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Fiedrich Liese, Igor Vajda

On
√
n–Consistency and Asymptotic Normality of

Consistent Estimators in Models with Independent
Observations1

ABSTRACT. The paper presents relatively simple verifiable conditions for
√
n-consistency

and asymptotic normality of M-estimators of vector parameters in a wide class of statistical

models. The conditions are established for the M -estimators with absolutely continuous

ρ-function of locally bounded variation, and for the class of models including e.g. the linear

and the nonlinear regression, the generalized linear models and the proportional hazards

models as special cases. The conditions are verified on L1 and L2 estimators embedded into

a continuum of their alternative versions, as well as on one new class of M-estimators of

parameters of exponential families which are shown to be robust in the sense of bounded

gross-error sensitivity. Comparisons with known conditions for special models indicate that

the present general conditions are not too restrictive in special situations and that sometimes

they are even weaker than the previously published special conditions.

1 Introduction and basic concepts

We consider a general parametric statistical model with independent observations. In other

words, for every n ∈ N we consider a random sample Yn = (Y1, . . . , Yn)′ of independent real

valued observations,

Yn ∼ G(y1, . . . , yn) =
n∏

i=1

G(yi|i, θ0), (1.1)

where θ0 is a true value of a parameter θ = (θ1, . . . , θm)′ ∈ Θ for open Θ ⊂ Rm and

G1 = {G(y|1, θ) : θ ∈ Θ} , . . . ,Gn = {G(y|n, θ) : θ ∈ Θ} (1.2)

are given families of distribution functions (briefly distributions) possibly depending on the

sample size n. This means that we admit the triangular observation schemes (Y1, . . . , Yn) =

(Y
(n)
1 , . . . , Y

(n)
n ). Important particular versions of this model are discussed in Section 2.

1Supported by the grant A 1075101.
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We study a general M -estimator of the unknown true parameter θ0 in the above considered

model. This estimator is defined as a sequence of Θ-valued measurable functions θ̂n = θ̂n(Yn)

minimizing on Θ the random functions

Mn(θ) =
1

n

n∑
i=1

ρ(Yi − ϕi(θ)), (1.3)

where ρ : R 7→ R is a given function called criterion function and ϕ1 : Θ 7→ R, . . . , ϕn : Θ 7→ R
are given functions called locators. The locators may depend on the sample size n, i. e. we

admit triangular schemes of locators

(ϕ1, . . . , ϕn) = (ϕ
(n)
1 , . . . , ϕ(n)

n ). (1.4)

Since the M -estimator under consideration is defined by the criterion function and locators,

we use the symbols

θ̂n ∼ 〈ρ;ϕ1, . . . , ϕn〉 or briefly θ̂n ∼ 〈ρ;ϕi〉. (1.5)

We are interested in the asymptotic properties of M -estimators θ̂n ∼ 〈ρ;ϕi〉 when the sample

size n tends to infinity. Therefore, unless otherwise explicitly stated, all asymptotic relations,

formulas and properties are automatically considered for n→∞.

Our attention is restricted to the M -estimators θ̂n ∼ 〈ρ;ϕi〉 with criterion functions ρ ab-

solutely continuous on bounded intervals of R (briefly, absolutely continuous on R). This

means that there exists a measurable function ψ : R 7→ R satisfying the condition

ψ(y) =
dρ(y)

dy
a.e. (1.6)

with respect to the Lebesgue measure on R and absolutely integrable on bounded intervals.

We shall consider a right-continuous extension of ψ on R which is (up to a constant ρ(0)

playing no role in the definition of M -estimator θ̂n (cf. (1.3)) one-one related to ρ and satisfies

for all a, b ∈ R the relation

ρ(b)− ρ(a) =

∫
(a,b]

ψ(y)dy (1.7)

(the so-called fundamental theorem of calculus for Lebesgue integrals, cf. Theorem 18.16 in

Hewitt and Stromberg [9]). Here, and in the sequel,∫
(a,b]

= −
∫

(b,a]

if b < a. (1.8)

The right-continuous function ψ : R 7→ R characterizes a sensitivity of the M -estimator

θ̂n ∼ 〈ρ;ϕi〉 to small deviations of observations Y1, . . . , Yn (an appropriately normed version

of ψ is an influence function of the M -estimator, see Huber [12] or Hampel et al [8]). Due to
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the one-one relation between the criterion function ρ and the sensitivity function ψ mentioned

above, we can replace the representation of M -estimators (1.5) by

θ̂n ∼ 〈ψ;ϕ1, . . . , ϕn〉 or, briefly θ̂n ∼ 〈ψ;ϕi〉. (1.9)

Our theory is restricted to the estimators θ̂n ∼ 〈ψ;ϕi〉 with sensitivity ψ of a locally bounded

variation. This means that ψ is a difference of two nondecreasing functions ψ+ and ψ−

which are assumed to be continuous from the right. This theory presents conditions for
√
n− consistency and asymptotic normality of θ̂n in terms of the sum ψ± = ψ+ + ψ−.

As is indicated by the title of the paper, our main results are restricted to the M -estimators

θ̂n ∼ 〈ψ;ϕi〉 which are consistent in the standard sense

θ̂n

P

−→ θ0 . (1.10)

We present conditions on the sensitivity function ψ, locators ϕi and the model (1.1) under

which θ̂n is
√
n−consistent in the sense

lim
y→∞

lim
n→∞

P
(√

n
∥∥∥θ̂n − θ0

∥∥∥ > y
)

= 0 (1.11)

and asymptotically normal in the sense

√
n(θ̂n − θ0)

L−→ N(0, V ) (1.12)

and under which the variance-covariance m×m matrix V can be explicitly evaluated.

These main results are presented in the next Section 2. The conditions on the sensitivity

function ψ, locators ϕi and the model (1.1) are formulated as regularity conditions (R1) –

(R4+). Important particular versions of the general model (1.1) and sufficient conditions for

(R1) – (R4+) are in Section 3.

The consistency (1.10) in reasonably general classes of M -estimators (1.9) and models

(1.1) is a difficult problem. Sufficient conditions have been established e. g. in Yohai

and Maronna [31], Zhao and Chen [32], Hjort and Pollard [10], Liese and Vajda [18]-[21],

Zhao [33], Arcones [1]-[2] and some other references therein. Presentation of such conditions

would increase the complexity and size of the paper above bearable bounds. Therefore we

refer in this respect to the mentioned literature and restrict ourselves to the verification of

consistency only in special cases illustrating applicability of the main result of Section 2.

In Sections 4 and 5 we illustrate the applicability of the general results of Sections 2 and 3

to special classes of M -estimators (1.9) and models (1.1). Particular attention is payed to

the class of M -estimators with the criterion functions

ρ(y) = ρβ(y) = β y I[0,∞)(y)− (1− β) y I(−∞,0)(y), 0 < β < 1, (1.13)
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introduced by Koenker and Basset [16] and later used by many authors (e. g. Portnoy [24],

Koul and Saleh [17], Jurečková and Sen [14], Hallin and Jurečková [7]).

In Section 6 are proofs of main results of Section 2. The proofs employ some general results

and techniques of van der Vaart and Wellner [30], in particular their Theorems 3.2.2 and

3.2.5. The proofs use also the methods developed in [21].

The present paper differs from[21] in a considerably simpler formulations and proofs of

results, and in application of these results to different special models (1.1) and/or estimators

(1.9). It also differs from the classical literature studying the consistency (1.10) and the

asymptotic normality (1.12) of the estimators θ̂n defined as solutions of the equations
n∑

i=1

ψ(Yi − ϕi(θ))∇ϕi(θ) = 0 (1.14)

on Θ when the locators ϕi(θ) are differentiable on Θ with gradients ∇ϕi(θ) (see the mono-

graphs of Serfling [27], [12], Singer and Sen [28], [14], and references therein). Obviously,

our M -estimators θ̂n ∼ 〈ψ;ϕi〉 coincide with solutions of (1.14) only in special cases, e. g. if

the sensitivity ψ is monotone on R (i. e. the criterion function ρ is convex) and the locators

ϕi(θ) are linear in θ. This takes place e. g. if θ ∈ Θ = R is the location parameter, ϕi(θ) = θ

and

ρ(y) =

{
y2 for |y| ≤ k,

2k|y| − k2 for |y| > k,

which is the situation studied by Huber [11]. The results about asymptotic normality of

solutions θ̂n of (1.14), based on the ideas and techniques of [11, 12], are thus disjoint with our

results except the relatively rare situations when solutions of (1.14) minimize the function

Mn(θ) of (1.3). Such situations are trivial from the point of view of our theory which

primarily intends to bring results about M -estimators θ̂n ∼ 〈ρ;ϕi〉 where either ρ(y) is not

convex in y ∈ R or ϕi(θ) are not linear in θ ∈ Θ, i. e. about situations not covered by the

classical Huber-type theories.

