 also extends and improves Theorem 3.2 of [4] in the following ways:

(i) The semi-compactness imposed on T is weakened by assuming that T satisfies
Condition (A) with respect to {xn} [1, Corollary 2.5].

(ii) The condition limn cn = 0 is weakened and replaced by lim supn cn < 1.

Next, as consequences of Lemma 5(ii), (iii) and Lemma 6, we have the following theorems.

Theorem 12 Let X be a uniformly convex Banach space and C be a nonempty closed
convex subset of X. Let T : C → C be an asymptotically nonexpansive mapping with
the nonempty fixed-point set and a sequence {kn} of real numbers such that kn ≥ 1 and∑∞

n=1(kn − 1) <∞. Let {xn} be a sequence in C defined by Algorithm 1 with the following
restrictions:

(i) 0 < lim infn δn ≤ lim supn(βn + γn + δn) < 1,

(ii) lim supn b
′
n < 1, and

(iii)
∑∞

n=1 tn <∞,
∑∞

n=1 αnsn <∞,
∑∞

n=1 rn <∞.

If T satisfies Condition (A) with respect to the sequence {xn}, then {xn} converges strongly
to a fixed point of T .

Theorem 13 Let X be a uniformly convex Banach space and C be a nonempty closed
convex subset of X. Let T : C → C be an asymptotically nonexpansive mapping with
the nonempty fixed-point set and a sequence {kn} of real numbers such that kn ≥ 1 and∑∞

n=1(kn − 1) <∞. Let {xn} be a sequence in C defined by Algorithm 1 with the following
restrictions:

(i) 0 < lim infn βn ≤ lim supn(βn + γn + δn) < 1 and

(ii)
∑∞

n=1 tn <∞,
∑∞

n=1 γnsn <∞,
∑∞

n=1 γncnrn <∞,
∑∞

n=1 δnrn <∞.

If T satisfies Condition (A) with respect to the sequence {xn}, then {xn} converges strongly
to a fixed point of T .

Remark 14 By using the same ideas and techniques, we can also discuss the weak con-
vergence for asymptotically nonexpansive mappings with errors and thereby improve the
corresponding results obtained by Cho, Zhou and Guo [1], Liu and Kang [4], and Namma-
nee, Noor and Suantai [5].
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Weiguo Rui, Shaolong Xie, Yao Long, Bin He

Integral Bifurcation Method and Its Application for
Solving the Modified Equal Width Wave Equation and
Its Variants

ABSTRACT. In this paper, a improved method named the integral bifurcation is introduced.
In order to demonstrate its effectiveness for obtaining travelling waves of the nonlinear
wave equations, we studied the modified equal width wave equation and its variants by
this new method. Under the different parameter conditions, many integral bifurcations are
obtained. According to these integral bifurcations, different kinds of travelling wave solutions
are figured out. Compared with [1], many new travelling wave solutions are obtained.

KEY WORDS. integral bifurcation method, the modified equal width equation, integral
bifurcations, travelling wave solutions

1 Introduction

In recent years, the sine-cosine method (see Refs. [1–4] and cited therein), the tanh-function
method (see Refs. [5–8] and cited therein) and the bifurcation theory of the planar dynamical
system (see Refs. [11–21] and cited therein) have been often used to study the problem of all
kinds of travelling wave solutions in the nonlinear wave equation domain. These mathemat-
ical methods have been, and continue to be, popular tools for nonlinear analysis. However,
by using the sine-cosine and tanh-function methods to solve nonlinear wave equations, we
cannot obtain the solutions of the type of elliptic function. Among these three mathematical
methods, the bifurcation theory of the planar dynamical system is acceptable on discussion
of the existence of travelling wave solutions, using this method, we can obtain all kinds of
travelling wave solutions, but its analysis of phase portraits and discussion of bifurcation are
more complicated. Therefore, in this paper, we shall introduce a improved method (are also
called simplified method) named the integral bifurcation based on the bifurcation theory of
the planar dynamical system. This improved method needn’t make complicated analysis
of phase portraits like the bifurcation theory and is easy enough in practice. In order to
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demonstrate its effectiveness for obtaining travelling waves of the nonlinear wave equations,
we shall consider the following nonlinear modified equal width (MEW) wave equation

ut + a(u3)x + buxxt = 0 , (1.1)

and its variants

ut + a(un)x − b(un)xxt = 0 , (1.2)

and

ut + a(u−n)x − b(u−n)xxt = 0 , (1.3)

where a, b nonzero real parameters, n is positive integer and n > 1.

