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Symmetric Proximal Hypertopology

Dedicated to our friend Professor Dr. Harry Poppe on his 70th birthday.

ABSTRACT. In 1988 a new hypertopology, called proximal (finite) hypertopology was

discovered. It involves the use of a proximity in the upper part but leaves the lower part

the same as the lower Vietoris topology. In 1966, the lower Vietoris topology, which involves

finitely many open sets, led to another lower topology involving locally finite families of open

sets. In this paper, we change the lower hypertopology using a proximity and thus get a

“symmetric“ proximal hypertopology, which includes the earlier ‘finite’ topologies.

KEY WORDS AND PHRASES. Proximities, hyperspace, lower proximal hypertopology,

upper proximal hypertopology, symmetric proximal hypertopology, Bombay hypertopology.

1 INTRODUCTION

Let (X, d) be a metric space and let CL(X) denote the family of all nonempty closed sub-

sets of X. In 1914 Hausdorff defined a metric dH on CL(X), which is now known as the

Hausdorff metric ([10]). In 1922 Vietoris defined, for a T1 space X, a topology τ(V), now

called the Vietoris or finite topology on CL(X) ([24, 25] and [15]).

The Hausdorff metric topology was first generalized to uniform spaces by Bourbaki and later

(1966) to the Wijsman topology ([26]), wherein the convergence of distance functionals is

pointwise rather than uniform as in the Hausdorff case. A base for the Vietoris topology

consists of two parts, the lower which involves the intersection of closed sets with finitely

many open sets and the upper part involving closed sets contained in one open set.

In 1962 Fell in [9] changed the upper part by considering the complements of compact sets

and this was further generalized by Poppe (see [19] and [20]) in 1966 to complements of

members of ∆, a subfamily of CL(X). Also in 1966 Marjanovic in [14] altered the lower part

to consist of intersection of closed sets with members of locally finite families of open sets.
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In 1988 the upper part of τ(V) was generalized to consist of closed sets that are proximally

contained in an open set while the lower part could be finite or locally finite as before ([7]).

It was found that even the well known Hausdorff metric topology is essentially a kind of

locally finite proximal topology, thus showing the importance of proximities in hyperspaces.

Moreover, recently it was shown that, with the use of two proximities in the upper part, all

known hypertopologies could be subsumed under one Bombay topology ([6], see also [17]).

In the present paper we radically change the lower part by using as a base, families of closed

sets that are proximally near finitely many open sets. This is the first time that proximities

are used in the lower part. The use of proximities in both upper and lower parts yield

symmetric proximal hypertopologies and we believe that they will play an important role in

the literature. In fact, since a topological space X has an infinite spectrum of proximities

compatible with its topology it is possible to have an unusually broad range of symmetrical

proximal hypertopologies because our constructs are based on proximal relations between

families of closed sets and finite collections of open subsets instead of the usual Boolean

operations on open and closed subsets of X, namely unions, intersections, set inclusions.

In what follows (X, τ), (or X), always denotes a T1 topological space. A binary relation δ

on the power set of X is a generalized proximity iff

(i) A δ B implies B δ A;

(ii) A δ (B ∪ C) implies A δ B or A δ C;

(iii) A δ B implies A 6= ∅, B 6= ∅;

(iv) A ∩B 6= ∅ implies A δ B.

A generalized proximity δ is a LO-proximity iff it satisfies

(LO) A δ B and b δ C for every b ∈ B together imply A δ C.

Moreover, a LO-proximity δ is a LR-proximity iff it satisfies

(R) x δ A ( where δ means the negation of δ) implies there exists E ⊂ X such that x δ E

and Ec δ A.

A generalized proximity δ is an EF-proximity iff it satisfies

(EF) A δ B implies there exists E ⊂ X such that A δ E and Ec δ B.
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Note that each EF-proximity is a LR-proximity.

Whenever δ is a LO-proximity, τ(δ) denotes the topology on X induced by the Kuratowski

closure operator A → Aδ = {x ∈ X : x δ A}. The proximity δ is declared compatible with

respect to the topology τ iff τ = τ(δ) (see [8], [18] or [27]).

A T1 topological space X admits always a compatible LO-proximity. A topological space X

has a compatible LR- (respectively, EF-) proximity iff it is T3 (respectively, Tychonoff).

If A δ B, then we say A is δ-near to B; if A δ B we say A is δ-far from B. A is declared

δ-strongly included in B, written A �δ B, iff A δ Bc. A �δ B stands for its negation, i.e.

A δ Bc.

We assume, in general, that every compatible proximity δ on X is LO or even LR. These

assumptions simplify the results and allow us to display readable statements and makes the

theory transparent. In fact, it is a useful fact that in a LO-proximity δ two sets are δ-far iff

their closures are δ-far (see [18] or [3]). Moreover, if δ is a compatible LR-proximity, then

(∗) for each x /∈ A, with A = clA , there is an open neighbourhood W of x such that

clW δ A.

We use the following notation :

N(x) denotes the filter of open neighbourhoods of x ∈ X;

CL(X) is the family of all non-empty closed subsets of X;

K(X) is the family of all non-empty compact subsets of X.

We set ∆ ⊂ CL(X) and assume, without any loss of generality, that it contains all singletons

and finite unions of its members.

In the sequel δ, η will denote compatible proximities on X.

The most popular and well studied proximity is the Wallman or fine LO-proximity δ0 (or

η0) given by

A δ0 B ⇔ clA ∩ clB 6= ∅ .

We note that δ0 is a LR-proximity iff X is regular (see [11, Lemma 2]). Moreover, δ0 is an

EF-proximity iff X is normal (Urysohn Lemma).

Another useful proximity is the discrete proximity η∗ given by

A η∗ B ⇔ A ∩B 6= ∅ .
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We note that η∗ is not a compatible proximity, unless (X, τ) is discrete.

We point out that in this paper η∗ is the only proximity that might be non compatible.

For any open set E in X, we use the notation

E+
δ = {F ∈ CL(X) : F �δ E or equivalently F δ Ec} .

E+ = E+
δ0 = {F ∈ CL(X) : F �δ0 E or equivalently F ⊂ E} .

E−
η = {F ∈ CL(X) : F η E} .

E− = E−
η∗ = {F ∈ CL(X) : F η∗ E or equivalently F ∩ E 6= ∅} .

Now we have the material necessary to define the basic proximal hypertopologies.

(1.1) The lower η-proximal topology σ(η−) is generated by {E−
η : E ∈ τ}.

(1.2) The upper δ − ∆-proximal topology σ(δ+, ∆) is generated by {E+
δ : Ec ∈ ∆}.

We omit ∆ and write it as σ(δ+) if ∆ = CL(X).

We note that the upper Vietoris topology τ(V+) equals σ(δ+
0 ) and the lower Vietoris topology

τ(V−) can be written as σ(η∗−). These show that proximal topologies are generalizations of

the classical upper and lower Vietoris topologies.

Moreover, we have:

The Vietoris topology τ(V) = σ(η∗−) ∨ σ(δ+
0 ) = τ(V−) ∨ τ(V+).

The δ-proximal topology σ(δ) = σ(η∗−) ∨ σ(δ+) = τ(V−) ∨ σ(δ+).

The following is a new hypertopology, which generalizes the above as well as the ∆-topologies

introduced by Poppe ([19], [20]).

(1.3) The η − δ − ∆-symmetric-proximal topology π(η, δ; ∆) = σ(η−) ∨ σ(δ+; ∆).

For references on proximities, we refer to [8], [18] and [27]. For LO-proximities see [18] and

[16]. For LR-proximities see [11], [12] and also [3] and [4].

For references on hyperspaces up to 1993, we refer to [1], except when a specific reference is

needed.
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2 Three Important Lower Proximal Topologies

Let (X, d) be a metric space. The associated metric proximity η is defined by A η B iff

inf{d(a, b) : a ∈ A, b ∈ B} = 0. Note that a metric proximity η is EF and compatible.

First we observe that, unlike the lower Vietoris topology, σ(η−) need not be admissible as

the following example shows. The reader is referred to the Appendix (section 7) where the

admissibility of the symmetrical proximal topology is investigated in details.

Example 2.1 Let X = [−1, 1] with the metric proximity η. Let A = {0}, An = { 1
n
}, for

all n ∈ N. Then 1
n

converges to 0 in X, but An does not converge to A in the topology

σ(η−). Hence the map i : X → CL(X), where i(x) = {x}, is not an embedding.

We recall that if η and η′ are proximities on X, then η is declared coarser than η′ (or

equivalently η′ is finer than η), written η ≤ η′, iff A η B implies A η′ B.

We now begin to study lower proximal topologies corresponding to proximities η, η0, η
∗.

Observe that for any compatible proximity η we have always η ≤ η0 ≤ η∗ (since η0 is the

finest compatible LO-proximity and η∗ is the discrete proximity). In the case of a metric

space, we will take η to be the metric proximity and, in the case of a T3 topological space,

we will take η to be a compatible LR-proximity.

Theorem 2.2 Let (X, τ) be a T3 topological space and η a compatible LR-proximity.

The following inclusions occur:

(a) τ(V −) = σ(η∗−) ⊂ σ(η−),

(b) τ(V −) = σ(η∗−) ⊂ σ(η−0 ),

i.e. the finest proximity η∗ induces a coarser hypertopology.

Proof: We show (a). Suppose that the net {Aλ} of closed sets converges to a closed set A

in the topology σ(η−). If A η∗ U , where U ∈ τ , then there is an x ∈ A∩U and a V ∈ N(x),

with x ∈ V ⊂ clV ⊂ U and V η U c (use (∗) in Section 1). We claim that eventually Aλ

intersects U . For if not, then frequently Aλ ⊂ U c and so frequently Aλ η V ; a contradiction.

The case (b) is similar.

Remark 2.3 In Section 6, namely Theorem 6.7, we characterize proximities for which the

above inclusions hold. Furthermore, we will look for transparent conditions under which a

finer proximity induces a coarser hypertopology, a natural phenomenon.

This example shows that the assumption of regularity of the base space X cannot be dropped

in Theorem 2.2.
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Example 2.4 Let X = [0,+∞) with the topology τ consisting of the usual open sets

together with all sets of the form U = [0, ε)\B where ε > 0 and B ⊂ A = { 1
n

: n ∈ N}. Then

X is Hausdorff and not regular since V = [0, ε′)\A ⊂ U for each 0 < ε′ < ε, but clV ⊂/ U .

Now, set F = {0} and for all n ∈ N, Fn = { 1
n
}. Then {Fn} does not converge to F in σ(η∗

−
)

(note that 0 ∈ [0, ε)\A and 1
n
/∈ [0, ε)\A for all n ∈ N). However, if {0} η W , W open, then

eventually { 1
n
} η W , where η is any compatible LO-proximity. So

σ(η∗
−
) 6⊂ σ(η−) .

Now, we give an example to show that the inclusions in 2.2 (a), (b) are strict except in

pathological situations.

Example 2.5 Let X = [0, 2], A = [0, 1], and for each natural number n set An = [0, 1− 1
n
].

Then the sequence {An} converges to A with respect to the σ(η∗
−
) topology, but it converges

to A neither with respect to the σ(η−) topology nor with respect to the σ(η−0 ) topology.

We note that the space involved is one of the “best“ possible spaces and the sets involved

are also compact.

In a UC metric space, i.e. one in which the metric proximity η = η0, σ(η−0 ) = σ(η−).

We now give an example to show that σ(η−0 ) 6= σ(η−).

Example 2.6 Let N be the set of all natural numbers, M = {n− 1
n

: n ∈ N}, X = N ∪M
as subspace of the real line. X is not a UC space. Set A = N and An = {m ∈ N : m < n},
for all n ∈ N.

Then An converges to A in the topology σ(η−0 ). However, A η M but An η M for each n ∈ N.

So, the sequence {An} does not converge to A in the topology σ(η−).

Note that in the above example σ(η−0 ) ⊂ σ(η−). We show below that this natural inclusion

holds in a locally compact space, too.

Theorem 2.7 Let (X, τ) be a locally compact Hausdorff space. If η and η0 are respec-

tively a compatible LO-proximity and the Wallman proximity on X, then:

σ(η−0 ) ⊂ σ(η−) .

Proof: Let V be an open set and let A ∈ V −
η0. Then there is a z ∈ A ∩ clV . Let U be a

compact neighbourhood of z and set W = U ∩ V . Note that clW is compact and that a

closed set is η-near a compact set iff it is η0-near it. Hence A ∈ W−
η ⊂ V −

η0.
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Remark 2.8 If the involved proximities η, η0 are LR and the net of closed sets Aλ is even-

tually locally finite and converges to A in σ(η−), then it also converges in σ(η−0 ). Hence, the

same inclusion (i.e. σ(η−0 ) ⊂ σ(η−)) as in the previous result holds.

We next consider first and second countability of σ(η−).

Observe, that the first and second countability of σ(η∗−), i.e. the lower Vietoris topology

τ(V −), are well known results. (CL(X), τ(V −)) is first countable if and only if X is first

countable and each closed subset of X is separable (cf. Theorem 1.2 in [13]); (CL(X), τ(V −))

is second countable if and only if X is second countable (cf. Proposition 1.11 in [13]).

Thus, we study the first and the second countability of σ(η−) when η is different from η∗.

The following definitions have a key role.

Definitions 2.9 (see [2]) Let (X, τ) be a T1 topological space, η a compatible LO-

proximity and A ∈ CL(X).

A family NA of open sets of X is an external proximal local base at A with respect

to η (or, briefly a η-external proximal local base at A) if for any U open subset of X

such that A η U , there exists V ∈ NA satisfying A η V and clV ⊂ clU .

The external proximal character of A with respect to η (or, briefly the η-external

proximal character of A) is defined as the smallest (infinite) cardinal number of the form

|NA|, where NA is a η-external proximal local base at A, and it is denoted by Eχ(A, η).

The external proximal character of CL(X) with respect to η (or, briefly the η-

external proximal character) is defined as the supremum of all number Eχ(A, η), where

A ∈ CL(X). It is denoted by Eχ(CL(X), η).

Remark 2.10 If X is a T3 topological space, η is a compatible LR-proximity and the

η-external proximal character Eχ(CL(X), η) is countable, then X is separable .

Theorem 2.11 Let (X, τ) be a T3 topological space with a compatible LR-proximity η.

The following are equivalent:

(a) (CL(X), σ(η−)) is first countable;

(b) the η-external proximal character Eχ(CL(X), η) is countable.

Proof: (a)⇒(b). It suffices to show that for each A ∈ CL(X) there exists a countable

family NA of open sets of X which is a η-external proximal local base at A. First note a

useful fact:

For open sets V, U, clV ⊂ clU ⇔ V −
η ⊂ U−

η . (#)
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Now, let A ∈ CL(X) and Z a countable subbase σ(η−)-neighbourhood system of A. Set

NA = {V : V an open set with V −
η ∈ Z}. Clearly, NA is a countable family of open sets with

the property that A η U , U open, implies there is a V ∈ NA satisfying A η V and V −
η ⊂ U−

η .

Thus the result follows from (#).

(b)⇒(a). It is obvious.

Definitions 2.12 (see [2]) Let (X, τ) be a T1 topological space with a compatible

LO-proximity η.

A family N of open sets of X is an external proximal base with respect to η (or,

briefly a η-external proximal base) if for any closed subset A of X and any open subset

U of X with A η U , there exists V ∈ N satisfying A η V and clV ⊂ clU .

The external proximal weight of CL(X) with respect to η (or, briefly the η-external

proximal weight of CL(X)) is the smallest (infinite) cardinality of its η-external proximal

bases and it is denoted by EW(CL(X), η).

Theorem 2.14 Let (X, τ) be a T3 topological space with a compatible LR-proximity η.

The following are equivalent:

(a) (CL(X), σ(η−)) is second countable;

(b) the η-external proximal weight EW(CL(X), η) is countable.

3 Six Hyperspace Topologies

The three lower topologies σ(η∗
−
), σ(η−), σ(η−0 ) combined with two upper ones σ(δ+; ∆),

σ(δ+
0 ; ∆) yield six distinct hypertopologies of which the first two are already well known as

we remarked before.

π(η∗, δ0; ∆) = σ(η∗
−
) ∨ σ(δ+

0 ; ∆) = τ(∆) , (1)

the ∆-topology which equals the Vietoris topology when ∆ = CL(X) and equals the Fell

topology when ∆ = K(X).

π(η∗, δ; ∆) = σ(η∗
−
) ∨ σ(δ+; ∆) = σ(δ; ∆) , (2)

the proximal-∆-topology which equals the proximal topology when ∆ = CL(X) and equals

the Fell topology when ∆ = K(X) and δ is a LR-proximity.

π(η, δ0; ∆) = σ(η−) ∨ σ(δ+
0 ; ∆) . (3)

π(η, δ; ∆) = σ(η−) ∨ σ(δ+; ∆) . (4)

π(η0, δ0; ∆) = σ(η−0 ) ∨ σ(δ+
0 ; ∆) . (5)

π(η0, δ; ∆) = σ(η−0 ) ∨ σ(δ+; ∆) . (6)
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Theorem 3.1 The following relationships hold when X is a T3 topological space, η0

is the Wallman proximity and η is a LR-proximity. Moreover, for simplicity we consider

∆ = CL(X).

(a) σ(δ) ⊂ τ(V) ⊂ π(η0, δ0).

(b) σ(δ) ⊂ τ(V) ⊂ π(η, δ0).

(c) σ(δ) ⊂ π(η0, δ) ⊂ π(η0, δ0).

(d) σ(δ) ⊂ π(η, δ) ⊂ π(η, δ0).

(e) σ(δ) ⊂ τ(V) ⊂ π(η0, δ0) ⊂ π(η, δ0) when X is locally compact.

(f) σ(δ) ⊂ π(η0, δ) ⊂ π(η0, δ0) ⊂ π(η, δ0) when X is locally compact.

Let (X, τ) be a T3 topological space with a compatible LR-proximity δ. Then X is called

a PC space if δ = δ0. In such a space, every continuous function on X to an arbitrary

proximity space is proximally continuous. In case X is a metric space with the metric

proximity δ, then X is PC if and only if X is UC (i.e. continuous functions on X are

uniformly continuous).

Theorem 3.2 Let (X, τ) be a T3 topological space. The following are equivalent:

(a) X is PC;

(b) σ(δ) = τ(V );

(c) π(η0, δ) = π(η0, δ0);

(d) π(η, δ0) ⊂ π(η, δ).

4 Properties of (CL(X), π(η, δ))

We now study some properties of the topological space (CL(X), π(η, δ)).

In general, the map x→ {x} from (X, τ) into (CL(X), σ(η−)) fails to be an embedding (see

Example 2.1). As a result, the topology π(η, δ) in general is not admissible. The admissibility

of π(η, δ) is studied in Appendix (see section 7).

From 2.2 we know that if the space X is regular and the involved proximities are LR, then

(CL(X), π(η, δ)) is Hausdorff. We begin with some lemmas.
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The following is a generalization of the well known result: sets of the form < U−
k >= {E :

E ∩ Uk 6= ∅ and E ⊂ U = ∪Uk} form a base for the Vietoris topology, where {U,Uk} is a

finite family of open sets.

We recall that given two proximity δ and η on X, δ ≤ η iff A δ B implies A η B.

Lemma 4.1 Let (X, τ) be a T1 topological space and δ, η compatible proximities. If

δ ≤ η, then all sets of the form

< U−
k , U

+ >η,δ= {E : E η Uk, E �δ U and
⋃

Uk ⊂ U}

form a base for the π(η, δ) topology.

Proof: If A ∈
⋂
{V −

k,η : 1 ≤ k ≤ n} ∩ U+
δ , then A δ U c and A η Vk for each k ∈ {1, . . . , n}.

Thus, we may replace each Vk by Vk ∩ U . In fact, from δ ≤ η we have A η U c and thus

A η Vk iff A η (Vk ∩ U).

Remark 4.2 (i) If δ ≤ η and D is a dense subset of X, then the family of all finite

subsets of D is dense in (CL(X), π(η, δ; ∆)).

(ii) Note that in the above Lemma and in (i) we need only δ ≤ η, restricted to the pairs

(E,W ) where E is closed and W is open.

The following is a generalization of the result: < clU−
k >, 1 ≤ k ≤ n, is closed in τ(V).

First, we need a definition.

Definition 4.3 Let (X, τ) be a T1 topological space and δ, η compatible proximities. The

hypertopologies π(δ, η) and π(η, δ) are called conjugate.

Lemma 4.4 Let (X, τ) be a T1 topological space with compatible proximities δ, η. If

P =< clU−
k , clU >η,δ, 1 ≤ k ≤ n, U = ∪Uk then P is closed with respect to its conjugate

π(δ, η).

Proof: A /∈ P if and only if A�δ clU for A η clUk for some k which in turn is equivalent

to A δ [clU ]c or A �η [clUk]
c.

Remark 4.5 Obviously, if η ≤ δ when restricted to the pairs (E,W ) where E is closed

and W is open, then P is closed also in π(η, δ).

We now consider the uniformizability of (CL(X), π(η, δ)).

We assume that (X, τ) is Tychonoff, δ is a compatible EF-proximity and η a LO-proximity.

Let W be the unique totally bounded uniformity compatible with δ (see [8] or [18]). It is

known that the Hausdorff-Bourbaki or H-B uniformity WH, which has as a base all sets of
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the form WH = {(A,B) : A ⊂ W (B) and B ⊂ W (A)} induces the proximal finite topology

σ(δ) = σ(η∗
−
) ∨ σ(δ+) (cf. [7]).

By 2.2 we know that σ(η∗
−
) ⊂ σ(η−). So, in order to get σ(η−) we have to augment a typical

entourage WH ∈ WH by adding sets of the type

P{Uk} = {(A,B) ∈ CL(X)× CL(X) : A η Uk and B η Uk}

for a finite family of open sets {Uk}.

Then, by a routine argument we have.

Theorem 4.6 If δ is a compatible EF-proximity, η a LO-proximity on a Tychonoff space

(X, τ) and W the unique totally bounded uniformity compatible with δ, then the family

S = WH ∪ {WH ∪ P{Uk} : WH ∈ WH, {Uk} finite family of open sets }

defines a compatible uniformity on (CL(X), π(η, δ)).

We next study the first and second countability as well as the metrizability of π(η, δ; ∆),

where (X, τ) is a T3 topological space, η, δ compatible LR-proximities on X. Observe that

the first and second countability as well as the metrizability of π(η, δ; ∆) when η = η∗, i.e.

π(η∗, δ; ∆) = σ(δ; ∆), have been studied by Di Maio and Hola in [5].

So, we attack the case η 6= η∗.

Theorem 4.7 Let (X, τ) be a T3 topological space, η, δ compatible LR-proximities on

X with δ ≤ η (cf. Lemma 4.1). The following are equivalent:

(a) (CL(X), π(η, δ; ∆)) is first countable;

(b) (CL(X), σ(η−)) and (CL(X), σ(δ+; ∆)) are both first countable.

Proof: (b)⇒(a). Since π(η, δ; ∆) = σ(η−) ∨ σ(δ+; ∆), this implication is clear.

(a)⇒(b). Let (CL(X), π(η, δ; ∆)) be first countable and take A ∈ CL(X).

Let Z = {L =< S−j , V
+ >η,δ, with A�δ V, V

c ∈ ∆, Sj open, A η Sj,
⋃
{Sj : j ∈ J} ⊂ V and

J finite} be a countable local base of A with respect to the topology π(η, δ).

We claim that the family Z+ = {V +
δ : V +

δ occurs in some L ∈ Z} ∪ {CL(X)} forms a local

base of A with respect to the topology σ(δ+; ∆). Indeed, if there is no open subset U with

A �δ U , U c ∈ ∆, then CL(X) is the only open set in σ(δ+; ∆) containing A. If there is U

with A �δ U , U c ∈ ∆, then U+
δ is a π(η, δ)-nbhd. of A. Hence, there exists L ∈ Z with

L ⊆ U+
δ . Note, that L cannot be of the form L =< S−j >η=

⋂
{(Sj)

−
η : j ∈ J}, otherwise by

setting F = A ∪ U c, we have F ∈ L, but F 6∈ U+
δ , a contradiction. Thus, L has the form

< S−j , V
+ >η,δ. We claim that V +

δ ⊂ U+
δ . Assume not and let E ∈ V +

δ \U+
δ . Set F = E ∪A,
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we have F ∈ L \ U+
δ , a contradiction.

We now show, that there is a countable local base of A with respect to the topology σ(η−).

Without any loss of generality we may suppose that in the expression of every element from

Z the family of index set J is non-empty, in fact

{V +
δ : A�δ V, V

c ∈ ∆} = {V +
δ : A�δ V, V

c ∈ ∆} ∩ {V −
η }

By Lemma 4.1 if L ∈ Z, then L =< S−j , V
+ >η,δ= V +

δ ∩ {(Sj)
−
η : j ∈ J} where A δ V c, V c ∈

∆,
⋃
{Sj : j ∈ J} ⊂ V,A η Sj, Sj ∈ τ for each j ∈ J and J finite.

Set Z− = {(Sj)
−
η : (Sj)

−
η occurs in some L ∈ Z}. We claim that the family Z− forms a

local subbase of A with respect to the topology σ(η−). Take U open with A η U . Then

U−
η is a π(η, δ)-nbhd. of A. Hence, there exists L ∈ Z with L ⊂ U−

η . L =< S−j , V
+ >η,δ=

V +
δ ∩ {(Sj)

−
η : j ∈ J}. We claim that there exists a j ∈ J such that (Sj)

−
η ⊂ U−

η . It suffices

to show that there exists a j ∈ J such that Sj ⊂ U . assume not and for each j ∈ J let

xj ∈ Sj \ U . The set F = {xj : j ∈ J} ∈ L \ U−
η , a contradiction.

Definitions 4.8 (see [2]) Let (X, τ) be a T1 topological space, δ a compatible LO-

proximity, A a closed subset of X and ∆ ⊂ CL(X) a ring.

A family LA of open neighbourhoods of A is a local proximal base at A with respect to

δ (or briefly a δ-local proximal base at A) if for any open subset U of X with U c ∈ ∆

and A�δ U there exists W ∈ LA such that A�δ W , W c ∈ ∆ and W ⊂ U .

The δ-proximal character of A is defined as the smallest (infinite) cardinal number of

the form |LA|, where LA is a δ-local proximal base at A and it is denoted by χ(A, δ).

The δ-proximal character of CL(X) is defined as the supremum of all number χ(A, δ),

where A ∈ CL(X), and it is denoted by χ(CL(X), δ).

By Theorems 4.7 and 2.11 we have.

Theorem 4.9 Let (X, τ) be a T3 topological space, η, δ compatible LR-proximities on

X with δ ≤ η. The following are equivalent:

(a) (CL(X), π(η, δ; ∆)) is first countable;

(b) the η-external proximal character Eχ(CL(X), η) and the δ-proximal character

χ(CL(X), δ) are both countable.

For the second countability we have a similar result.

Theorem 4.10 Let (X, τ) be a T3 topological space, η, δ compatible LR-proximities on

X with δ ≤ η. The following are equivalent:



Symmetric Proximal Hypertopology 15

(a) (CL(X), π(η, δ; ∆)) is second countable;

(b) (CL(X), σ(η−)) and (CL(X), σ(δ+; ∆)) are both second countable.

Proof: We omit the proof that is similar to that in Theorem 4.7.

Definitions 4.11 Let (X, τ) be a T1 topological space, δ a compatible LO-proximity

and ∆ ⊂ CL(X) a ring.

A family B of open sets of X is a δ-proximal base with respect to ∆ if whenever A�δ V

with V c ∈ ∆, there exists W ∈ B such that A�δ W , W c ∈ ∆ and W ⊂ V .

The δ-proximal weight of CL(X) with respect to ∆ (or, briefly the δ-proximal

weight with respect to ∆) is the smallest (infinite) cardinality of its δ-proximal base with

respect to ∆ and is denoted by W (CL(X); δ,∆).

Theorem 4.12 Let (X, τ) be a T3 topological space, η, δ compatible LR-proximities on

X with δ ≤ η. The following are equivalent:

(a) (CL(X), π(η, δ; ∆)) is second countable;

(b) the η-external proximal weight EW(CL(X), η) and the δ-proximal weight

W(CL(X); δ,∆) with respect to ∆ are both countable.

Theorem 4.13 Let (X, τ) be a Tychonoff space, δ a compatible EF-proximity, η a com-

patible LR-proximity and δ ≤ η. The following are equivalent:

(a) (CL(X), π(η, δ)) is metrizable;

(b) (CL(X), π(η, δ)) is second countable and uniformizable.

Proof: (b)⇒(a). It follows from the Urysohn Metrization Theorem.

(a)⇒(b). Observe that since CL(X) is first countable, X is separable (use Theorem 4.7 and

Remark 2.10). Thus, (CL(X), π(η, δ)) is second countable (see (i) in Remarks 4.2).

Corollary 4.14 Let (X, τ) be a Tychonoff space, δ a compatible EF-proximity and η a

compatible LR-proximity on X. The following are equivalent:

(a) (CL(X), π(η, δ)) is metrizable;

(b) (CL(X), σ(η−)) and (CL(X), σ(δ+)) are second countable.
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5 Subspace Hypertopologies

It is well known that in the lower Vietoris topology τ(V−) subspace topologies behave nicely,

i.e. if A ∈ CL(X) then

(CL(A), τ(V−
A)) = (CL(X), τ(V−)) ∩ CL(A) .