2 Main results

In this section we consider an arbitrary model (1.1) and an arbitrary M -estimator θ̂n ∼
〈ψ;ϕi〉 (equivalently, θ̂n ∼ 〈ρ;ϕi〉, see (1.5) and (1.9)) with the variation of ψ locally bounded,

i. e. bounded on bounded intervals of R. This means that there exist nondecreasing functions

ψ+, ψ− : R 7→ R with the property

ψ = ψ+ − ψ−. (2.1)

We define on R the nondecreasing function

ψ± = ψ+ + ψ−. (2.2)
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Definition 2.1 We say that the locators ϕi are adapted to the model if

Eψ(Yi − ϕi(θ0)) = 0, i ∈ N. (2.3)

We say that the estimator θ̂n is adapted to the model if the locators are adapted in the sense

of (2.3) and the estimator is consistent in the sense of (1.10).

In the rest of paper we consider the following conditions of regularity of the estimator θ̂n in

the model (1.1).

(R1) The second moments (variances if (2.3) holds)

σ2
i = E [ψ(Yi − ϕi(θ0))]

2 (2.4)

are uniformly bounded in the mean, i. e.,

sup
n∈N

1

n

n∑
i=1

σ2
i <∞. (2.5)

(R2) The gradients

ϕ̇i(θ) =

(
∂

∂θ1

, . . . ,
∂

∂θm

)′
ϕi(θ), θ ∈ Θ, i ∈ N (2.6)

exist and are locally bounded and locally Lipschitz in the sense that one can find a

closed ball

B = Bδ(θ0) = {y ∈ Rm : ‖y − θ0‖ ≤ δ} (2.7)

and a constant λ > 0 possibly depending on B, such that B ⊂ Θ and

‖ϕ̇i(θ)‖ ≤ λ, θ ∈ B, i ∈ N (2.8)

‖ϕ̇i(θ)− ϕ̇i(θ̃)‖ ≤ λ‖θ − θ̃‖, θ, θ̃ ∈ B, i ∈ N. (2.9)

(R3) There exists τ0 > 0 such that the functions

Hi(t) = Eψ(Yi − ϕi(θ0) + t), i ∈ N (2.10)

are differentiable on the interval (−τ0, τ0) and the derivatives

hi(t) =
d

dt
Hi(t), i ∈ N (2.11)

satisfy the condition

lim
τ↓0

sup
n∈N

1

n

n∑
i=1

ω(hi, τ) = 0 (2.12)
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where ω(hi, τ) = sup|t|≤τ |hi(0) − hi(t)|, 0 < τ < τ0, is the modulus of continuity of

hi(t) in the neighborhood of t = 0. Further, the variances σ2
i from (R1), gradients ϕ̇i

from (R2) and functions hi from (R3) satisfy

Σn =
1

n

n∑
i=1

σ2
i ϕ̇i(θ0) ϕ̇i(θ0)

′ → Σ, (2.13)

Φn =
1

n

n∑
i=1

hi(0)ϕ̇i(θ0) ϕ̇i(θ0)
′ → Φ (2.14)

where the m×m matrices Σ and Φ are positive definite.

(R4) There exist constants τ0 > 0 and κ such that the function (2.2) satisfies for all 0 < τ <

τ0 the relation

sup
n∈N

1

n

n∑
i=1

E
[
ψ±(Xi + τ)− ψ±(Xi − τ)

]2
< κ (2.15)

where Xi = Yi − ϕ(θ0).

(R4+) There exist constants τ0 > 0 and q > 0 and κ such that the function (2.2) satisfies for

all 0 < τ < τ0 the relation

sup
n∈N

1

n

n∑
i=1

E
[
ψ±(Xi + τ)− ψ±(Xi − τ)

]2
< κτ q (2.16)

where Xi = Yi − ϕ(θ0).

Sufficient conditions for (R3), (R4) and (R4+) will be studied in the next section. Here

we formulate the main result of the paper. We remind that the asymptotic relations are

considered for n→∞ unless otherwise stated.

Theorem 2.2 If the estimator θ̂n ∼ 〈ψ;ϕi〉 is adapted to the model (1.1) in the sense

of Definition 2.1 and satisfies the regularity conditions (R1) – (R4) then it is
√
n−consistent

in the sense of (1.11).

Theorem 2.3 Let the estimator θ̂n ∼ 〈ψ;ϕi〉 be adapted to the model (1.1) in the sense

of Definition 2.1 and satisfy the regularity conditions (R1) – (R4) and (R4+). If

n−1/2

n∑
i=1

ψ(Yi − ϕi(θ0)) ϕ̇i(θ0)
L−→ N(0,Σ) (2.17)

then the estimator θ̂n is asymptotically normal in the sense of (1.12) with the variance-

covariance matrix

V = Φ−1 Σ Φ−1. (2.18)
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The proofs of Theorem 2.2 and 2.3 are deferred to Section 6. Here we present a sufficient

condition for the condition (2.17) of Theorem 2.3.

Proposition 2.4 If the assumptions (2.3) and (2.13) hold and for some γ > 0,

sup
i∈N

E‖ψ(Yi − ϕi(θ0)) ϕ̇(θ0)‖2+γ <∞ (2.19)

then the asymptotic normality condition (2.17) holds.

Proof: Clear from the Lyapunov central limit theorem.

3 Results under restricted generality

In this section we restrict in different ways the generality of the model (1.1) and also the gen-

erality of the M -estimator θ̂n ∼ 〈ψ;ϕi〉 studied in the previous section. We study sufficient

conditions for the assumptions of Theorems 2.2 and 2.3 under this restricted generality.

Definition 3.1 The general statistical model with independent observations defined by

(1.1) is said to be

(i) regression model if there are given sets X ⊂ Rk, T ⊂ R, and a mapping φ : X×Θ 7→ T ,

and if for 1 ≤ i ≤ n are given realizations xi of x = (x1, . . . , xk)
′ ∈ X and families of

distributions Fi = {Fi(y|ϑ) : ϑ ∈ T}, both possibly depending on n, such that

G(y|i, θ) = Fi(y|φ(xi, θ)) for 1 ≤ i ≤ n and θ ∈ Θ; (3.1)

(ii) homogeneous regression model if it satisfies (i) and

Fi = F = {F (y|ϑ) : ϑ ∈ T} for 1 ≤ i ≤ n (3.2)

where the family of distributions F depends neither on i nor on n;

(iii) linear regression model if it satisfies (i), X belongs to the same Euclidean space Rm as

Θ and

φ(x, θ) = x′θ for x ∈X and θ ∈ Θ; (3.3)

(iv) regression model with additive errors if it satisfies (i) and Fi are location families not

depending on n, i. e. if T = R and

Fi = {Fi(y − ϑ) : ϑ ∈ R}, 1 ≤ i ≤ n, (3.4)

for a sequence of parent distributions F1(y), F2(y), . . . not depending on n.
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The combinations of properties (ii) – (iv) of regression models are admitted. In this manner

we obtain the following important special cases.

Example 3.2 Homogeneous regression with additive errors. This means the standard non-

linear regression where the observations are defined by formula

Yi = φ(xi, θ0) + Ei, 1 ≤ i ≤ n, (3.5)

and the additive errors Ei are i.i.d. by the parent F of the location family F = {F (y − ϑ) :

ϑ ∈ R} satisfying simultaneously the assumptions (3.2) and (3.4).

Example 3.3 Homogeneous linear regression with additive errors. This means the stan-

dard linear regression where X ⊂ Rm and

Yi = x′iθ0 + Ei, 1 ≤ i ≤ n, (3.6)

where the additive errors Ei satisfy the conditions of Example 3.2.

Example 3.4 The general homogeneous regression leads to independent observations

Yi ∼ F (y|φ(xi, θ0)), 1 ≤ i ≤ n, (3.7)

specified by a k × n matrix

Xn = (x1, . . . ,xn) (3.8)

of regressors and a family of distributions F = {F (y|ϑ) : ϑ ∈ T}. If F is a location family

then we obtain the standard nonlinear regression of Example 3.2.

Example 3.5 The homogeneous linear regression in general differs from the standard linear

regression. It has been called pseudolinear regression in Liese and Vajda [20]. Here the

independent observations

Yi ∼ F (y|x′iθ0), 1 ≤ i ≤ n, (3.9)

are specified by the matrix (3.8) and by a family of distributions F = {F (y|ϑ) : ϑ ∈ T}.
If T = R and F is a location family then the pseudolinear regression reduces to the stan-

dard linear regression of Example 3.3. If F is an exponential family then the pseudolinear

regression model reduces to the generalized linear model. As an example of the generalized

linear regression we can consider the Cox model where F consists of the exponential distri-

butions F (y|ϑ) = 1 − exp{ϑ ln(1 − F (y))}, ϑ ∈ R, for a given distribution F (y) = F (y|1)

differentiable on the support (0,∞) (then Λ(y) = − ln(1 − F (y)) is a cumulative hazard

function).