The modified equal width (MEW) wave equation has been discussed in Refs. [1, 9, 10].
Just as A.M. Wazwaz said, the MEW equation, which is related to the regularized long
wave (RLW) equation [22], has solitary waves with both positive and negative amplitudes,
all of which have the same width. The MEW equation is a nonlinear wave equation with
cubic nonlinearity with a pulse-like solitary wave solution. The MEW equation’s variants,
(1.2) and (1.3) can be reduced to K(m,n) type equations which is well known, so these two
equations are also very good application.

By using tanh and sine-cosine methods, A.M. Wazwaz studied the equations (1.1), (1.2)
and (1.3), many solutions including compactons and periodic solutions are given (see [1]).
In fact, by using the integral bifurcation method, we shall obtain more exact travelling wave
solutions.

Making the transformation u(x, t) = φ(x− ct) = φ(ξ), then substituting φ(x− ct) into (1.1),
(1.2) and (1.3) respectively, we obtain the following three nonlinear ODE equations

−cφ′ + a(φ3)′ − bcφ′′′ = 0 , (1.4)

and

−cφ′ + a(φn)′ + bc(φn)′′′ = 0 , (1.5)

and

−cφ′ + a(φ−n)′ + bc(φ−n)′′′ = 0 , (1.6)

where ”′” is the derivative with respect to ξ (i.e. φ′ = φξ) and c is wave speed.

Integrating (1.4), (1.5) and (1.6) once and setting the integral constant as zero, we obtain
the following three wave equations, respectively

−cφ+ aφ3 − bcφ′′ = 0 , (1.7)
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and

−cφ+ aφn + bcn(n− 1)φn−2(φ′)2 + bcnφn−1φ′′ = 0 , (1.8)

and

−cφ+ aφ−n + bcn(n+ 1)φ−(n+2)(φ′)2 − bcnφ−(n+1)φ′′ = 0 . (1.9)

Letting φ′ = y, the equations (1.7), (1.8) and (1.9) become the following three two-dimensional
systems, respectively

dφ

dξ
= y,

dy

dξ
= −1

b
φ+

a

bc
φ3 , (1.10)

and

dφ

dξ
= y,

dy

dξ
=
cφ− aφn − bcn(n− 1)φn−2y2

bcnφn−1
, (1.11)

and

dφ

dξ
= y,

dy

dξ
=
−cφn+3 + aφ2 + bcn(n+ 1)y2

bcnφ
. (1.12)

Systems (1.10), (1.11) and (1.12) are all integral systems. Clearly, system (1.10) has the
following first integral

y2 = −1

b
φ2 +

a

2bc
φ4 + C , (1.13)

where C is integral constant. We define

F1(φ, y
2) = y2 +

1

b
φ2 − a

2bc
φ4 . (1.14)

System (1.11) has the following first integral

y2 =
2

bn(n+ 1)
φ3−n − a

bcn2
φ2 + Cφ2−2n . (1.15)

Similarly we define

F2(φ, y
2) = φ2n−2y2 +

a

bcn2
φ2n − 2

bn(n+ 1)
φn+1 . (1.16)

System (1.12) has the following first integral

y2 =
2

bn(n− 1)
φn+3 − a

bcn2
φ2 + Cφ2n+2 . (1.17)
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We also define

F3(φ, y
2) =

y2

φ2n+2
+

a

bcn2
φ−2n − 2

bn(n− 1)
φ−(n−1) . (1.18)

In the next,we shall introduce integral bifurcation method. By using this method, under the
different parameter conditions and choosing the proper integral constant C and using (1.13),
(1.15) and (1.17), we shall derive all kinds of integral bifurcations. Utilizing these integral
bifurcations, we can obtain all kinds of travelling wave solutions of (1.1), (1.2) and (1.3).

The rest of this paper is organized as follows: In Section 2, we shall introduce the integral
bifurcation method. In section 3, by using the integral bifurcation method, we shall derive
the travelling wave solutions of equation (1.1). In section 4, by using the integral bifurcation
method, we will derive the travelling wave solutions of equation (1.2). In section 5, by using
the integral bifurcation method, we shall derive the travelling wave solutions of equation
(1.3).