We now give some examples to show that in case of lower proximal topology σ(η−) analogous

result is not true and the two topologies are not even comparable.

Example 5.1 Let X = [0, 2]× [−1, 1], Q = [0, 2]× [0, 1], T the closed triangle with vertices

at (0,−1), (1, 0), (2,−1).

Let A = T ∪ [0, 2] × {0}, η the metric proximity on X and V = (0, 2) × (0, 1). Let H =

V −
η ∩CL(A) which is an open set in (CL(X), σ(η−))∩CL(A). Then H = {CL([0, 2]×{0})}∪
{B ∈ CL(A) : (1, 0) ∈ B} and is not open in (CL(A), σ(η−A)), where ηA denotes the induced

proximity on A. So, (CL(X), σ(η−)) ∩ CL(A) 6⊂ (CL(A), σ(η−A)).

Next examples show that even the reverse inclusion in general does not occur.

Examples 5.2 1. This is an example of a Hausdorff non-regular space X, having a

closed subset A such that (CL(A), σ(η−A)) 6⊂ (CL(X), σ(η−)) ∩ CL(A).

The space X is the “Irrational Slope Topology“ (Example 75 on Page 93 [22]). Let

X = {(x, y) : y ≥ 0, x, y ∈ Q}, θ a fixed irrational number and X endowed with the

irrational slope topology τ generated on X by neighbourhoods of the form

Nε((x, y)) = {(x, y)} ∪Bε(x+ y/θ) ∪Bε(x− y/θ)

where Bε(ζ) = {r ∈ Q : |r − ζ| < ε}, Q being the rationals on the x-axis. Let η0 be

the Wallman proximity. The set A = {(x, y) : y > 0, x, y ∈ Q} is a closed discrete set.

Let {(x, 1) : x ∈ Q} = O which is clopen in A. Then there is no open neighbourhood

H in X such that [(H−
η0 ∩ CL(X)] ⊂ O− and the claim.

2. This is a less pathological example. Let X = l2 be the space of square summable

sequences of real numbers with the usual norm, θ the origin and {en : n ∈ N} the

standard basis of unit vectors. Let X be equipped with the Alexandroff proximity η1

(i.e. E η1 F iff clE ∩ clF 6= ∅ or both clE, clF are not compact). Since X is not

locally compact, η1 is not an EF-proximity.

Let A = {θ} ∪ {en : n ∈ N}. Then {θ} is clopen , {θ}η1{θ}.

Note that F ′ ∈ CL(A) and F ′η1{θ} iff θ ∈ F ′.

Clearly, A′ = (A − {θ}) ∈ CL(A) and A′η
1
{θ}. However, for each open set V in X,

V η1A
′, showing thereby that {θ}−η1 is not a member of σ(η−1 ) ∩ CL(A).

Hence, (CL(A), σ(η−A)) 6⊂ (CL(X), σ(η−)) ∩ CL(A).
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6 COMPARISONS

Now we compare two lower proximal topologies. If η is a LO-proximity on X, then for

A ⊂ X, we use the notation η(A) = {E ⊂ X : E η A} (cf. [23]).

Lemma 6.1 Let γ and η be compatible LO-proximities on a T1 topological space (X, τ).

The following are equivalent:

(a) W−
γ ⊂ V −

η on CL(X);

(b) γ(W ) ⊂ η(V ).

Theorem 6.2 Let γ and η be compatible LO-proximities on a T1 topological space

(X, τ). The following are equivalent:

(a) σ(η−) ⊂ σ(γ−);

(b) for each F ∈ CL(X) and U ∈ τ with F η U there exists V ∈ τ such that F ∈ γ(V ) ⊂
η(U).

Proof: (a)⇒(b). Let F ∈ CL(X) and U ∈ τ with F η U . Then F ∈ U−
η .

By assumption there exists V =< V−
1 ,V

−
2 , . . . ,V

−
n >γ∈ σ(γ−) such that F ∈ V ⊂ U−

η .

Clearly, F ∈ γ(Vi) for each i ∈ {1, 2, . . . , n}. We claim that there exist i∗ ∈ {1, 2, . . . , n} such

that γ(Vi∗) ⊂ η(U). Assume not. Then for each i ∈ {1, 2, . . . , n} there exists Ti ∈ CL(X)

such that Ti γ Vi and Ti η U . Set T =
⋃
{Ti : i ∈ {1, 2, . . . , n}}. Then T ∈ CL(X), T γ Vi

for each i ∈ {1, 2, . . . , n} and T η U . This show that T ∈ V 6⊂ U−
η ; a contradiction.

(b)⇒(a) It is obvious.

Definition 6.3 Let (X, τ) be a T1 topological space and η a LO-proximity.

(X, τ) is nearly regular iff whenever x ∈ U with U ∈ τ there exists V ∈ τ such that

x ∈ clV ⊂ U .

η is nearly regular (n-R for short) iff it satisfies

(n-R) x η A implies there exists E ⊂ X such that x η E and Ec η A.

Remarks 6.4 (a) It is easy to verify that each LR-proximity is also an n-R proximity.

The converse in general does not occur as (a) in the remark (6.6) shows.

(b) If η is a compatible (n-R)-proximity, then for each x ∈ U and U ∈ τ , there is a V ∈ τ
with x ∈ clV and V η U c.
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(c) If (X, τ) is a T3 topological space, then (X, τ) is nearly regular but the converse is not

true in general as the next examples show.

Examples 6.5 (1) Let X = R with the topology τ consisting of the usual open sets

together with sets of the form U = (−ε, ε)\B, ε > 0, B ⊂ {1/n : n ∈ N} = A. Then

X is nearly regular but not regular since V = (−ε′, ε′)\B ⊂ U for 0 < ε′ < ε, but

clV 6⊂ U . Take W = (−ε′, 0) for 0 < ε′ < ε, then 0 ∈ clW ⊂ (−ε, ε)\A.

(2) The space X, of example 2.4, is Hausdorff but not nearly regular.

Remarks 6.6 (a) If in Examples 6.5 we endow X with the proximity η0, then in the case

(1) η0 is an n-R proximity but not a LR-proximity; whereas in the case (2) η0 is not

n-R.

(b) It is easy to show that if η is a compatible n-R-proximity on X, then X is nearly-

regular. Thus by the above result (a) we can state the following.

A topological space (X, τ) admits a compatible n-R proximity η if and only if the base

space X is nearly regular.

(c) The above examples show that the nearly regular property is not hereditary. On the

other hand it is easy to show that it is open hereditary.

Next Theorem characterizes those proximities η for which the corresponding lower η topolo-

gies σ(η−) are finer than the lower Vietoris topology τ(V −) = σ(η∗−).

Theorem 6.7 Let (X, τ) be a T1 topological space, η a compatible LO-proximity and η∗

the discrete proximity. The following are equivalent:

(a) σ(η∗−) ⊂ σ(η−);

(b) η is an n-R proximity.

Proof: (a)⇒(b) Let x ∈ X and U ∈ τ with x ∈ U . The result follows from proof (a)⇒(b)

of Theorem 6.2 when F = {x}.

(b)⇒(a) Let U = U−
η∗ be a subbasic element of σ(η∗−) and F ∈ U. Let x ∈ U ∩ F . By

assumption there exists a V ∈ τ such that x ∈ clV and V η U c. Set V = V−
η . Then

F ∈ V ∈ σ(η−) and V ⊂ U = U−
η∗ .

Theorem 6.8 Let (X, d) be a metric space, η the associated metric proximity and η0

the Wallman proximity. The following are equivalent:

(a) X is UC;
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(b) η = η0;

(c) σ(η−) = σ(η−0 );

(d) σ(η−) ⊆ σ(η−0 );

(e) for each F ∈ CL(X) and U ∈ τ with F η U there is V ∈ τ with F ∈ η0(V ) ⊂ η(U).

Proof: (a)⇔(b), (b)⇔(c) and (c)⇒(d) are obvious.

(c)⇔(e). It follows by the above Theorem 6.2.

(d)⇒(a). It suffices to show that (not a)⇒(not d). So, suppose X is not UC. Then there

exists a pair of sequences {xn}, {yn} in X without cluster points, which are parallel (i.e.

limn→∞ d(xn, yn) = 0) (see [21] or [1] on Page 54). Let A = {xn : n ∈ N}, for each n ∈ N set

An = {xm : m ≤ n} and U = ∪{S(yn, εn) : n ∈ N} where εn = 1
4
d(xn, yn).

Clearly , A η U but An η U for each n ∈ N showing that {An : n ∈ N} does not converge to

A with respect to the σ(η−) topology. On the other hand {An : n ∈ N} converges to A with

respect to σ(η−0 ).

Now, we study comparisons between symmetric proximal topologies.

Theorem 6.9 Let α, γ, δ and η be compatible LO-proximities on a T1 topological space

(X, τ) with α ≤ γ and δ ≤ η, and ∆ and Λ cobases. The following are equivalent:

(a) π(η, δ; ∆) ⊂ π(γ, α; Λ);

(b) (1) for each F ∈ CL(X) and U ∈ τ with F η U there are W ∈ τ and L ∈ Λ such that

F ∈ [γ(W )\α(L)] ⊂ η(U);

(2) for each B ∈ ∆ and W ∈ τ , W 6= X with B �δ W , there exists M ∈ Λ such that

M �α W and δ(B) ⊂ α(M).

Proof: (a)⇒(b) We start by showing (1). So, let F ∈ CL(X) and U ∈ τ with FηU . Then

U−
η is a π(η, δ; ∆) neighbourhood of F .

By assumption there is a π(γ, α; Λ) neighbourhood W of F such that W ⊂ U−
η .

W =< W−
1 ,W

−
2 , . . . ,W

−
n ,W

+ >γ,α, Wi ∈ τ for each i ∈ {1, 2, . . . , n},⋃
{Wi : i ∈ {1, 2, . . . , n}} ⊂ W and W c ∈ Λ.

Set L = W c. By construction F α L as well as F γ Wi for each i ∈ {1, 2, . . . , n}. We claim

that there exists an i∗ ∈ {1, 2, . . . , n} such that

[γ(Wi∗)\α(L)] ⊂ η(U) .
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Assume not. Then for each i ∈ {1, 2, . . . , n} there exists Ti ∈ CL(X) with Ti ∈ [γ(Wi)\α(L)]

but Ti /∈ η(U), i.e. Ti γ Wi as well as Ti �α W = Lc and Ti η U .

Set T =
⋃
{Ti : i ∈ {1, 2, . . . , n}}. By construction T ∈ CL(X),

T ∈ W =< W−
1 ,W

−
2 , . . . ,W

−
n ,W

+ >γ,α and T /∈ U−
η which contradicts W ⊂ U−

η .

Now we show (2). So, let B ∈ ∆ and W ∈ τ , W 6= X with B �δ W .

Set A = W c. Then A ∈ CL(X) and A ∈ (Bc)+
δ ∈ π(η, δ; ∆). Thus there exists a π(γ, α; Λ)-

neighbourhood

O =< O−
1 , O

−
2 , . . . , O

−
n , O

+ >γ,α such that A ∈ O ⊂ (Bc)+
δ .

Note that
⋃
{Oi : i ∈ {1, 2, . . . , n}} ⊂ O and Oc ∈ Λ. Set M = Oc. Since A ∈ O , then

M �α Ac = W . We claim δ(B) ⊂ α(M). Assume not. Then there exists F ∈ CL(X)

such that FδB but FαM . Set E = A ∪ F ∈ CL(X). Then E ∈ O but E /∈ (Bc)+
δ , which

contradicts O ⊂ (Bc)+
δ .

(b)⇒(a) Let F ∈ U =< U−
1 , U

−
2 , . . . , U

−
n , U

+ >η,δ be a π(η, δ; ∆)-neighbourhood of F . Then

FηUi for each i ∈ {1, 2, . . . , n} as well as F �α U , with Ui, U ∈ τ,
⋃
{Ui : i ∈ {1, 2, . . . , n}} ⊂

U and B = U c ∈ ∆.

By (1) for each i ∈ {1, 2, . . . , n} there are Wi ∈ τ and Li ∈ Λ with F ∈ [γ(Wi)\α(Li)] ⊂
η(Ui).

By (2), there exists M ∈ Λ with M �α F
c and δ(B) ⊂ α(M).

Set N =
⋃
{Li : i ∈ {1, 2, . . . , n}} ∪ M ∈ Λ, O = N c and for each i ∈ {1, 2, . . . , n}

Oi = Wi\N .

Note that FαN together with α ≤ γ imply FγN . Wi = Oi ∪ (Wi ∩N). But FγWi together

with FγN imply FγOi as well as Oi 6= ∅. Moreover FαN implies F �α O = N c. Therefore

F ∈ O =< O−
1 , O

−
2 , . . . , O

−
n , O

+ >γ,α∈ π(γ, α; Λ) .

We claim

O =< O−
1 , O

−
2 , . . . , O

−
n , O

+ >γ,α⊂ U =< U−
1 , U

−
2 , . . . , U

−
n , U

+ >η,δ .

Assume not. Then there exists E ∈ O , but E /∈ U .

Hence either (3) E η Ui for some i or (33) E δ U c.

If (3) occurs, then since EγOi, Oi ⊂ Wi, E �α O = N c and Li ⊂ N we have E ∈
[γ(Wi)\α(Li)] 6⊂ η(Ui), which contradicts (1).

If (33) occurs, then since EδB = U c, E �α O = N c and M ⊂ N we have E ∈ δ(B)\α(M),

i.e. δ(B) 6⊂ α(M), which contradicts (2).
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7 APPENDIX (ADMISSIBILITY)

It is a well known fact, that if (X, τ) is a T1 topological space, then the lower Vietoris

topology τ(V −) is an admissible topology, i.e. the map i : (X, τ) → (CL(X), τ(V −)),

defined by i(x) = {x}, is an embedding. On the other hand (as observed in Example

2.1), if the involved proximity η is different from the discrete proximity η∗, then the map

i : (X, τ) → (CL(X), σ(η−) is, in general, not even continuous. So, we start to study the

behaviour of i : (X, τ) → (CL(X), σ(η−), when η 6= η∗. First we give the following Lemma.

Lemma 7.1 Let (X, τ) be a T1 topological space, U ∈ τ with clU 6= X and V = (clU)c.

If z ∈ clU ∩ clV , then there exists a net (zλ) τ -converging to z such that for all λ either

(i) zλ ∈ U and zλ 6= z, or

(ii) zλ ∈ V and zλ 6= z

Proof: Let N(z) be the filter of open neighbourhoods of z. For each I ∈ N(z), select

wI ∈ I ∩ V and yI ∈ I ∩ U . Then, the net (wI) is τ -converging to z and (wI) ⊂ V as well

as the net (yI) is τ -converging to z and (yI) ⊂ U .

We claim that for all I ∈ N(z) either wI 6= z or yI 6= z.

Assume not. Then there exist I and J ∈ N(z) such that yI = z and wJ = z. As a result

z ∈ U ∩ V ⊂ cl U ∩ V = ∅, a contradiction.

Recall, that a Hausdorff space X is called extremally disconnected if for every open set

U ⊂ X the closure clU of U is open in X (see [8] on page 368).

Proposition 7.2 Let (X, τ) be a Hausdorff space with a compatible LO-proximity η.

The following are equivalent:

(a) X is extremally disconnected;

(b) the map i : (X, τ) → (CL(X), σ(η−)), defined by i(x) = {x}, is continuous.

Proof: (a)⇒(b). Let x ∈ X and (xλ) a net τ -converging to x. Let V ⊂ X with V open

and {x}ηV . Since {x}ηV , then x ∈ cl V . By assumption clV is an open subset of X and

the net (xλ) τ -converges to x. Thus, eventually xλ ∈ clV .

(b)⇒(a). By contradiction, suppose (a) fails. Then there exists open set U ⊂ X such that

closure clU is not open in X. Then clU 6= X. Set V = (clU)c. V is non-empty and open

in X.
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We claim that clU ∩ clV 6= ∅. Assume not, i.e. clU ∩ clV = ∅. Then, clU ⊂ (clV )c ⊂
V c = clU . Thus, clU = (clV )c, i.e. clU is open, a contradiction. Let z ∈ clU ∩ clV . From

Lemma 7.1, there exists a net (zλ) τ -converging to z such that for all λ either (i) zλ ∈ U

and zλ 6= z, or (ii) zλ ∈ V and zλ 6= z. In both cases, there exists an open subset W such

that z ∈ cl,W and zλ 6∈ cl,W for all λ (in fact, if (i) holds, then set W = V , otherwise set

W = U). Thus the net (zλ) τ -converging to z and the open subset W witness that the map

i : (X, τ) → (CL(X), σ(η−)) fails to be continuous.

Now, we investigate when the map i : (X, τ) → (CL(X), σ(η−)) is open.

Proposition 7.3 Let (X, τ) be a T1-topological space with a compatible LO-proximity

η. The following are equivalent:

(a) (X, τ) is nearly regular (cf. Definition 6.3);

(b) the map i : (X, τ) → (CL(X), σ(η−)) is open.

Proof: Left to the reader.

Note that if (X, τ) is a T1-topological space with a compatible LO-proximity δ, then the

map i : (X, τ) → (CL(X), σ(δ+; ∆)) is always continuous with respect the upper proximal

∆ topology σ(δ+; ∆). So, we have:

Proposition 7.4 Let (X, τ) be a T1-topological space, δ a compatible LO-proximity and

∆ ⊂ CL(X) a cobase. The following are equivalent:

(a) the map i : (X, τ) → (CL(X), σ(δ+; ∆)), defined by i(x) = {x}, is an embedding;

(b) the map i : (X, τ) → (CL(X), σ(δ+; ∆)), defined by i(x) = {x} is an open map;

(c) whenever U ∈ τ and x ∈ U , there exists a B ∈ ∆ such that x ∈ Bc ⊂ U .

Finally, we have the following result concerning with the admissibility of the entire symmet-

ric proximal ∆ topology π(η, δ; ∆). Obviously, we investigate just the significant case η 6= η∗

(the standard proximal ∆ topology σ(δ; ∆) = π(η∗, δ; ∆) is always admissible).

Proposition 7.5 Let (X, τ) be a Hausdorff space, η, δ compatible LO-proximities and

∆ ⊂ CL(X) a cobase. The following are equivalent:
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(a) the map i : (X, τ) → (CL(X), π(η, δ; ∆)) is an embedding;

(b) i : (X, τ) → (CL(X), σ(η−)) is continuous and either i : (X, τ) → (CL(X), σ(η−)) or

i : (X, τ) → (CL(X), σ(δ+; ∆)) is open.

Theorem 7.6 Let (X, τ) be a Hausdorff space, η, δ compatible LO-proximities and ∆ ⊂
CL(X) a cobase. The following are equivalent:

(a) the map i : (X, τ) → (CL(X), π(η, δ; ∆)) is an embedding;

(b) X is extremally disconnected and either X is also nearly regular, or whenever U ∈ τ

and x ∈ U , there exists a B ∈ ∆ such that x ∈ Bc ⊂ U .

We raise the following question.

Question 7.1 There exists an extremally disconnected space X which turns out to be

nearly regular, but not regular?
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[5] Di Maio, G., and Holà, Ľ. : On hit-and-miss topologies. Rend. Acc. Sc. Fis. Mat.

Napoli 57, 103-124 (1995)

[6] Di Maio, G., Meccariello, E., and Naimpally, S.A. : Bombay hypertopologies. (To

appear in Applied General Topology)



24 G. Di Maio; E. Meccariello; S. Naimpally

[7] Di Concilio, A., Naimpally, S.A., and Sharma, P. : Proximal Hypertopologies.

Sixth Brazilian Topology Meeting, Campinas, Brazil (1988) [ unpublished ]

[8] Engelking, R. : General topology. Revised and completed version, Helderman Verlang

Berlin 1989

[9] Fell, J. : A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff

space. Proc. Amer. Math. Soc. 13, 472-476 (1962)

[10] Hausdorff, F. : Mengenlehre. W. de Gruyter, Berlin und Leipzig 1927

[11] Harris, D. : Regular-closed spaces and proximities. Pacif. J. Math. 34, 675-685 (1970)

[12] Harris, D. : Completely regular proximities and RC-proximities. Fund. Math.

LXXXV, 103-111 (1974)
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Thomas Kalinowski

A Recolouring Problem on Undirected Graphs

ABSTRACT. We consider an algorithm on a graph G = (V,E) with a 2-colouring of V , that

is motivated from the computer-aided text-recognition. Every vertex changes simultaneously

its colour if more than a certain proportion c of its neighbours have the other colour. It is

shown, that by iterating this algorithm the colouring becomes either constant or 2-periodic.

For c =
1

2
the presented theorem is a special case of a known result [1], but here developed

independently with another motivation and a new proof.

There are algorithms for the computer-aided text recognition, that search in a given pixel

pattern for characteristic properties of characters. But often this search becomes very difficult

because of certain dirt effect like single white pixels in a large black area. So it seems plausible

that we can increase the efficiency of such algorithms by first weeding out such effects. For

example, we can change simultaneously the colour of every pixel if in a properly defined

neighbourhood the proportion of pixels with the opposite colour exceeds a certain number

c with 0 < c < 1. It is easy to see that iterating this recolouring finally runs into a period,

so the question for the length of such a period naturally arises. A similar question in the

more general situation of an arbitrary finite number of colours is motivated in [1] by a model

of a society, where the pixels correspond to the members of the society, whose opinions are

influenced by their neighbours. It is shown there that the period is 1 or 2 for this model.

To reformulate our problem in an explicit graph theoretical context let G = (V,E) be a

graph with vertex set V = {v1, v2, . . . , vr}. We colour the vertices with two colours, say

black and white. Now we can change the colouring by the following algorithm: For i from 1

to r, if vi is black and has more white than black neighbours, it changes its colour to white,

and if vi is white and has more black than white neighbours, it changes its colour to black. It

is a well-known problem in mathematical contests, to show that one always gets a constant

colouring by iterating this algorithm. Here every vertex v changes its colour if there are more

than 1
2
deg(v) vertices of the other colour in its neighbourhood. But what happens, if we

vary the fraction of opposite-coloured neighbours that is necessary for changing the colour?
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Thus the new condition for colour-changing is that there are more than c deg(v) vertices

of the other colour in the neighbourhood for some c, 0 < c < 1. Furthermore we want to

recolour the vertices not one after another, but all simultaneously. The standard-solution

of the mentioned contest problem gives a hint, how to tackle this problem, namely by the

search for an integer-valued, bounded and monotonous function of the number of steps.

We may assume that G has no isolated vertices, because if there were any, they would never

change their colour. Every 2-colouring of the vertices is given by a function V → {−1, 1}.
Then the series of recolouring steps corresponds to a series of functions (fn : V → {−1, 1})n∈N.

To describe the recolouring steps, we define the series of functions:

gn : E → {−1, 1}, {v, w} 7→ fn(v)fn(w)

So the number of neighbours of v, that are coloured in a different way than v before the n-th

recolouring step is
1

2

(
deg(v)−

∑
e∈E:v∈e

gn(e)

)
, and v changes its colour iff

1

2 deg(v)

(
deg(v)−

∑
e∈E:v∈e

gn(e)

)
> c. With

hn : V → Z, v 7→
∑

e∈E:v∈e

gn(e)− (1− 2c) deg(v)

this is equivalent to hn(v) < 0. Next we introduce another global parameter, for which we

will see, that it grows monotonously with n:

sn =
∑
v∈V

|hn(v)|

Lemma For every n ∈ N we define V −
n := {v ∈ V | hn(v) < 0}, the set of vertices,

that change their colours in the n-th step. Furthermore we set V +
n := V \ V −

n . Then, for all

n ∈ N,

sn+1 = sn + 2

 ∑
v∈V −

n ∩V +
n+1

|hn+1(v)|+
∑

v∈V +
n ∩V −

n+1

|hn+1(v)|

 .

Proof: We choose n ∈ N. For i ∈ {1, 2, . . . , r} let k−i and k+
i denote the numbers of edges

e, that are incident with vi, and fulfill gn(e) = 1 = −gn+1(e) and gn(e) = −1 = −gn+1(e),

respectively.

Obviously, hn+1(vi) = hn(vi) + 2
(
k+

i − k−i
)

for all i, and hence

|hn(vi)| =


|hn+1(vi)| − 2

(
k+

i − k−i
)

for vi ∈ V +
n ∩ V +

n+1

|hn+1(vi)|+ 2
(
k+

i − k−i
)

for vi ∈ V −
n ∩ V −

n+1

−|hn+1(vi)|+ 2
(
k+

i − k−i
)

for vi ∈ V −
n ∩ V +

n+1

−|hn+1(vi)| − 2
(
k+

i − k−i
)

for vi ∈ V +
n ∩ V −

n+1.



A Recolouring Problem on Undirected Graphs 29

Summing up these equations yields

sn =sn+1 − 2

 ∑
v∈V −

n ∩V +
n+1

|hn+1(v)|+
∑

v∈V +
n ∩V −

n+1

|hn+1(v)|


+ 2

 ∑
i:vi∈V −

n

(
k+

i − k−i
)
−
∑

i:vi∈V +
n

(
k+

i − k−i
) .

(1)

For every v ∈ V +
n and every e = {v, w} ∈ E we have gn(e) = 1 = −gn+1(e) iff w ∈ V −

n .

Therefore
∑

i:vi∈V +
n

k−i =
∑

i:vi∈V −
n

k−i and analogously
∑

i:vi∈V +
n

k+
i =

∑
i:vi∈V −

n

k+
i . So the last two

sums in (1) cancel each other and the claim follows.

Now we have an upper bound for the series (sn) by

sn ≤
∑
v∈V

deg(v) +
∑
v∈V

|1− 2c| deg(v) = 4α|E|

with α = 1− c if c ≤ 1
2

and α = c if c > 1
2
. For every v ∈ V −

n+1 we have

|hn+1(v)| ≥ 1 if (1− 2c) deg(v) ∈ Z,
|hn+1(v)| ≥ |1− 2c| deg(v)− b|1− 2c| deg(v)c if (1− 2c) deg(v) 6∈ Z.

So there is a constant β > 0 with |hn+1(v)| ≥ β for all v ∈ V −
n+1 and for all n ∈ N. It follows

∑
n∈N

∣∣V +
n ∩ V −

n+1

∣∣ ≤ 4α|E| − s0

2β
. (2)

Now we consider any v ∈ V . Let n0, n1, n2, . . . denote the numbers with v ∈ V −
ni
∩ V +

ni+1

in increasing order. Then either v ∈ V −
0 or v ∈ V +

m ∩ V −
m+1 for an m < n0, and, for all

k ∈ N, v ∈ V +
m ∩ V −

m+1 for an m with nk < m < nk+1. So with the characteristic functions

χA : V → {0, 1}, χA(v) = 1 for v ∈ A and χA(v) = 0 for v 6∈ A we have∑
n∈N

χV −
n ∩V +

n+1
(v) ≤ χV −

0
(v) +

∑
n∈N

χV +
n ∩V −

n+1
(v).

Summing up over V yields∑
v∈V

∑
n∈N

χV −
n ∩V +

n+1
(v) ≤

∑
v∈V

χV −
0

(v) +
∑
v∈V

∑
n∈N

χV +
n ∩V −

n+1
(v),

∑
n∈N

∑
v∈V

χV −
n ∩V +

n+1
(v) ≤

∑
v∈V

χV −
0

(v) +
∑
n∈N

∑
v∈V

χV +
n ∩V −

n+1
(v).

∑
n∈N

∣∣V −
n ∩ V +

n+1

∣∣ ≤ ∣∣V −
0

∣∣+∑
n∈N

∣∣V +
n ∩ V −

n+1

∣∣ ≤ |V −
0 |+

4α|E| − s0

2β
,
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and hence with (2)∑
n∈N

(∣∣V −
n ∩ V +

n+1

∣∣+ ∣∣V +
n ∩ V −

n+1

∣∣) ≤ |V −
0 |+

4α|E| − s0

β
.

Consequently there is an n0 ≤ |V −
0 |+

4α|E|−s0

β
with (V +

n0
∩ V −

n0+1) ∪ (V −
n0
∩ V +

n0+1) = ∅. From

this follows:

Theorem Let G = (V,E) be a graph with a 2-colouring of V and 0 < c < 1. In every

time step every vertex v changes its colour iff more than c deg(v) vertices in the neighbourhood

of v are coloured in a different way than v. Finally this algorithm runs into a period of length

1 or 2.

I would like to thank Prof. K. Engel for posing the problem to me and making useful

comments.
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Lothar Berg

Oscillating Solutions of Rational Difference Equa-
tions

ABSTRACT. For a special rational difference equation of order two oscillating series solution

are constructed. An example is given where Bessel functions arise as coefficients.