Next we study the adaptation condition (2.3) in the homogeneous regression models and

standard nonlinear regression models introduced above. This condition means in fact that∫
ψ(y − ϕi(θ)) dG(y|i, θ) = 0 for all θ ∈ Θ and i ∈ N. (3.10)
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In the homogeneous regression models the adaptation (3.10) reduces to evaluation of solu-

tions a(ϑ) of the system of equations∫
ψ(y − a) dF (y|ϑ) = 0, ϑ ∈ T, (3.11)

in the real variable a ∈ R. Indeed, by (3.1) and (3.2), (3.10) holds provided

ϕi(θ) = a(φ(xi, θ)) if

∫
ψ(y − a(ϑ)) dF (y|ϑ) = 0, ϑ ∈ T. (3.12)

In the standard nonlinear regression of Example 3.2 with an error distribution F (y), the

adaptation condition (3.12) further simplifies into

ϕi(θ) = φ(xi, θ) + b(F ) if b(F ) = a(0), i.e.

∫
ψ(y − b(F )) dF (y) = 0. (3.13)

An M -estimator θ̂n ∼ 〈ψ;φ(xi, θ) + c〉 with a fixed c ∈ R is in fact adapted to all nonlinear

regression models (3.5) with error distributions F restricted by the condition b(F ) = c.

However, this condition may not be easily verifiable for some functions ψ. In order to obtain

anM−estimator adapted to the standard nonlinear regression models (3.5) with an arbitrary

error distribution F , it suffices to extend the parameter space Θ into Θ∗ = Θ×R and replace

ϕi(θ) = φ(xi, θ) + c by

ϕ∗i (θ
∗) = φ(xi, θ) + b for θ∗ = (θ, b) ∈ Θ∗,

i. e. to consider the M -estimator

θ̂∗n = (θ̂n, b̂n) ∼ 〈ψ;φ(xi, θ) + b〉 (3.14)

of the extended true parameter θ∗0 = (θ0, b0) where b0 = b(F ). The validity of (2.3) for θ̂∗n,

i. e. the validity of (2.3) with ϕi(θ0) replaced by ϕ∗i (θ
∗
0) = φ(xi, θ0) + b0 is obvious.

Now we present simple conditions which imply the assumptions (R4) and (R4+) of Theorems

2.2 and 2.3 for particular versions of the M -estimators (1.9) and general model (1.1).

Proposition 3.6 If both components ψ+ and ψ− of the decomposition (2.1) are Lips-

chitz on R then the M-estimator θ̂n ∼ 〈ψ;ϕi〉 satisfies the regularity condition (R4+) in the

general model (1.1).

Proof: Under the assumptions of this proposition the function ψ± defined in (2.2) satisfies

the Lipschitz condition

|ψ±(y1)− ψ±(y2)| ≤ C|y1 − y2|

for some constant C and all y1, y2 ∈ R. Therefore the expression in the brackets of (2.15) is

bounded above by (2τ)2. This means that (2.16) with κ = 4C2, q = 2 and arbitrary τ > 0

holds for the model (1.1).
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The next result is an alternative to Proposition 3.6. In this result we assume that ψ is

absolutely continuous on R. Similarly as in (1.6), this means that there exists a measurable

and locally absolutely integrable function ψ̇ : R 7→ R satisfying the condition

ψ̇(y) =
dψ(y)

dy
a.e. (3.15)

with respect to the Lebesgue measure on R. Then, similarly as in (1.7), for every y ∈ R

ψ(y) = ψ(0) +

∫
(0,y]

ψ̇(s)ds (cf. (1.8))

and, moreover,

ψ+(y) = ψ+(0) +

∫
(0,y]

ψ̇(s) I(ψ̇(s) > 0) ds

and

ψ−(y) = ψ−(0)−
∫

(0,y]

ψ̇(s) I(ψ̇(s) < 0) ds

for the components of the decomposition (2.1). Therefore (2.2) implies that for every y ∈ R

ψ±(y) = ψ±(0) +

∫
(0,y]

|ψ̇(s)| ds (cf. (1.8)). (3.16)

Obviously, if ψ̇ is bounded a.e. on R then it follows from the formulas above that ψ+ and

ψ− are Lipschitz on R so that Proposition 3.6 is applicable. Therefore the next result is

interesting only in situations where ψ̇ is unbounded.

Proposition 3.7 Let ψ be absolutely continuous on R with an a. e. derivative ψ̇. The

M-estimator θ̂n ∼ 〈ψ;ϕi〉 satisfies the regularity condition (R4+) in the general model (1.1)

if one of the following conditions holds:

(i) ψ̇ is square integrable on R;

(ii) for Xi = Yi − ϕi(θ0) and some ε > 0

C := sup
n∈N

1

n

n∑
i=1

E sup
|s|≤ε

(ψ̇(Xi + s))2 <∞; (3.17)

(iii) ψ̇ = ψ̇1 + ψ̇2 where ψ̇1 satisfies (i) and ψ̇2 satisfies (ii).

Proof: By (3.16) and Schwarz’ inequality, for every y ∈ R and τ > 0

[ψ±(y + τ)− ψ±(y − τ)]2 ≤
(∫

(y−τ,y+τ ]

|ψ̇(s)|ds
)2

(3.18)

≤ 2τ

∫
(y−τ,y+τ ]

(ψ̇(s))2ds

≤ 2τ

∫
R
(ψ̇(s))2ds =: A1(ψ̇).
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Therefore, if ψ̇ is square integrable then (2.16) holds for q = 1, all τ > 0 and

κ = 2

∫
R
(ψ̇(s))2 ds.

Further, by (3.18),[
ψ±(y + τ)− ψ±(y − τ)

]2 ≤ 4τ 2 sup
|s|≤τ

(ψ̇(y + s))2 =: A2(ψ̇).

Therefore, if (ii) holds then (2.16) holds for q = 2, κ = 4C2 and all 0 < τ ≤ ε. Finally, from

the above inequalities we see that[∫ y+τ

y−τ

|ψ̇(t)|dt
]2

≤ min(A1(ψ̇), A2(ψ̇)).

From here and[∫ y+τ

y−τ

|ψ̇1(t) + ψ̇2(t)|dt
]2

≤ 2

[∫ y+τ

y−τ

|ψ̇1(t)|dt
]2

+ 2

[∫ y+τ

y−τ

|ψ̇2(t)|dt
]2

we obtain the statement in (iii).

The following proposition presents similar conditions as Proposition 3.7 for the estimator

θ̂n ∼ 〈ψ, ϕi〉 for nonexplosive ψ±.

Definition 3.8 We say that a nondecreasing function ξ : R 7→ R is explosive if there

exists τ > 0 such that

sup
y∈R

[ξ(y + τ)− ξ(y − τ)] =∞.

Thus ψ± is nonexplosive if for every τ > 0

C(τ) := sup
y∈R

[
ψ±(y + τ)− ψ±(y − τ)

]
<∞. (3.19)

Clearly, C(τ) is nondecreasing in the domain τ > 0 with C(0) ≥ 0. Nonexplosive ψ± satisfies

the inequalities [
ψ±(y + τ)− ψ±(y − τ)

]2 ≤ C(τ)
[
ψ±(y + τ)− ψ±(y − τ)

]
(3.20)

and [
ψ±(y + τ)− ψ±(y − τ)

]2 ≤ (C(τ))2. (3.21)

Proposition 3.9 Every M−estimator θ̂n ∼ 〈ψ, ϕi〉 with nonexplosive ψ± satisfies the

regularity assumption (R4) in the model (1.1). If there exist constants τ0, q > 0 and κ such

that for Xi = Yi − ϕi(θ0) and all 0 < τ < τ0

sup
n∈N

1

n

n∑
i=1

E
[
ψ±(Xi + τ)− ψ±(Xi − τ)

]
< κτ q (3.22)

then it satisfies also (R4+).
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Proof: The first assertion is clear from (2.15) and (3.21). The second assertion follos from

(2.16), (3.20) and (3.22).

Proposition 3.10 Let ψ± of the estimator of Proposition 3.9 be piecewise constant

with finitely many jumps of sizes ∆k > 0 at points tk, and let for some fixed ε > 0 the

neighborhoods Nk(τ) = (tk−τ, tk+τ), 0 < τ < ε, be disjoint for different k. If the distribution

functions Fi(y) of Xi in (3.22) have densities in the union U(ε) = ∪kNk(τ) and

C := sup
y∈N

1

n

n∑
i=1

sup
y∈U(ε)

fi(y) <∞, (3.23)

then (3.22) holds for τ0 = ε/2, q = 1, and κ = 4C
∑

k ∆k.

Proof: If τ ≤ ε/2 then

ψ±(y + τ)− ψ±(y − τ) =

{
∆k if y ∈ Nk(τ)

0 otherwise

and ∫
Nk(τ)

dFi(y) ≤ F (tk + 2τ)− F (tk − 2τ) ≤ 4τ sup
y∈U(ε)

fi(y).

Therefore

E[ψ±(Xi + τ)− ψ±(Xi − τ)] ≤
∑

k

∆k

∫
Nk(τ)

dFi(y).