2 Integral bifurcation method

For a given (n+ 1)−dimensional nonlinear partial differential equation

E[t, xi, uxi
, uxixi

, uxixj
, utt, · · ·] = 0, (i, j = 1, 2, · · ·, n) . (2.1)

The integral bifurcation method simply proceeds as follows:

Step1. Making a transformation u(t, x1, x2, · · ·, xn) = φ(ξ), ξ =
n∑

i=1

µixi − ct, (2.1) can be

reduced to a nonlinear ODE

P (ξ, φ, φξ, φξξ, φξξξ · ··) = 0 , (2.2)

where µi, (i = 1, 2, · · ·, n) are arbitrary nonzero constants. After integrating Eq. (2.2) several
times, if it can be reduced to the following second-order nonlinear ODE

G(φ, φξ, φξξ) = 0 , (2.3)

then we go on the next process.
Step2. Let φξ = dφ

dξ
= y. Eq. (2.3) can be reduced to a two-dimensional planar systems

dφ

dξ
= y,

dy

dξ
= f(φ, y) , (2.4)

where f(φ, y) is an integral expression or a fraction. If f(φ, y) is a fraction such as f(φ, y) =
f∗(φ,y)

g(φ)
and g(φs) = 0, then φξξ (i.e dy

dξ
) does not exist when φ = φs. In this case, we make a

transformation dξ = g(φ)dτ , Eq. (2.4) can be rewritten as

dφ

dτ
= g(φ)y,

dy

dτ
= f ∗(φ, y) , (2.5)
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where τ is a parameter. If the system (2.4) is an integral system, then Eqs. (2.4) and (2.5)
have the same first integral as the follows

H(φ, y) = h , (2.6)

where h is integral constant. Commonly, the function y of (2.6) is satisfied the following
relationship:

y = y(φ, h) . (2.7)

Substituting (2.7) into the first equation of (2.4) and integrating it, we obtain∫ φ

φ(0)

dϕ

y(ϕ, h)
=

∫ ξ

0

dν , (2.8)

where φ(0) and 0 are initial constants. Taking proper initial constants and integrating equa-
tion (2.8), we can obtain exact travelling wave solution of Eq. (2.1). In fact, the initial
constants can be taken by some extreme points or inflection points of the travelling waves.
In other words, φ(0) is root of the equation (2.7) when y = 0 or the equation dy

dξ
= 0. Par-

ticularly, the initial constants can be also taken by (φs, 0) and a beforehand given (φ(0), ξ0).

As the value of parameters of Eq. (2.1) and constant h of Eqs. (2.6), (2.7) are varied, so are the
integral expression (2.8). Therefore, we call these integral expressions integral bifurcations.
The different integral bifurcations correspond to different travelling wave solutions. This is
the whole process of the integral bifurcation method. Using this method, we shall investigate
travelling wave solutions of the equations (1.1), (1.2) and (1.3). See the below computations.

3 Travelling wave solutions of the equation (1.1)(1.1)(1.1)

It is easy to see that the system (1.10) has three equilibrium points (0, 0) and (±
√

c
a
, 0) as

ac > 0. From (1.14), we have

F1(0, 0) = 0, F1

(√
c

a
, 0

)
= F1

(
−
√
c

a
, 0

)
=

c

2ab
. (3.1)

According to the analysis of the section 2, we shall calculate the explicit expressions of all
kinds of travelling wave solutions of (1.1).

3.1 Under the conditions of ac > 0, b > 0,

(1) taking C = F1(±
√

c
a
, 0) = c

2ab
and substituting it into (1.13), it yields

y = ±
√

a

2bc

(
φ2 − c

a

)
. (3.2)
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Letting dy
dξ

= 0 in (1.10), we obtain φ(0) = 0. Under the initial condition φ(0) = 0, substi-
tuting (3.2) into (2.8), we obtain the following integral bifurcations∫ φ

0

dφ
c
a
− φ2

=

√
a

2bc

∫ ξ

0

dξ, for ξ ≥ 0 , (3.3)∫ 0

φ

dφ
c
a
− φ2

= −
√

a

2bc

∫ 0

ξ

dξ, for ξ < 0 . (3.4)

Integrating (3.3) and (3.4), we obtain two couple of kink and anti-kink wave solutions,

u1(x, t) = φ(x− ct) = ±
√
c

a
tanh

1√
2b

(x− ct) , (3.5)

and

u2(x, t) = φ(x− ct) = ±
√
c

a
coth

1√
2b

(x− ct) , (3.6)

the 3D graphs of kink and anti-kink wave solutions are shown in Fig. 1. In the graphs, the
abscissa axis is t, the ordinate axis is x and the vertical axis is u.