KEY WORDS. Rational difference equation, oscillating solutions, periodic solutions, Bessel

functions

A detailed investigation of the rational difference equation

xn+2 =
α+ βxn+1 + γxn

A+Bxn+1 + Cxn

(n ∈ N0) (1)

with non-negative parameters (A+B+C > 0) is contained in the book Kulenović and Ladas

[3]. Under the conditions

A+B + C = α+ β + γ = 1 (2)

it has the positive equilibrium x̃ = 1, and the corresponding linearized equation has the

characteristic equation D(s) = 0 with

D(s) = s2 + (B − β)s+ C − γ . (3)

In the case that the zeros of (3) are real, series solutions of (1) were constructed in [2]. Here,

we deal with the case

C > γ +
1

4
(β −B)2 (4)

where the zeros

z =
1

2

(
β −B + i

√
4(C − γ)− (β −B)2

)
(5)

and z of (3) are complex, and we construct series solutions which are oscillating. In the

following we use the notation

gjk(r) =
1− rj+1

1− r

1− rk+1

1− r
− 1− rj+k (6)
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with j, k ∈ N0. Moreover, we put r = |z| where (2), (4) and (5) imply that 0 < r =
√
C − γ ≤ 1. Some calculations were carried out by means of the DERIVE system.

Proposition 1 Under the assumptions (2), (4) and r < 1 the difference equation (1)

has the solution

xn =
∞∑

j=0

∞∑
k=0

cjka
jznjakznk (7)

with c00 = c10 = c01 = 1, an arbitrary complex a, and

cjk = − 1

D(zjzk)

j∑
µ=0

′ k∑
ν=0

′
cµνcj−µ,k−νz

µzν(Bzjzk + Czµzν) (8)

for j + k ≥ 2, where the primes at the sums shall indicate that the pairs (0, 0) and (j, k) are

excluded for (µ, ν). The series (7) converges for

λ|a|rn < 1 (9)

where

λ = sup
j+k≥2

1

|D(zjzk)|
(
Brj+kgjk(r) + Cgjk(r

2)
)
. (10)

Proof: Writing (1) in the form

xn+2(A+Bxn+1 + Cxn) = α+ βxn+1 + γxn

and replacing xn by means of (7) with c00 = c10 = c01 = 1, we obtain by comparing

coefficients that the coefficients cjk can be determined recursively by (8), whereas a remains

arbitrary.

In order to prove the convergence condition (9) we show that

|cjk| ≤ λj+k−1 (11)

for j + k ≥ 1. This estimate is valid in the case j + k = 1. Assuming that |cµν | ≤ λµ+ν−1 is

valid for 0 ≤ µ ≤ j, 0 ≤ ν ≤ k but 1 ≤ µ+ ν < j + k, then (8) implies the estimate

|cjk| ≤
1

|D(zjzk)|
(
Brj+kgjk(r) + Cgjk(r

2)
)
λj+k−2 ,

and (11) is proved by induction in view of (10)

The coefficients of (7) satisfy cjk = cjk. Writing z = reiϕ, cjka
jak = %jke

iϑjk and using

cjka
jznjakznk + ckja

kznkajznj = 2%jkr
(j+k)n cos(nϕ(j− k)+ϑjk), we see that the solution (7)

oscillates around the equilibrium 1 when a 6= 0.

The estimate (9) implies that (7) converges at least for

n >
ln(λ|a|)

ln 1
r

.
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Proposition 2 The supremum (10) allows the estimate

λ ≤ 2(Br + C)

(1− r)2
. (12)

Proof: We use the abbreviations x = rj, y = rk. In view of D(s) = (z − s)(z − s) we have∣∣D (zjzk
)∣∣ ≥ (r − xy)2 ,

so that (12) is valid if we show that both

0 ≤ 2r

(1− r)2
− xy

(r − xy)2

(
(1− rx)(1− ry)

(1− r)2
− 1− xy

)
(13)

and

0 ≤ 2

(1− r)2
− 1

(r − xy)2

(
(1− r2x2)(1− r2y2)

(1− r2)2
− 1− x2y2

)
. (14)

The right-hand side of (13) can be written as

ry(1− x)(r − x) + rx(1− y)(r − y) + r(r − y)(r − xy) + (r − x)(r2 − xy2) (15)

divided by the positive denominator (1− r)2(r − xy)2, and the right-hand side of (14) as

r2(x− y)2 + 3(r2 − xy)2 + 4r(r2 − xy)(1− xy) (16)

divided by the positive denominator (1−r2)2(r−xy)2. In view of xy ≤ r2 < 1 the expression

(16) is always non-negative. For both x ≤ r and y ≤ r also the expression (15) is non-

negative. In the case x = 1 and y ≤ r2 the expression (15) can be written as

r(r − y)2 + (r − y)(r2 − y)

so that it is also non-negative and, in view of the symmetry of (14), also the case x ≤ r2 and

y = 1 is settled

The right-hand sides of (13) and (14) vanish for x = y = r.

Example 3 Pielou’s equation

xn+2 =
2xn+1

1 + xn

,

cf. [3, Theorem 4.4.1 (b)], is a special case of (1), (2) with the non-vanishing coefficients

A = C = 1
2
, β = 1. Hence, z = 1

2
(1 + i) with r = 1√

2
, and

c20 =
1

5
(2− i) , c11 = 0 , c30 =

1

15
(1− 2i) , c21 =

1

5
(1 + 2i) .
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The estimate (12) seems to be rather bad because it only yields λ ≤ 6 + 4
√

2.

The case r > 1 is impossible in view of (2). If r = 1 without z being a root of unity, then

the coefficients (8) exist, but the convergence of (7) is an open problem. If z is a root of

unity, then the general solution of (1) is periodic and we do not need the expansion (7). A

special example is Lyness’ equation with C = 1 and α = β2 having 5-periodic solutions,

cf. [3, p. 71].

A further one is

Example 4 with C = β = 1, i.e.

xn+2 =
xn+1

xn

(17)

and 6-periodic solutions, cf. [3, p. 48]. The general positive solution of (17) reads

xn = exp(azn + a zn) (18)

with z = e
iπ
3 and an arbitrary complex constant a. In this case the corresponding expansion

(7) has the coefficients cjk = 1
j!k!

and it can be written in a finite form. In order to show this

we introduce the notation a = %eiϑ and write it first as

xn =
+∞∑

`=−∞

I`(2%) exp
[
i
(πn

3
+ ϑ
)
`
]

(19)

with the Bessel functions

I`(2%) =
∞∑

k=0

1

k!(k + `)!
%`+2k .

Setting ` = 6µ+ ν, expression (19) turns over into the finite Fourier sum

xn =
5∑

ν=0

Cν(%, ϑ) exp
[
i
(πn

3
+ ϑ
)
ν
]

(20)

with

Cν(%, ϑ) =
+∞∑

µ=−∞

I6µ+ν(2%) exp(6iϑµ) . (21)

The series (21) converges in view of

I`(2%) = I−`(2%) ∼
%`

`!

as `→∞. The coefficients in (20) can be simplified using the discrete Fourier transform as

in [1, p. 1073].
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Feng Qi

An Integral Expression and Some Inequalities of
Mathieu Type Series

ABSTRACT. Let r > 0 and a = {ak > 0, k ∈ N} such that the series g(x) =
∑∞

k=1 e
−akx

converges for x > 0, then the Mathieu type series
∑∞

k=1
ak

(a2
k+r2)

2 = 1
2r

∫∞
0
xg(x) sin(rx) dx.

If a = {ak > 0, k ∈ N} is an arithmetic sequence, then some inequalities of Mathieu type

series
∑∞

k=1
ak

(a2
k+r2)

2 are obtained for r > 0.

KEY WORDS AND PHRASES. Mathieu type series, integral expression, Laplace transform,

inequality

1 Introduction

In 1890, Mathieu defined S(r) in [14] as

S(r) =
∞∑

k=1

2k

(k2 + r2)2
, r > 0, (1)

and conjectured that S(r) < 1
r2 . We call formula (1) Mathieu’s series.

In [3, 13], Berg and Makai proved

1

r2 + 1
2

< S(r) <
1

r2
. (2)

H. Alzer, J. L. Brenner and O. G. Ruehr in [2] obtained

1

r2 + 1
2ζ(3)

< S(r) <
1

r2 + 1
6

, (3)

The author was supported in part by NNSF (#10001016) of China, SF for the Prominent Youth of
Henan Province (#0112000200), SF of Henan Innovation Talents at Universities, Doctor Fund of Jiaozuo
Institute of Technology, CHINA
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where ζ denotes the zeta function and the number ζ(3) is the best possible.

The integral form of Mathieu’s series (1) was given in [7, 8] by

S(r) =
1

r

∫ ∞

0

x

ex − 1
sin(rx) dx. (4)

Recently, the following results were obtained in [16, 18]:

(1) Let Φ1 and Φ2 be two integrable functions such that x
ex−1

− Φ1(x) and Φ2(x) − x
ex−1

are increasing. Then, for any positive number r, we have

1

r

∫ ∞

0

Φ2(x) sin(rx) dx ≤ S(r) ≤ 1

r

∫ ∞

0

Φ1(x) sin(rx) dx. (5)

(2) For positive number r > 0, we have

S(r) ≤
(1 + 4r2)

(
e−π/r − e−π/(2r)

)
− 4 (1 + r2)

(e−π/r − 1) (1 + r2) (1 + 4r2)
. (6)

(3) For positive number r > 0, we have

S(r) <
1

r

∫ π/r

0

x

ex − 1
sin(rx) dx <

1 + exp(− π
2r

)

r2 + 1
4

. (7)

Remark 1 For 0 < r < 0.83273 · · · , inequality (6) is better than the right hand side

inequality in (3). If r > 1.57482 · · · , inequality (7) is better than (6). When r < 1.574816 · · · ,
inequality (7) is not better than (6). When 0 < r < 0.734821 · · · , inequality (7) is better

than the corresponding one in (3).

In [11, 16, 18], the following open problem was proposed by B.-N. Guo and F. Qi respectively:

Let

S(r, t, α) =
∞∑

n=1

2nα/2

(nα + r2)t+1
(8)

for t > 0, r > 0 and α > 0. Can one obtain an integral expression of S(r, t, α)? Give some

sharp inequalities for the series S(r, t, α).

In [20], the open problem stated above was considered and an integral expression of S(r, t, 2)

was obtained: Let α > 0 and p ∈ N, then

S(α, p, 2) =
∞∑

n=1

2n

(n2 + α2)p+1
=

2

(2α)pp!

∫ ∞

0

tp cos(pπ
2
− αt)

et − 1
dt

− 2

p∑
k=1

(k − 1)(2α)k−2p−1

k!(p− k + 1)

(
−(p+ 1)

p− k

)∫ ∞

0

tk cos[π
2
(2p− k + 1)− αt]

et − 1
dt. (9)
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Using the quadrature formulas, some new inequalities of Mathieu series (1) were established

in [9]. By the help of Laplace transform, the open problem mentioned above was partially

solved, for example, among other things, an integral expression for S
(
r, 1

2
, 2
)

was given as

follows:

S
(
r,

1

2
, 2
)

=
2

r

∫ ∞

0

tJ0(rt)

et − 1
dt, (10)

where J0 is Bessel function of order zero.

There has been a rich literature on the study of Mathieu’s series, for example, [5, 6, 13, 19,

21, 22, 23], also see [4, 12, 15].

In this paper, we are about to investigate the following Mathieu type series

S(r, a) =
∞∑

k=1

ak

(a2
k + r2)2

, (11)

where a = {ak > 0, k ∈ N} is a sequence satisfying limk→∞ ak = ∞, and obtain an integral

expression and some inequalities of S(r, a) under some suitable conditions.

2 An integral expression of Mathieu type series (11)

Using Laplace transform of x sin(rx) we can immediately establish an integral expression of

Mathieu type series (11).

Theorem 1 Let r > 0 and a = {ak > 0, k ∈ N} be a sequence such that the series

g(x) ,
∞∑

k=1

e−akx (12)

converges for x > 0 and xg(x) is Lebesgue integrable in [0,∞). Then we have

S(r, a) =
1

2r

∫ ∞

0

xg(x) sin(rx) dx. (13)

Proof: In [1] and [10, p. 559], Laplace transform of t sin(αt) is given by∫ ∞

0

t sin(αt)e−st dt =
2αs

(s2 + α2)2
, (14)

where s = σ + iω is a complex variable, α a complex number, and σ > |Imα|.

Applying (14) to the case α = r > 0 and s = ak, summing up, and interchanging between

integral and summation produces∫ ∞

0

xg(x) sin(rx) dx =
∞∑

k=1

∫ ∞

0

x sin(rx)e−akx dx

= 2r
∞∑

k=1

ak

(a2
k + r2)2

= 2rS(r, a)

(15)
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according to Lebesgue’s dominanted convergence theorem. The proof is complete.

Remark 2 If ak = k in (13), then we can easily obtain the formula (4) in [8].

Corollary 1 Let a = {ak > 0, k ∈ N} be a sequence with ak = kd− c and d > 0. Then

for any positive real number r > 0, we have

S(r, a) =
1

2r

∫ ∞

0

xecx

edx − 1
sin(rx) dx. (16)

Proof: Since a = {ak, k ∈ N} is an arithmetic sequence with difference d > 0, then

{e−akx}∞k=1 is a positive geometric sequence with constant ratio e−dx < 1 for x > 0, thus

g(x) =
∞∑

k=1

e−akx = ecx

∞∑
k=1

e−kdx =
ecx

edx − 1
. (17)

Then formula (16) follows from combination of (13) and (17) in view of d > c.

Remark 3 In fact, in Corollary 1 and the following Theorem 2, Theorem 3 and Theorem 4,

it suffices to consider the case d = 1, since from this one the general case arises by replacing

c and r by c
d

and r
d
, respectively, and dividing S(r, a) by d3.

3 Some inequalities of Mathieu type series (16)

The following result was obtained in [16, 18].

Lemma 1 ([16, 18]) For a given positive number T , let φ(x) be an integrable function

such that φ(x) = −φ(x + T ) and φ(x) ≥ 0 for x ∈ [0, T ], and let f(x) and g(x) be two

integrable functions on [0, 2T ] such that

f(x)− g(x) ≥ f(x+ T )− g(x+ T ) (18)

on [0, T ]. Then ∫ 2T

0

φ(x)f(x) dx ≥
∫ 2T

0

φ(x)g(x) dx. (19)

Now we give a general estimate of Mathieu type series (16) as follows.

Theorem 2 Let a = {ak > 0, k ∈ N} such that ak = kd− c and d > 0. If Φ1 and Φ2 are

two integrable functions such that xecx

edx−1
− Φ1(x) and Φ2(x) − xecx

edx−1
are increasing, then for

r > 0,
1

2r

∫ ∞

0

Φ2(x) sin(rx) dx ≤ S(r, a) ≤ 1

2r

∫ ∞

0

Φ1(x) sin(rx) dx. (20)
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Proof: The function φ(x) = sin(rx) has a period 2π
r

, and φ(x) = −φ
(
x+ π

r

)
.

Since f(x) = xecx

edx−1
−Φ1(x) is increasing, for any α > 0, we have f(x+α) ≥ f(x). Therefore,

from Lemma 1, we obtain∫ 2(k+1)π/r

2kπ/r

xecx

edx − 1
sin(rx) dx ≤

∫ 2(k+1)π/r

2kπ/r

Φ1(x) sin(rx) dx. (21)

Then, from formula (16), we have

S(r, a) =
1

2r

∞∑
k=0

∫ 2(k+1)π/r

2kπ/r

xecx

edx − 1
sin(rx) dx

≤ 1

2r

∞∑
k=0

∫ 2(k+1)π/r

2kπ/r

Φ1(x) sin(rx) dx

=
1

2r

∫ ∞

0

Φ1(x) sin(rx) dx.

(22)

The right hand side of inequality (20) follows.

Similar arguments yield the left hand side of inequality (20).

Lemma 2 For x > 0, we have

1

ex
<

x

ex − 1
<

1

ex/2
. (23)

Proof: This follows from standard argument of calculus.

Theorem 3 Let a = {ak > 0, k ∈ N} satisfying ak = kd− c and d > 0. If d > 2c, then

for r > 0, we have

1

d

{
1 + e−π(d−c)/r

2 [(d− c)2 + r2] (1− e−2π(d−c)/r)
−

2
[
e−π(d−2c)/r + e−π(d−2c)/(2r)

][
(d− 2c)2 + 4r2

][
1− e−π(d−2c)/r

]}
≤ S(r, a) (24)

≤ 1

d

{
2
[
1 + e−π(d−2c)/(2r)

][
(d− 2c)2 + 4r2

][
1− e−π(d−2c)/r

] − e−2π(d−c)/r + e−π(d−c)/r

2 [(d− c)2 + r2] (1− e−2π(d−c)/r)

}
.

Proof: For r > 0, using (16), by direct calculation, we have

S(r, a) =
1

2r

∞∑
k=0

[∫ (2k+1)π/r

2kπ/r

+

∫ (2k+2)π/r

(2k+1)π/r

]
xecx sin(rx)

edx − 1
dx. (25)
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The inequality (23) gives us

r
(
1 + e−π(d−c)/r

)
d [(d− c)2 + r2] (1− e−2π(d−c)/r)

=
∞∑

k=0

∫ (2k+1)π/r

2kπ/r

sin(rx)

de(d−c)x
dx

≤
∞∑

k=0

∫ (2k+1)π/r

2kπ/r

xecx sin(rx)

edx − 1
dx (26)

≤
∞∑

k=0

∫ (2k+1)π/r

2kπ/r

sin(rx)

de(
d
2
−c)x

dx =
4r
[
1 + e−π(d−2c)/(2r)

]
d
[
(d− 2c)2 + 4r2

][
1− e−π(d−2c)/r

]
and

−
4r
[
e−π(d−2c)/r + e−π(d−2c)/(2r)

]
d
[
(d− 2c)2 + 4r2

][
1− e−π(d−2c)/r

] =
∞∑

k=0

∫ 2(k+1)π/r

(2k+1)π/r

sin(rx)

de(
d
2
−c)x

dx

≤
∞∑

k=0

∫ 2(k+1)π/r

(2k+1)π/r

xecx sin(rx)

edx − 1
dx (27)

≤
∞∑

k=0

∫ 2(k+1)π/r

(2k+1)π/r

sin(rx)

de(d−c)x
dx = −

r
(
e−2π(d−c)/r + e−π(d−c)/r

)
d [(d− c)2 + r2] (1− e−2π(d−c)/r)

.

Substituting (26) and (27) into (25) yields (24). The proof is complete.

Theorem 4 Let a = {ak > 0, k ∈ N} be a sequence such that ak = kd− c and d > 0. If

d > 2c, then for any positive number r > 0, we have

S(r, a) <
1

2r

∫ π/r

0

xecx sin(rx)

edx − 1
dx <

2
[
1 + eπ(2c−d)/(2r)

]
d[(2c− d)2 + 4r2]

. (28)

Proof: It is easy to see that∫ ∞

0

xecx sin(rx)

edx − 1
dx =

∞∑
k=0

∫ (k+1)π/r

kπ/r

xecx sin(rx)

edx − 1
dx, (29)

and

xecx

edx − 1
=

xe(c− d
2
)x

2 sinh
(

dx
2

) . (30)

Since the functions sinh x
x

and e(
d
2
−c)x are both increasing with x > 0 for d > 2c, then the

function xecx

edx−1
is decreasing with x > 0. Furthermore, limx→∞

xecx

edx−1
= 0.

Therefore, the series in (29) is an alternating series whose moduli of the terms are decreasing

to zero. As well known, such a series in (29) is always less than its first term
∫ π/r

0
xecx sin(rx)

edx−1
dx.

Hence ∫ ∞

0

xecx sin(rx)

edx − 1
dx <

∫ π/r

0

xecx sin(rx)

edx − 1
dx. (31)
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Using inequality (23), we have∫ π/r

0

xecx sin(rx)

edx − 1
dx <

∫ π/r

0

sin(rx)

de(
d
2
−c)x

dx =
4r
[
1 + eπ(2c−d)/(2r)

]
d[(2c− d)2 + 4r2]

. (32)

Inequality (28) follows from combination of (31) and (32) with (16).

Remark 4 If taking ak = k for k ∈ N or equivalently d = 1 and c = 0 in (20), (24) and

(28), inequalities (5), (6) and (7) are deduced.

By exploiting a technique presented by E. Makai in [13], we obtain the following inequalities

of Mathieu type series (11).

Theorem 5 Let a = {ak > 0, k ∈ N} with ak = k− c. If r > 0 satisfies r2 + c2 > c, then

1

2r2 + 2
(
c− 1

2

)2
+ 1

2

< S(r, a) <
1

2r2 + 2
(
c− 1

2

)2 − 1
2

. (33)

Proof: By standard argument, we obtain

1[
(k − c)− 1

2

]2
+ r2 − 1

4

− 1[
(k − c) + 1

2

]2
+ r2 − 1

4

=
2(k − c)[

(k − c)2 + r2 − (k − c)
][

(k − c)2 + r2 + (k − c)
]

>
2(k − c)[

(k − c)2 + r2
]2 − (k − c)2

>
2(k − c)[

(k − c)2 + r2
]2

>
2(k − c)[

(k − c)2 + r2
]2

+ r2 + 1
4

=
2(k − c){[

(k − c)− 1
2

]2
+ r2 + 1

4

}{[
(k − c) + 1

2

]2
+ r2 + 1

4

}
=

1[
(k − c)− 1

2

]2
+ r2 + 1

4

− 1[
(k − c) + 1

2

]2
+ r2 + 1

4

,

(34)

summing up for k = 1, 2, . . . yields inequalities in (33).

Remark 5 If letting c = 0, inequality (2) is deduced from (33).

Inequalities (24), (28) and (33) for every case do not include each other. This can be verified

by using the well known software Mathematica [24].

It is also worthwhile to note that inequality

1

c2 + 1
2

<

∞∑
n=1

2nα/2

(nα + c2)2
<

1

c2
(35)

obtained in [16, 18] and mentioned in [17] is a wrong result.
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corps solides. Gauthier-Villars, Paris 1890
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[20] Tomovski, Ž., and Trenčevski, K. : On an open problem of Bai-Ni Guo and Feng Qi.

J. Inequal. Pure Appl. Math. 4 (2003), no. 2, in press. Available online at http://jipam.

vu.edu.au/v4n2/101 02.html

[21] Wang, Ch.-L. , and Wang, X.-H. : Refinements of Matheiu’s inequality. Kēxué
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Gerhard Preuß

Hyperräume – von den Ideen Hausdorff’s bis in die
Gegenwart

Herrn Professor Harry Poppe anläßlich seines 70. Geburtstages gewidmet

Ist X ein Raum (z.B. ein metrischer Raum, ein topologischer Raum, ein uniformer Raum oder

ein semiuniformer Konvergenzraum), so ist ein Hyperraum von X (Bezeichnung: H(X))

ein Raum, dessen Punkte geeignete Teilmengen von X sind und in den X eingebettet werden

kann (evtl. unter zusätzlichen Bedingungen). Man sagt, daß die Einbettung von X in H(X)

irgend eine Eigenschaft E bewahrt (bzw. reflektiert), wenn H(X) (bzw. X) die Eigenschaft

E besitzt, falls X (bzw. H(X)) die Eigenschaft E besitzt.

Hyperräume metrischer Räume sind erstmals 1914 von F. Hausdorff [6, S. 290ff] betrachtet

worden:

Ist (X, d) ein metrischer Raum, so wird auf

F(X) = {E ⊂ X : E nicht-leer, abgeschlossen und beschränkt}

eine Metrik dH definiert durch

dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}.

dH heißt Hausdorff-Metrik. Sind a, b Elemente von X , so gilt

dH({a}, {b}) = d(a, b) ,

d.h. i : (X, d) → (F(X), dH), definiert durch i(x) = {x} für alle x ∈ X , ist eine metrische

Einbettung.

Häufig wird für die Hausdorff-Metrik folgende äquivalente Formulierung benutzt:

dH(A,B) = inf{ε > 0 : A ⊂ Ud(B, ε) und B ⊂ Ud(A, ε)} ,

wobei Ud(C, δ) = {x ∈ X : d(x, c) < δ für irgendein c ∈ C}, falls δ > 0 und C ⊂ X , d.h.

Ud(C, δ) ist die Vereinigung aller offenen δ-Kugeln um c für jedes c ∈ C .
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Der Satz von Hahn (1932) besagt, daß für jeden vollständigen metrischen Raum (X, d)

der Hyperraum (F(X), dH) vollständig ist (s. [5]).

Bereits 1922 hat L. Vietoris [14] Hyperräume topologischer Räume studiert: Für jeden to-

pologischen Raum (X,X ) bezeichne A(X) die Menge aller nicht-leeren, abgeschlossenen

Teilmengen von X . Dann ist

B = {〈U1, . . . , Uk〉 : (Ui)i∈{1,...,k} endliche Folge offener Teilmengen von (X,X )}

Basis einer Topologie A(X ) auf A(X) (d.h. jede in (A(X),A(X )) offene Menge ist Ver-

einigung von Elementen aus B), wobei

〈U1, . . . , Uk〉 = {B ∈ A(X) : B ⊂
n⋃

i=1

Ui und B ∩ Ui 6= ∅ für jedes i ∈ {1, . . . , k}}

(A(X),A(X )) heißt Vietoris’scher Hyperraum von (X,X ). Falls (X,X ) T1-Raum ist

(d.h. die einpunktigen Teilmengen von (X,X ) sind abgeschlossen), ist

i : (X,X ) → (A, (X),A(X )), definiert durch i(x) = {x}, eine topologische Einbettung, d.h.

(X,X ) ist Unterraum seines Hyperraumes.

Der Zusammenhang zwischen dem Hausdorff’schen und dem Vietoris’schen Ansatz ist gege-

ben durch folgendes

Lemma Sei (X, d) ein metrischer Raum und

K(X) = {K ⊂ X : K nicht-leer und kompakt} .

Dann stimmt die von der Hausdorff-Metrik auf K(X) induzierte Topologie mit der Vietoris-

Topologie auf K(X) überein.

Für den Fall, daß (X,X ) ein T1-Raum ist, hat E. Michael [8] 1951 einige topologische In-

varianten angegeben, die von der Einbettung von (X,X ) in den Vietoris’schen Hyperraum

(A(X),A, (X )) bewahrt und reflektiert werden:

1) quasikompakt (bzw. kompakt),

2) lokal kompakt

3) separabel.

Ist (X, d) ein kompakter metrischer Raum, so stimmen F(X), A(X) und K(X) überein und

aufgrund obigen Lemmas ist, falls Xd die von d induzierte Topologie bezeichnet,

(A(X),A(Xd)) ein kompakter topologischer Raum, der durch die Hausdorff-Metrik metri-

siert werden kann.
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Bekanntlich heißt ein lokal zusammenhängendes Kontinuum ein Peano-Raum, wobei ein

Kontinuum wie üblich ein kompakter, zusammenhängender metrischer Raum ist.

Unter der Voraussetzung, daß X ein Kontinuum ist, haben 1923 L. Vietoris [15] (“⇐”) und

T. Wazewski [16] (“⇒”) gezeigt:

A(X) Peano-Raum ⇔ X Peano-Raum

(Der Satz von Hahn/Mazurkiewicz besagt, daß ein Hausdorff-Raum genau dann ein Peano-

Raum ist, wenn er stetiges Bild des Einheitsintervalls [0, 1] ist.)

Ebenfalls unter der Voraussetzung, daß X ein Kontinuum ist, haben 1974 D. W. Curtis und

R. M. Schori [4] folgendes tiefliegendes Resultat erzielt (durch Anwendung der Methoden

der unendlich-dimensionalen Topologie):

A(X) ist homöomorph zum Hilbert-Quader genau dann, wenn X

ein Peano-Raum mit mehr als einem Punkt ist.

(Der Hilbert-Quader ist das Produkt von abzählbar vielen Kopien des Einheitsintervalls

[0, 1]).

Uniforme Konzepte, die für metrische Räume einen Sinn ergeben, wie etwa Vollständigkeit,

können in topologischen Räumen nicht erklärt werden. Deshalb wurden 1937 von A. Weil

[17] uniforme Räume als Verallgemeinerung metrischer Räume eingeführt. 1940 definierte

N. Bourbaki [2, p. 97, ex. 7)] Hyperräume uniformer Räume wie folgt:

Ist (X,V) ein separierter uniformer Raum (d.h. der zugrundeliegende topologische Raum ist

Hausdorff’sch), bezeichnet A die Menge der nicht-leeren abgeschlossenen Teilmengen von X

und setzt man für jedes V ∈ V

H(V ) = {(A,B) ∈ A×A : A ⊂ V [B] und B ⊂ V [A]} ,

so ist {H(V ) : V ∈ V} Basis einer Uniformität H(V) für A . Es gilt:

(1) i : (X,V) → (A, H(V)), definiert durch i(x) = {x}, ist eine uniforme Einbettung,

(2) (A, H(V)) ist separiert.

(A, H(V)) heißt der uniforme Hyperraum von (X,V).

Ist (X,V) ein metrisierbarer uniformer Raum (d.h. es gibt eine Metrik auf X , die o.B.d.A.

als beschränkt angenommen werden kann, so daß

V ∈ V ⇔ Es existiert ε > 0 mit {(x, y) ∈ X ×X : d(x, y) < ε} ⊂ V ) ,

so ist (A, H(V)) metrisierbar mit Hilfe der Hausdorff-Metrik dH . Falls (X,V) außerdem

vollständig ist, ist aufgrund des Satzes von Hahn auch (A, H(V)) vollständig, allerdings:
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(A, H(V)) ist i.a. selbst dann nicht vollständig, wenn (X,V) ein vollständiger uniformer

Raum ist (vgl. dazu J. Isbell [7]).