The desired result follows from here.

Our last result is concerning estimators θ̂n ∼ 〈ψ, ϕi〉 with nonexplosive ψ in the general

regression models where G(y|i, θ) = Fi(y|φ(xi, θ)) and ϕi(θ) = a(φ(xi, θ)), see (3.1) and

(3.12). We use the notation

ϑi = φ(xi, θ) and ai = a(ϑi) (3.24)

In this notation the functions Hi(t) of (2.10) are given by the formula

Hi(t) =

∫
ψ(y − ai + t)dF (y|ϑi), t ∈ R, (3.25)

in the general regression model (3.1). In the simplified notation

Fi(y) = F (y + ai|ϑi), Fi,s(y) = F (y + ai − s|ϑi) (3.26)

it holds

Hi(t) =

∫
ψ(y)dFi(y − t), t ∈ R, (3.27)



On
√
n–Consistency and Asymptotic Normality of . . . 15

so that, for s 6= 0,
1

s
[Hi(t+ s)−Hi(t)] =

∫
ψ(y)dΦi,s,t(y) (3.28)

where

Φi,s,t(y) =
Fi,s(y − t)− Fi(y − t)

s
, y ∈ R.

Let us consider ψ± = ψ+ + ψ− and suppose that for some τ > 0

ψ+, ψ− ∈ L1(Fi,t) for all i ∈ N and all |t| ≤ τ. (3.29)

Here and in the sequel, L1(G) denotes the Banach space of functions absolutely integrable

with respect to the measure defined on R by a nondecreasing and right continuous function

G : R 7→ R. We assume nonexplosive ψ± defined by the condition (3.19).

Proposition 3.11 Let an M-estimator θ̂n ∼ 〈ψ, a(xi, θ)〉 with non-explosive ψ± be

adapted to the general regression model (3.1). Further, let ψ+, ψ− ∈ L1(Fi,t) for some τ > 0

and all |t| ≤ τ and i ∈ N, let all distributions Fi,s, i ∈ N, s ∈ R, be differentiable on R with

derivatives fi,s, and put fi = fi,0.

(I) If

sup
|s|≤τ

fi,s ∈ L1(ψ
±) (3.30)

then the convolutions Hi(t) are absolutely continuous on (−τ/2, τ/2), with a. e. deriva-

tives

hi(t) = −
∫
fi(y − t)dψ(y), i ∈ N. (3.31)

(II) If fi are locally Lipschitz in sense that for every y ∈ R

|fi(y − t)− fi(y)| ≤ λi(y) |t|, t ∈ (−τ, τ), (3.32)

and both fi and λi belong to L1(ψ
±) then the previous condition (3.30) is satisfied. If,

moreover,

lim sup
n→∞

1

n

n∑
i=1

λi ∈ L1(ψ
±) (3.33)

then θ̂n satisfies the regularity condition (R3) for τ0 = τ/2.

Proof: Let |s| ≤ τ/2, |t| ≤ τ/2 and i be arbitrary fixed. Then∫
dΦi,s,t(y) = 0, (3.34)

Φi,s,t(∞) = lim
y→∞

Φi,s,t(y) = 0 (3.35)
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and, by (3.29), ∫
|ψ(y)|dΦi,s,t(y) <∞. (3.36)

Hence, by (3.27) and the Fubini theorem,

1

s
[Hi(t+ s)−Hi(t)] =

∫ ∫
I(0 < x ≤ y)dψ(x)dΦi,s,t(y)

=

∫ ∫
I(0 < x ≤ y)dΦi,s,t(y)dψ(x)

=

∫ ∫
I(x ≤ y <∞)dΦi,s,t(y)dψ(x)

=

∫
(Φi,s,t(∞)− Φi,s,t(x))dψ(x).

Therefore, by (3.34) – (3.36),

1

s
[Hi(t+ s)−Hi(t)] = −

∫
Φi,t,s(y)dψ(y). (3.37)

Since

lim
s→0

Φ(i, t, s)(y) = fi(y − t) a.e.

and since (3.30) justifies interchange of the integral and lims→0 in (3.37), assertion (I) is

proved. The first part of assertion (II) follows from the inequality

fi ≤ sup
|s|≤τ

fi,s ≤ fi + λiτ,

and the second part follows from the first part and from the fact that, under (3.31) and

(3.32),

1

n

n∑
i=1

sup
|t|≤τ

|hi(t)− hi(0)| ≤
τ

n

n∑
i=1

∫
λi(y)dψ(y).

Indeed, under (3.33) the limsupn of the right-hand side tends to zero as τ ↓ 0.

For bounded sensitivities ψ the assumptions of Proposition 3.9 simplify in sense that (3.29)

is automatically satisfied.

For the standard nonlinear regression model with an absolutely continuous error distribution

F and the same b(F ) as in (3.13), the condition (3.29) simplifies into

ψ+, ψ− ∈ L1(F (y − b(F ))) and lim
a→∞

ψ±(a) sup
|y|≥a

f(y) = 0, (3.38)

where f is the derivative of F . Further, (3.30) takes on the form

sup
|s|≤τ

f(y − b(F )− s) ∈ L1(ψ
±), (3.39)
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the Lipschitz condition (3.32) is in this case

|f(y − b(F )− t)− f(y − b(F ))| ≤ λ(y) |t|, (3.40)

and the remaining conditions of assertion (II) reduce to f, λ ∈ L1(ψ
±).

Applicability of the results of this section is illustrated in the next sections.

4 L1+α–estimators

Let us start with two examples.

Example 4.1 Perhaps the best known of all M -estimators is the L2-estimator

θ̂n ∼ 〈ψ(y) = y; ϕi〉. (4.1)

Here ρ(y) = y2/2 and the decomposition (2.1) and formula (2.2) are trivial in the sense

that ψ− ≡ 0 and ψ+(y) = ψ±(y) = ψ(y) = y. Since ρ(y) = y2/2, it follows from the

definition of θ̂n that, in any model (1.1), θ̂n minimizes the L2-distance between observations

Yn = (Y1, . . . , Yn)′ and locators ϕn(θ) = (ϕ1(θ), . . . , ϕn(θ))′,

θ̂n = arg min
Θ
‖Yn −ϕn(θ)‖2, (4.2)

where ‖·‖2 denotes the L2-norm. The rule (2.3) for adaptation of locators reduces to a mean

value rule ϕi(θ0) = EYi, i. e. the formula (3.10) for locators takes on the form

ϕi(θ) =

∫
ydG(y|i, θ), θ ∈ Θ, (4.3)

where G(y|i, θ) are the distributions of model (1.1). Similarly, the particular adaptation

rules (3.12) and (3.13) reduce to

ϕi(θ) = a(φ(xi, θ)) for a(ϑ) =

∫
ydF (y|ϑ)

and

ϕi(θ) = φ(xi, θ) +

∫
ydF (y),

respectively.

In the regression models with additive errors, (4.2) represents a least squared error criterion.

Due to the simplicity of both, the criterion function ‖Yn−ϕn(θ)‖2 and the universal adap-

tation rule (4.3), the L2-estimators play a fundamental role in the statistical practice as well

as in the theory. The linearity of ψ(y), placing these estimators into the center of interest of

the linear statistics, makes the asymptotic theory of these estimators relatively easy. This

theory has been developed into considerable details, see e. g. Rao [25].
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Example 4.2 Another well known M -estimator is the L1-estimator

θ̂n ∼ 〈ψ(y) = 1− 2I(y < 0); ϕi〉. (4.4)

Here, as before, I(·) denotes the indicator of events. The ψ-function of the L1-estimator is

an example where the decompositions (2.1), (2.2) are trivial in the sense that ψ− ≡ 0 and

ψ(y) = ψ+(y) = ψ±(y) has a jump of size 2 at y = 0. Since ρ(y) =| y|, it follows from the

definition 3.1 that, in any model (1.1), θ̂n minimizes the L1-distance between observations

Yn = (Y1, . . . , Yn) and locators ϕn(θ) = (ϕ1(θ), . . . , ϕn(θ)),

θ̂n = arg min
Θ
‖Yn −ϕn(θ)‖1, (4.5)

where ‖ · ‖1 denotes the L1-norm. The general rule (2.3) for adaptation of locators reduces

to the median rule, ϕi(θ0) = medYi, i. e. (3.10) takes on the form

ϕi(θ) = medG(y|i, θ), θ ∈ Θ, (4.6)

where

medG(y|i, θ) = inf{y ∈ R : G(y|i, θ) ≥ 1/2}

denotes the median of G(y|i, θ). Similarly, the special adaptation rules (3.12) and (3.13)

reduce to

ϕi(θ) = a(φ(xi, θ)) for a(ϑ) = medF (y|ϑ)

and

ϕi(θ) = φ(xi, θ) + medF (y).

In the regression models with additive errors, (4.2) represents a least absolute error criterion.