(a) kink wave 1 (b) anti-kink wave 1 (c) kink wave 2 (d) anti-kink wave 2

Fig. 1: The 3D graphs of (3.5) and (3.6) as a = 2.5, b = 2, c = 4, C = 0.

(2) When 0 < C < c
2ab

, from (1.13), it yields

y = ±
√

a

2bc

√
2bcC

a
− 2c

a
φ2 + φ4 = ±

√
a

2bc

√
(α2 − φ2)(β2 − φ2) , (3.7)

where α2 = c
a
(1+

√
1− 2abC

c
), β2 = c

a
(1−

√
1− 2abC

c
) and α > β > φ > 0. Taking the initial

conditions φ(0) = 0 and substituting (3.7) into the (2.8), we obtain the following integral
bifurcations, ∫ φ

0

dφ√
(α2 − φ2)(β2 − φ2)

=

√
a

2bc

∫ ξ

0

dξ for ξ ≥ 0 . (3.8)∫ 0

φ

dφ√
(α2 − φ2)(β2 − φ2)

= −
√

a

2bc

∫ 0

ξ

dξ, for ξ < 0 . (3.9)
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By using the elliptic integral formulas, we obtain the following a family of periodic wave
solutions,

u(x, t) = φ(x− ct) = β sn(ω1(x− ct), k1) , (3.10)

where ω1 = ±α
√

a
2bc

, k1 = β
α
.

(3) Taking C = 0, from (1.13) we have

y = ±
√

a

2bc
φ

√
φ2 − 2c

a
, (3.11)

and φ1,2(0) = ±
√

2c
a
. Similarly, Under the initial condition (φ(0), ξ0) = (±

√
2c
a
, ξ0), substi-

tuting (3.11) into (2.8) and integrating it, we obtain a periodic wave solution:

u(x, t) = φ(ξ) =

√
2c

a
sec

1√
b
(x− ct− ξ0) , (3.12)

where ξ0 is an arbitrary constant. Especially, when ξ0 = 0 or ξ0 = π
2
, we obtain the following

two results which are the same as in Ref. [1],

u(x, t) = φ(ξ) =

√
2c

a
sec

1√
b
(x− ct) , (3.13)

or

u(x, t) = φ(ξ) =

√
2c

a
csc

1√
b
(x− ct) . (3.14)

3.2 Under the conditions of ac > 0, b < 0,

(1) taking C = 0, from (1.13), it yields

y = ±
√
− a

2bc
φ

√
2c

a
− φ2 , (3.15)

and φ(0) = ±
√

2c
a
. Under the initial condition φ(0) = ±

√
2c
a
, substituting (3.15) into (2.8)

and integrating it, we obtain two smooth solitary wave solutions,

u(x, t) = φ(ξ) = ±
√

2c

a
sech

1√
−b

(x− ct) , (3.16)

the 3D graphs of solitary wave solutions of (3.16) are shown in Fig. 2. In the graphs, the
abscissa axis is t, the ordinate axis is x and the vertical axis is u.



94 W. Rui, Sh. Xie, Y. Long, B. He

(a) solitary wave of peak form (b) solitary wave of valley form

Fig. 2: The 3D graphs of (3.16) as a = 5, b = −8, c = 15, C = 0, x ∈ (−0.5, 0.5).

(2) When c
2ab

< C < 0, from (3.13), it yields

y = ±
√
− a

2bc

√
(α2 − φ2)(φ2 − β2) , (3.17)

and φ(0) = α, where α2, β2 are given above. Corresponding to the Eq. (3.17), we obtain
two families of periodic wave solutions of the type of elliptic function,

u(x, t) = φ(x− ct) = ±
√
α2 − (α2 − β2)sn2[ω2(x− ct), k2] , (3.18)

where ω2 = α
√
− a

2bc
, k2 =

√
α2−β2

α2 and the 3D graphs of (3.18) are shown in Fig. 3. In the
graphs, the abscissa axis is t, the ordinate axis is x and the vertical axis is u.