Im vergangenen Jahrhundert sind viele Versuche unternommen worden, topologische und

(oder) uniforme Räume zu verallgemeinern. Ein besonders nützliches Konzept stellen die

semiuniformen Konvergenzräume dar, die sowohl topologische als auch uniforme Aspekte in

voller Allgemeinheit berücksichtigen (vgl. hierzu G. Preuß [12]).

[Zur Erinnerung: Ein semiuniformer Konvergenzraum ist ein Paar (X,JX), wobei X eine

Menge und JX eine Menge von Filtern auf X ×X ist derart, daß gelten:

UC1) ẋ× ẋ = {M ⊂ X ×X : (x, x) ∈M} ∈ JX für alle x ∈ X

UC2) G ∈ JX , falls F ∈ JX und F ⊂ G

UC3) F ∈ JX impliziert F−1 = {F−1 : F ∈ F} ∈ JX ,

wobei F−1 = {(y, x) : (x, y) ∈ F}]

Im folgenden sei A eine Menge von nicht-leeren Teilmengen eines semiuniformen Konver-

genzraumes (X,JX) derart, daß {x} ∈ A für jedes x ∈ X. Wird eine injektive Abbildung

i : X → A definiert durch i(x) = {x} für jedes x ∈ X, so setze man i[X] = X ′ und

nehme o.B.d.A. an, daß X = X ′ ist, d.h. i ist eine Inklusionsabbildung. Auf A werde eine

semiuniforme Konvergenzstruktur J f
A definiert durch

J f
A = {H ∈ F (A×A) : (i× i)−1(A) existiert und gehört zu JX

oder (i× i)−1(A) existiert nicht} ,

wobei F (A×A) die Menge aller Filter auf A×A bezeichnet. Dann ist (X,JX) ein Unter-

raum von (A,J f
A) und J f

A ist die gröbste semiuniforme Konvergenzstruktur auf A mit dieser

Eigenschaft. (A,J f
A) heißt finaler Hyperraum von (X,JX).

Satz [13, 1.8] Für jeden semiuniformen Konvergenzraum (X,JX) ist der finale Hyperraum

(A,J f
A) vollständig, falls A \ X nicht leer ist, und enthält X als dichte Teilmenge, d.h. er

ist eine Vervollständigung von (X,JX).

Ist (X,V) ein separierter uniformer Raum sowie (X, [V ]) sein entsprechender semiuniformer

Konvergenzraum, d.h. [V ] = {F ∈ F (X × X) : F ⊃ V}, und besteht A aus allen nicht-

leeren abgeschlossenen Teilmengen von X, so ist (A, [H(V)]) ein separierter semiuniformer

Konvergenzraum, der (X, [V ]) als Unterraum enthält. Folglich ist [H(V)] feiner als J f
A, d.h.

[H(V)] ⊂ J f
A. Der finale Hyperraum (A,J f

A) braucht jedoch nicht uniform zu sein, wie fol-

gendes Beispiel zeigt: Sei V die diskrete Uniformität auf {0, 1}. Dann besteht die Menge A
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aller abgeschlossenen nicht-leeren Teilmengen von ({0, 1},V) aus genau drei Elementen. Es

gibt jedoch keine gröbste Uniformität auf A, die V induziert (vgl. [12, 3.2.7.©2 ]).

Die Einbettung eines semiuniformen Konvergenzraumes in seinen finalen Hyperraum be-

wahrt und reflektiert u.a. die Eigenschaften “semiuniform ∗” und “präkompakt”, und sie

bewahrt “kompakt”, “zusammenhängend” und “uniform zusammenhängend” (vgl. [13]).

Seit längerem werden auch Zusammenhänge zwischen Hyperräumen und Funktionenräum-

en studiert (vgl. hierzu S. A. Naimpally [10]). Ein jüngeres Resultat von T. Mizokami ([9])

besagt, daß für Hausdorff-Räume X, Y die Menge C(X,Y ) der stetigen Abbildungen zwi-

schen X und Y , versehen mit der kompakt-offenen Topologie, abgeschlossen eingebettet wer-

den kann in C(K(X),K(Y )), versehen mit der punktweisen Konvergenz, wobei K(X) (bzw.

K(Y )) die Menge der nicht-leeren kompakten Teilmengen von X (bzw. Y ) ist, versehen

mit der Vietoris-Topologie. Durch Ausweitung der Ideen von Mizokami gelingt es schließ-

lich R. Bartsch [1], einem Schüler von H. Poppe, im Jahre 2002 Sätze vom Ascoli-Typ zu

beweisen, d.h. Kompaktheitskriterien in Funktionenräumen zu entwickeln. In diesem Zusam-

menhang muß auch das Buch “Compactness in General Function Spaces” von H. Poppe [11]

erwähnt werden, das internationale Beachtung gefunden hat und in das eigene Ergebnisse

von H. Poppe zum Ascoli-Satz eingeflossen sind.
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Laure Cardoulis

Existence of Solutions for an Elliptic Equation In-
volving a Schrödinger Operator with Weight in all
of the Space

ABSTRACT. In this paper, we obtain some results about the existence of solutions for the

following elliptic semilinear equation (−∆+ q)u = λmu+f(x, u) in RN where q is a positive

potential satisfying lim|x|→+∞ q(x) = +∞ and m is a bounded positive weight.

1 Introduction

In this paper, we study the existence of solutions for the elliptic semilinear equation:

(−∆ + q)u = λmu+ f(x, u) in RN (1)

where the following hypotheses are satisfied:

(h1) q ∈ L2
loc(RN) such that lim|x|→+∞ q(x) = +∞ and q ≥ const > 0.

(h2) m ∈ L∞(RN) such that ∃m1 ∈ R∗+, ∃m2 ∈ R∗+, ∀x ∈ RN , 0 < m1 ≤ m(x) ≤ m2.

We will specify later the hypothesis on f . We denote by λ a real parameter.

The variational space is denoted by Vq(RN) = {u ∈ L2(RN), (−∆ + q)u ∈ L2(RN)} which

is the completed of D(RN ) for the norm ‖u‖q =
√∫

RN |∇u|2 + qu2.

Recall (see [1] for example) that the embedding of Vq(RN) into L2(RN) is compact.

We denote by ‖u‖m =
√∫

RN mu2 for all u ∈ L2(RN). According to the hypothesis (h2), ‖.‖m

is a norm in L2(RN) equivalent to the usual norm. We denote by M the operator of multi-

plication by m in L2(RN). The operator (−∆ + q)−1M : (L2(RN), ‖.‖m) → (L2(RN), ‖.‖m)

is positive self-adjoint and compact. So its spectrum is discrete and consists of a positive

sequence µ1 ≥ µ2 ≥ ...µn → 0 when n→ +∞. We denote by λ1 = 1
µ1

and u1 the correspond-

ing eigenfunction which satisfy (−∆ + q)u1 = λ1mu1 in RN and ‖u1‖m = 1. (We know that
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λ1 is simple and u1 > 0 (see [2, Th2.2]).) By the Courant-Fischer formulas, λ1 is given by:

λ1 = inf{
∫

RN |∇φ|2 + qφ2∫
RN mφ2

, φ ∈ D(RN )}.

We recall now some results already obtained for the existence of solutions in the linear cases

or semilinear cases.

Using the Lax-Milgram theorem and the above characterization of λ1, we obtain the following

result:

Theorem 1.1 (see [3],[4]) We consider the linear case (i.e. f(x, u) = f(x).) As-

sume that the hypotheses (h1) and (h2) are satisfied and that f ∈ L2(RN). If λ < λ1, then

the equation (1) has a unique solution uλ ∈ Vq(RN). Moreover, the Maximum Principle is

satisfied i.e.: if f ≥ 0 and λ < λ1 then uλ ≥ 0.

If λ = λ1 (which is the case of the Fredholm Alternative), then the equation (1) admits a

solution iff
∫

RN fu1 = 0.

Using a method of sub- and supersolutions and a Schauder Fixed Point Theorem (see [3])

or an approximation method (see [4]), we get the following results in the semilinear case:

Theorem 1.2 1. (see [3]). Assume that the hypotheses (h1) and (h2) are satisfied.

Assume also that f is Lipschitz in u uniformly in x and that:

∃θ ∈ L2(RN), θ > 0,∀u ≥ 0, 0 ≤ f(x, u) ≤ su+ θ.

If λ < λ1, the equation (1) has at least a positive solution.

2. (see [4]). Assume that the hypothesis (h1) is satisfied, N ≥ 3 and 0 ≤ m ∈ LN
2 (RN) ∩

L∞loc(RN). Assume also that f is Lipschitz in u uniformly in x and that: ∃θ ∈ L2(RN),

∀u ∈ L2(RN), |f(x, u)| ≤ θ.

If λ < λ1, then the equation (1) has at least a solution.

Finally, for the linear case (i.e. f(x, u) = f(x)), assuming N = 2, m a radial weight and q

a radial potential with some strong properties of growth at infinity (not recalled here) (see

[5]), we obtain the following result for the Antimaximum Principle:

Theorem 1.3 (see [5]) Assume that the hypotheses (h1) and (h2) are satisfied.

We denote by X1,2 = {f ∈ L2
loc(R2), ∂f

∂θ
(r, .) ∈ L2(−π, π) for all r > 0, and ∃C ≥ 0,

‖f(r, θ)‖+ ( 1
2π

∫ π

−π
|∂f
∂θ

(r, θ)|2dθ) 1
2 ≤ Cu1(r) for all r ≥ 0 and θ ∈]− π, π].}

Assume that f ≥ 0 in R2, f > 0 in a subset with a non zero Lebesgue measure and f ∈ X1,2.

Let u be a solution of the equation (1).

Then ∃δ(f) > 0,∀λ ∈ (λ1, λ1 + δ(f)),∃c(λ, f) > 0, u ≤ −c(λ, f)u1.
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In this paper, we sudy the existence of solutions for the equation (1) in the case λ > λ1, λ

near λ1.

For the linear case (i.e. f(x, u) = f(x)), if λ ∈ (λ1, λ2), λ2 = 1
µ2

where µ2 is the second

eigenvalue of (−∆ + q)−1M , then there are obviously existence and uniqueness of a solution

for the equation (1).

In the second section, following a bifurcation method developped in [6], we get the following

result:

Theorem 1.4 Assume that the hypotheses (h1) and (h2) are satisfied. Assume also that

f : RN × R → R (defined by f(x, y)) satisfies the following hypothesis (h3):

i) f(x, 0) = 0.

ii) f is Frechet differentiable with respect to the second variable y and its derivative f ′y(x, .)

is continuous and bounded, uniformly in x.

iii) f ′y(x, 0) = 0.

Then there exists for λ sufficiently near λ1 a nontrivial solution for the equation (1).

Finally, in the third section, following a method developped in [7] for the p-Laplacian in

a bounded domain of RN , we get results for the case where f(x, u) = f(x)|u(x)|γ−2u(x).

Before stating the results, we need some notations. We define for C ∈ R∗+ the set Xq,C =

{u ∈ Vq(RN), u1 ≤ u ≤ C a.e.}.
Let F (u) :=

∫
RN f |u|γ for all u ∈ Vq(RN).

Let λ∗ = supu∈Vq(RN ),u≥0{infφ∈Vq(RN ){
∫

RN ∇u.∇φ+quφ∫
RN muφ

, F ′(u)(φ) ≥ 0, φ ≥ 0}} and

λ∗∗ = supu∈Xq,C
{infφ∈Vq(RN ){

∫
RN ∇u.∇φ+quφ∫

RN muφ
, F ′(u)(φ) ≥ 0, φ ≥ 0}}.

(Note that λ∗∗ ≤ λ∗.)

We consider also hypotheses of the following forms:

(h4) λ1 < λ∗∗ ≤ λ∗ < +∞.

(h5) f ∈ L∞(RN).

(h6) The sets Ω+ = {x ∈ RN , f(x) > 0} and Ω− = {x ∈ RN , f(x) < 0} have non zero

measures.

(h7) f ≥ − εu1m
lγ−2Cγ−1 .

Theorem 1.5 Assume that the hypotheses (h1) and (h2) are satisfied, N = 3, 4 so that

γ = 2∗ = 2N
N−2

∈ N∗.
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1. If in addition the hypotheses (h4) and (h5) are satisfied, and if λ > λ∗, then the

equation (1) has no positive solution.

2. Assume additionally that the hypotheses (h4) − (h7) are satisfied, where the numbers

l ≥ 1, ε > 0, ε involved in (h7) are small enough such that λ1 ≤ εγlγ−2 and ε < λ1

γ
.

If there holds λ1 + εlγ−2 < λ < λ∗∗ with the same numbers ε, l as in (h7), then the

equation (1) has at least a positive solution.

2 A bifurcation result

In this section, we follow a method developped in [6].

We obtain some results of the existence of solutions for the semilinear equation

(−∆ + q)u = λmu+ f(x, u) in RN (1)

by considering bifurcating solutions from the zero solution. We suppose that the hypotheses

(h1), (h2), (h3) are satisfied in all this section. We denote by < ., . >q the inner product in

Vq(RN). We define the operator T : R× Vq(RN) → Vq(RN) by: ∀φ ∈ Vq(RN)

< T (λ, u), φ >q=

∫
RN

∇u.∇φ+ quφ− λ

∫
RN

muφ−
∫

RN

f(x, u(x))φ(x)dx.

Lemma 2.1 The operator T is well defined.

Proof: Let u ∈ Vq(RN). We introduce

F (φ) =
∫

RN ∇u.∇φ+ quφ− λ
∫

RN muφ−
∫

RN f(x, u(x))φ(x)dx for all φ ∈ Vq(RN).

Since m is bounded, f is Lipschitz in u uniformly in x and f(x, 0) = 0, we deduce that:

∀φ ∈ Vq(RN), |F (φ)| ≤ const · ||u||q||φ||q. The operator F is linear and continuous. By the

Riesz Theorem, we can well define the operator T .

Lemma 2.2 The operator T is continuous, Frechet differentiable with continuous deriva-

tives given by: ∀φ ∈ Vq(RN), ∀ψ ∈ Vq(RN),

< T ′u(λ, u)φ, ψ >q=

∫
RN

∇φ.∇ψ + qφψ − λ

∫
RN

mφψ −
∫

RN

f ′y(x, u(x))φ(x)ψ(x)dx.

< T ′λ(λ, u), φ >q= −
∫

RN

muφ ; < T ′′λu(λ, u)φ, ψ >q= −
∫

RN

mφψ.

Proof: We do not give here the details of the proof which is technical but simple. Since

m is bounded and f is Lipschitz in u uniformly in x, we obtain the continuity of T and

T ′λ. By using the hypothesis that f ′y(x, .) is bounded uniformly in x and using the Lebesgue

Dominated Convergence Theorem, we get the continuity of T ′u.
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Remarks T ′u(λ1, 0) is a continuous self-adjoint operator (by (h3)); the kernel N(T ′u(λ1, 0))

is generated by u1. So dimN(T ′u(λ1, 0)) = 1 = dimR(T ′u(λ1, 0)). Moreover T ′′λu(λ1, 0)u1 6∈
R(T ′u(λ1, 0)).

Indeed, denote by < u1 > the sub-space of Vq(RN) generated by u1. Since T ′u(λ1, 0) is a

self-adjoint operator, the range R(T ′u(λ1, 0)) of T ′u(λ1, 0) is the orthogonal of < u1 >. But

< T ′′λu(λ1, 0)u1, u1 >q= −
∫

RN mu
2
1 < 0.

So T ′′λu(λ1, 0)u1 6∈ R(T ′u(λ1, 0)).

We can now apply the Theorem 1.7 in [8] to obtain a local bifurcation result.

Theorem 2.1 Assume that the hypotheses (h1)− (h3) are satisfied. Then there exist a

number ε0 > 0, and two continuous functions η : (−ε0, ε0) → R and ψ : (−ε0, ε0) →< u1 >
⊥

such that: η(0) = λ1, ψ(0) = 0 and all non trivial solutions of T (λ, u) = 0 in a small

neighbourhood of (λ1, 0) have the form (λε, uε) = (η(ε), εu1 + εψ(ε)) for all ε ∈ (−ε0, ε0).

Remark T (λ, u) = 0 iff u is solution of the equation (1). So near λ1 (including the cases

where λ > λ1), the equation (1) admits non trivial solutions.

Adding another hypothesis on f , we are going to study now the sign of uε for ε ∈ (−ε0, ε0).
First, we study the asymptotic behaviour of each solution of the equation (1).

Lemma 2.3 Assume that the hypothesis (h1)− (h3) are satisfied. Let u be a solution of

the equation (1). Then lim|x|→+∞ u(x) = 0.

Proof: We have in a weak sense: (−∆+q)u = λmu+f(x, u) = [λm+ f(x,u)
u

]u in RN . By (h3),

∃K > 0, |f(x, u)| ≤ K|u|. Using (h2) we obtain that λm + f(x,u)
u

∈ L∞(RN). This implies

by Theorem 4.1.3 in [3] combining with Theorem 8.17 in [9] that lim|x|→+∞ u(x) = 0.

Theorem 2.2 Assume that the hypotheses (h1) − (h3) are satisfied. Assume also that

the following hypothesis (h′3) is satisfied where:

(h′3) ∃R > 0, ∃ε∗ > 0, ∀x ∈ RN , ∀y ∈ R∗−, |x| > R and |λ−λ1| < ε∗ ⇒ λm(x)y+f(x, y) >

0.

Then uε ≥ 0 for ε small enough.

Proof:

i) Recall that lim|x|→+∞ uε(x) = 0.

ii) Let 0 < ε < ε0. We have: ∀x, uε(x) = εu1(x) + εψ(ε)(x). Since u1 > 0 and ψ(ε) → 0

when ε→ 0, we deduce that:∃ε1 > 0, 0 < ε < ε1 ⇒ ∀x ∈ B(0, R), uε(x) > 0.

We suppose that: ∃x0 ∈ RN , uε(x0) < 0. Since lim|x|→+∞ uε(x) = 0, we deduce that
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there exists x1 ∈ RN , |x1| > R such that uε has a negative minimum in x1.

If (−∆ + q)(uε)(x1) > 0, then there exists a bounded domain Ω, containing x1 such

that ∀x ∈ Ω, (−∆ + q)(uε)(x) ≥ 0.

By the Maximum Principle (see Corollary 3.2 in [9]), we have: infΩ uε = uε(x1) ≥
inf∂Ω u

−
ε ≥ 0 where u−ε = max{0,−uε}. Since uε(x1) < 0, we get a contradiction.

Therefore (−∆ + q)(uε)(x1) ≤ 0. Using (h′3), we have also: (−∆ + q)(uε)(x1) =

λm(x1)uε(x1) + f(x1, uε(x1)) > 0.

So we get again a contradiction. Therefore uε ≤ 0.

We sudy now the global nature of the continuum of solutions obtained by bifurcation from

the (λ1, 0) solution. Using Theorems 1.3 and 1.40 in [10], we obtain the following result:

Theorem 2.3 There exists a continuum C of non trivial solutions for the equation (1)

obtained by bifurcation from the (λ1, 0) solution, which is either unbounded or contains a

point (λ, 0) where λ 6= λ1 is the inverse of an eigenvalue of the operator L. (L is defined by

< Lu, φ >q=
∫

RN muφ.) Since λ1is simple, C has two connected subsets C+ and C− which

satisfy also the above alternatives.

Proof:

i) We define an operator S by setting S(λ, u) = u− T (λ, u) i.e. ∀φ ∈ Vq(RN),

< S(λ, u), φ >q=

∫
RN

[λmuφ+ f(x, u)φ].

So u is a solution of the equation (1) iff u = S(λ, u). We write S(λ, u) = λLu+H(λ, u)

where < Lu, φ >q=
∫

RN muφ and < H(λ, u), φ >q=
∫

RN f(x, u)φ.

ii) For applying the results in [10], we must prove that S : R × Vq(RN) → Vq(RN) is

continuous and compact, that L : Vq(RN) → Vq(RN) is linear and compact, that

H(λ, u) = O(‖u‖) for u near 0 uniformly on bounded intervals of λ and that 1
λ1

is a

simple eigenvalue of L (which is true because it’s a simple eigenvalue of (−∆+q)−1M .)

iii) We show here that S is continuous and compact. S is continuous since T is continuous.

Let ((λn, un))n be a bounded sequence in R× Vq(RN). Since the embedding of Vq(RN)

into L2(RN) is compact, there exists a convergent subsequence, denoted also by

((λn, un))n in R× L2(RN).

We have: ∀φ ∈ Vq(RN),
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< S(λn, un)−S(λp, up), φ >q= λn

∫
RN munφ−λp

∫
RN mupφ+

∫
RN [f(x, un)−f(x, up)]φ.

So ‖S(λn, un)− S(λp, up)‖2
q = (λn − λp)

∫
RN mun[S(λn, un)− S(λp, up)]

+λp

∫
RN

m(un−up)[S(λn, un)−S(λp, up)]+

∫
RN

[f(x, un)−f(x, up)][S(λn, un)−S(λp, up)].

By (h2) and (h3) we deduce that (S(λn, un))n is a Cauchy sequence and therefore a

convergent sequence. So S is compact.

iv) We show here that L is linear and compact. L is obviously linear and continuous.

Let (un)n be a bounded sequence in Vq(RN). Since the embedding of Vq(RN) into

L2(RN) is compact, there exists a convergent subsequence, denoted also by (un)n in

L2(RN).

We have: ‖Lun − Lup‖2
q =

∫
RN m(un − up)[Lun − Lup].

By the Cauchy-Schwartz inequality, we get: ‖Lun − Lup‖q ≤ cst‖un − up‖L2(RN ).

Therefore (Lun)n is a Cauchy sequence and so L is compact.

v) Finally note that H(λ, u) is independant of λ. We denote it H(u). We have: ‖H(u)‖2
q =∫

RN f(x, u)H(u) ≤ cst‖u‖q‖H(u)‖q.

So H(u) = O(‖u‖).

3 Existence of positive solutions

We follow here a method developped in [7] for the p-Laplacian in a bounded domain.

Our results are more restrictive than in [7] because of the unboundedness of our domain.

We consider the equation

(−∆ + q)u = λmu+ f |u|γ−2u in RN (1)

for which the hypotheses (h1) and (h2) are satisfied, andN = 3, 4 so that γ = 2∗ = 2N
N−2

∈ N∗.

Our aim is to study the existence of positive solutions for the equation (1) where λ > λ1.

We define for C ∈ R∗+, C ≥ u1, the set Xq,C = {u ∈ Vq(RN), u1 ≤ u ≤ C a.e.}
Let F (u) :=

∫
RN f |u|γ and Hλ(u) :=

∫
RN |∇u|2 + qu2 − λ

∫
RN mu

2 for all u ∈ Vq(RN).

Let λ∗ = supu∈Vq(RN ),u≥0{infφ∈Vq(RN ){
∫

RN ∇u.∇φ+quφ∫
RN muφ

, F ′(u)(φ) ≥ 0, φ ≥ 0}} and

λ∗∗ = supu∈Xq,C
{infφ∈Vq(RN ){

∫
RN ∇u.∇φ+quφ∫

RN muφ
, F ′(u)(φ) ≥ 0, φ ≥ 0}}.

(Note that λ∗∗ ≤ λ∗.)

Let l ≥ 1, ε > 0, ε be small enough such that λ1 ≤ εγlγ−2 and ε < λ1

γ
.
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Remark There holds λ1 ≤ λ∗. On the contrary, if λ1 > λ∗, then by the characterization

of λ1 we have Hλ1(u1) = 0. By the definition of λ∗, ∃φ ∈ Vq(RN), φ ≥ 0, F ′(u1)(φ) ≥
0,

∫
RN ∇u1.∇φ+qu1φ∫

RN mu1φ
≤ λ∗ < λ1.

So H ′
λ1

(u1)(φ) < 0.

We have: ∀η ∈ R∗+, Hλ1(u1 + ηφ) = Hλ1(u1) + ηH ′
λ1

(u1)(φ) + ‖ηφ‖h(ηφ) with h(ηφ) →
0 when η → 0. Therefore, for η small enough, we have Hλ1(u1 +ηφ) < 0 and this contradicts

the definition of λ1.

Theorem 3.1 Assume that the hypotheses (h1) − (h7) are satisfied, N = 3, 4 and γ =

2∗ = 2N/(N − 2).

a) If λ > λ∗, then the equation (1) has no positive solution.

b) If λ1 + εlγ−2 < λ < λ∗∗, then the equation (1) has at least a positive solution.

Proof:

i) By (h7) we have: f ≥ − εu1m
lγ−2Cγ−1 ≥ − λ1m

γlγ−2Cγ−2 ≥ − εm

uγ−2
1

.

ii) SinceH1(RN) ⊂ L2∗(RN) with continuous imbedding, we deduce that Vq(RN) ⊂ L2∗(RN)

with continuous imbedding.

Note that ∀φ ∈ Vq(RN), F ′(u)(φ) = γ
∫

RN f |u|γ−2uφ and

H ′
λ(u)(φ) = 2

∫
RN [∇u.∇φ+ quφ− λmuφ].

Note also that u is a solution of the equation (1) iff ∀φ ∈ Vq(RN), H ′
λ(u)(φ) =

2
γ
F ′(u)(φ).

Moreover, if t ∈ R∗+, F ′(tu)(φ) = tγ−1F ′(u)(φ) and H ′
λ(tu)(φ) = tH ′

λ(u)(φ).

Assume here that λ > λ∗.

So: ∀u ∈ Vq(RN), u ≥ 0, ∃φ ≥ 0, F ′(u)(φ) ≥ 0 and H ′
λ(u)(φ) < 0. Therefore the

equation (1) has no positive solution.

Assume now that λ1 + εlγ−2 < λ < λ∗∗.

We are going to prove that the equation (1) admits at least a positive solution by using

the sub and supper solutions method and a Schauder Fixed Point Theorem.

a) Note by the definition of λ∗∗ that:

∃u∗ ∈ Xq,C , ∀φ ≥ 0, F ′(u∗)(φ) ≥ 0 ⇒ H ′
λ(u

∗)(φ) > 0. (e)

We suppose that ∀0 < t ≤ l, ∃ψt ≥ 0, H ′
λ(tu

∗)(ψt) <
2
γ
F ′(tu∗)(ψt).
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If ∀t, ∀ψt, F
′(tu∗)(ψt) ≥ 0, then:

Let φ ≥ 0 such that F ′(u∗)(φ) < 0.

So ∀t > 0, H ′
λ(tu

∗)(φ) ≥ 2
γ
F ′(tu∗)(φ) i.e. ∀t > 0, tγ−2

∫
RN f(u∗)γ−1φ ≤∫

RN [∇u∗.∇φ+ qu∗φ− λmu∗φ].

When t→ 0, we get: 0 ≤ H ′
λ(u

∗)(φ).

So F ′(u∗)(φ) < 0 ⇒ H ′
λ(u

∗)(φ) ≥ 0.

Using the property (e), we get: ∀φ ≥ 0, H ′
λ(u

∗)(φ) ≥ 0.

In particular, for φ = u1, we obtain: λ1

∫
RN mu

∗u1 ≥ λ
∫

RN mu
∗u1 > 0.

Since λ1 < λ, we get a contradiction.

If ∀t, ∀ψt, F
′(tu∗)(ψt) ≤ 0, then:

Let φ ≥ 0 such that F ′(tu∗)(φ) > 0. We have H ′
λ(tu

∗)(φ) ≥ 2
γ
F ′(tu∗)(φ) > 0.

So ∀t,
∫

RN [∇u∗.∇φ+ qu∗φ− λmu∗φ] ≥ tγ−2
∫

RN f(u∗)γ−1φ > 0 and this is impos-

sible for t large enough (because we can take a bigger l.)

Then we have: ∃φ ≥ 0, ∃ψ ≥ 0, H ′
λ(u

∗)(φ) < 2
γ
tγ−2F ′(u∗)(φ) < 0 and

0 < H ′
λ(u

∗)(ψ) < 2
γ
tγ−2F ′(u∗)(ψ) (for at least one t).

Since F ′(u∗) is a continuous function, ∃α ∈ (0, 1), F ′(u∗)(αφ+ (1− α)ψ) = 0.

Therefore we deduce that H ′
λ(u

∗)(αφ+ (1− α)ψ) > 0.

But: αγ
2tγ−2H

′
λ(u

∗)(φ) < αF ′(u∗)(φ) = −(1− α)F ′(u∗)(ψ) < − (1−α)γ
2tγ−2 H

′
λ(u

∗)(ψ).

So γ
2tγ−2 [αH

′
λ(u

∗)(φ) + (1− α)H ′
λ(u

∗)(ψ)] < 0 and we get a contradiction.

Therefore ∃t ∈ (o, l], ∀φ ≥ 0, H ′
λ(tu

∗)(φ) ≥ 2
γ
F ′(tu∗)(φ) i.e. tu∗ is a supper solution of

the equation (1). Note that tu∗ ≥ su1 if 0 < s ≤ t. Let s > 0 such that 1
s
≤ lγ−3.

This is possible because we can choose l sufficiently big such that 1
lγ−3 ≤ t ≤ l.

b) We show now that su1 is a sub solution of the equation (1).

We have: λ1−λ
sγ−2 < −ε (since l ≥ s) and f ≥ − εm

uγ−2
1

.

So: fuγ−1
1 > λ1−λ

sγ−2 mu1 and therefore su1 is a sub solution of the equation (1).

c) Let σ = [su1, tu
∗] and the operator T be defined by T (u) = v with v solution of

(−∆ + q)v = λmu+ f |u|γ−2u in RN .