Due to the relative simplicity of both, the criterion function ‖Yn−ϕn(θ)‖1 and the universal

adaptation rule (4.6), the L1-estimators play an important role in the statistical practice as

well as in the theory (see e. g. Serfling [27], Dodge [4], Farenbrother [6], Ronchetti [26],

Pollard [22], Knight [15] and references therein).

The L1-or L2-estimators θ̂n can be embedded into various families of estimators θ̂
(α)
n with

a parameter α ∈ R controlling finite-sample-size properties, such as rejection regions and

variances-covariances of deviations θ̂
(α)
n − θ0, or asymptotic properties like influence curves

and relative efficiencies.

In this section we study the family of quantile L1+α-estimators

θ̂(α)
n ∼ 〈ψ(y) = 1 + α− 2I(y < 0); ϕi〉, −1 < α < 1, (4.7)

where θ̂
(0)
n is the L1-estimator of Example 4.2. The ψ-functions of (4.7) differ from the ψ-

function of (4.4) by a constant shift α : if α > 0 then the sensitivity is suppressed in the
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domain y < 0 and enhanced in the domain y ≥ 0, while for α < 0 the opposite is true.

Note that for the extremal α = 1 or α = −1 we obtain in (4.7) sensitivities concentrated

only on y ≥ 0 or y < 0, respectively. The corresponding quantile L2- and L0-estimators

are legitimate particular cases of the M -estimators studied in this paper (one of them is

studied at the end of this section). Notice that the quantile L2-estimator differs from the

usual L2-estimator of Example 4.1.

Since ρ(y) = y ψ(y) = ρα(y) where

ρα(y) = (1 + α) y I(y > 0)− (1− α) yI(y < 0),

the definition of M -estimator implies that

θ̂(α)
n = arg min

Θ

(
(1 + α) ‖Yn −ϕn(θ)‖+1 + (1− α) ‖Yn −ϕn(θ)‖−1

)
, (4.8)

where

‖Yn −ϕn(θ)‖+(−)
1 =

n∑
i=1

|Yi − ϕi(θ)|+(−)

and

|y|+ = |y| I(y > 0) and |y|− = |y| I(−y > 0).

Thus we see that the criterion (4.8) differs from (4.5) in that the criterion function takes the

values |Yi − ϕi(θ)| with different weights 1 + α or 1 − α, depending on whether Yi − ϕi(θ)

is positive or negative. Since the above defined ρα(y) is twice larger than ρβ(y) of (1.12)

for β = (1 + α)/2, the quantile L1−estimators θ̂
(α)
n ∼ 〈ρα;ϕi〉 coincide with the estimators

θ̂
(β)
n ∼ 〈ρβ;ϕi〉 where ρβ is given by (1.13) for β = (1 + α)/2. If these estimators are applied

in the regression models then they are called regression quantiles.

For the ψ-function defined in (4.7), and for arbitrary ϕ ∈ R and arbitrary distribution

function G(y), ∫
ψ(y − ϕ)dG(y) = 1 + α− 2G(ϕ).

Consequently, the general rule (3.10) for adaptation of locators reduces into the (1 + α)/2-

quantile rule

ϕi(θ) = G−1 ((1 + α)/2 | i, θ) , θ ∈ Θ, (4.9)

where

G−1(β) = inf {y ∈ R : G(y) ≥ β} , 0 < β < 1, (4.10)

is the quantile function of G(y). From (3.12) or (3.13) we obtain the special adaptation rules

ϕi(θ) = F−1 ((1 + α)/2 |φ(xi, θ)) or ϕi(θ) = φ(xi, θ) + F−1((1 + α)/2).
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The second of these rules is used in the standard nonlinear regression model (3.5). It cannot

be used if the error distribution F (y) is unknown. By (3.14), in this case one can consider an

extended L1+α-estimator (θ̂
(α)
n , b̂

(α)
n ) of the extended true parameter (θ0, b0 = F−1((1+α)/2))

adapted by the rule

ϕi(θ, b) = φ(xi, θ) + b, (θ, b) ∈ Θ̃, Θ̃ = Θ× R. (4.11)

But

Yi = φ(xi, θ0) + b0 + Ẽi, Ẽi ∼ F̃ (y) = F (y + b0),

where F̃−1((1 + α)/2) = 0, and φ(xi, θ) + b is a special case of a general function φ̃(xi, θ̃)

of (m+ 1)-dimensional parameter θ̃ ∈ Θ̃, Θ̃ ⊂ Rm+1 open. Therefore (θ̂
(α)
n , b̂

(α)
n ) is a special

case of a general L1+α-estimator
̂̃
θn of true θ̃0 ∈ Θ̃ in the model

Yi = φ̃(xi, θ̃0) + Ẽi, Ẽi ∼ F̃ (y), F̃−1((1 + α)/2) = 0. (4.12)

All conditions imposed in this model on F̃ (y) and φ̃(xi, θ̃) easily transform into conditions

on distribution F (y) = F̃ (y − F−1((1 − α)/2)) of the errors Ei in the model (3.5) and on

φ(xi, θ) + b. Similarly, all properties of the estimator ˆ̃θ
(α)
n straightforward transform into

properties of the particular version (θ̂
(α)
n , b̂

(α)
n ). Hence, in the standard nonlinear (and linear)

regression with an unknown error distribution, it suffices to investigate the estimators (4.7)

under the assumption

F−1((1 + α)/2) = 0, (4.13)

using the adaptation rule

ϕi(θ) = φ(xi, θ), θ ∈ Θ, (4.14)

for Θ ⊂ Rm open and m ≥ 2.

The estimators (θ̂
(α)
n , b̂

(α)
n ), α ∈ (−1, 1), with the adaptation rule (4.11), have been intro-

duced into the literature by Koenker and Basset [16]. As said above, these estimators,

called regression quantiles, coincide with (θ
(β)
n , b̂

(β)
n ) defined by the criterion functions (1.13)

for β = (1 + α)/2 ∈ (0, 1). Koenker and Basset established the asymptotic normality of

these estimators in the standard linear regression (3.6) with an unknown distribution F (y).

Jurečková and Procházka [13] extended their result to the standard nonlinear regression (3.5)

with an unknown F (y). In this section we study the estimators (4.7) under the restrictions

(4.13), (4.14). As argued above, our study covers as particular cases the estimators (θ̂
(α)
n , b̂

(α)
n )

of (m− 1)-dimensional parameter θ0 and b0 = F−1((1− α)/2) in the model (3.5) free of the

restriction (4.13).

We shall obtain asymptotic normality of the estimators θ̂
(α)
n , α ∈ (−1, 1), defined by (4.7)

and (4.13), from Theorem 2.1 under the assumption (4.13). To this end we assume the

following.
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(a) θ̂
(α)
n is consistent in the sense of (1.10).

(b) One can find a closed ball B ⊂ Θ of a radius δ > 0 centered at θ0 on which there exist

the gradients

φ̇(xi, θ) =

(
∂

∂θ1

, . . .
∂

∂θm

)′
φ(xi, θ), i ∈ N,

and a constant λ possibly depending on B, such that

‖φ̇(xi, θ)‖ ≤ λ and ‖φ̇(xi, θ)− φ̇(xi, θ̃)‖ ≤ λ‖θ − θ̃‖

for all θ, θ̃ ∈ B, i ∈ N, i.e. the regularity condition (R2) holds.

(c) It holds

Ψn =
1

n

n∑
i=1

φ̇(xi, θ) φ̇(xi, θ)
′ → Ψ,

where the m×m matrix Ψ is positive definite.

(d) The error distribution function F (y) is differentiable on an interval (−τ, τ) and the

derivative f(y) of F (y) is continuous at y = 0 with f(0) > 0.

Theorem 4.3 If the conditions (a) – (d) hold and the error distribution satisfies (4.13)

then the estimators θ̂
(α)
n defined by (4.7) and (4.14) are asymptotically normal in the sense

√
n
(
θ̂(α)

n − θ0

)
L→ N

(
0,

1− α2

4f 2(0)
Ψ−1

)
, (4.15)

where f(0) > 0 is defined by (d) and the positive definite matrix Ψ is defined by (c).

Proof: Let α ∈ (−1, 1) and F (y) satisfying (4.13) fulfil assumptions (a) – (d). We shall

verify that θ̂
(α)
n satisfies all assumptions of Theorem 2.3. By Propositions 3.9, 3.10, and (d),

θ̂
(α)
n satisfies the regularity condition (R4+). By (2.10), (4.13) and (4.14), if t ∈ R then

Hi(t) =

∫
ψ(y + t)dF (y) = 1 + α− 2F (−t), i ∈ N.