(a) + (b) −

Fig. 3: The 3D graphs of (3.18) as a = 2.5, b = −2, c = 4, C = −0.3, x ∈ (−14, 14).

(3) When C > 0, from (1.13), we obtain

y = ±
√
− a

2bc

√
(β2 + φ2)(α2 − φ2) , (3.19)
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and φ(0) = α, where α2 > 0, β2 < 0 are given above. Corresponding to the Eq. (3.19), we
obtain a family of periodic wave solutions,

u(x, t) = φ(x− ct) = α cn[ω3(x− ct), k3] , (3.20)

where ω3 =
√
−a(α2+β2)

2bc
, k3 =

√
α2

α2+β2 .

Under the other parameter conditions, according to the above results, we can obtain the
other travelling wave solutions without difficulty:

(i) When ac > 0, b < 0, C = c
2ab

, from (3.5) and (3.6), we obtain

u(x, t) = φ(x− ct) = ±i
√
c

a
tan

1√
−2b

(x− ct) , (3.21)

or

u(x, t) = φ(x− ct) = ∓i
√
c

a
cot

1√
−2b

(x− ct) , (3.22)

where i =
√
−1.

(ii) When ac < 0, b > 0, C = 0, from (3.13), we obtain

u(x, t) = φ(ξ) = ±i
√
−2c

a
sech

1√
b
(x− ct) . (3.23)

(iii) When ac < 0, b > 0, C = a
2bc

, from (3.5) and (3.6), we obtain

u(x, t) = φ(x− ct) = ±i
√
− c
a

tanh
1√
2b

(x− ct) , (3.24)

or

u(x, t) = φ(x− ct) = ∓i
√
− c
a

coth
1√
2b

(x− ct) . (3.25)

(iv) When ac < 0, b < 0, C = 0, from (3.16), we obtain

u(x, t) = φ(ξ) = ±i
√
−2c

a
sech

1√
−b

(x− ct) . (3.26)

(v) When ac < 0, b < 0, C = a
2bc

, from (3.5) and (3.6), we obtain

u(x, t) = φ(x− ct) = ±
√
− c
a

tan
1√
−2b

(x− ct) , (3.27)
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or

u(x, t) = φ(x− ct) = ∓
√
− c
a

cot
1√
−2b

(x− ct) . (3.28)

The 3D graphs of travelling wave solutions of the type of tangent function are shown in
Fig. 4. In the graphs, the abscissa axis is t, the ordinate axis is x and the vertical axis is u.

(a) + (b) −

Fig. 4: The 3D graphs of (3.27) as a = −2, b = −3, c = 4, C = 0, x ∈ (−0.5, 0.5).

(vi) When ac > 0, b < 0, C = 0, from (3.14) yields

u(x, t) = φ(x− ct) = i

√
2c

a
csch

1√
−b

(x− ct) . (3.29)

4 Travelling wave solutions of the equation (1.2)(1.2)(1.2)

Because the equation (1.15) has a term of Cφ2−2n, we only consider those travelling wave
solutions in which the integral constant C is zero.

4.1 Under the conditions of ac > 0, b > 0, C = 0, from (1.15), we obtain

y2 =

2
bn(n+1)

φn−1 − a
bcn2φ

2n−2

φ2n−4
, (4.1)

i.e.

y = ±
1
n

√
a
bc

√
2cn

a(n+1)
φn−1 − (φn−1)2

φn−2
, (4.2)

and φ1(0) = 0, φ2(0) = [ 2cn
a(n+1)

]
1

n−1 . Where φ1(0) = 0 6= φs as n = 2, and φ1(0) = 0 = φs as
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n > 2. Substituting (4.2) into (2.8), we obtain the following integral bifurcations∫ φ

0

dφn−1√
2cn

a(n+1)
φn−1 − (φn−1)2

=
n− 1

n

√
a

bc

∫ ξ

0

dξ for ξ ≥ 0 , (4.3)

−
∫ 0

φ

dφn−1√
2cn

a(n+1)
φn−1 − (φn−1)2

=
n− 1

n

√
a

bc

∫ 0

ξ

dξ for ξ < 0 , (4.4)

and ∫ φ

[ 2cn
a(n+1)