We want to prove that T (σ) ⊂ σ and that T is a continuous compact operator.

Let u ∈ σ and T (u) = v.

We have, in a weak sense: (−∆ + q)(v − su1) = λmu+ fuγ−1 − λ1msu1.

By (h7), f ≥ − εu1m
lγ−2Cγ−1 .

So, since u > 0, we have: λmu+fuγ−1−λ1msu1 ≥ − εu1m
lγ−2Cγ−1u

γ−1+λmu−λ1msu1.

Moreover u ∈ σ so uγ−1 ≤ lγ−1Cγ−1

and λmu+ fuγ−1 − λ1msu1 ≥ m[λu− (λ1 + εl
s
)su1] > 0.
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Therefore, since u ≥ su1 and λ > λ1 + εlγ−2 ≥ λ1 + ε l
s
, we obtain that:

(−∆ + q)(v − su1) ≥ 0.

By the Maximum Principle, we deduce that v ≥ su1.

Moreover we have: ∀φ ≥ 0, < (−∆ + q)(tu∗ − v), φ >L2(RN )≥
∫

RN [λm(tu∗ −
u) + f((tu∗)γ−1 − uγ−1)]φ.

By (h7), since t ≤ l and λ1 < λ we have:

f ≥ − λ1m
γCγ−2lγ−2 ≥ − λ1m

γCγ−2tγ−2 ≥ − λm
γCγ−2tγ−2 .

But λm(tu∗ − u) + f((tu∗)γ−1 − uγ−1) ≥ 0 iff f ≥ − λm∑γ−2
i=0 (tu∗)iuγ−2−i

.

Since
∑γ−2

i=0 (tu∗)iuγ−2−i ≤ γCγ−2tγ−2, we get f ≥ − λm∑γ−2
i=0 (tu∗)iuγ−2−i

.

Therefore, by the Maximum Principle, we obtain (−∆ + q)(tu∗ − v) ≥ 0 and so

v ≤ tu∗.

d) Let (un)n be a convergent sequence in σ, with limit u for the norm ‖.‖q. Let

T (un) = vn and T (u) = v.

We have: ∀n,
‖vn − v‖2

q ≤ cst‖un − u‖q‖vn − v‖q + ‖f‖∞
∫

RN |uγ−1
n − uγ−1||vn − v|.

Since un, u ∈ σ, |uγ−1
n − uγ−1| ≤ cst|un − u| we obtain that:

‖vn − v‖q ≤ cst‖un − u‖q and so T is a continuous operator. We finish this proof

by showing that T is compact. Let now (un)n be a bounded sequence in σ for the

norm ‖.‖q. Since the embedding of Vq(RN) into L2(RN) is compact, there exists

a convergent subsequence, denoted also by (un)n, in L2(RN). Let T (un) = vn.

We have: ∀n, p
‖vn − vp‖2

q = λ
∫

RN m(un − up)(vn − vp) +
∫

RN f(uγ−1
n − uγ−1

p )(vn − vp).

Since |uγ−1
n − uγ−1

p | ≤ cst|un − up| we obtain that:

‖vn − vp‖q ≤ cst‖un − up‖L2(RN ).

We can deduce that (vn)n is a Cauchy sequence and so T is a compact operator.

To finish, we obtain some results assuring the validity of the hypothesis (h4). First, we need

the following lemma: ( we still follow a method developped in [7]).

Lemma 3.1 ∀u ∈ Vq(RN), u > 0,∀φ ∈ Vq(RN), φ ≥ 0,

H ′
λ(u)((

φ
u
)γ−1φ)−H ′

λ(φ)((φ
u
)γ−1u) ≤ 0.

Proof: We denote by A = H ′
λ(u)((

φ
u
)γ−1φ)−H ′

λ(φ)((φ
u
)γ−1u).

We have: A = 2
∫

RN [∇u.∇((φ
u
)γ−1φ)−∇φ.∇((φ

u
)γ−1u)].

A = 2
∫

RN [φ∇u.∇((φ
u
)γ−1)− u∇φ.∇((φ

u
)γ−1)].
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Since ∇((φ
u
)γ−1) = (γ − 1)(φ

u
)γ−2[ 1

u
∇φ− φ

u2∇u], we get:

A = 2(γ − 1)
∫

RN (φ
u
)γ−2[2φ

u
∇u.∇φ− (φ

u
)2|∇u|2 − |∇φ|2] ≤ 0.

So we get the last theorem:

Theorem 3.2 Assume that the hypotheses (h1), (h2), (h5) are satisfied, N == 3, 4 and

γ = 2∗.

i) If Ω+ = {x ∈ RN , f(x) > 0} is a nonempty, bounded domain of RN with a smooth

frontier ∂Ω+, then λ∗ < +∞.

ii) If F (u1) ≥ 0, then λ∗ = λ1 < +∞.

iii) Moreover λ1 < λ∗ iff F (u1) < 0.

Proof:

i) Consider the following equation (−∆+q)u = λmu defined in Ω+ with Dirichlet condition

on ∂Ω+. We denote by λ1+ the first eigenvalue (which is simple and positive) and by

φ1 the first eigenfunction associated i.e:

(−∆ + q)φ1 = λ1+mφ1 in Ω+, φ1 > 0 in Ω+, φ1 = 0 on ∂Ω+.

Since suppφ1 ⊂ Ω+, by the above lemma, we get:

∀u ∈ D(RN ), H ′
λ1+

(u)((φ1

u
)γ−1φ1) ≤ 0

i.e. ∀u ∈ D(RN ), u ≥ 0∫
RN [∇u.∇((φ1

u
)γ−1φ1) + qu(φ1

u
)γ−1φ1]∫

RN mu(
φ1

u
)γ−1φ1

≤ λ1+ < +∞.

Moreover, F ′(u)((φ1

u
)γ−1φ1) = γ

∫
Ω+ fφ

γ
1 ≥ 0.

So λ∗ ≤ λ1+ < +∞.

ii) As remarked before, there holds always λ∗ ≥ λ1. We need to show that λ∗ ≤ λ1, under

the condition that F (u1) ≥ 0. We use again the above lemma.

We have H ′
λ1

(u1)((
u1

u
)γ−1u) = 0 so

∀u ∈ D(RN ), H ′
λ1

(u)((u1

u
)γ−1u1) ≤ 0.

Therefore, ∀u ∈ D(RN ), u ≥ 0∫
RN [∇u.∇((u1

u
)γ−1u) + qu(u1

u
)γ−1u1]∫

RN mu(
u1

u
)γ−1u1

≤ λ1 < +∞.

Since F ′(u)((u1

u
)γ−1u1) = γF (u1) ≥ 0 we get that λ∗ ≤ λ1 and therefore λ∗ = λ1.



64 L. Cardoulis

iii)

a) Moreover, if λ1 < λ∗, then, by ii) we obtain F (u1) < 0.

b) Assume now that F (u1) < 0.

1. We denote by λ− = infφ∈Vq(RN ), φ≥0, F (φ)≥0,
∫

RN [|∇φ|2+q|φ|2]∫
RN m|φ|2 .

We are going to prove that λ1 < λ− then that λ− ≤ λ∗.

Let W = {φ ∈ Vq(RN), φ ≥ 0, F (φ) ≥ 0}. Since W ⊂ Vq(RN), we have

λ1 ≤ λ−. Since u1 6∈ W, then λ1 < λ−.

We have to prove now that λ− ≤ λ∗.

2. First we prove that ∃u− ∈ Vq(RN), u− ≥ 0, F (u−) ≥ 0,

λ− =
∫

RN [|∇u−|2+q|u−|2]∫
RN m|u−|2 .

On the contrary, we suppose that

∀u ∈ Vq(RN), u ≥ 0, F (u) ≥ 0 ⇒ λ− <
∫

RN [|∇u|2+q|u|2]∫
RN m|u|2 .

Let v ≥ 0 such that F (v) > 0. Then Hλ−(v) > 0.

Since λ1 < λ−, we have Hλ−(u1) < 0 and so Hλ−(ηu1) < 0 for all η > 0.

Since the function Hλ− is continuous, we get:

∃α ∈ (0, 1), Hλ−(αηu1 + (1− α)v) = 0.

Then F (αηu1 + (1− α)v) < 0.

Since F ((1− α)v) > 0, there exists η > 0 small enough such that F (αηu1 +

(1− α)v) > 0.

So we get a contradiction and therefore we can deduce the existence of u−.

3. Finally, we have to prove that λ− ≤ λ∗.

On the contrary, we suppose that λ− > λ∗.

So ∃φ ∈ Vq(RN), φ ≥ 0, F ′(u−)(φ) ≥ 0,
∫

RN [∇u−.∇φ+qu−φ]∫
RN mu−φ

< λ−

i.e. H ′
λ−(u−)(φ) < 0.

Since F (u−) ≥ 0 and F ′(u−)(φ) ≥ 0, then F (u− + ηφ) ≥ 0 for η > 0 small

enough.

Moreover, since H ′
λ−(u−)(φ) < 0 and Hλ−(u−) = 0, we can choose η > 0

small enough such that Hλ−(u− + ηφ) < 0.

So we obtain that:
∫

RN [|∇(u−+ηφ)|2+q(u−+ηφ)2]∫
RN m(u−+ηφ)2

< λ− and this contradicts the

definition of λ−.

Therefore λ− ≤ λ∗.
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HermantK. Pathak, SwamiN. Mishra

Coincidence Points for Hybrid Mappings

1 Introduction

There have been several extensions of known fixed point theorems in which a mapping takes

each point of a metric space into a closed (resp. closed and bounded) subset of the same

(cf. [3, 4, 5, 7, 10, 11]). Hybrid fixed point theory for nonlinear mappings is relatively a recent

development within the ambit of fixed point theory of point to set mappings (multivalued

mappings) with a wide range of applications (see, for instance, [2, 8, 12, 13, 14, 15, 16]).

Recently, in an attempt to improve /generalize certain results of Naidu, Sastry and Prasad

[11] and Kaneko [4] and others, Chang [1] obtained some fixed point theorems for a hybrid

of multivalued and singlevalued mappings.

However, his main theorem (see Theorem A below) admits a counter example. Our main

purpose in this paper is to present a correct version of this result which, in turn, generalizes

several known results in this direction.

Let (X, d) be a metric space. We shall use the following notations and definitions:

CL(X) = {A : A is a nonempty closed subset of X},
CB(X) = {A : A is a nonempty closed and bounded subset of X},
N(ε, A) = {x ∈ X : d(x, a) < ε for some a ∈ A, ε > 0}, A ∈ CL(X),

EA,B = {ε > 0 : A ⊂ N(ε, B), B ⊂ N(ε, A)}, A,B ∈ CL(X),

H(A,B) =

inf EA,B if EA,B 6= φ

∞ if EA,B = φ ,

D(x,A) = inf{d(x, a) : a ∈ A}

for each A,B ∈ CL(X), and for each x ∈ X.

H is called the generalized Hausdorff metric for CL(X) induced by d. If H(A,B) is defined

for A,B ∈ CB(X), then H is called the Hausdorff metric induced by d (cf. Nadler [6]).
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Definition 1 ([4]) Mappings S : X → CB(X) and I : X → X are called compatible

if ISx ∈ CB(X) for all x ∈ X and H(SIxn, ISxn) → 0, as n → ∞ whenever {xn} is a

sequence in X such that Sxn →M ∈ CB(X) and Ixn → t ∈M as n→∞.

Following Singh and Mishra [16] (see also [3], [4] and [9]), we introduce the notion of R-

sequentially commuting mappings for a hybrid pair of single-valued and multi-valued maps.

Definition 2 Let K be a nonempty subset of a metric space X and I : K → X and

S : K → CL(X) be respectively single-valued and multi-valued mappings. Then I and

S will be called R-sequentially commuting on K if for a given sequence {xn} ⊂ K with

limn Ixn ∈ K, there exists R > 0 such that

limnD(Iy, SIxn) ≤ R limnD(Ixn, Sxn) (∗)

for each y ∈ K ∩ limn Sxn.

If xn = x(x ∈ K) for all n ∈ N (naturals), Ix ∈ K and (∗) holds for some R > 0, then I and

S have been defined to be pointwise R-weakly commuting at x ∈ K (see [16, Def. 1]). If it

holds for all x ∈ K, then I and S are called R-weakly commuting on K. Further, if R = 1,

we get the definition of weak commutativity of I and S on K due to Hadzic and Gajec [3].

If I, S : X → X, then as mentioned in [16], we recover the definitions of pointwise R-weak

commutativity and R-commutativity of single-valued self-maps due to Pant [9] and all the

remarks as given in [16] apply.

We now introduce the following.

Definition 3 Maps I : K → X and S : K → CL(X) are to be called sequentially

commuting (or s-commuting) at a point x ∈ K if

I(limn Sxn) ⊂ SIx (∗∗)

whenever there exists a sequence {xn} ⊂ K such that limn Ixn = x ∈ limn Sxn ∈ CL(X).

If xn = x for all n ∈ N, then the maps I and S will be said to be weakly s-commuting at a

point x ∈ K.

The following example shows that s-commutativity of I and S is indeed more general than

their R-sequential commutativity (and hence their pointwise R-commutativity and compat-

ibility).

Example 1 Let X = [0,∞) with the usual metric d and define I : X → X and S : X →
CL(X) by

Ix =

0, if x ∈ [0, 1]

x, if x ∈ (1,∞) ,
Sx = [x,∞) .
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Then for the sequence {xn} ⊂ X defined by xn = 1 + 1
n
, we have 1 = limn Ixn ∈ [1,∞) =

limn Sxn ∈ CL(X) and I(limn Sxn) = {0} ∪ (1,∞) ⊂ [0,∞) = SI1. Therefore, I and S are

s-commuting but (∗) is not satisfied for y = 1 ∈ [1,∞) = limn Sxn.

Definition 4 ([1]) Let R+ denote the set of all non-negative real numbers, and let A ⊂
R+. A function ϕ : A→ R+ is upper semicontinuous from the right if lim

x→u+
supϕ(x) ≤ ϕ(u)

for all u ∈ A.

A function ϕ : R+ → R+ is said to satisfy (Φ)-conditions if:

(i) ϕ is upper semi-continuous from the right on (0,∞) with ϕ(t) < t for all t > 0, and

(ii) there exists a real number s > 0 such that ϕ is non-decreasing on (0, s] and
∞∑

n=1

ϕn(t) <

∞ for all t ∈ (0, s], where ϕn denotes the composition of ϕ with itself n times and

ϕ0(t) = t.

Let Γ denote the set of all functions which satisfy the (Φ)-condition.

The following lemmas will be useful in proving our main results.

Lemma 1 Let (X, d) be a metric space and I, J : X → X and S, T : X → CL(X) be

such that S(X) ⊂ J(X) and T (X) ⊂ I(X) and for all x, y ∈ X,

H(Sx, Ty) ≤ ϕ(aL(x, y) + (1− a)N(x, y)) , (1)

where a ∈ [0, 1], ϕ : R+ → R+ is upper semi-continuous from the right on (0,∞) with

ϕ(t) < t for all t > 0, and

L(x, y) = max{d(Ix, Jy), D(Ix, Sx), D(Jy, Ty),
1

2
[D(Ix, Ty) +D(Jy, Sx)]} ,

N(x, y) = [max{d2(Ix, Jy), D(Ix, Sx)D(Jy, Ty), D(Ix, Ty)D(Jy, Sx),

1

2
D(Ix, Sx)D(Jy, Sx),

1

2
D(Jy, Ty)D(Ix, Ty)}]1/2 .

Then inf
x∈X

D(Ix, Sx) = 0 = inf
x∈X

D(Jx, Tx).

Proof: Due to symmetry, we may suppose that

inf
x∈X

D(Ix, Sx) = inf
x∈X

D(Jx, Tx) = δ .

If δ > 0, then ϕ(δ) < δ. Since ϕ is upper semi-continuous from the right, there exists ε > 0

such that ϕ(t) < δ for all t ∈ [δ, δ + ε). Pick x0 ∈ X such that D(Ix0, Sx0) < δ + ε. By

S(X) ⊂ J(X), there exists x1 ∈ X such that Jx1 ∈ Sx0 and d(Ix0, Jx1) < δ + ε.
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Consider

δ ≤ D(Jx1, Tx1) ≤ H(Sx0, Tx1) ≤ ϕ(aL(x0, x1) + (1− a)N(x0, x1)) ,

where

L(x0, x1) = max{d(Ix0, Jx1), D(Ix0, Sx0), D(Jx1, Tx1),
1

2
[D(Ix0, Tx1) +D(Jx1, Sx0)]}

= max{d(Ix0, Jx1), D(Jx1, Tx1)}

and

N(x0, x1) = [max{d2(Ix0, Jx1), D(Ix0, Sx0)D(Jx1, Tx1), D(Ix0, Tx1)D(Jx1, Sx0),

1

2
D(Ix0, Sx0)D(Jx1, Sx0),

1

2
D(Jx1, Tx1)D(Ix0, Tx1)}]1/2

≤ [max{d2(Ix0, Jx1), d(Ix0, Jx1)D(Jx1, Tx1)}]1/2

≤ [max{d2(Ix0, Jx1), d(Ix0, Jx1)D(Jx1, Tx1), D
2(Jx1, Tx1)}]1/2

≤ [max{d2(Ix0, Jx1), D
2(Jx1, Tx1)}]1/2

= max{d(Ix0, Jx1), D(Jx1, Tx1)} .

Hence,

δ ≤ D(Jx1, Tx1) ≤ ϕ(max{d(Ix0, Jx1), D(Jx1, Tx1)}) ,

which is a contradiction, since ϕ(d(Ix0, Jx1)) < δ and ϕ(D(Jx1, Tx1)) < D(Jx1, Tx1) prov-

ing that δ = 0.

Lemma 2 Let X, I, J , S, T and ϕ be as defined Lemma 1 such that the inequality

(1) holds. If Ix ∈ Sx for some x ∈ X, then there exists a y ∈ X such that Ix = Jy and

Jy ∈ Ty.

Proof: Suppose Ix ∈ Sx. Since S(X) ⊂ J(X), we may choose a y ∈ X such that

Jy = Ix ∈ Sx. By (1), we have

D(Jy, Ty) ≤ H(Sx, Ty) ≤ ϕ(aL(x, y) + (1− a)N(x, y)) ,

where

L(x, y) = max{d(Ix, Jy), D(Ix, Sx), D(Ix, Sx), D(Jy, Ty),
1

2
[D(Ix, Ty) +D(Jy, Sx)]}

= D(Jy, Ty) ,

and

N(x, y) = [max{d2(Ix, Jy), D(Ix, Sx)D(Jy, Ty), D(Jx, Ty)D(Jy, Sx),

1

2
D(Ix, Sx)D(Jy, Sx),

1

2
D(Jy, Ty)D(Ix, Ty)}]1/2

= (1/
√

2)D(Jy, Ty) .



Coincidence Points for Hybrid Mappings 71

Hence

D(Jy, Ty) ≤ ϕ([a+ (1− a)/
√

2)]D(Jy, Ty)) < D(Jy, Ty) ,

a contradiction, and so D(Jy, Ty) = 0, i.e., Jy ∈ Ty.

Remark 1 If the assumptions of Lemma 2 hold, then setting x2n = x and x2n−1 = y for

all n ∈ N and z = Ix we observe that Ix2n → z, Jx2n−1 → z, D(Ix2n, Sx2n) → 0 and

D(Jx2n−1, Tx2n−1) → 0 as n→∞.

Lemma 3 ([11]) Let ϕ : R+ → R+ be a non-decreasing function such that

(i) ϕ(t+) < t for all t > 0 and
∞∑

n=1

ϕn(t) <∞ for all t > 0.

Then there exists a strictly increasing function ψ : R+ → R+ such that

(ii) ϕ(t) < ψ(t) for all t > 0 and
∞∑

n=1

ψn(t) <∞ for all t > 0.

Lemma 4 ([1]) If ϕ ∈ Γ, then there exists a function ψ : R+ → R+ such that:

(i) ψ is upper semi-continuous from the right with ϕ(t) ≤ ψ(t) < t for all t > 0,

(ii) ψ is strictly increasing with ϕ(t) < ψ(t) for t ∈ (0, s], s > 0 and
∞∑

n=1

ψn(t) < ∞ for

t ∈ (0, s].

2 Main Results

The following theorem is the main result of Chang [1, Theorem 1].

Theorem A Let (X, d) be a complete metric space, let I, J be two functions from X into

X, and let S, T : X → CB(X) be two set-valued functions with SX ⊂ JX and TX ⊂ IX.

If there exists ϕ ∈ Γ such that for all x, y in X,

H(Sx, Ty) ≤ ϕ

(
max

{
d(Ix, Jy), D(Ix, Sx), D(Jy, Ty),

1

2
[D(Ix, Ty) +D(Jy, Sx)]

})
,

(C)

then there exists a sequence {xn} in X such that Ix2n → z and Jx2n−1 → z for some z in

X and D(Ix2n, Sx2n) → 0, D(Jx2n−1, Tx2n−1) → 0 as n → ∞. Moreover, if Iz = z and T

and J are compatible, then z ∈ Sz and Jz ∈ Tz. That is, z is a common fixed point of I

and S, and z is a coincidence point of J and T .

The following example shows that Theorem A in its present form is incorrect.
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Example 2 Let X = [0, 1] with absolute value metric d and let ϕ : R+ → R+ be defined

by ϕ(t) = t2 for t ∈ [0, 1) and ϕ(t) = 1/2 for t ≥ 1. Define I = J : X → X and

S = T : X → CB(X) by Ix = 1− x, x ∈ X and Sx = {0, 1/3, 2/3, 1} for all x ∈ X. Then

for each x, y ∈ X and ϕ ∈ Γ, we have

H(Sx, Ty) = 0

≤ ψ

(
max

{
d(Ix, Jy), D(Ix, Sx), D(Jy, Ty),

1

2
[D(Ix, Ty) +D(Jy, Sx)]

})
and for the sequence {xn} ⊂ X defined by xn = 1/n for all n ∈ N, we have Sxn, Txn →
{0, 1/3, 2/3, 1} = M , Ixn, Jxn = 1 − 1/n → 1 ∈ M ⊂ X, D(Ix2n, Sx2n) → 0 and

D(Jx2n−1, Tx2n−1) → 0 as n → ∞. Also, z = 1/2 ∈ X is such that Iz = z and for

{xn} as defined above we have limnH(TJxn, JTxn) = 0, that is, T and J are compatible.

Thus, all the conditions of Theorem A are satisfied. Evidently, z /∈ Sz, Jz /∈ TZ, that is,

z = 1/2 is neither a common fixed point of I and S nor it is a coincidence point of J and T .

Before we present a corrected version of Theorem A, we have the following:

Theorem 1 Let (X, d) be a complete metric space, and let I, J : X → X, S, T : X →
CL(X). Let A be a nonempty subset of X such that I(A) and J(A) are closed subsets of

X, and Tx ⊆ I(A) and Sx ⊆ J(A) for all x ∈ A and there exists a ϕ ∈ Γ such that for all

x, y ∈ X, (1) holds. Then

(i) F = {Ix : x ∈ X and Ix ∈ Sx} 6= φ,

(ii) G = {Jx : x ∈ X and Jx ∈ Tx} 6= φ,

(iii) F = G if A = X.

Proof: Let ψ be the function satisfying the conclusion of Lemma 4. By (1), we have for

any x, y ∈ X, and Ix ∈ Ty,

D(Ix, Sx) ≤ H(Ty, Sx)

≤ ϕ(aL(x, y) + (1− a)N(x, y)),

where

L(x, y) = max{d(Ix, Jy), D(Ix, Sx), D(Jy, Ty),
1

2
[D(Ix, Ty) +D(Jy, Sx)]}

≤ max{d(Ix, Jy), D(Ix, Sx), [d(Jy, Ix) +D(Ix, Ty)],

1

2
[D(Ix, Ty) + d(Ix, Jy) +D(Ix, Sx)]}

= max{d(Ix, Jy), D(Ix, Sx),
1

2
[d(Ix, Jy) +D(Ix, Sx)]}

= max{d(Ix, Jy), D(Ix, Sx)}
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and

N(x, y) = [max{d2(Ix, Jy), D(Ix, Sx)D(Jy, Ty), D(Ix, Ty)D(Jy, Sx),

1

2
D(Ix, Sx)D(Jy, Sx),

1

2
D(Jy, Ty)D(Ix, Ty)}]1/2

= max{d2(Ix, Jy), D(Ix, Sx)D(Jy, Ty),
1

2
(Ix, Sx)D(Jy, Sx)}1/2

≤ [max{d2(Ix, Jy), d(Ix, Jy)D(Ix, Sx) ,

1

2
[d(Ix, Jy) +D(Ix, Sx)]D(Ix, Sx)}]1/2

≤ [max{d2(Ix, Jy), d(Ix, Jy)D(Ix, Sx), D2(Ix, Sx)}]1/2

= [max{d2(Ix, Jy), D2(Ix, Sx)}]1/2

= max{d(Ix, Jy), D(Ix, Sx)} .

Since D(Ix, Sx) ≤ ϕ(aD(Ix, Sx) + (1 − a)D(Ix, Sx)) is inadmissible for any a ∈ [0, 1],

D(Ix, Sx) ≤ ϕ(aD(Ix, Sx) + (1 − a)d(Ix, Jy)) is inadmissible for a = 1 and D(Ix, Sx) ≤
ϕ(ad(Ix, Jy) + (1− a)D(Ix, Sx)) is inadmissible for a = 0, it follows that

D(Ix, Sx) ≤ (ad(Ix, Jy) + (1− a)d(Ix, Jy))

= ϕ(d(Ix, Jy)) .

Similarly we can show that

D(Jy, Ty) ≤ ϕ(d(Ix, Jy)) if Jy ∈ Sx .

Pick x0 ∈ A such that D(Ix0, Sx0) < s. Since Sx0 ⊆ J(A), there exists x1 ∈ A such that

Jx1 ∈ Sx0. Then we have

D(Jx1, Tx1) ≤ H(Sx0, Tx1)

≤ ϕ(aL(x0, x1) + (1− a)N(x0, x1))

≤ ψ(aL(x0, x1) + (1− a)N(x0, x1)) .

Since Tx1 ⊆ I(A), we may choose x2 ∈ A such that Ix2 ∈ Tx2 and

d(Jx1, Ix2) ≤ ψ(aL(x0, x1) + (1− a)N(x0, x1)) .

Therefore

D(Ix2, Sx2) ≤ H(Sx2, Tx1)

≤ ϕ(aL(x2, x1) + (1− a)N(x2, x1))

< ψ(aL(x2, x1) + (1− a)N(x2, x1)) .
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Hence we can choose x3 ∈ A such that Jx3 ∈ Sx2 and d(Ix2, Jx3) ≤ ψ(aL(x2, x1)+

(1 − a)N(x2, x1)). Proceeding in this way, we can construct a sequence {xn}∞n=0 in A such

that Jx2n+1 ∈ Sx2n, Ix2n+2 ∈ Tx2n+1 (n = 0, 1, 2, . . . ) and

d(Ix2n, Jx2n+1) ≤ ψ(aL(x2n, x2n−1) + (1− a)N(x2n, x2n−1)) ,

d(Jx2n−1, Ix2n) ≤ ψ(aL(x2n−2, x2n−1) + (1− a)N(x2n−2, x2n−1))

for all n ∈ N (naturals). By the construction of {xn} we have

L(x2n, x2n−1) ≤ max{d(Ix2n, Jx2n−1), d(Ix2n, Jx2n+1)} ,
N(x2n, x2n−1) ≤ max{d(Ix2n, Jx2n−1), d(Ix2n, Jx2n+1)} ,

L(x2n−2, x2n−1) ≤ max{d(Ix2n−2, Jx2n−1), d(Ix2n, Jx2n+1)} and

N(x2n−2, x2n−1) ≤ max{d(Ix2n−2, Jx2n−1), d(Ix2n−2, Jx2n+1)} for all n ∈ N.

Since ψ is strictly increasing on (0, s] and ψ(t) < t for t > 0, we have

d(Ix2n, Jx2n+1) ≤ ψ(ad(Ix2n, Jx2n−1) + (1− a)d(Ix2n, Jx2n−1))

= ψ(d(Ix2n, Jx2n−1))

≤ d(Jx2n−1, Ix2n)ψ(ad(Ix2n−2, Jx2n−1) + (1− a)d(Ix2n−2, J2n−1))

= ψ(d(Ix2n−2, Jx2n−1)) for all n ∈ N.

Hence

d(Ix2n, Jx2n+1) ≤ ψ2n(d(Ix0, Jx1)) and

d(Jx2n−1, Ix2n) ≤ ψ2n−1(d(Ix0, Jx1)) for all n ∈ N.

Set y2n = Ix2n and y2n+1 = Jx2n+1 for all n ∈ N ∪ {0}. Then

d(yn, yn+1) ≤ ψn(d(y0, y1)) for all n ∈ N.

Since
∞∑

n=1

ψn(t) < ∞ for t ∈ (o, s] and d(y0, y1) = d(Ix0, Jx1) < s, it follows that

∞∑
n=1

d(yn, yn+1) is convergent. Hence by the completeness of X, {yn} converges to z for

some z ∈ X. Since {y2n} is a sequence in I(A) converging to z and I(A) is closed, it follows

that z ∈ I(A). So there exists a w ∈ X such that Iw = z. Now by (1), we have

D(Ix2n, Sw) ≤ H(Sw, Tx2n−1)

≤ ϕ(aL(w, x2n−1) + (1− a)N(w, x2n−1)) for all n ∈ N.