Consequently, by (d), the estimators θ̂
(α)
n satisfy the regularity condition (R3) of Theorem

2.3 for hi(t) = 2f(−t) and τ0 = τ . As to the remaining conditions, (2.3) was clarified above,

the consistency was assumed in (a), (R2) was assumed in (b) and (R1) holds because

σ2
i =

∫
ψ2(y)dF (y) = (1 + α)2

∫ ∞

0

dF (y) + (1− α)2

∫ 0

−∞
dF (y)

= (1 + α)2(1− (1 + α)/2) + (1− α)2(1 + α)/2

= 1− α2 for all i ∈ N.
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Conditions (2.13), (2.14) of condition (R3) follow from (c) for

Σ = (1− α2) Ψ and Φ = 2f(0) Ψ.

Since the functions ψ(t) as well as the gradients ϕ̇i are bounded (see (b)), the remaining

condition (2.17) of Theorem 2.3 holds by Proposition 2.4. The desired relation (4.15) thus

follows from Theorem 2.3.

By what has been said above, the following assertion about an arbitrary error distribution

F (y) follows from Theorem 4.3. In this assertion, and in the rest of section, we put

β =
1 + α

2
, β ∈ (0, 1). (4.16)

Corollary 4.4 Let α ∈ (−1, 1) be arbitrary, and let β be given by (4.16). If conditions

(a) – (d) hold with F (y) replaced by F̃ (y) = F (y − F−1(β)) then the above specified L1+α-

estimator (θ̂
(α)
n , b̂

(α)
n ) is asymptotically normal in the sense

√
n
[
(θ̂(α)

n , b̂(α)
n )− (θ0, F

−1(β))
]

L→ N

(
0,

β(1− β)

f 2(F−1(β))
Ψ̃−1

)
as n→∞ (4.17)

for f(y) = dF (y)/dy and the matrix

Ψ̃ =

(
Ψ , 0

0 , 1

)
,

where Ψ is given by (c).

The asymptotic laws (4.15), (4.17) have been established for the L1-estimator, where β = 1/2,

as well as for the general L1+α-estimator under various conditions, see e. g. Pollard [22],

Jurečková and Procházka [13] and other cited there. Let us compare the present conditions

for these laws with the conditions assumed in the two cited papers.

Pollard [22] assumed (6.7) so that his conditions can be compared with those of Theorem 4.3.

He studied the L1-estimator θ̂
(0)
n in the standard linear regression, where (b) is automatically

fulfilled and the matrices considered in (c) are

Ψn =
1

n

n∑
i=1

xi x
′
i.

For these matrices, (c) is a classical condition of regression analysis. As shown on p. 189 of

Pollard [22], this condition is somewhat stronger than what is assumed in his Theorem 1.

On the other hand, our condition (d) is slightly weaker than the assumption that F (y) is
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continuously differentiable in an interval (−τ, τ) with the derivative f(y) positive on (−τ, τ),
which appears in the mentioned Theorem 1. The consistency of θ̂

(0)
n assumed in (a) takes

place under (c) and (d). This can be proved by applying the Convexity Lemma on p. 187 of

Pollard [22].

Thus, as to the L1-estimators in linear models, the conditions obtained from Theorem 2.3 are

comparable with previously published ones, obtained by methods tailor-designed for these

estimators and models. In this sense the comparison with [22] demonstrates that Theorem

2.3 is not trivial.

Jurečková and Procházka [13] studied the same estimator and model as Corollary 4.4. The

conditions (b), (c) of this corollary are the same as (b), (c) in Theorem 4.3. The condition

(d) is changed in the sense that F (y) is differentiable in an interval (F−1(β)− τ, F−1(β)+ τ)

with the derivative f(y) continuous at y = F−1(β) and f(F−1(β)) > 0. The consistency

of (θ̂
(α)
n , b̂

(α)
n ) required in (a) follows under (b), (c), (d) by the same method as used above

for the consistency of θ̂
(0)
n . Jurečková and Procházka assumed, in addition to (b), (c), (d),

that φ(x, θ) is strictly monotone in each component of θ, twice differentiable in each of these

components, with the first and second derivatives uniformly bounded on X × Θ, and that

the above mentioned f(y) is symmetric about y = 0, bounded on R and differentiable on

(F−1(β)− τ, F−1(β) + τ). Moreover, they assumed that X ⊂ Rk and Θ ⊂ Rm are compact,

and that the regression functions φ(xi, θ) and gradients φ̇(xi, θ) satisfy some additional

conditions.

Obviously, here one can deduce a stronger conclusion in favour of Theorem 2.3 than formu-

lated in the context of the simpler L1-estimator above. On the other hand, it is clear that

the results obtained from Theorem 2.3 cannot always be as strong as the results achievable

for special M -estimators and models. This can be illustrated by a reference to [15], where

the L1-estimator is studied in a standard linear regression with error distribution F (y). The

author proved an asymptotic law similar to (4.15) even in situations where the derivative

f(y) of F (y) is discontinuous at the median of F (y). To this end, by exploiting special

features of the ψ-function defined in (4.4), and special properties of linear models, he for-

mulated asymptotic normality conditions different from (c), (d) in Proposition 4.1, and also

from the conditions considered in the previous literature. Example 4.6 below illustrates that

a similar non-applicability of our theory may take place also for other M -estimators.

Remark 4.5 By (4.17), the asymptotic relative efficiency in the class of quantile L1+α-

estimators depends on the function Γ(β) = β(1− β)/f2(F−1(β)); if β0 = arg minβ∈(0,1) Γ(β)

then the estimator with α = 2β0−1 is relatively most efficient (cf. (4.16)). By the l’Hospital

rule, if f has differentiable tails with a derivative ḟ then, for β → 0 and β → 1,

lim Γ(β) = lim
1− 2β

2ḟ(F−1(β))
=∞
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provided ḟ(y) ↑ 0 for y →∞ and ḟ(y) ↓ 0 for y → −∞. In this typical case the indices α of

all relatively most efficient estimators are bounded away from −1 and 1. If ḟ is continuous

on R then at least one such relatively most efficient L1+α-estimator exists.

Example 4.6 Let the error distribution be exponential, F (y) = (1− e−y) I(y > 0). Then

f(F−1(β)) = 1 − β. In this case Γ(β) = β/(1 − β) is increasing on (0, 1), so that one

can expect that the extremal quantile L0-estimator θ̂
(−1)
n maximizes the asymptotic relative

efficiency in the class of estimators θ̂
(α)
n , α ∈ [−1, 1]. According to (4.7), the adapted version

of this estimator is defined by

θ̂(−1)
n = arg min

θ∈ Θ

n∑
i=1

|Yi − φ(xi, θ)| I(Yi < φ(xi, θ)).

Here

H(t) = 2(et − 1) I(t < 0),

and

h(t) = 2et I(t < 0).

We see that the regularity condition (R4) does not hold. Consequently, Theorem 2.3 is not

applicable to θ̂
(−1)
n , i. e. (4.17) is not guaranteed for α = −1 (β = 0). In fact, since Γ(0) = 0,

one can expect in this case a higher rate of consistency than
√
n obtained in (4.17). The

higher rate of consistency can be easily verified if Θ = R and φ(x, θ) = θ, i. e. if Yi = θ0 + Ei

where Ei are exponentially distributed errors. Then

θ̂(−1)
n = min{Y1, . . . , Yn}

so that

P
(
n(θ̂(−1)

n − θ0) > t
)

= e−t, t ∈ R,

i. e. θ̂
(−1)
n is consistent of the order n.

5 L2+α–estimators

In the statistical literature, the classical L2-estimator (4.1) has been embedded to many

families of M -estimators. These can usually be interpreted as families of L2+α-estimators

〈ψα; ϕi〉, α ∈ R, (5.1)

with ψα(y) continuous at α = 0 and ψ0 coinciding with ψ(y) of (4.1), i. e. satisfying for all

y ∈ R the relations

lim
α→0

ψα(y) = ψ0(y) and ψ0(y) = y. (5.2)

In other words, the family of estimators can be rearranged so that α = 0 leads to the

L2-estimator.
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Example 5.1 The Huber estimators (see e. g. [12]) form a family of the type (5.1) with

ψα(y) =

∫
0

yI(−|α|−1 < s < |α|−1)ds for α 6= 0, (5.3)

extended to α = 0 in accordance with (5.2). Here the decomposition (2.1) and formula (2.2)

are trivial in the sense that ψ−α ≡ 0 and ψ+
α = ψ±α = ψα. The skipped mean is defined by

ψα(y) = y I(−|α|−1 < y < |α|−1) for α 6= 0

and extended by (5.2). If α 6= 0 then ψ+
α (y) coincide with Huber’s (5.3), ψ−α (y) = I(y ≥

|α|−1)− I(y < −|α|−1) and

ρα(y) = α−2 − (α−2 − y2) I(−|α|−1 < y < α).

For more details about this and the next example we refer to [8]. The Tukey biweight is

defined by

ψα(y) = y(α−2 − y2)2 I(−|α|−1 < y < |α|−1) for α 6= 0,

where, for α 6= 0,

ψ+
α =

∫ y

0

I

(
−
(√

3|α|
)−1

< s <
(√

3|α|
)−1
)
ds,

ψ−α (y) =

∫ y

0

I

(
s >

(√
3|α|

)−1
)
dψ(s)−

∫ y

0

I

(
s < −

(√
3|α|

)−1
)
dψ(s),

and

ρα(y) =
1

6|α|6
− (α−2 − y2)

6
I
(
−|α|−1 < y < |α|−1

)
.