]
1

n−1

dφn−1√
2cn

a(n+1)
φn−1 − (φn−1)2

=
n− 1

n

√
a

bc

∫ ξ

0

dξ for ξ ≥ 0 , (4.5)

−
∫ [ 2cn

a(n+1)
]

1
n−1

φ

dφn−1√
2cn

a(n+1)
φn−1 − (φn−1)2

=
n− 1

n

√
a

bc

∫ 0

ξ

dξ for ξ < 0 . (4.6)

Integrating (4.3) and (4.4), we obtain

φn−1 =
cn

a(n+ 1)

[
1− cos

n− 1

n

√
a

bc
(x− ct)

]
, (4.7)

or

φn−1 =
2cn

a(n+ 1)
sin2 n− 1

2n

√
a

bc
(x− ct) . (4.8)

Integrating (4.5) and (4.6), we obtain

φn−1 =
cn

a(n+ 1)

[
1 + cos

n− 1

n

√
a

bc
(x− ct)

]
, (4.9)

or

φn−1 =
2cn

a(n+ 1)
cos2 n− 1

2n

√
a

bc
(x− ct) . (4.10)

Thus, when n = 2, we obtain two smooth periodic wave solutions

u(x, t) = φ(x− ct) =
cn

a(n+ 1)

[
1± cos

n− 1

n

√
a

bc
(x− ct)

]
, (4.11)

or

u(x, t) = φ(x− ct) =
2cn

a(n+ 1)
sin2 n− 1

2n

√
a

bc
(x− ct) , (4.12)

u(x, t) = φ(x− ct) =
2cn

a(n+ 1)
cos2 n− 1

2n

√
a

bc
(x− ct) , (4.13)
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for x − ct ∈ (−∞,+∞). The 3D graphs of periodic wave solutions of (4.11) are shown in
Fig. 5. In the graphs, the abscissa axis is t, the ordinate axis is x and the vertical axis is u.

(a) + (b) −

Fig. 5: The 3D graphs of (4.11) as n = 2, a = −2, b = −3, c = 4, C = 0, x ∈ (−0.5, 0.5).

When n is an even number and n > 2, we obtain two periodic cusp wave solutions

u(x, t) = φ(x− ct) =

{
cn

a(n+ 1)

[
1± cos

n− 1

n

√
a

bc
(x− ct)

]} 1
n−1

, (4.14)

or

u(x, t) = φ(x− ct) =

[
2cn

a(n+ 1)
sin2 n− 1

2n

√
a

bc
(x− ct)

] 1
n−1

, (4.15)

u(x, t) = φ(x− ct) =

[
2cn

a(n+ 1)
cos2 n− 1

2n

√
a

bc
(x− ct)

] 1
n−1

. (4.16)

When n is an odd number and n > 1, we obtain four periodic cusp wave solutions

u(x, t) = φ(x− ct) = ±
{

cn

a(n+ 1)

[
1± cos

n− 1

n

√
a

bc
(x− ct)

]} 1
n−1

, (4.17)

or

u(x, t) = φ(x− ct) = ±
[

2cn

a(n+ 1)
sin2 n− 1

2n

√
a

bc
(x− ct)

] 1
n−1

, (4.18)

u(x, t) = φ(x− ct) = ±
[

2cn

a(n+ 1)
cos2 n− 1

2n

√
a

bc
(x− ct)

] 1
n−1

. (4.19)

The 3D graphs of periodic cusp wave solutions of (4.18) are shown in Fig. 6. In the graphs,
the abscissa axis is t, the ordinate axis is x and the vertical axis is u.
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(a) + (b) −

Fig. 6: The 3D graphs of (4.18) as n = 5, a = 2, b = 3, c = 4, C = 0, x ∈ (−4, 4).

When n is an arbitrary positive integer, from (4.15), (4.16), (4.18) and (4.19) we can obtain
two compacton solutions of peak type which have been given in reference [1]:

 u(x, t) =
[

2cn
a(n+1)

sin2 n−1
2n

√
a
bc

(x− ct)
] 1

n−1
, 0 ≤ (x− ct) ≤ 2nπ

n−1

√
bc
a
,

0, otherwise.
(4.20)

and

 u(x, t) =
[

2cn
a(n+1)

cos2 n−1
2n

√
a
bc

(x− ct)
] 1

n−1
, |(x− ct)| ≤ nπ

n−1

√
bc
a
,

0, otherwise.
(4.21)