Making n→∞ in the above inequality, we obtain

D(z, Sw) ≤ ϕ(aD(z, Sw)+ + (1− a)D(z, Sw)+) = ϕ(D(z, Sw)+) .



Coincidence Points for Hybrid Mappings 75

By the definition of ϕ, we have ϕ(t+) < t for all t ∈ (0,∞), it follows that D(z, Sw) = 0.

Hence Iw ∈ Sw and so

F = {Ix : x ∈ X and Ix ∈ Sx} 6= φ .

Similarly

G = {Jx : x ∈ X and Jx ∈ Tx} 6= φ .

We now suppose that Sx ⊆ J(X) and Tx ⊆ I(X) for all x ∈ X. Pick u ∈ X such that

Iu ∈ Su. Then since Su ⊆ J(X), there exists a v ∈ X such that Jv = Iu. By the inequality

(1), we have

D(Jv, Tv) ≤ H(Su, Tv)

≤ ϕ(aD(Jv, Tv) + (1− a)D(Jv, Tv))

< D(Jv, Tv) .

Hence Jv ∈ Tv. It follows that F ⊆ G. Similarly we can prove that G ⊆ F . Hence F = G.

Further, suppose that I(X) and J(X) are closed. Choose a sequence {un} in X such that

Iun ∈ Sun for all n ∈ N and {Iun} is convergent. Since I(X) is closed, it follows that

limn Iun = Iu for some u ∈ X. Since Iun ∈ Sun ⊆ J(X) for all n ∈ N and J(X) is closed, it

follows that Iu ∈ J(X). So there exists a v ∈ X such that Iu = Jv. Again by (1), we have

D(Iun, T v) ≤ H(Sun, T v)

≤ ϕ(aL(un, v) + (1− a)N(un, v)) .

Making n→∞ in the above inequality, we obtain

D(Jv, Tv) ≤ ϕ(aD(Jv, Tv)+ + [(1− a)/
√

2]D(Jv, Tv)+) .

Hence Jv ∈ Tv. By (1), we have

D(Iu, Su) ≤ H(Su, Tv)

≤ ϕ(aD(Iu, Su) + [(1− a)/
√

2]D(Iu, Su)) .

Hence Iu ∈ Su. It follows that G is closed. #

Remark 2 Theorem 1 of Naidu [7] and Theorem 9 of Sastry, Naidu and Prasad [11] follow

as direct corollaries of Theorem 1.

Remark 3 For a = 1, Example 10 of Sastry, Naidu and Prasad [11] shows that Theorem 1

fails if 1
2
[D(Ix, Ty) +D(Jy, Sx)] is replaced by max{D(Ix, Ty), D(Jy, Sx)} even if S = T ,

I = J = id (the identity mapping on X) and ϕ is continuous on R+.
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Remark 4 If (1) is assumed to be valid only for those x, y ∈ X for which Ix 6= Jy,

Ix /∈ Sx and Jy /∈ Ty instead of all x, y ∈ X, then we conclude from Theorem 1 that: either

F = {Ix : x ∈ X and Ix ∈ Sx} 6= φ or G = {Jx : x ∈ X and Jx ∈ Tx} 6= φ.

The following theorem presents a correct version of Theorem A.

Theorem 2 Let (X, d) be a complete metric space, and let I, J : X → X, S, T : X →
CL(X) be such that S(X) ⊆ J(X) and T (X) ⊆ I(X). If there exists a ϕ ∈ Γ such that

for all x, y ∈ X, (1) holds, then there is a sequence {xn} in X such that Ix2n → z and

Jx2n−1 → z for some z ∈ X and D(Ix2n, Sx2n) → 0, D(Jx2n−1, Tx2n−1) → 0 as n → ∞.

Moreover,

(i) if Iz ∈ Sz and d(Iz, z) ≤ D(z, Sx) for all x ∈ X, then z ∈ Sz, and if d(Iz, z) ≤
D(z, Tx) for all x ∈ X, J and T are weakly s-commuting, then Jz ∈ Tz.

(ii) if Jz ∈ Tz and d(Jz, z) ≤ D(z, Tx) for all x ∈ X, then z ∈ Tz; and if d(Jz, z) ≤
D(z, Sx) for all x ∈ X, I and S are weakly s-commuting, then Iz ∈ Sz.

(iii) if Iz = z and J and T are weakly s-commuting, then z ∈ Sz and Jz ∈ Tz.

(iv) if Jz = z and I and S are weakly s-commuting, then z ∈ Tz and Iz ∈ Sz.

Proof: By replacing A with X throughout in the proof of Theorem 1, we can construct

a sequence {xn}∞n=0 ⊂ X such that Jx2n+1 ∈ Sx2n, Ix2n+2 ∈ Tx2n+1 (n = 0, 1, 2, . . . ) and

the sequences {Ix2n}, {Jx2n−1} are Cauchy sequences which converge to the same limit

z ∈ X and D(Ix2n, Sx2n) → 0, D(Jx2n−1, Tx2n−1) → 0 as n → ∞. It then follows that

D(z, Sx2n) → 0 and D(z, Tx2n−1) → 0 as n→∞.

(i) Suppose Iz ∈ Sz, since d(Iz, z) ≤ D(z, Sz) and J and T are weakly s-commuting.

Choose m ∈ N such that

sup{d(Ix2n, z), d(Jx2n−1, z), D(z, Sx2n), D(z, Tx2n−1) : n ≥ m} < s .

Then for n ≥ m we have

D(z, Sz) ≤ d(z, Ix2n) +D(Ix2n, Sz) (2)

≤ d(z, Ix2n) +H(Sz, Tx2n−1)

≤ d(z, Ix2n) + ϕ(aL(z, x2n−1) + (1− a)N(z, x2n−1)) ,
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where

L(z, x2n−1) = max{d(Iz, Jx2n−1), D(Iz, Sz), D(Jx2n−1, Tx2n−1) ,

1

2
[D(Iz, Tx2n−1) +D(Jx2n−1, Sz)]}

≤ max{d(Iz, Jx2n−1), 0, d(x2n−1, Tx2n−1) ,

1

2
[d(Iz, z) +D(z, Tx2n−1), d(Jx2n−1, z) +D(z, Tx2n−1)]}

→ max{d(Iz, z), 0, 0,
1

2
d(Iz, z)} as n→∞ ,

i.e.

limn L(z, x2n−1) ≤ D(z, Sz) ;

and

N(z, x2n−1) ≤ [max{d2(Iz, z), 0, 0, 0, 0}]1/2 as n→∞

i.e.

limnN(z, x2n−1) ≤ D(z, Sz) .

Hence making n→∞ in (2), we obtain

D(z, Sz) ≤ 0 + ϕ(aD(z, Sz) + (1− a)D(z, Sz)) ,

that is, D(z, Sz) = 0 and so z ∈ Sz. Choose z′ ∈ X such that Jz′ = z, then

D(z, Tz′) ≤ H(Sz, Tz′) (3)

≤ ϕ(aL(z, z′) + (1− a)N(z, z′)) ,

where

L(z, z′) = max{d(Iz, Jz′), D(Iz, Sz), D(Jz′, T z′),

1

2
[D(Iz, Tz′) +D(Jz′, Sz)]}

≤ max{d(Iz, z), D(Iz, Sz), D(z, Tz′),

1

2
[d(Iz, z) +D(z, Tz′) +D(z, Sz)]}

= max{d(Iz, z), D(z, Tz′)} ≤ D(z, Tz′)
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and

N(z, z′) ≤ [max{d2(Iz, z), 0, 0, 0,
1

2
D(z, Tz′)[d(Iz, z) + d(z, Tz′)]}]1/2

≤ D(z, Tz′) .

Hence by (3)

D(z, Tz′) ≤ ϕ(D(z, Tz′)) ,

and so D(z, Tz′) = 0; i.e.,Jz′ = z ∈ Tz′.

Since J and T are weakly s-commuting and Jz′ ∈ Tz′, we have

JJz′ ∈ JTz′ ⊂ TJz′ ,

which implies that Jz ∈ Tz.

(ii) The proof is analogous to the proof of (i) due to symmetry.

(iii) Suppose Iz = z and J and T are weakly s-commuting. Choose m as in (i), then for

all n ≥ m

D(z, Sz) ≤ d(z, Ix2n) +D(Ix2n, Sz) (4)

≤ d(z, Ix2n) +H(Sz, Tx2n−1)

≤ d(z, Ix2n) + ϕ(aL(z, x2n−1) + (1− a)N(z, x2n−1)) ,

where

L(z, x2n−1) → max{0, D(z, Sz), 0,
1

2
D(z, Sz)} as n→∞ ,

i.e.,

limn L(z, x2n−1) = D(z, Sz)

and

N(z, x2n−1) → [max{0, 0, 0, 1

2
D2(z, Sz), 0}]1/2 as n→∞

i.e.,

limnN(z, x2n−1) = D(z, Sz) .

Making n→∞ in (4), we obtain

D(z, Sz) ≤ 0 + ϕ(aD(z, Sz) + [(1− a)/
√

2]D(z, Sz))

< D(z, Sz) ,

which implies D(z, Sz) = 0 and so z ∈ Sz. Choose z′ ∈ X such that Jz′ = z, then

D(z, Tz′) ≤ H(Sz, Tz′)

≤ ϕ(aL(z, z′) + (1− a)N(z, z′)) ,
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where

L(z, z′) = max{d(Iz, Jz′), D(Iz, Sz), D(Jz′, T z′),
1

2
[D(Iz, Tz′) +D(Jz, Sz)]}

= D(z, Tz′)

and

N(z, z′) = [max{d2(Iz, Jz′), D(Iz, Sz)D(Jz′, T z′), D(Iz, Tz′)D(Jz′, Sz),

1

2
D(Iz, Sz)D(Jz′, Sz),

1

2
D(Jz′, T z′)D(Iz, Tz′)}]1/2

= (1/
√

2)D(z, Tz′) .

Hence

D(z, Tz′) ≤ ϕ(aD(z, Tz′) + [(1− a)/
√

2]D(z, Tz′))

< D(z, Tz′) .

It follows that D(z, Tz′) = 0 and so Jz′ = z ∈ Tz′. Since J and T are weakly

s-commuting Jz′ ∈ Tz′, we have JJz′ ∈ JTz′. Hence Jz ∈ Tz.

(iv) Due to symmetry, the proof is analogous to the proof of (iii).#

Theorem 3 Suppose that lim
t→+∞

(t − ϕ(t)) = +∞, there are sequences {xn}∞n=0 and

{yn}∞n=0 in X such that {Ixn, Ixn+1} ⊂ Sxn and {Jyn, Jyn+1} ⊂ Tyn (n = 0, 1, 2, . . . ),

and

H(Sx, Ty) ≤ ϕ(aL1(x, y) + (1− a)N1(x, y)) (5)

for all x, y ∈ X and a ∈ [0, 1], where

L1(x, y) = max{D(Ix, Sx), D(Jy, Ty),
1

2
[D(Ix, Ty) +D(Jy, Sx)]}

and

N1(x, y) = [max{D(Ix, Sx)D(Jy, Ty), D(Ix, Ty)D(Jy, Sx),

1

2
D(Ix, Sx)D(Jy, Sx),

1

2
D(Jy, Ty)D(Ix, Ty)}]1/2 .

Then:

(i) the sequences {Sxn} and {Tyn} converge in CL(X) to the same limit A for some

A ∈ CL(X).
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(ii) F = {Ix : x ∈ X and Ix ∈ Sx} = I(X) ∩ A, and

G = {Jy : y ∈ y ∈ X and Jy ∈ Ty} = J(X) ∩ A.

(iii) Sx = A whenever Ix ∈ Sx and Ty = A whenever Jy ∈ Ty.

Proof: For a fixed n ∈ N, let

βn = sup{H(Sxi, T yj) : 1 ≤ i, j ≤ n} .

Let δ = max{H(Ix0, Sx1), H(Ty0, T y1)}.

For i, j ∈ N, the inequality (5) yields H(Sxi, T yj) ≤ ϕ(aL1(xi, yj))+(1−a)N1(xi, yj), where

L1(xi, yj) = max{D(Ixi, Sxj), D(Jyj, T yj),
1

2
[D(Ixi, T yj) +D(Jyj, Sxi)]}

≤ 1

2
[H(Sxi−1, T yj) +H(Tyj−1, Sxi)]

≤ max{H(Sxi, T yj), H(Tyj−1, Sxi)}

and

N1(xi, yj) ≤ [H(Sxi−1, T yj)H(Tyj−1, Sx1)]
1/2

≤ max{H(Sxi−1, T yj), H(Tyj−1, Sxi)} .

Hence for i, j ∈ N, we have

H(Sxi, T yj) ≤ ϕ(max{H(Sxi−1, T yj), H(Tyj−1, Sxi)}) . (6)

It follows that βn ≤ ϕ(βn + δ) for all n = 1, 2, 3, . . . . Hence (βn + δ)− ϕ(βn + δ) ≤ δ for all

n = 1, 2, 3, . . . . Since t − ϕ(t) → +∞ as t → +∞, it follows that {βn} is bounded. Hence

sup{H(Sxi, T yj) : i, j ∈ N} is finite.

For n ∈ N,

let νn = sup{H(Sxi, T yj) : i, j ≥ n} .

Then the inequality (6) yields νn ≤ (νn−1) for all n ∈ N. It follows that νn ≤ ϕn(ν0) for

all n ∈ N. Since ϕ(t+) < t for all t ∈ (0,∞) and ϕ(0) = 0, it follows that ϕn(ν0) → 0 as

n→∞. So {νn} converges to zero. Again for all i, j ∈ N, we have

H(Sxi, Sxj) ≤ H(Sxi, T yi) +H(Tyi, Sxj)

Thus for all i, j ≥ n and using the fact that νn → 0 as n→∞ we have

H(Sxi, Sxj) ≤ zνn → o as i, j → +∞ .
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It follows that {Sxn} is Cauchy. Since (CL(X), H) is complete, {Sxn} is convergent in

CL(X). We can similarly show that {Tyn} is also convergent in CL(X). SinceH(Sxn, T yn) →
0 as n→∞, it follows that the sequences {Sxn} and {Tyn} converge in CL(X) to the same

limit A for some A ∈ CL(X).

Suppose u ∈ X such that Iu ∈ A. Then from the inequality (5) it follows that, for all n ∈ N,

H(Su, Tyn) ≤ ϕ(aL1(u, yn) + (1− a)N1(u, yn)) , (7)

where

L1(u, yn) ≤ max{H(A, Su),
1

2
[H(A, Tyn) +H(Tyn, Su)]}

→ H(A, Su)+ as n→∞

and

N1(u, yn) ≤ [max{H(A, Tyn)H(Tyn, Su),
1

2
H(A, Su)H(Tyn, Su)}]1/2

→ (1/
√

2)H(A, Su)+ as n→∞ .

Hence passing over to limit as n→∞ in (7), we obtain

H(Su,A) ≤ ϕ(aH(Su,A)+ + [(1− a)/
√

2]H(Su,A)+)

≤ ϕ(H(Su,A)+) .

Since ϕ(t+) < t for all t ∈ (0,∞), it follows that H(Su,A) = 0. Hence Su = A. We now

suppose that v ∈ A such that Iv ∈ Sv. Then from the inequality (5), for all n ∈ N, we have

H(Sv, Tyn) ≤ ϕ
(
a ·max{D(Iv, Sv), D(Jyn, T yn),

1

2
[D(Iv, Tyn) +D(Jyn, Sv)]}

+ (1− a) · [max{D(Iv, Sv)D(Jyn, T yn), D(Iv, Tyn)D(Jyn, Sv) ,

1

2
D(Iv, Sv)D(Jy, Sv),

1

2
D(Jyn, T yn)D(Iv, Tyn)}]1/2

)
≤ ϕ(a ·H(Sv, Tyn) + (1− a) ·H(Sv, Tyn))

= ϕ(H(Sv, Tyn)) .

Passing over to limit as n→∞ in the above inequality, we obtain H(Sv,A) ≤ ϕ(A(Sv,A)+).

Hence H(Sv,A) = 0. It follows that Sv = A. Thus we have shown that F = I(X) ∩ A
and Sx = A whenever Ix ∈ Sx. We can similarly show that G = J(X) ∩ A and Ty = A

whenever Jy ∈ Ty.#

Remark 5 Theorem 3 improves Theorem 2 of Naidu [7].
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Corollary 2 Suppose that lim
t→+∞

[t− ϕ(t)] = +∞, S(X) and T (X) are closed subsets of

X, Sx ⊆ I(X) and Gx ⊆ J(X) for all x ∈ X and the inequality (5) holds for all x, y ∈ X,

a ∈ [0, 1]. Then:

(i) {Ix : x ∈ X and Ix ∈ Sx} = {Jx : x ∈ X and Jx ∈ Tx} = A for some A ∈ CL(X),

(ii) Sx = A = Ty for all x ∈ I−1(A) and for all y ∈ J−1(A).

Proof: The conclusion follows immediately from Theorem 3.#

Theorem 4 Let (X, d) be a complete metric space, and let I, J : X → X and S, T :

X → CL(X). Suppose that lim
t→+∞

(t−ϕ(t)) = +∞, there are sequences {xn}∞n=0 and {yn}n=0

in X such that {Ixn, Ixn+1} ⊂ Sxn and {Jyn, Jyn+1} ⊂ Tyn (n = 0, 1, 2, . . . ), and (5) holds

for all x, y ∈ X. If I, J , S and T are continuous , I, S and J , T are compatible mappings,

then there exists a point t ∈ X such that It ∈ St and Jt ∈ Tt, i.e., t is a coincidence point

of I and S and J and T .

Proof: Following the proof technique of Theorem 3, we can show that the sequences {Sxn}
and {Tyn} converge in CL(X) to the same limit A for some A in CL(X). By (5), for m ≥ n

(m,n ∈ N), we have

d(Ixn, Jym) ≤ D(Ixn, Sxn) +D(Jym, Sxn) (8)

≤ D(Ixn, Sxn) +H(Sxn, T ym)

≤ D(Ixn, Sxn) + ϕ(aL1(xn, ym) + (1− a)N1(xn, ym)) ,

where

L1(xn, ym) = max{D(Ixn, Sxn), D(Jym, T ym),
1

2
[D(Ixn, T yn) +D(Jym, Sxn)]}

≤ H(Sxn, T ym)

and

N1(xn, ym) = [max{D(Ixn, Sxn)D(Jym, T ym), D(Ixn, T ym)D(Jym, Sxn) ,

1

2
D(Ixn, Sxn)D(Jym, Sxn),

1

2
D(Jym, T yn)D(Ixn, T ym)}]1/2

≤ H(Sxn, T ym) .

Making n→∞ in (8), we obtain

lim
n
d(Ixn, Jym) ≤ 0 + ϕ(0) .
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It follows that Ixn, Jyn → t as n→∞ for some t ∈ X, since X is complete, d(Ixn, Ixm) ≤
d(Ixn, Jym) + d(Jym, Ixn) and d(Jyn, Jym) ≤ d(Jyn, Ixm) + d(Ixm, Jym). Again since

D(t, A) ≤ D(t, Sxn) + H(Sxn, A) → 0 as n → ∞, it follows that t ∈ A. By continuity

of I and S, and since S and I are compatible, we have

D(It, St) = limnD(It, SIxn) ≤ limnH(IA, SIxn)

= limnH(ISxn, SIxn) = 0

Hence It ∈ St. Due to symmetry, we can similarly show that Jt ∈ Tt.#

By applying the same arguments as in the proof of Theorem 3, we can easily prove the

following theorems:

Theorem 5 Let (X, d) be a complete metric space, and I, J : X → X and S, T : X →
CL(X). Suppose that lim

t→+∞
(t−ϕ(t)) = +∞, there are sequences {xn}∞n=0 and {yn}∞n=0 in X

such that Ixn+1 ∈ Sxn and Jyn+1 ∈ Tyn (n = 0, 1, 2, . . . ) and

H(Sx, Ty) ≤ ϕ
(a

2
[D(Ix, Ty) +D(Jy, Sx)] + (1− a)[D(Ix, Ty)D(Jy, Sx)]1/2

)
(5′)

for all x, y ∈ X and a ∈ [0, 1]. Then the sequences {Sxn}, {Tyn} converge in CL(X)

to the same limit A for some A ∈ CL(X), {Ix| ∈ X and Ix ∈ Sx} = I(X) ∩ A and

{Jy|y ∈ X and Jy ∈ Ty} = J(X) ∩ A. Further, Sx = A whenever Ix ∈ Sx and Ty = A

whenever Jy ∈ Ty.

Theorem 6 Let (X, d) be a complete metric space, and let I, J : X → X and S, T : X →
CL(X). Suppose that lim

t→+∞
(t− ϕ(t)) = +∞, there are sequences {xn}∞n=0 and {yn}∞n=0in X

such that Ixn+1 ∈ Sxn and Jyn+1 ∈ Tyn (n = 0, 1, 2, . . . ) and (5′) holds for all x, y ∈ X. If

I, J , S and T are continuous, I, S and J , T are compatible mappings. Then there exists a

point t ∈ X such that It ∈ St and Jt ∈ Tt; i.e., t is a coincidence point of I and S and J

and T .

Remark 6 In view of Example 10 of Sastry, Naidu and Prasad [11], the condition lim
t→∞

(t−

ϕ(t)) = +∞ in Theorems 3-6 cannot be dispensed with even if
∞∑

n=1

ϕn(t) < +∞ for all t ∈ R+

with S = T and I = J = id, the identity mapping on X.

Remark 7 It is not yet known whether the continuity of all four maps I, J , S and T in

Theorems 4 and 6 are necessary or not.

Remark 8 Condition (2) of Naidu [7] is implied by condition (5′) of Theorem 5, and hence

Theorem 2 of Naidu [7] is a direct consequence of Theorem 5 .
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Zeqing Liu, Jeong Sheok Ume

Coincidence Points For Multivalued Mappings

ABSTRACT. In this paper we show some coincidence theorems for contractive type mul-

tivalued mappings in compact metric spaces, which extend properly the results of Kubiak

and Kubiaczyk.

KEY WORDS. Coincidence point, multivalued mappings, compact metric space.

1 Introduction and preliminaries

Let (X, d) be a metric space. For any nonempty subsets A,B of X we define D(A,B) =

inf{d(a, b) : a ∈ A and b ∈ B}, δ(A,B) = sup{d(a, b) : a ∈ A and b ∈ B} and H(A,B) =

max{sup[D(a,B) : a ∈ A], sup[D(A, b) : b ∈ B]}. Let CL(X) = {A : A is a nonempty

closed subset of X} and CB(X) = {A : A is a nonempty bounded closed subset of X}. It

is well known that (CB(X), H) is a metric space. Obviously CB(X) = CL(X) if (X, d) is

a compact metric space. Let S be a mapping of X into CL(X), f a selfmapping of X. A

point x ∈ X is called a coincidence point of f and S if fx ∈ Sx.

Kubiak [1] and Kubiaczyk [2] proved some fixed point theorems for contractive type mul-

tivalued mappings in compact metric spaces. The purpose of this paper is to extend their

results to a more general case.
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2 Coincidence theorems

Theorem 2.1 Let (X, d) be a compact metric space and let S and T be mappings of X

into CL(X). Suppose that f and g are selfmappings of X satisfying

δ(Sx, Ty) < max
{
d(fx, gy), H(fx, Sx), H(gy, Ty),

1

2
[D(fx, Ty) +D(gy, Sx)],

H(fx, Sx)H(gy, Ty)/d(fx, gy),

D(fx, Ty)D(gy, Sx)/d(fx, gy)
}

(2.1)

for all x, y ∈ X with fx 6= gy. Let SX ⊆ gX and TX ⊆ fX. If either f and S or g and T

are continuous, then either f and S or g and T have a coincidence point u with Su = {fu}
or Tu = {gu}.

Proof: We assume without loss of generality that f and S are continuous. It follows that

H(fx, Sx) is a continuous function on X. By the compactness of X, there exists a point u ∈
X such that H(fu, Su) = inf{H(fx, Sx) : x ∈ X}. It is easy to check that there is a point

y ∈ Su with d(fu, y) = H(fu, Su). Since SX ⊆ gX, then there exists a point v ∈ X with y =

gv. Consequently d(fu, gv) = H(fu, Su) for some gv ∈ Su. Similarly, there are two points

w, x ∈ X such that d(gv, fw) = H(gv, Tv), d(fw, gx) = H(fw, Sw), where fw ∈ Tv, gx ∈
Sw. We now assert that H(fu, Su)H(gv, Tv) = 0. Otherwise H(fu, Su)H(gv, Tv) > 0.

Using (2.1) we have

δ(Su, Tv) < max
{
d(fu, gv), H(fu, Su), H(gv, Tv),

1

2
[D(fu, Tv) +D(gv, Su)],

H(fu, Su)H(gv, Tv)/d(fu, gv),

D(fu, Tv)D(gv, Su)/d(fu, gv)
}

= max
{
H(fu, Su), H(gv, Tv),

1

2
[d(fu, gv) +H(gv, Tv)]

}
= max

{
H(fu, Su), H(gv, Tv)

}
which implies

H(gv, Tv) ≤ δ(Su, Tv) < max
{
H(fu, Su), H(gv, Tv)

}
= H(fu, Su) . (2.2)

Similarly we can show

H(fw, Sw) ≤ δ(Sw, Tv) < max
{
H(gv, Tv), H(fw, Sw)

}
= H(gv, Tv) . (2.3)
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It follows from (2.2) and (2.3) that

H(fw, Sw) < H(gv, Tv) < H(fu, Su) = inf
{
H(fx, Sx) : x ∈ X

}
which is a contradiction and hence H(fu, Su)H(gv, Tv) = 0, which implies that Su = {fu}
or Tv = {gv}. This completes the proof.

If f and g are the identity mapping on X, Theorem 2.1 reduces to the following.

Corollary 2.2 Let (X, d) be a compact metric space and let S and T be mappings of X

into CL(X) satisfying

δ(Sx, Ty) < max
{
d(x, y), H(x, Sx), H(y, Ty),

1

2
[D(x, Ty) +D(y, Sx)],

H(x, Sx)H(y, Ty)/d(x, y),

D(x, Ty)D(y, Sx)/d(x, y)
}

(2.4)

for all x, y ∈ X with x 6= y. If S or T is continuous, then S or T has a fixed point u with

Su = {u} or Tu = {u}.

Remark 2.1 Theorem 4 in [1] and Theorem 4 in [2] are special cases of Corollary 2.2. The

following example demonstrates that Corollary 2.2 extends properly Theorem 4 in [1] and

Theorem 4 in [2].

Example 2.1 Let X = {1, 3, 6, 10}, d the ordinary distance, and define S and T by S1 =

{3, 6}, S3 = {3, 6, 10}, S6 = S10 = T1 = T6 = T10 = {6} and T3 = {10}. Then (X, d)

is a compact metric space, S and T are continuous mappings of X into CL(X). It is easy

to show that S and T satisfy (2.4). But Theorem 4 in [1] and Theorem 4 in [2] are not

applicable since

δ(Sx, Ty) < max
{
d(x, y), H(x, Sx), H(y, Ty),

1

2
[D(x, Ty) +D(y, Sx)]

}
and

δ(Sx, Ty) < a(x, y)d(x, y) + b(x, y)[H(x, Sx) +H(y, Ty)]

+c(x, y)[D(x, Ty) +D(y, Tx)]

are not satisfied for x = 1 and y = 3, where a, b and c are functions of X × X into [0,∞)

with sup{a(x, y) + 2b(x, y) + 2c(x, y) : (x, y) ∈ X ×X} ≤ 1.
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Theorem 2.3 Let (X, d) be a compact metric space and let S and T be mappings of X

into CL(X). Assume that f and g are selfmappings of X satisfying

H(Sx, Ty) < max
{
d(fx, gy), D(fx, Sx), D(gy, Ty),

1

2
[D(fx, Ty) +D(gy, Sx)],

D(fx, Sx)D(gy, Ty)/d(fx, gy),

D(fx, Ty)D(gy, Sx)/d(fx, gy)
}

(2.5)

for all x, y ∈ X with fx 6= gy. Let SX ⊆ gX and TX ⊆ fX. If either f and S or g and T

are continuous, then either f and S or g and T have a coincidence point.

Proof: We may assume that f and S are continuous on X. Then D(fx, Sx) is continuous

and attains its minimum at some u ∈ X. As in the proof of Theorem 2.1, there exist

v, w, x ∈ X such that d(fu, gv) = D(fu, Su), d(gv, fw) = D(gv, Tv) and d(fw, gx) =

D(fw, Sw), where gv ∈ Su, fw ∈ Tv, gx ∈ Sw. Assume that D(fu, Su)D(gv, Tv) > 0. The

same argument as that of the proof of Theorem 2.1 shows that D(fw, Sw) < D(gv, Tv) <

D(fu, Su), which contradicts the miniality of D(fu, Su). Hence D(fu, Su)D(gv, Tv) = 0.

That is, fu ∈ Su or gv ∈ Tv. This completes the proof.