Portnoy [23] and independently Vajda [29] studied the family of L2+α estimators defined by

ψα(y) = y e−(αy)2 for α 6= 0 (5.4)

with

ρα(y) =
1

2α2

(
1− e−(αy)2

)
for α 6= 0.

As is shown in the second reference, the estimators defined by (5.4) can be obtained from a

minimum distance rule applied to α2-divergences of theoretical and empirical distributions.

For the L2+α-estimators with α 6= 0 studied in this example, there is no universal adaptation

rule similar to the (1+α)/2-quantile rule (4.9) of previous section, or to the mean value rule

(4.3) applicable when α = 0. One general adaptation rule applicable to these estimators is

given in the next proposition.
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Proposition 5.2 Consider an M-estimator θ̂n ∼ 〈ψ;ϕi〉 with a monotone ψ(y), skew-

symmetric about y = 0, in the standard nonlinear regression model (3.5) with an error

distribution F (y) satisfying the condition ψ ∈ L1(F ). If F (y) − F (0) is skew-symmetric

about y = 0 (i. e. if the errors are symmetrically distributed about zero) then the locators are

adapted by the rule

ϕi(θ) = φ(xi, θ), i ∈ R. (5.5)

This adaptation is unique unless there exists a constant b ∈ R such that

ψ(y − b) = ψ(y) F − a.s. (5.6)

Proof: The skew-symmetries of ψ and F imply that∫
ψ(y)dF (y) = 0.

By (3.13), this means that (5.5) is an adaptation rule. If b 6= 0 then the monotonicity of ψ

implies that ψ(y − b)− ψ(y) does not change sign on R. Therefore∫
ψ(y − b)dF (y) 6=

∫
ψ(y)dF (y) = 0

unless (5.6) holds. By (3.13), this implies the uniqueness of the rule (5.5).

The skew-symmetry of the above considered sensitivity functions ψ about 0 means that the

sensitivity of the corresponding estimators to errors in data is symmetrically distributed

about 0. In the rest of this section we study one class of L2+α-estimators with sensitivity

functions ψα skew-asymmetric about 0. Such estimators are convenient when errors in

data are asymmetrically distributed. As an example we may consider the situation when

nonnegative data Xi are transformed into Yi = lnXi for fitting a symmetric location model

on R. Then an error ε in data Xi leads to an error ε e−Yi in data Yi, which is exponentially

decreasing with increasing values of Yi. This partially motivates the following steps.

Let us study the family of exponential L2+α-estimators

θ̂(α)
n ∼ 〈ψ(y) = y eαy; ϕi〉 , α ∈ R, (5.7)

where θ̂
(0)
n is the L2-estimator of Example 4.1. Here

ρ(y) =


eαy(αy − 1) + 1

α2
if α 6= 0

y2 if α = 0.

(5.8)

A strong additional motivation for the estimators (5.7) is a relatively simple adaptation,

in the sense of (3.13), to the generalized regression models (3.5) with exponential parent
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families F , in particular to the generalized linear models mentioned in Example 3.5. The

only estimator with this property studied so far in the literature seems to be the classical

MLE. Thus the class (5.7) deserves to be investigated in detail.

By (3.13), the adaptation of θ̂
(α)
n to the regression model (3.1) with a parent family F =

{F (y|ϑ) : ϑ ∈ y} reduces to solution of equations (3.12), which are now of the form∫
(y − a) eα(y−a)dF (y|ϑ) = 0, ϑ ∈ T. (5.9)

We restrict ourselves to the homogeneous regression model (3.2) with exponential families

F in the natural form (cf. Brown [3]), i.e. with densities

f(y|ϑ) = eϑy−c(ϑ) ∼ F (y|ϑ), ϑ ∈ T, (5.10)

with respect to a σ-finite measure ν on R, where

T =

{
ϑ ∈ R : 0 <

∫
eϑydν(y) <∞

}
and c(ϑ) = ln

∫
eϑydν(y). (5.11)

Here T is convex, and c(ϑ) is a cumulant generating function convex on T .

For families F in a natural form, the distributions figuring in (1.1) are given by

G(y|i, θ) ∼ g(y|i, θ) = f(y)|φ(xi, θ) = eφ(xi,θ) y−c(φ(xi,θ)) (5.12)

for all y from the support of ν, and all i ∈ N and θ ∈ Θ. If φ(x, θ) = x′θ then we obtain

generalized linear models with natural link functions (see e. g. Fahrmeir and Kaufmann [5])

where

G(y|i, θ) ∼ g(y|i, θ) = f(y|x′iθ) = ex
′
iθy−c(x′iθ) (5.13)

for all y from the support of ν and all i ∈ N and θ ∈ Θ. The exponential families are assumed

to be nontrivial in the sense that ν is not concentrated in one point, that T has a nonempty

interior, and that all values x′iθ or φ(x′i, θ) are in this interior.

In a nontrivial exponential family F , the cumulant generating function c(ϑ) is strictly convex

and infinitely differentiable on the interiorT 0 of T , with derivatives

ċ(ϑ) =
dc(ϑ)

dϑ
and c̈(ϑ) =

d2c(ϑ)

dϑ2
(5.14)

satisfying for all ϑ ∈ T 0 the equalities∫
(y − ċ(ϑ)) eϑy−c(ϑ)dν(y) = 0 (5.15)

and ∫
(y − ċ(ϑ))2 eϑy−c(ϑ)dν(y) = c̈(ϑ). (5.16)
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The derivative ċ(ϑ) of the strictly convex function c(ϑ) is increasing on the interior T 0, and

the second derivative c̈(ϑ) is positive on T 0. By (5.15) and (5.16), ċ(ϑ) is the mean in F ,

µ(ϑ) =

∫
yf(y|ϑ)dν(y), (5.17)

and c̈(ϑ) is the variance or, equivalently, the Fisher information of F , i. e.

µ(ϑ) = ċ(ϑ) and I(ϑ) = c̈(ϑ), ϑ ∈ T 0. (5.18)

Moreover, for each ϑ ∈ T 0, a = ċ(ϑ) is the unique solution of the equations∫
(y − a) eϑy−c(ϑ)dν(y) = 0 (5.19)

and ∫
(y − a)2 eϑy−c(ϑ)dν(y) = c̈(ϑ). (5.20)

For simplicity, we study the important particular case where T = R. Then in the homoge-

neous regression models (3.1) under consideration, equations in (5.9) reduce to∫
(a− y) eα(y−a)+ϑy−c(ϑ)dν(y) = 0, ϑ ∈ R, (5.21)

which can be obtained from equations (5.19) with ϑ replaced by ϑ+α. Therefore, given any

α ∈ R,

a(ϑ) = ċ(ϑ+ α), ϑ ∈ R, (5.22)

are the unique solutions of equations (5.21). According to (3.12), this means that the

pseudoadditive rule

ϕi(θ) = ċ (φ(xi, θ) + α) , θ ∈ Θ, (5.23)

leads to the adaptation of exponential L2+α-estimators to the exponential homogeneous

regression models under consideration in the sense of (3.12), i. e. the adapted versions of the

estimators (5.7) are

θ̂(α)
n ∼ 〈y eαy; ċ(φ(xi, θ) + α)〉 , α ∈ R. (5.24)

Replacing φ(xi, θ) by the scalar product x′iθ we obtain from (5.23), (5.24) corresponding for-

mulas for the exponential L2+α-estimators adapted to generalized linear models with natural

link functions.

Let us look at the restrictions which Theorem 2.3 imposes on the estimators (5.24) and the

respective exponential regression models. We start with sufficient conditions for (R3) and

(R4+). The decomposition of the ψ-function figuring in (5.24) is as follows

ψ+(y) =

 y eαy I(αy + 1 ≥ 0) +
1

2
I(αy + 1 ≥ 0) if α 6= 0,

y if α = 0

(5.25)
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and

ψ−(y) =

 −y e
αy I(αy + 1 < 0) +

1

2
I(αy + 1 ≥ 0) if α 6= 0,

0 if α = 0.

(5.26)

The part ψ−(y) is non-explosive, Lipschitz and bounded and square integrable on R. The

other part ψ+(y) is not so nice – it is explosive, non-Lipschitz, unbounded and square non-

integrable on R. To satisfy (R4+) we shall need Proposition 3.7.

Proposition 5.3 The estimator θ̂n defined by ( 5.7) fulfils in the model under consid-

eration for all α ∈ R the condition 2.12 in the regularity condition (R3). If the expectations

µ(ϑ) and Fisher informations I(ϑ) defined in (5.18) satisfy, for

φi = φ(xi, θ0), i ∈ N, (5.27)

and some α ∈ R, the inequalities

sup
i∈N

[µ(φi + 2α)− µ(φi + α)]2 <∞ (5.28)

and

sup
n∈N

1

n

n∑
i=1

sup
|t|≤2|α|

I(φi + t) <∞, (5.29)

then the corresponding estimator θ̂
(α)
n defined by (5.7) fulfills also the regularity conditions

(R1) and (R4+).