In fact, when n is an odd number, we also obtain two compacton solutions of valley type

 u(x, t) = −
[

2cn
a(n+1)

sin2 n−1
2n

√
a
bc

(x− ct)
] 1

n−1
, 0 ≤ (x− ct) ≤ 2nπ

n−1

√
bc
a
,

0, otherwise.
(4.22)

and

 u(x, t) = −
[

2cn
a(n+1)

cos2 n−1
2n

√
a
bc

(x− ct)
] 1

n−1
, |(x− ct)| ≤ nπ

n−1

√
bc
a
,

0, otherwise.
(4.23)

The 3D graphs of compacton solutions of (4.20) and (4.22) are shown in Fig. 7. In the
graphs, the abscissa axis is t, the ordinate axis is x and the vertical axis is u.
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(a) compacton of (4.20) (b) compacton of (4.22)

Fig. 7: The 3D graphs of (4.18) and (4.22) as n = 3, a = 2, b = 3, c = 4, C = 0, x ∈ (−4, 4).

4.2 Suppose that ac < 0, b > 0, C = 0, from (1.15), it yields

y = ±
1
n

√
− a

bc

√
− 2cn

a(n+1)
φn−1 + (φn−1)2

φn−2
, (4.24)

(4.25)

and φ(0) = 0. Thus, corresponding the Eq. (4.24), we obtain

φn−1 = − cn

a(n+ 1)

[
cosh

n− 1

n

√
− a

bc
(x− ct)− 1

]
. (4.26)

When n is an even number, we obtain a unbounded travelling wave solution of hyperbolic
cosine type

u(x, t) = φ(x− ct) =

{
− cn

a(n+ 1)

[
cosh

n− 1

n

√
− a

bc
(x− ct)− 1

]} 1
n−1

. (4.27)

When n is an odd number, we obtain two unbounded travelling wave solutions of hyperbolic
cosine type

u(x, t) = φ(x− ct) = ±
{
− cn

a(n+ 1)

[
cosh

n− 1

n

√
− a

bc
(x− ct)− 1

]} 1
n−1

. (4.28)

The 3D graphs of unbounded travelling wave solutions of (4.28) are shown in Fig. 8. In the
graphs, the abscissa axis is t, the ordinate axis is x and the vertical axis is u.
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(a) + (b) −

Fig. 8: The 3D graphs of (4.28) as n = 5, a = −2, b = 3, c = 4, C = 0, x ∈ (−4, 4).

Similarly, under the other parameter conditions, according to the above results, we can
obtain the other travelling wave solutions without difficulty:

(1) When n is an even number and ac > 0, b < 0, C = 0, from (4.14) and (4.15), we obtain
three unbounded travelling wave solutions:

u(x, t) = φ(x− ct) =

{
cn

a(n+ 1)

[
1± cosh

n− 1

n

√
− a

bc
(x− ct)

]} 1
n−1

, (4.29)

and

u(x, t) = φ(x− ct) =

[
− 2cn

a(n+ 1)
sinh2 n− 1

2n

√
− a

bc
(x− ct)

] 1
n−1

. (4.30)

(2) When n is an odd number and ac > 0, b < 0, C = 0, from (4.17), (4.18) and (4.19), we
obtain six unbounded travelling wave solutions:

u(x, t) = φ(x− ct) = ±
{

cn

a(n+ 1)

[
1 + cosh

n− 1

n

√
− a

bc
(x− ct)

]} 1
n−1

, (4.31)

and

u(x, t) = φ(x− ct) = ±
[
− 2cn

a(n+ 1)
sinh2 n− 1

2n

√
− a

bc
(x− ct)

] 1
n−1

, (4.32)

u(x, t) = φ(x− ct) = ±
[

2cn

a(n+ 1)
cosh2 n− 1

2n

√
− a

bc
(x− ct)

] 1
n−1

. (4.33)
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5 Travelling wave solutions of the equation (1.3)(1.3)(1.3)

Since (1.16) is a high order equation, we only consider the case of integral constant C = 0

in this section.