As an immediate consequence of Theorem 2.3 we have the following.

Corollary 2.4 Let (X, d) be a compact metric space and let S and T be mappings of X

into CL(X). Suppose that f and g are selfmappings of X satisfying

H(Sx, Ty) < max
{
d(fx, gy), D(fx, Sx), D(gy, Ty),

1

2
[D(fx, Ty) +D(gy, Sx)]

}
(2.6)

for all x, y ∈ X with fx 6= gy. Let SX ⊆ gX and TX ⊆ fX. If either f and S or g and T

are continuous, then either f and S or g and T have a coincidence point.

Remark 2.2 If f and g are the identity mapping on X, Corollary 2.4 reduces to Theorem

2 in [1] and includes Theorem 3 in [2]. The following example verifies that Corollary 2.4

does indeed generalize Theorem 2 in [1] and Theorem 3 in [2], that not both f , S and g, T

of Corollary 2.4 need have a coincidence point and that the coincidence point may not be

unique.

Example 2.2 Let X = {1, 3, 6} with the usual metric, and define S, T , f and g by

S1 = S3 = T6 = {1, 3}, S6 = T1 = {3}, T3 = {1}, f1 = f6 = 3, f3 = 1, g1 = g3 = g6 = 6.

It is easy to see that the hypothesis of Corollary 2.4 is satisfied. Clearly f and S have three
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coincidence points while g and T have none. However, Theorem 2 in [1] and Theorem 3 in

[2] are not applicable since

H(Sx, Ty) < max
{
d(x, y), D(x, Sx), D(y, Ty),

1

2
[D(x, Ty) +D(y, Sx)]

}
and

H(Sx, Ty) < a(x, y)d(x, y) + b(x, y)[D(x, Sx) +D(y, Ty)]

+c(x, y)[D(x, Ty) +D(y, Sx)]

are not satisfied for x = 1 and y = 3, where a, b and c are functions of X × X into [0,∞)

with sup{a(x, y) + 2b(x, y) + 2c(x, y) : (x, y) ∈ X ×X} ≤ 1.
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Stability of Mann Iterative Process with Ran-
dom Errors for the Fixed Point of Strongly-
Pseudocontractive Mapping in Arbitrary Banach
Spaces1

ABSTRACT. Suppose that X is a arbitrary real Banach space and T : X → X is a

Strongly pseudocontractive mapping. It is proved that certain Mann iterative process with

random errors for the fixed point of T is stable(almost stable) with respect to T with(without)

Lipschitz condition. And, two related results are obtained that deals with stability(or almost

stability) of Mann iterative process for solution of nonlinear equations with strongly accretive

mapping. Consequently, the corresponding results of Osilike are improved.

KEY WORDS. strongly pseudocontractive mapping, strongly accretive mapping, Mann

iterative process with random errors, stable, almost stable

To set the framework, we recall some basic notations as follows.

Let X be a real Banach space and K ⊂ X a nonempty subset.

(a) A mapping T : K → X is said to be strongly pseudocontractive if for any x, y ∈ K we

have

‖x− y‖ ≤ ‖x− y + r[(I − T − kI)x− (I − T − kI)y]‖ (1)

for all r > 0, where I is the identity mapping on X and the constant k ∈ (0, 1). A mapping

A : K → X is said to be strongly accretive if I−A is strongly pseudocontractive. Hence, the

mapping theory for accretive mappings is intimately connected with the fixed point theory

for pseudocontractive mappings.

(b) Let T : X → X be a mapping. For any given x0 ∈ X the sequence {xn} defined by

xn+1 = (1− an)xn + anTxn + cnun (n ≥ 0) (2)

1This work is supported by the foundation of Yunnan Sci. Tech. Commission, China(2002A0058m)



94 Y. Xu, F. Xie

is called Mann[1] iteration sequence with random errors, where un ∈ X(n ≥ 0) is a bounded

and random error term, and {an} and {cn} are two real sequences in (0, 1) satisfying some

conditions. By the way, Xu, one of authors introduced another definition of Mann iteration

process with random errors on a nonempty convex subset of Banach space in 1998(see, Xu

[2]).

(c) Let K be a nonempty convex subset of X and T be a selfmapping of K. Assume that

x0 ∈ K and xn+1 = fn(T, xn) define an iterative process which yields a sequence of points

{xn}∞n=0 in K. Suppose F (T ) = {x ∈ K : Tx = x} 6= ∅ and {xn}∞n=0 converges to a fixed

point q ∈ F (T ). For any {yn}∞n=0 ⊂ K, let εn = ‖yn+1− fn(T, yn)‖. If
∑∞

n=0 εn <∞ implies

that lim yn = q then the iterative process defined by xn+1 = fn(T, xn) is said to be almost

T -stable. Furthermore, If limn→∞ εn = 0 implies that lim yn = q then the iterative process

defined by xn+1 = fn(T, xn) is said to be T -stable(see, Zhang [3]).

In recent, some stability results have been established(see [4]-[8]), for example, Osilike[6]

showed that the Mann and Ishikawa iterative processes are stable with respect to Lipschitz

strongly pseudocontractive mapping T in p-uniformly smooth Banach space. Then, he ex-

tended the results to arbitrany real Banach spaces in [7]. Since the consideration of error

terms is an important part of any iteration methods and many mappings without Lipschitz

condition, therefore, we introduced the Mann iterative process with random errors and to

prove that the iterative process is stable(almost stable) with respect to T with(without)

Lipschitz condition where T is a strongly pseudocontractive mapping in arbitrary Banach

space. And, two related results are obtained that deals with stability(or almost stability) of

Mann iterative process for solution of nonlinear equations with Strongly accretive mapping.

Consequently, the corresponding results of Osilike are improved.

Now, we prove the following theorems.

Theorem 1 Suppose that T : X → X be a Lipschitz strongly pseudocontractive mapping.

If q is a fixed point of T and for arbitrary x0 ∈ X, the Mann iteration sequence with random

errors defined by (2) satisfying

0 < a ≤ an ≤ k[2(L2 + 3L+ 3)]−1 and lim
n→∞

cn = 0 (1.1)

where L > 1 is Lipschitz constant of T and a > 0 is a constant. Then

(1) {xn} converges strongly to unique fixed point q of T ;

(2) Let {yn} be any sequence in X. Then yn converges strongly to q if and only if εn

converges to 0.
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Proof: Let sup{‖un‖ : n = 0, 1, 2, · · · } = M . Using (2), we have

xn − q = (xn+1 − q)− an(Txn − q) + an(xn − q)− cnun

= (1 + an)(xn+1 − q) + an[(I − T − kI)xn+1 − (I − T − kI)q]

+an(Txn+1 − Txn)− (2− k)a2
n(Txn − q)− (1− k)an(xn − q)

+(2− k)a2
n(xn − q)− [1 + (2− k)an]cnun

for all n ≥ 0. Furthermore,

‖xn − q‖ ≥ (1 + an)‖xn+1 − q + an

1+an
[(I − T − kI)xn+1 − (I − T − kI)q]‖

−an‖Txn+1 − Txn‖ − (2− k)a2
n‖Txn − q‖ − (1− k)an‖xn − q‖

−(2− k)a2
n‖xn − q‖ − [1 + (2− k)an]cn‖un‖

(3)

for all n ≥ 0. by virtue of (1), we have

‖xn − q‖ ≥ (1 + an)‖xn+1 − q‖ − Lan‖xn+1 − xn‖ − (1− k)an‖xn − q‖
−2(L+ 1)a2

n‖xn − q‖ − 3Mcn

≥ (1 + an)‖xn+1 − q‖ − (1− k)an‖xn − q‖
−(L+ 1)(L+ 2)a2

n‖xn − q‖ − (3 + L)Mcn

(4)

for all n ≥ 0. It follows from (4) and the condition (1.1) that

‖xn+1 − q‖ ≤ (1− an + a2
n)‖xn − q‖+ (1− k)an‖xn − q‖

+(L+ 1)(L+ 2)a2
n‖xn − q‖+ (3 + L)Mcn

≤ (1− kan)‖xn − q‖+ (L2 + 3L+ 3)a2
n‖xn − q‖+ (3 + L)Mcn

≤ (1− kan/2)‖xn − q‖+ (3 + L)Mcn

+an[an(L2 + 3L+ 3)− k/2]‖xn − q‖
≤ (1− ka/2)‖xn − q‖+ (3 + L)Mcn

(5)

for all n ≥ 0. Putting

α = 1− ka/2, tn = ‖xn − q‖ and βn = (3 + L)Mcn (n ≥ 0).

Hence, the inequality (5) reduces to

tn+1 ≤ αtn + βn (n ≥ 0).

It follows from the inequality of Q. H. Liu (see Lemma of [9]) that limn→0 ‖xn− q‖ = 0. I.e.,

{xn} converges strongly to fixed point q of T . If q′ also is a fixed point of T , putting r = 1

in (1) we obtain ‖q − q′‖ ≤ (1− k)‖q − q′‖. It implies that q = q′.

We now prove part (2). Suppose limn→∞ εn = 0. Then

‖yn+1 − q‖ = ‖yn+1 − (1− an)yn − anTyn − cnun + (1− an)yn + anTyn − q + cnun‖
≤ εn + ‖(1− an)(yn − q) + an(Tyn − q) + cnun‖
≤ ‖(1− ka/2)‖yn − q‖+ (3 + L)Mcn + εn

≤ α‖yn − q‖+ βn + εn
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for all n ≥ 0.

By virtue of the inequality of Q. H. Liu again, we obtain that yn → q (as n→∞). I.e., the

iterative process defined by xn+1 = fn(T, xn) is T -stable.

On the contrary, if limn→∞ yn = q then

εn = ‖yn+1 − (1− an)yn − anTyn − cnun‖
≤ ‖yn+1 − q‖+ (1− an)‖yn − q‖+ Lan‖yn − q‖+Mcn → 0(as n→∞).

This implies that limn→∞ εn = 0. The Proof is completed.

From this Theorem we can prove

Corollary 1 Suppose that A : X → X be a Lipschitz strongly accretive mapping. Let x∗

be a solution of Ax = f where f is any given and Sx = f + x−Ax ∀ x ∈ X. For arbitrary

x0 ∈ X, if Mann iteration sequence with random errors defined by

xn+1 = (1− an)xn + anSxn + cnun (n ≥ 0) (6)

satisfying

0 < a ≤ an ≤ k[2(L2
∗ + 3L∗ + 3)]−1 and lim

n→∞
cn = 0

where L∗ > 1 is Lipschitz constant of S. Then

(1) {xn} converges strongly to unique solution of Ax = f ;

(2) It is S-stable to approximate the solution of Ax = f by (6) (Mann iteration sequence

with random errors).

In fact, from Sx = f + x − Ax, it is easy to see that x∗ is unique solution of Ax = f if

and only if x∗ is unique fixed point of S. Since S is a Lipschitz strongly pseudocontractive

mapping, by virtue of theorem 1, we know the conclusions of corollary 1 are true.

Theorem 2 Suppose that T : X → X be an uniformly continuous strongly pseudocon-

tractive mapping with bounded range. If q is a fixed point of T and for arbitrary x0 ∈ X, the

Mann iteration sequence with random errors defined by (2) satisfying

∞∑
n=0

an = ∞,
∞∑

n=0

a2
n <∞ and

∞∑
n=0

cn <∞,

then

(1) {xn} converges strongly to unique fixed point of T ;
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(2) Let {yn} be any sequence in X. Then
∑∞

n=0 εn <∞ implies that yn converges strongly

to q;

(3) yn converges strongly to q implies that limn→∞ εn = 0.

Proof: Putting

c = sup{‖Tx− q‖ : x ∈ X}+ ‖x0 − q‖
d = sup{‖un‖ : n ≥ 0}.

For any n ≥ 0, using induction, we obtain

‖xn − q‖ ≤ c+ d
n−1∑
i=0

ci ≤ c+ d

+∞∑
i=0

ci.

Hence, we set

M = c+ d
+∞∑
i=0

ci.

Since limn→∞ ‖xn+1 − xn‖ = limn→∞ ‖an(Txn − xn) + cnun‖ = 0, therefore,

en := ‖Txn+1 − Txn‖ → 0(as n→∞)

by the uniform continuity of T . From (3) and using (1), we have

‖xn − q‖ ≥ (1 + an)‖xn+1 − q + an

1+an
[(I − T − kI)xn+1 − (I − T − kI)q]‖

−anen − (2− k)Ma2
n − (1− k)an‖xn − q‖

−(2− k)a2
n‖xn − q‖ − [1 + (2− k)an]cn‖un‖

≥ (1 + an)‖xn+1 − q‖ − (1− k)an‖xn − q‖
−anen − (2− k)a2

n‖xn − q‖ − 2Ma2
n − 3Mcn

(7)

for all n ≥ 0. It follows from (7) that

‖xn+1 − q‖ ≤ (1− an + a2
n)‖xn − q‖+ (1− k)an‖xn − q‖

+anen + (2− k)a2
n‖xn − q‖+ 2Ma2

n + 3Mcn

≤ (1− kan)‖xn − q‖+ anen + 5Ma2
n + 3Mcn

(8)

for all n ≥ 0. Putting

αn = kan, tn = ‖xn − q‖, anen = O(αn) and βn = 5Ma2
n + 3Mcn (n ≥ 0).

Hence, the inequality (8) reduces to

tn+1 ≤ (1− αn)tn +O(αn) + βn (n ≥ 0).
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It follows from the inequality of L. S. Liu(see Lemma 2 of [10]) that limn→0 ‖xn − q‖ = 0.

So, {xn} converges strongly to unique fixed point q of T .

We now prove part (2) and (3). Suppose
∑∞

n=0 εn ≤ ∞. Observe

‖yn+1 − q‖ ≤ εn + ‖(1− an)(yn − q) + an(Tyn − q) + cnun‖
≤ (1− αn)‖yn − q‖+O(αn) + βn + εn

for all n ≥ 0.

By virtue of the inequality of L. S. Liu again, we obtain that yn → q (as n →∞). I.e., the

iterative process defined by xn+1 = fn(T, xn) is almost T -stable.

On the contrary, if limn→∞ yn = q then

εn = ‖yn+1 − (1− an)yn − anTyn − cnun‖
≤ ‖yn+1 − q‖+ (1− αn)‖yn − q‖+O(αn) + βn → 0(as n→∞).

This implies that limn→∞ εn = 0. The proof is completed.

From Theorem 2 we can prove

Corollary 2 Suppose that A : X → X is an uniformly continuous strongly accretive

mapping and the range of I − A is bounded. Let x∗ be a solution of Ax = f where f is any

given. for arbitrary x0 ∈ X, if Mann iteration sequence with random errors defined by (6)

satisfying
∞∑

n=0

an = ∞,
∞∑

n=0

a2
n <∞ and

∞∑
n=0

cn <∞,

then

(1) {xn} converges strongly to unique solution of Ax = f ;

(2) It is almost S-stable to approximate the solution of Ax = f by (6) (Mann iteration

sequence with random errors).

In fact, from Sx = f + x − Ax, it is easy to see that x∗ is unique solution of Ax = f

if and only if x∗ is unique fixed point of S. Since S is an uniformly continuous strongly

pseudocontractive mapping, by virtue of theorem 2, we know the conclusions of corollary 2

are true.

Remark The iterative parameters {αn} and {cn} do not depend on any geometric structure

of space X and on any property of the mappings, but, the selection of the parameters is

deal with the convergence rate of the iterative sequence. In Theorem 2 and Corollary 2, a

prototype of iteration parameters is

an =
1

n+ 1
and cn =

1

(n+ 1)2 ∀ n ≥ 0.
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Recursions for the Solution of an Integral-Functional
Equation

ABSTRACT. In this paper, we continue our considerations in [1, 2, 3] about a homoge-

neous integral-functional equation with a parameter a > 1. Here we assume that a ≥ 2,

disregarding some explicitly mentioned cases where a can be smaller than 2. We derive new

recursions which allow to calculate the solution and its derivatives effectively, and which

contain formulas of R. Schnabl [8] and W. Volk [10] as special cases for a = 2.

KEY WORDS. Integral-functional equation, generating functions, Cantor sets, relations

containing polynomials, recursions, directed graphs.

1 Introduction

There exists a long history concerning compactly supported C∞-functions, which are so-

lutions of differential-functional equations, cf. [7], [3] and the literature quoted there. By

integration these equations can be transformed into integral-functional equations. Here, we

deal with the special equation

φ(t) = b

at∫
at−a+1

φ(τ)dτ

(
b =

a

a− 1

)
(1.1)

with the real variable t and a parameter a > 1. Applications of (1.1) to probability problems

were given by G.J. Wirsching for a = 3 in [11], and for a ≥ 3
2

in [12].

In this paper, we continue our considerations in [1, 2, 3] concerning the solutions of (1.1)

under the assumption a ≥ 2 disregarding some explicitly mentioned cases where a can be

smaller than 2, in particular, in Section 8. We derive new recursions which allow to calculate

the solution and its derivatives effectively, and which contain formulas of R. Schnabl [8] and

W. Volk [10] as special cases for a = 2. For convenience of the reader we first list those

results from [1, 2, 3] which are needed later on.
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For a > 1 equation (1.1) has a C∞-solution with the support [0, 1], which is uniquely deter-

mined by means of the normalization

1∫
0

φ(t)dt = 1 . (1.2)

In particular, it is φ(0) = φ(1) = 0. The solution of (1.1)-(1.2) is symmetric with respect to

the point 1
2
, monotone at both sides of 1

2
and it is strictly positive for t ∈ (0, 1). The Laplace

transform Φ of the solution φ of (1.1)-(1.2) is an entire function satisfying Φ(0) = 1 and the

functional equation

Φ(z) =
1− e−z/b

z/b
Φ
(z
a

)
. (1.3)

It has the Taylor series

Φ(z) =
∞∑

n=0

ρn(a)

n!
zn (z ∈ C)

where the coefficients are rational functions with respect to a and, starting with ρ0(a) = 1

for n ≥ 1, they can be determined by means of the recursion

ρn(a) =
1

(n+ 1)(an − 1)

n−1∑
ν=0

(
n+ 1

ν

)
ρν(a)(1− a)n−ν . (1.4)

Moreover, for fixed n, the functions (−1)nρn(a) are increasing for a ≥ 1 and it holds

1

2n
≤ (−1)nρn(a) ≤ 1

n+ 1
, (1.5)

cf. [1, (2.14)].

For a > 2, the solution φ of (1.1)-(1.2) is a polynomial on each component of an open

Cantor set with Lebesgue measure 1. These polynomials can be expressed by means of the

polynomials

ψn(t) =
n∑

ν=0

(
n

ν

)
ρn−ν(a)t

ν , (1.6)

which have the special values

ψn(0) = ρn(a), ψn(1) = (−1)nρn(a), (1.7)

and which have the generating function

etzΦ(z) =
∞∑

n=0

1

n!
ψn(t)zn (1.8)
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so that they are Appell polynomials, cf. [8], [1]. Note that in [1] we have used the abbrevia-

tion ψn for the polynomials (1.6) with 1
a

instead of a. In [3] we have modified the polynomials

(1.6) by

fn(t) = cnψn(t) (1.9)

where cn is given by

cn =
bn+1

n! a
n(n+1)

2

=
1

n! a
(n+1)(n−2)

2 (a− 1)n+1
. (1.10)

These polynomials can be calculated recursively by

fn(t) =
b

nan

(
t− 1

2

)
fn−1(t) +

1

n

n∑
ν=2

1

ν!
Bν

a
1
2
ν(ν+1−2n)

aν − 1
fn−ν(t) (n ≥ 1), (1.11)

starting with f0(t) = b and using the Bernoulli numbers

B0 = 1 , B1 = −1

2
, B2 =

1

6
, B3 = 0 , B4 = − 1

30
, . . . .

They satisfy the relations

fn(t)− fn(t− a+ 1) = fn−1

(
t

a

)
(1.12)

and

fn(t) = (−1)nfn(1− t) (1.13)

with n ∈ N0 and f−1 = 0. The simplest connection between the solution φ of (1.1)-(1.2) and

polynomials fn (n ≥ −1) is valid for a ≥ 2, and reads

φ
( τ

an+1

)
= fn(τ) (1 ≤ τ ≤ a− 1). (1.14)

In particular for n = 0, φ attains its maximum φ(t) = b for 1
a
≤ t ≤ 1− 1

a
. In order to state

more complicated connections between φ and fn we need an auxiliary sequence γk = γk(a)

defined as follows: If k ∈ N has the dyadic representation k = dp . . . d1d0 with dp = 1 and

dν ∈ {0, 1} then

γk = (a− 1)

p∑
ν=0

dνa
ν . (1.15)

The sequence γk (k ∈ N0) can also be defined by

γ2k = aγk , γ2k+1 = aγk + a− 1 , k = 0, 1, 2, . . . , (1.16)

so that in particular γ0 = 0 and γ1 = a− 1. For p ∈ N0 these numbers satisfy the relations

γ2p = (a− 1)ap, γ2p−1 = ap − 1, γ2p−2 = ap − a (p 6= 0), (1.17)
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γ2k+1 = γ2k + γ1, γ2σκ = aσγκ (σ, κ ∈ N0), (1.18)

γk + γu + 1 = ap+1 if k + u+ 1 = 2p+1 (1.19)

and the inequality

γk+1 ≥ γk + γ1 (k ∈ N0, a ≥ 2). (1.20)

For integers a also the numbers γk are integers. In particular, for a = 2, we have γk = k.

Moreover, we need the sign sequence εk = (−1)ν(k), where ν(k) denotes the number of ”1s”

in the dyadic representation of k, i.e. ν(k) is the binary sum-of-digits function (cf. [4]).

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

εk 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

Table 1: The first numbers εk

In the case a ≥ 2 we define the following closed intervals

Gkn =

[
γ2k + 1

an+1
,
γ2k+1

an+1

]
, Fkn =

[
γk

an
,
γk + 1

an

]
(1.21)

with Gkn ⊂ Fkn, since

Fkn = F2k,n+1 ∪Gkn ∪ F2k+1,n+1 (1.22)

k = 0, 1, . . . , 2n− 1, n ∈ N0 (for a = 2 the intervals Gkn degenerate to a single point). In the

intervals Gkn, the solution φ of (1.1)-(1.2) has the representation

φ(t) =
2k∑

ν=0

ενfn(an+1t− γν) (t ∈ Gkn) (1.23)

for k = 0, 1, . . . , 2n − 1, n ∈ N0. Moreover, for t ∈ Fkn, i.e. t = γk+τ
an with 0 ≤ τ ≤ 1 we have

the main formula

φ

(
γk + τ

an

)
− εkφ

( τ
an

)
=

k−1∑
ν=0

ενfn−1(γk + τ − γν). (1.24)

Another relation is

φ

(
γk + τ

an+1

)
+ φ

(
γ` + τ

an+1

)
= fn−p

(
γk + τ

ap

)
(0 ≤ τ ≤ a, a ≥ 2, n ≥ p) (1.25)

where k is even and k = 2p + ` (0 ≤ ` < 2p, p ∈ N).
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Remark 1.1 Formula (1.25) is also valid for arbitrary k ∈ N (p ∈ N0) when 0 ≤ τ ≤ 1.

If k = 2σκ and ` = 2σλ with σ ∈ N and integers κ, λ then κ = 2p−σ + λ and, according to

(1.18), it holds
γk + τ

an+1
=
γκ + τ

aσ

an−σ+1

and an analogous formula with ` and λ instead of k and τ , respectively. Writing (1.25) for

0 ≤ τ ≤ 1 with κ, λ, n − σ, p − σ and τ
aσ instead of k, `, n, p and τ , respectively, we see

that (1.25) is even valid for 0 ≤ τ ≤ aσ (i.e. at least for 0 ≤ τ ≤ a when k is even). This

assertion is already contained in [2, Proposition 6.1], however without proof.

Finally, we quote a relation which is valid even for a ≥ 3
2
, namely

φ
( τ

an+1

)
+ (−1)nφ

(
1− τ

an+1

)
= fn(τ) (2− a ≤ τ ≤ a− 1, n ≥ −1), (1.26)

and the relation valid for a > 1

+∞∑
ν=−∞

φ
(
t− ν

b

)
= b (t ∈ R). (1.27)

2 Polynomial relations

First we state two sets of new formulas for the polynomials fn.

Proposition 2.1 The polynomials fn (n ∈ N0) satisfy the addition theorem

fn(at+ (1− a)s) = an

n∑
ν=0

(−1)ν

ν!
Bν(s)a

ν
2
(ν−1−2n)fn−ν(t) (s, t ∈ R) (2.1)

where Bν(s) are the Bernoulli polynomials, and the multiplication theorem

fn(t) = a−
n(n+1)

2

n∑
ν=0

(−1)n−ν

(n+ 1− ν)!
a

ν(ν−1)
2 fν(at) (t ∈ R). (2.2)

Proof: Equation (1.3) can be written in the form

e(at+(1−a)s) z
a Φ
(z
a

)
=
− z

b
e
−sz

b

e−
z
b − 1

etzΦ(z) (s, t ∈ R),

since b = a
a−1

. Expanding both sides into power series with respect to z, using (1.8) and the

generating function of the Bernoulli polynomials, and comparing the coefficients we obtain

the formula

ψn(at+ (1− a)s) =
n∑

ν=0

(
n

ν

)
(1− a)νBν(s)a

n−νψn−ν(t) (n ∈ N0).
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In view of (1.9) and

cn
cn−ν

=
(n− ν)!

n!

a
ν
2
(ν+1−2n)

(a− 1)ν

the last equation turns over into (2.1).

From (1.3) and (1.8) we obtain analogously

ψn(t) = n!
n∑

ν=0

ψν(at)

aνν!

1

(n+ 1− ν)!

(
−1

b

)n−ν

,

and in view of (1.9) and

cn
cν

=
ν!

n!
bn−ν a

ν(ν+1)
2

a
n(n+1)

2

(2.3)

we obtain (2.2) �

Formula (2.1) is equivalent for a = 1
2

and s = t to [8, (C)], and for s = 0 to a formula in [2,

p.1012].

Relation (2.2) is a generalization of (1.4), because for t = 0 it can be transferred into (1.4),

using (1.9) and the first relation of (1.7). Though formula (2.2) is not a usual recursion, it

is possible to calculate fn(t) recursively by means of it if we additionally use from (1.6) and

(1.9) that the polynomial must have the main term cnt
n. Relation (2.2) can be considered

as the inversion of (2.1) with s = 0 and vice versa.

3 Special recursions for the solutions

Formula [10, (1.14)] from W. Volk can be generalized to the case a ≥ 2, which shall be the

general assumption in the Sections 3− 7.

Proposition 3.1 For n ≥ 2 we have the recursion

φ

(
1

an

)
=

1

1− a1−n

n∑
ν=2

1

ν!
a

1
2
ν(ν+1−2n)φ

(
1

an+1−ν

)
(3.1)

with the initial value φ( 1
a
) = b.

Proof: According to (1.14) with τ = 1 we have φ( 1
an+1 ) = fn(1) so that (1.9) and (1.7) yield

φ

(
1

an+1

)
= (−1)ncnρn(a) (3.2)
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and in particular φ( 1
a
) = b. Substituting (3.2) into (1.4) we get

φ

(
1

an+1

)
=

1

(n+ 1)(an − 1)

n−1∑
ν=0

(
n+ 1

ν

)
cn
cν

(a− 1)n−νφ

(
1

aν+1

)
,

and in view of (2.3) we obtain the equation

φ

(
1

an+1

)
=

an

an − 1

n+1∑
µ=2

1

µ!
a

1
2
µ(µ−1−2n)φ

(
1

an+2−µ

)
,

which turns over into (3.1) replacing n by n− 1 �

Formula [10, (1.14)] is the special case a = 2. Besides of (3.1) we also can state recursions

for φ( τ
an ). Inserting (1.14) into (1.11) with t = τ and into (2.1) with t = s = τ , respectively,

we immediately obtain

Corollary 3.2 For 1 ≤ τ ≤ a− 1 and n ≥ 1 we have the recursion formulas

φ
( τ

an+1

)
=

(τ − 1
2
)

n(a− 1)an−1
φ
( τ
an

)
+

1

n

n∑
ν=2

1

ν!
Bν

a
ν
2
(ν+1−2n)

aν − 1
φ
( τ

an−ν

)
(3.3)

and

φ
( τ

an+1

)
=

an

1− an

n∑
ν=1

(−1)ν

ν!
Bν(τ)a

ν
2
(ν−1−2n)φ

( τ

an+1−ν

)
, (3.4)

both with the initial value φ( τ
a
) = b.

Equations (3.3) and (3.4), both for τ = 1, lead to new recursions for φ( 1
an ) which are different

from (3.1). Moreover, for τ = a− 1 both equations yield recursions for φ( γ1

an ) which are the

initial values for more general recursions yielding φ( γk

an ). In order to state such recursions we

apply Taylor’s formula and hence we need the derivatives of higher order of the solutions.

Moreover, we have to extend the interval of validity of the main formula (1.24).

4 The domain of validity of the main formula

We preserve the assumption a ≥ 2 and show that formula (1.24) with n ∈ N0 and k ∈
{0, 1, . . . , 2n − 1} has in fact a greater interval of validity when a > 2.

Proposition 4.1 The main formula (1.24) for the solution φ of (1.1)-(1.2) is valid even

for 2− a ≤ τ ≤ a− 1.
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Proof: Since (1.24) is trivial for k = 0 we assume that k ≥ 1 and therefore also n ≥ 1.

For convenience we introduce the notation G2m,m = [1, 1 + a−2
am+1 ] where m ∈ N0. Then

according to (1.21) every Fkn has two G`m with m ≤ n− 1 as neighbouring intervals. Since

t = γk+τ
an ∈ Fkn for 0 ≤ τ ≤ 1 and |G`,n−1| = a−2

an , we see that t lies in intervals G`m both

for 2− a ≤ τ ≤ 0 and for 1 ≤ τ ≤ a− 1. Hence, in both cases φ(t) is a polynomial. But in

both cases also φ( τ
an ) is a polynomial, namely 0 and fn−1(τ), respectively, cf. (1.14). This

implies that the left-hand side of (1.24) is a polynomial spline for 2− a ≤ τ ≤ a− 1. But it

is also a C∞-function, i.e. it must be a unique polynomial �

The interval 2 − a ≤ τ ≤ a − 1 is optimal if k is odd, cf. (1.22). The case that k = 2σκ is

even can be reduced to the odd case as in Remark 1.1 using γk = aσγκ.

As consequence of Proposition 4.1, formula (1.26) can be generalized in the case a ≥ 2 as

follows:

Proposition 4.2 For n ∈ N0, k ∈ {0, 1, . . . , 2n−1} and 2−a ≤ τ ≤ a−1, the solution

φ of (1.1)-(1.2) has the property

φ

(
γk + τ

an

)
+ (−1)n−1φ

(
γk + 1− τ

an

)
= P (τ) (4.1)

where P is the polynomial

P (τ) = εkfn−1(τ) +
k−1∑
ν=0

εν [fn−1(γk + τ − γν) + fn−1(γν + τ − γk)] . (4.2)

Proof: The inequality 2− a ≤ τ ≤ a− 1 implies 2− a ≤ 1− τ ≤ a− 1. Hence, according

to Proposition 4.1 besides of (1.24) we also have

φ

(
γk + 1− τ

an

)
− εkφ

(
1− τ

an

)
=

k−1∑
ν=0

ενfn−1(γk + 1− τ − γν). (4.3)

Multiplying the last equation with (−1)n−1, using (1.13) and (1.26) with n− 1 instead of n,

we obtain the assertion by adding (1.24) �

5 On the derivatives of higher order

As before it shall be a ≥ 2. Besides of the intervals (1.21) we need the open intervals

◦
F kn=

(
γk

an
,
γk + 1

an

)
(k = 0, 1, . . . , 2n − 1, n ∈ N0), (5.1)
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with the decomposition
◦
F kn =

◦
F 2k,n+1 ∪ Gkn ∪

◦
F 2k+1,n+1 (5.2)

where the three sets on the right-hand side are disjoint. As in [3] we introduce the set

M =
∞⋃

n=0

2n−1⋃
k=0

Gkn

and its complement CM = (0, 1) \M which can also be represented as

CM =
∞⋂

n=0

2n−1⋃
k=0

◦
F kn . (5.3)

For t in one of the intervals
◦
F `m it holds

φ(m)(t) = ε`a
m(m+1)

2 bmφ(amt− γ`) (t ∈
◦
F `m) (5.4)

and otherwise we have φ(m)(t) = 0, cf. [2]. This means that for fixed t ∈ (0, 1) and m ∈ N0

we have φ(m)(t) 6= 0 if and only if there is an index ` satisfying

0 < amt− γ` < 1, (5.5)

i.e. t ∈
◦
F `m. Note that there exists at most one number ` = `m with (5.5), since the intervals

F`m (` = 0, 1, . . . , 2m − 1) are pairwise disjoint. Next, we modify [3, Definition 2.2]:

Definition 5.1 For given t ∈ (0, 1) we define a sequence δm = δm(a, t) (m ∈ N0) by

δm = 1 if (5.5) is satisfied for a certain index ` = `m, and by δm = 0 elsewhere.

Lemma 5.2 If for given t ∈ (0, 1) it holds δm = 1 (m ∈ N) then δm−1 = 1, too, with the

corresponding index `m−1 = [ `m

2
].

Proof: We have δm = 1 if and only if t ∈
◦
F `m with ` = `m. But, according to (5.2), t ∈

◦
F `m

implies that t ∈
◦
F k,m−1 with k = [ `

2
]. This yields the assertion �

Proposition 5.3 The derivatives of the solution φ of (1.1)-(1.2) have the following

property:

1. For t ∈ M , i.e. t ∈ Gkn with fixed k, n, it holds φ(m)(t) 6= 0 when 0 ≤ m ≤ n and

φ(m)(t) = 0 when m ≥ n+ 1.

2. For t ∈ CM it holds φ(m)(t) 6= 0 for all m ∈ N0.

Proof: 1. In the case a = 2, where the interval Gkn degenerates to the point t = 2k+1
2n+1 , it

is known that φ(m)(t) = 0 for m > n, cf. [2, (4.8)] or [9, p.575]. For a > 2 and t ∈ Gkn the
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function φ is a polynomial of degree n according to (1.23) and hence φ(m)(t) = 0 for m > n,

too. But (5.2) shows that it is also t ∈
◦
F kn and hence φ(n)(t) 6= 0 in view of (5.4). Lemma

5.2 implies φ(m)(t) 6= 0 for m ≤ n.

2. In view of (5.3) the supposition t ∈ CM implies that for each m we have t ∈
◦
F `m with

` = `m defined above, and hence (5.4) implies φ(m)(t) 6= 0 �

In order to determine the sequences δm and `m from Definition 5.1 explicitly for a given t =
γk

an ∈ (0, 1), which is necessary for a later application, we introduce the dyadic representation

k = dpdp−1 . . . d1d0 (5.6)

with dj ∈ {0, 1}, i.e. k = dp2
p + . . . + d12 + d0, where p < n since k < 2n. For convenience

we extend the coefficients by dj = 0 for p + 1 ≤ j ≤ n. In the next lemma we shall show

that in Definition 5.1 it holds `m = [ k
2n−m ], i.e.

`m = dn−m + dn−m+12 + . . .+ dn2m (5.7)

when m ∈ {0, . . . , n− 1}.

Lemma 5.4 Assume that t = γk

an ∈ (0, 1) with k from (5.6) and n ∈ N. If k has the

form k = 2σ(2κ+ 1) with σ, κ ∈ N0 then it holds δm = 1 for m ∈ {0, . . . , n− σ− 1} with the

corresponding index (5.7), and δm = 0 for m ≥ n− σ.

Proof: With (1.15) and the above notations we have

amt− γ`m = γ1

(
d0

an−m
+ . . .+

dn−m−1

a

)
. (5.8)

The assumption k = 2σ(2κ+ 1) means dσ = 1 and in the case σ > 0 additionally dj = 0 for

0 ≤ j < σ, so that (5.8) reduces to

amt− γ`m = γ1

(
1

an−σ−m
+

dσ+1

an−σ−m−1
+ . . .+

dn−m−1

a

)
. (5.9)

Choosing m = n − σ we obtain an−σt − γ`m = 0. In view of (1.20) this implies that

an−σt − γν ≥ 1 for ν < `m and that an−σt − γν ≤ 0 for ν ≥ `m, i.e. δn−σ = 0. Lemma 5.2

yields δm = 0 for all m ≥ n− σ. For m ∈ {0, . . . , n− σ − 1} equation (5.9) implies that

0 <
a− 1

an−σ−m
≤ amt− γ`m ≤ 1− 1

an−σ−m
< 1.

Hence, for these m it holds δm = 1 and the corresponding index reads (5.7) �
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6 More general recursions

The announced recursion formula for φ( γk

an ) in the case a ≥ 2 is a consequence of the following

Theorem 6.1 Assume that n ∈ N and that k = 2σ(2κ+ 1), 0 < k < 2n, has the dyadic

representation (5.6). Then for 2− a ≤ τ ≤ a− 1 it holds

φ

(
γk + τ

an

)
= εkφ

( τ
an

)
+

n−σ−1∑
m=0

ε`m

τm

m!
bma

m(m+1−2n)
2 φ

( γrm

an−m

)
(6.1)

where `m is given by (5.7) and

rm = d0 + d12 + . . .+ dn−m−12
n−m−1, (6.2)

i.e. k = 2n−m`m + rm.

Proof: Owing to Proposition 4.1, the function

f(τ) = φ

(
γk + τ

an

)
− εkφ

( τ
an

)
is a polynomial of degree at most n when 2− a ≤ τ ≤ a− 1. According to Taylor’s formula

and φ(m)(0) = 0 for all m, we get

f(τ) =
n∑

m=0

1

m!
φ(m)(t)

( τ
an

)m

where t = γk

an . Using Definition 5.1 and (5.4) we get equation

f(τ) =
n∑

m=0

δmε`m

τm

m!
bma

m
2

(m+1−2n)φ(amt− γ`m).

With (5.7) and (6.2), equation (5.8) can be written as

amt− γ`m =
γrm

an−m
, (6.3)

and the assertion follows from Lemma 5.4 �

Applying formula (6.1) with even k and τ = a − 1, then in view of γk + a − 1 = γk+1, cf.

(1.18), and b = a
a−1

we obtain

Corollary 6.2 Assume that n ∈ N and that k = 2σ(2κ + 1) is even, 0 < k < 2n, with

the dyadic representation (5.6). Then it holds

φ
(γk+1

an

)
= εkφ

(γ1

an

)
+

n−σ−1∑
m=0

ε`m

1

m!
a

m
2

(m+3−2n)φ
( γrm

an−m

)
(6.4)

with the notations (5.7) and (6.2).
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Note that the values φ( γ1

an ) can be determined recursively by both formulas of Corollary

3.2 with τ = γ1. Using φ( γ1

an ) as initial values, all further φ( γk

an ) with 1 < k < 2n can be

computed recursively by means of (6.4) in view of γ2`

an = γ`

an−1 .

The formulas (6.4) are recursions for the right end points of the intervals G from (1.21). Left

end points can be reduced to right ones by means of the symmetry of φ with respect to 1
2
.

According to (6.3), Proposition 6.1 with a = 2 and τ = 1 yields the

Corollary 6.3 For a = 2, n ∈ N and k = 1, 2, . . . , 2n − 1, we have the equation

φ

(
k + 1

2n

)
= εkφ

(
1

2n

)
+

n−σ−1∑
m=0

1

m!
ε`m2

m
2

(m+3−2n)φ

(
k

2n−m
− `m

)
, (6.5)

where `m = [ k
2n−m ] and k = 2σ(2κ+ 1).

Note that after a simple calculation, (6.5) for k = 1 and n+ 1 instead of n yields

φ

(
1

2n

)
=

1

1− 21−n

n∑
m=2

1

m!
2

m
2

(m+1−2n)φ

(
1

2n+1−m

)
, (6.6)

i.e. (3.1) with a = 2, cf. [10, (1.14)]. Therefore, (6.5) with the initial value φ(1
2
) = 2 is a

recursion for all φ( k
2n ) without additional knowledge where it suffices to use it only for even

k with k < 2n−2, considering the symmetry of φ and the relation

φ(t) + φ

(
1

2
− t

)
= 2

(
0 ≤ t ≤ 1

2

)
,

cf. (1.26) for n = 0 and a = 2. The first φ( k
2n ) are calculated in [3, p.216].

7 Reduced polynomial representations

The polynomial representation (1.23) for φ is rather redundant, since the terms can be

reduced by means of (1.12). One reduced formula was already set up in [2, (6.3)], to which

we shall come back later on after some preliminaries. Though the following results are valid

also for a = 2, they are only interesting in the case a > 2.

Let k, `, m be even and u, v odd numbers from N0, such that, for some numbers p, q from

N, we have

k = 2p + ` (0 ≤ ` ≤ 2p − 2), k + u = 2p+1 − 1 (7.1)

and for the same or another odd u

u = 2q + v (1 ≤ v ≤ 2q − 1), u+m = 2q+1 − 1. (7.2)
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In (7.1) it is always k ≥ 2, and in (7.2) it is u ≥ 3. For fixed n ∈ N we introduce the

notations

ϕk = φ

(
γk + τ

an+1

)
, ϕu = (−1)nφ

(
γu + 1− τ

an+1

)
. (7.3)

Proposition 7.1 In the case (7.1) it holds

ϕk = −ϕ` + fn−p

(
γk + τ

ap

)
, (7.4)

ϕk = (−1)pϕu + fn−p−1

(
γk + τ

ap+1

)
, (7.5)

when n ≥ p, and in the case (7.2)

ϕu = (−1)qϕm + (−1)q+1fn−q−1

(
γm + τ

aq+1

)
, (7.6)

ϕu = −ϕv + (−1)qfn−q

(
γm + τ

aq
− γ1

)
, (7.7)

when n ≥ q, all formulas are valid for

0 ≤ τ ≤ a. (7.8)

Proof: Relation (7.4) is only another notation for (1.25). Replacing in (1.26) n by n−p−1

as well as τ by γk+τ
ap+1 and considering (1.19) we obtain (7.5). The condition concerning τ is

equivalent to

ap+1(2− a)− γk ≤ τ ≤ ap+1(a− 1)− γk,

and these inequalities are satisfied in view of (7.8), 2 ≤ a, k ≤ 2p+1 − 2, (1.20) and (1.17).

Solving (7.5) with respect to ϕu and putting k = m as well as p = q we obtain (7.6). Given

(7.2), we can write u − 1 = k, v − 1 = `, and we obtain the first relation of (7.1) with q

instead of p. Replacing τ in (7.4) by a − τ , whereby the condition (7.8) remains invariant,

and considering

γk + a− τ = γu + 1− τ

(cf.(1.18)) as well as (1.13) with n− q instead of n and (1.19) concerning the second relation

of (7.2), we obtain (7.7) �

In the following we restrict (7.8) to the inequality

1 ≤ τ ≤ a− 1
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which includes the condition a ≥ 2. In view of (1.14), (7.6) and (7.3) it holds for these τ

ϕ0 = fn(τ), ϕ1 = fn(τ − γ1). (7.9)

By means of the formulas of Proposition 7.1 we can reduce the index k of ϕk successively

down to 1 or 0, where we have the representations (7.9). In this way it is possible to arrive

at formulas of the type

ϕk =

p+1∑
j=0

σjfn−j(·) (7.10)

with σj ∈ {−1, 0, 1} and suitable arguments by the polynomials f . It would be sufficient

to carry out this reduction only by means of (7.4). Then (7.10) is the already mentioned

formula [2, (6.3)] and the signs of the non-vanishing terms in (7.10) alternate. But there are

further possibilities.
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In order to describe them in detail we identify u in (7.1) and (7.2), visualize these relations by

the directed graph in Figure 1, and proceed with the nodes `, m, v analogously down to the

endpoints 1 and 0, respectively. There are two possibilities to label the nodes, namely, either

by means of the numbers k and u (written over the node), or by means of the exponents p

and q (written down the node) corresponding to them in (7.1-2). For the end points 1 and 0

we define q = 0 in the first and p = −1 in the second case. For example, Figure 2 shows the

graph in the case k = 44 (p = 5), and Figure 3 the graphs in the cases 8 ≤ k < 16 (p = 3).

In the following we mainly characterize the nodes by means of the exponential labels p, q.

In general for p ∈ N, dj ∈ {0, 1}, assume that (5.6) is the dyadic representation of a given

even number k with dp = 1 and d0 = 0. For 0 ≤ j ≤ p we introduce the extended notations

kj = djdj−1 . . . d0, uj = djdj−1 . . . d0 (7.11)

with dj from (5.6) and dj = 1− dj. The directed graph belonging to k ≥ 2 has the following

structure. It has p + 2 nodes p, . . . , 1, 0,−1 with the root p and two end points 0, −1. For

convenience the nodes j are placed on a first line with the end point −1 when dj = 1, whereas

they are placed on a second line with the endpoint 0 when dj = 1. The corresponding number

(7.11) belonging to a fixed node j is kj on the first line (k−1 = 0) and uj on the second one.

Every node, which is no end point, is the start point of exactly two arcs, one to the next

smallest j on the same line, and one to the next smallest j on the other line. In particular,

for every j ≥ 1 there is an arc from j to j − 1.

Let ` be the length of a fixed path from p to one of the end points, obviously 1 ≤ ` ≤ p, where

there always exist two paths of maximal length ` = p. But we are interested in shortest

paths.

Proposition 7.2 (i) For j = p, p−1, . . . , 1 let ĵxj, ĵyj be the arcs of the graph belonging

to a given even integer k. We get a shortest path, if we choose successively the arcs ĵzj with

zj = min(xj, yj).

(ii) Suppose that in the representation (5.6) of k there are `− 1 ≥ 0 disjunct pairs (dj+1, dj)

of the form (1, 0) or (0, 1) for j = p− 2, . . . , 1. Then ` is the length of the shortest path.

Proof: (i) Let `(j) be the length of a shortest path from p to j, so that `(p) = 0. Let J be

the set of the nodes j belonging to the path with the arcs ĵzj. This path is a shortest path

if Bellman’s equation

`(zj) = min
îzj

`(i) + 1 (7.12)

is satisfied for all j ∈ J with j ≥ 1, cf. [5, p. 101]. For all these j it is max(xj, yj) = j − 1

and therefore zj ≤ j − 2. This means zj + 1 ≤ j − 1, where zj and zj + 1 lie on different

lines. Hence, for all j ∈ J with j < p the nodes j and j + 1 lie on different lines. For the
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first arc p̂zp it is `(zp) = 1 ≤ `(zp + 1). If `(j) ≤ `(j + 1) for a fixed j ∈ J with j < p, then

`(zj) = `(j) + 1 = `(j − 1) ≤ `(zj + 1), which implies that `(j) ≤ `(j + 1) for all j ∈ J

with j < p. Moreover, we see that the possible i in (7.12) are either j, j − 1, . . . , zj + 1 or

j+1, j, . . . , zj +1, cf. Figure 4 or an analogous figure with interchanged lines, and Bellman’s

equation (7.12) is satisfied indeed.

(ii) To every arc ĵzj of the just constructed shortest path with p − 2 ≥ zj ≥ 1 we consider

the nodes i with j > i ≥ zj. These nodes contain the pair (zj +1, zj) with nodes on different

lines, but no other such pairs which are disjoint to (zj + 1, zj), cf. Figure 4. These pairs

correspond to the pairs (dj+1, dj) of the proposition. Since we have to consider also the arc

with the end point −1 or 0 the number ` of all arcs exceeds the number of the just mentioned

pairs by 1 �

-

- - -

-

µ R 1
µ

- - - -

-

µ
z q R

j zj

j + 1 j − 1 · · · zj + 1

j j − 1 · · · zj + 1

j + 1 zj

Figure 4: The neighbourhood of ĵzj

As a simple consequence of Proposition 7.2/(ii) we get

Corollary 7.3 The length `k of the shortest path belonging to the even k from (7.1)

satisfies the estimate

`k ≤
[
p+ 1

2

]
. (7.13)

The smallest numbers k such that `k = n ∈ N are πn = 2
3
(4n−1) since these are the numbers

k = 2p + 2p−2 + . . .+ 2 = 2
3
(2p+1 − 1) with odd p and n = p+1

2
.

For a given k ≥ 2 formula (7.10) or a more complicated formula arises, if we construct the

corresponding graph, choose a path from p to −1 or 0 and apply the formulas of Proposition

7.1 as well as (7.9). If we take the path along the first line, then we only have to apply

formula (7.4). This possibility is preferable if many of the dj in (5.6) vanish. In the case that
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many dj vanish it is preferable to use the path from p down to and then along the second

line, i.e. to apply first formula (7.5) and then always (7.7). Another possibility yields the

zigzag path, where the formulas (7.5), (7.6) are applied alternately.

- - -

- - -

- - -

- - -

- - -
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44 12 3 0
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5 3 1 0

44 19 3 0

5 4 1 -1

44 19 3 1

5 4 1 0

Figure 5: Shortest paths of Figure 2

We call (7.10) a minimal formula if we have used a shortest path for the construction. The

graph in Figure 2 for k = 44 = 25 +23 +22 and u = 19 = 24 +21 +20 has five shortest paths

which we obtain if we disregard the dotted arcs, and which are shown in Figure 5. To these

shortest paths belong the formulas

10 : φ
(

γ44+τ
an+1

)
= fn−5

(
γ44+τ

a5

)
− fn−3

(
γ12+τ

a3

)
+ fn−2

(
γ4+τ

a2

)
− fn(τ),

20 : φ
(

γ44+τ
an+1

)
= fn−5

(
γ44+τ

a5

)
− fn−4

(
γ12+τ

a4

)
+ fn−2

(
τ
a2

)
− fn(τ),

30 : φ
(

γ44+τ
an+1

)
= fn−5

(
γ44+τ

a5

)
− fn−4

(
γ12+τ

a4

)
+ fn−1

(
τ
a
− γ1

)
− fn(τ − γ1),

40 : φ
(

γ44+τ
an+1

)
= fn−6

(
γ44+τ

a6

)
− fn−4

(
γ12+τ

a4 − γ1

)
+ fn−2

(
τ
a2

)
− fn(τ),

50 : φ
(

γ44+τ
an+1

)
= fn−6

(
γ44+τ

a6

)
− fn−4

(
γ12+τ

a4 − γ1

)
+ fn−1

(
τ
a
− γ1

)
− fn(τ − γ1)

with n ≥ 5. The equivalence of these formulas can be checked by means of (1.12). The first

formula is that one where only (7.4) is applied. The second one is the formula corresponding

to the path of Proposition 7.2 and the last one is that where after the first step only (7.7)

is applied. It is remarkable that all these minimal formulas are alternating. The zigzag case

44− 19− 12− 3− 0 does not yield a minimal formula.

A minimal formula (7.10) is called optimal formula, if the indices j with σj 6= 0 are maximal,

i.e. if the degrees of the polynomials are minimal. In the foregoing examples formula 40

is optimal. However, since the practical advantage of optimal formulas is small, we do not

investigate existence and uniquiness of them.
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8 Formulas for a greater domain of a

Finally, we give up the general assumption a ≥ 2.

8.1. Recursions in the case a ≥ 3
2
. First we remark that for τ = 1

2
equation (1.26), which

is valid for a ≥ 3
2
, implies

φ

(
1

2a2n+1

)
=

1

2
f2n

(
1

2

)
(n ∈ N0) (8.1)

and n = 0 yields

φ

(
1

2a

)
=
b

2
(8.2)

in view of f0(t) = b.

Proposition 8.1 For a ≥ 3
2

and n ≥ 1 we have the recursions

φ

(
1

2a2n+1

)
=

1

2n

n∑
ν=1

1

(2ν)!
B2ν

aν(2ν+1−4n)

a2ν − 1
φ

(
1

2a2n−2ν+1

)
(8.3)

and

φ

(
1

2a2n+1

)
=

a2n

a2n − 1

n∑
ν=1

1− 21−2ν

(2ν)!
B2νa

ν(2ν−1−4n)φ

(
1

2a2n−2ν+1

)
(8.4)

both with the initial value (8.2).

Proof: Substituting (8.1) into (1.11) with t = 1
2

and 2n instead of n, we get (8.3). From

(2.1) with t = s = 1
2

and 2n instead of n, we obtain analogously

φ

(
1

2a2n+1

)
= a2n

n∑
ν=0

1

(2ν)!
B2ν

(
1

2

)
aν(2ν−1−4n)φ

(
1

2a2n−2ν+1

)
,

and by means of the well-known relation Bν

(
1
2

)
= − (1− 21−ν)Bν , cf. [6, p.22], it follows

(8.4) �

8.2. The maximum value. Equation (1.27) yields for a ≥ 4
3

the relation

φ

(
t− 1

b

)
+ φ(t) + φ

(
t+

1

b

)
= b

(
2

a
− 1 ≤ t ≤ 2− 2

a

)
. (8.5)

Putting t = 1
2

in (8.5), we obtain for the maximum value of the solution φ of (1.1)-(1.2) that

φ

(
1

2

)
= b− 2φ

(
1

a
− 1

2

) (
a ≥ 4

3

)
, (8.6)
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since 1
a

+ 1
b

= 1 and φ is symmetric. In order to give an application for (8.1), we define

αn (n ∈ N) as the real solution of a2n(2 − a) = 1 which is different from 1 where α1 =
1
2
(1 +

√
5) = 1.618 . . ., αn < αn+1 < 2 and

αn = 2− 1

4n
+O

( n

16n

)
(n→∞).

Hence, by (8.1) with a = αn >
3
2
, formula (8.6) turns over into the explicit formula

φ

(
1

2

)
= b− f2n

(
1

2

)
(a = αn, n ∈ N).

For arbitrary a > 1 it follows from (1.27) with t = 1
2

that the maximum value φ(1
2
) has the

form

φ

(
1

2

)
= c(a)b

where c(a) = 1 for a ≥ 2, and where 0 < c(a) < 1 for 1 < a < 2. Moreover, c(a) → 0 as

a→ 1 in view of

c(a) =
1

b
φ

(
1

2

)
= 1− 2

b

∞∑
ν=1

φ

(
1

2
− ν

b

)
→ 1− 2

∫ 1/2

0

φ(t)dt = 0,

where we have used (1.27), 1
b
→ 0, the symmetry of φ and (1.2).

On the other side, φ(1
2
) →∞ as a→ 1, since otherwise we would get a contradiction to the

solution φ(t) = δ(t− 1
2
) of (1.1)-(1.2) for a = 1, cf. [1, p.164].

8.3. Special series. We denote by ap (p ∈ N0) the positive solution of ap(2− a) = a− 1.

Then a0 = 3
2
, a1 = α1 and ap < ap+1 < 2. Moreover, it is

ap = 2− 1

2p
+O

( p
4p

)
(p→∞)

and a2n > αn for n ∈ N.

Lemma 8.2 For a ≥ ap and n ∈ N0 we have

φ

(
1

an(ap + 1)

)
= (−1)nφ

(
ap

an(ap + 1)

)
+ fn−1

(
1

ap + 1

)
. (8.7)

Proof: Applying (1.26) with τ = 1
ap+1

and n − 1 instead of n yields (8.7) in view of

1− τ = ap

ap+1
, when

2− a ≤ 1

ap + 1
≤ a− 1.

The first inequality is equivalent to

ap(2− a) ≤ a− 1 (8.8)
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and therefore valid for a ≥ ap. The second inequality is equivalent to ap(1−a) ≤ a−2 which

follows from (8.8) in view of ap > 1 �

In the case a ≥ 2 equation (8.7) is valid for all p ∈ N0 since ap < 2. Owing to φ(0) = 0 and

(1.13), p→∞ yields the known formula φ
(

1
an

)
= fn−1(1), cf. (1.14).

Proposition 8.2 Assume that a ≥ ap with p ∈ N, q ∈ Z and q ≤ p. Then the solution

φ of (1.1)-(1.2) has the expansion

φ

(
aq

ap + 1

)
= −

∞∑
ν=1

ηνfνp−q−1

(
1

ap + 1

)
(8.9)

where

ην = (−1)
ν(ν+1)p

2
+νq. (8.10)

Proof: For ν ∈ N we have n = νp− q ∈ N0 and equation (8.7) reads

φ

(
aq

aνp(ap + 1)

)
= (−1)νp−qφ

(
aq

a(ν−1)p(ap + 1)

)
+ fνp−q−1

(
1

ap + 1

)
.

Multiplication with ην from (8.10) yields the relation

ηνφν = ην−1φν−1 + ηνfνp−q−1

(
1

ap + 1

)
(8.11)

where φν = φ( aq

aνp(ap+1)
). In view of η0 = 1 and φν → 0 as ν →∞ we obtain by summation

over ν ≥ 1 that

0 = φ0 +
∞∑

ν=1

ηνfνp−q−1

(
1

ap + 1

)
and this implies the assertion �

Remark 8.4 1. The coefficients ην , given by (8.10), are 4-periodic with η1 = (−1)p+q,

η2 = (−1)p, η3 = (−1)q and η4 = 1. By means of (1.5) and (1.7) it can be shown that, for

0 ≤ t ≤ 1, the polynomial fn satisfies the inequality |fn(t)| ≤ 1
n+1

cn with cn from (1.10).

This means that the series (8.9) are rapidly convergent.

2. In the case a ≥ a1 equation (8.9) for p = 1 and q = 0 yields

φ

(
1

a+ 1

)
=

∞∑
ν=0

(−1)
ν(ν+3)

2 fν

(
1

a+ 1

)
.

In view of (1.12) with t = a2

a+1
and (1.13) with t = a

a+1
it is easy to see that the foregoing

equation is equivalent to

φ

(
1

a+ 1

)
=

∞∑
ν=0

(−1)νf2ν+1

(
a2

a+ 1

)
,
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i.e. [3, (5.9)] is not only true for a ≥ 2 but even for a ≥ a1.

3. Since the number x = 1
a+1

has the expansion

1

a+ 1
= γ1

∞∑
ν=1

1

a2ν

it follows by [3, Proposition 4.4] that x belongs to CM . This means for a ≥ 2 that 1
a+1

never

lies in one of the intervals Gkn, so that φ( 1
a+1

) cannot be calculated by means of the formulas

in [1] or [2]. Analogously, this comes true for the more general left-hand side of (8.9).
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[1] Berg, L., and Krüppel, M. : On the solution of an integral-functional equation with a

parameter. Z. Anal. Anw. 17 (1998), 159-181
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