5.1 Suppose that ac > 0, b > 0, C = 0 or ac < 0, b < 0, C = 0, from (1.17), we obtain

y = ±

√
2

bn(n− 1)
φ
√
φn+1 − A2 , (5.1)

and φ1(0) = A
2

n+1 or φ1,2(0) = ±A
2

n+1 , where A =
√

a(n−1)
2cn

. Substituting (5.1) into (2.8), we
obtain the following integral bifurcations∫ φ

±[A
2

n+1 ]

dφ

φ
√
φn+1 − A2

=
n− 1

n

√
a

bc

∫ ξ

ξk

dξ, for ξ ≥ 0 , (5.2)

−
∫ ±[A

2
n+1 ]

φ

dφ

φ
√
φn+1 − A2

=
n− 1

n

√
a

bc

∫ ξk

ξ

dξ, for ξ < 0 , (5.3)

where ξk is an arbitrary constant. Integrating (5.2) and (5.3), we obtain

φn+1 =
a(n− 1)

2cn
sec2 n+ 1

2n

√
a

bc
(ξ − ξk) . (5.4)

When n is an even number, we obtain a family of periodic wave solutions

u(x, t) = φ(x− ct) =

[
a(n− 1)

2cn
sec2 n+ 1

2n

√
a

bc
(ξ − ξk)

] 1
n+1

. (5.5)

Taking ξk = 0 and ξk = π
2

respectively, we obtain the following two periodic wave solutions
which are the same as Ref. [1],

u(x, t) = φ(x− ct) =

[
a(n− 1)

2cn
sec2 n+ 1

2n

√
a

bc
(x− ct)

] 1
n+1

, (5.6)

and

u(x, t) = φ(x− ct) =

[
a(n− 1)

2cn
csc2 n+ 1

2n

√
a

bc
(x− ct)

] 1
n+1

. (5.7)

When n is an odd number, we obtain two families of periodic wave solutions:

u(x, t) = φ(x− ct) = ±
[
a(n− 1)

2cn
sec2 n+ 1

2n

√
a

bc
(ξ − ξk)

] 1
n+1

. (5.8)
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Taking ξk = 0 and ξk = π
2

respectively, we obtain the following four periodic wave solutions:

u(x, t) = φ(x− ct) = ±
[
a(n− 1)

2cn
sec2 n+ 1

2n

√
a

bc
(x− ct)

] 1
n+1

. (5.9)

and

u(x, t) = φ(x− ct) = ±
[
a(n− 1)

2cn
csc2 n+ 1

2n

√
a

bc
(x− ct)

] 1
n+1

. (5.10)

5.2 Suppose that ac > 0, b < 0, C = 0 or ac < 0, b > 0, C = 0. According to the results
(5.7), (5.8), (5.9), (5.10), we can obtain the other traveling wave solutions without difficulty:

(i) When n is an even number, we obtain two solitary wave solutions:

u(x, t) = φ(x− ct) =

[
a(n− 1)

2cn
sech2 n+ 1

2n

√
− a

bc
(x− ct)

] 1
n+1

, (5.11)

and

u(x, t) = φ(x− ct) =

[
−a(n− 1)

2cn
csch2 n+ 1

2n

√
− a

bc
(x− ct)

] 1
n+1

. (5.12)

(ii) When n is an odd number, we obtain four solitary wave solutions:

u(x, t) = φ(x− ct) = ±
[
a(n− 1)

2cn
sech2 n+ 1

2n

√
− a

bc
(x− ct)

] 1
n+1

, for ac > 0 , (5.13)

and

u(x, t) = φ(x− ct) = ±
[
−a(n− 1)

2cn
csch2 n+ 1

2n

√
− a

bc
(x− ct)

] 1
n+1

, for ac < 0 . (5.14)

The 3D graphs of solitary wave solutions of (5.14) are shown in Fig. 9. In the graphs, the
abscissa axis is t, the ordinate axis is x and the vertical axis is u.

(a) solitary of peak form (b) solitary of valley form

Fig. 9: The 3D graphs of (5.14) as n = 5, a = −2, b = 3, c = 4, C = 0, x ∈ (−4, 4).
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From the above process of deriving, it is easy to see that this method is also available to
many nonlinear integral systems.

6 Conclusion

In this paper, we introduced a new method named integral bifurcation. By using this method,
we studied the modified equal width wave equation and its variants and obtained many new
traveling wave solutions in addition to the results in reference [1]. Clearly, this method
is available to many nonlinear partial equations. However, when we solve the universal
nonlinear partial equations by this method, are all the effects good? We will continue to
thoroughly pay attention to this question.
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