Proof: (I) For every α ∈ R, the derivative

ψ̇+(y) = (αy + 1) eαy I(αy + 1 ≥ 0) (5.30)

of ψ+(y) is nondecreasing on R if α ≥ 0, and nonincreasing if α < 0. Consequently,

Ψτ (y) := sup
|s|≤τ

∣∣∣ψ̇+(y + s)
∣∣∣ = ψ̇+(y + τ sgnα), y ∈ R, τ > 0, (5.31)

where

sgnα =

{
1 if α ≥ 0,

−1 if α < 0.

By using the relation

|ψ̇+(y)− ψ̇(y)| ≤ sup
t∈R
|ψ̇−(t)| ≤ 1/e2, y ∈ R,

we find that (3.17) is equivalent to the condition

sup
n∈N

1

n

n∑
i=1

E
[
ψ̇(Yi − ċ(φi + α) + τ sgnα)

]2
<∞ for some τ > 0, (5.32)
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where ψ̇(y) = (αy + 1) eαy. By the Taylor Theorem the difference in the brackets of (5.28)

equals αc̈(φi + αi) for some αi ∈ R. Using (5.19), (5.20), we obtain that the expectation of

(5.31) is equal to

e2|α|τ+bi(α)
[
α2c̈(φi + 2α) + (α2c̈(φi + αi) + |α| τ + 1)2

]
≤ e2|α|τ

[
α2c̈(φi + 2α) + (α2c̈(φi + αi) + |α| τ + 1)2

]
,

where

0 ≤ bi(α) = c(φi + 2α)− c(φi)− 2αċ(φi + 2α) (5.33)

≤ 2|α| sup
|t|≤2|α|

I(φi + t)

because c(ϑ) is convex and c̈(ϑ) = I(ϑ) > 0. Therefore, if (5.28) and (5.29) hold then (5.32)

holds too, and Proposition 3.7 implies that (R4+) holds.

(II) Using (5.33) and the notation of part (I), we get from the definition of σ2
i in (2.4) and

from (5.23),

σ2
i = E [ψ(Yi − ċ(φi + α))]2

= ebi(τ)
[
c̈(φi + 2α) + (ċ(φi + 2α)− ċ(φi + α))2

]
. (5.34)

By (5.33), the assumptions (5.28) and (5.29) imply the inequality (2.5) required in (R1).

(III) Using (5.33), we get from the formula for Hi(t) in (2.10) and from (5.23),

Hi(t) = Eψ(Yi − ċ(φi + α) + t)

= t eαt+b̃i(α), t ∈ R,

where (cf. (5.33))

b̃i(α) = c(φi + α) + c(φi)− αċ(φi + α) ≤ 0 (5.35)

due to the convexity of c(ϑ). This function is differentiable on R with the derivative

hi(t) = (αt+ 1) eαt+b̃i(α), t ∈ R. (5.36)

Since b̃i(α) ≤ 0, it holds for all i ∈ N

|hi(t)− hi(0)| ≤
∣∣(αt+ 1) eαt − 1

∣∣ eb̃i(α) ≤ |(αt+ 1) eαt − 1|
=

∣∣αt+ (αt+ 1) (eαt − 1)
∣∣ .

Therefore the condition 2.12 is satisfied on the infinite interval (−τ0, τ0) = R even if the

conditions (5.28) and/or (5.29) fail to hold.
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Combining Proposition 5.3 and Theorem 2.3, we obtain the following assertion, in which we

use for α ∈ R and i ∈ N the constants bi(α), b̃i(α) defined by (5.33), (5.35) and

σ2
i (α) = ebi(α)

[
I(φi + 2α) + (µ(φi + 2α)− µ(φi + α))2

]
(5.37)

for φi and µ(ϑ), I(ϑ) defined by (5.27) and (5.18). We also use the formulas

ϕ̇i(θ0) = I(φi + α) φ̇i, for φ̇i = φ̇(xi, θ0) (5.38)

for the gradients ϕ̇i(θ0) considered in conditions (2.8), (2.9) of (R2), provided the derivatives

φ̇(xi, θ) =

(
∂

∂θ1

, . . . ,
∂

∂θm

)′
φ(xi, θ), i ∈ N, (5.39)

exist in an open ball B ⊂ Θ centered at θ0. We restrict ourselves to the exponential models

(3.7) which satisfy (R2), i.e. for which the last condition holds and the gradients (5.39)

satisfy (2.8) and (2.9).

Theorem 5.4 Let for some α ∈ R the estimator θ̂n ∼ 〈ψ, ϕi〉 defined by (5.7) and

(5.23) satisfy (R2) and the conditions (5.27) and (5.28) in a homogeneous regression model

with exponential parent family (3.2). Further, let

Σn :=
1

n

n∑
i=1

σ2
i (α) (I(φi + α))2 φiφ̇

′
i → Σ (5.40)

and

Φn :=
1

n

n∑
i=1

eb̃i(α)(I(φi + α))2φi φ̇
′
i → Φ, (5.41)

where the matrices Σ and Φ are positive definite. Finally, let

1√
n

n∑
i=1

ψ(Yi − µ(φi + α)) I(φi + α) φ̇i
L→ N(0,Σ). (5.42)

If θ̂
(α)
n is consistent then it is asymptotically normal in the sense

√
n(θ̂(α)

n − θ0)
L→ N(0, Φ−1Σ Φ−1). (5.43)

Proof: Since θ̂
(α)
n is consistent and satisfies (5.23), it is adapted to the model under

consideration. By Proposition 5.3, (5.40) and (5.41), it satisfies the regularity conditions

(R1), (R3) and (R4+). The remaining regularity condition (R2) is assumed. Since (5.42)

means in the present situation the same as (2.17) all assumptions of Theorem 2.3 are satisfied.

Therefore (5.43) follows from Theorem 2.3.
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Let us look at the special case

X ⊂ Rm, φ(x, θ) = x′θ and α = 0, (5.44)

i. e. the L2-estimator θ̂
(0)
n of a true parameter θ0 ∈ Θ = R in a generalized linear model with

natural link function. Then (3.1) reduces to

G(y|i, θ) ∼ g(y|i, θ) = ex
′
iθ−c(x′iθ), θ ∈ Rm, i ∈ N, (5.45)

further φi = x′iθ0 in (5.27), the gradients of (5.39) are given by formula

φ̇i = φ̇(xi, θ0) = xi, θ0 ∈ Rm, i ∈ N, (5.46)

and the ψ-function is linear, ψ(y) = y. The conditions (5.28), (5.29) and (R2) take place if

sup
i∈N
‖xi‖ <∞. (5.47)

Further, (5.37) implies that

eb̃i(0) = 1 and σ2
i (0) = I(x′iθn), i ∈ N,

in the conditions (5.40), (5.41) of Theorem 5.4 so that they reduce to

Σn =
1

n

n∑
i=1

(I(x′iθ0))
3xix

′
i → Σ (5.48)

and

Φn =
1

n

n∑
i=1

(I(x′iθ0))
2xix

′
i → Φ (5.49)

for some positive definite matrices Σ and Φ. The remaining condition of Theorem 5.4 takes

on the form
1√
n

n∑
i=1

(Yi − µ(x′iθ0)) I(x′iθ0)xi
L→ N(0,Σ) (5.50)

for Σ figuring in (5.48). We shall show that (5.50) follows from (5.47) and (5.48). Indeed,

then ϑi = x′iθ0 and Ii = I(ϑi) are uniformly bounded for i ∈ N. Hence if t → 0 then,

uniformly for i ∈ N,

c(ϑi + t Ii) = c(ϑi) + µ(ϑi) t Ii + I2
i

t2

2
+ o(t2).

Further, for every ξ ∈ R,

E exp{(Yi − µ(ϑi)) Ii ξ/
√
n} = c(ϑi + ξ Ii/

√
n)− c(ϑi) ξ Ii/

√
n.
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It follows from here that the moment generating functions Mn(τ) = E exp{Z ′
nτ}, τ =

(τ1, . . . , τm) ∈ Rm, of the random variables

Zn =
1√
n

n∑
i=1

(Yi − µ(ϕi)) Ii xi, n ∈ N,

converge under (5.47) and (5.48) pointwise to

M(τ) = exp

{
1

2
τ Σ τ ′

}
,

which suffices for (5.50). Therefore the following statement holds.

Corollary 5.5 Let a generalized linear model (5.45) satisfy (5.47) – (5.49). If the L2-

estimator θ̂
(0)
n of a true parameter θ0 ∈ Rm is consistent, then it is asymptotically normal in

sense of (5.43), where Σ and Φ are the matrices appearing in (5.48) and (5.49).

Note that under the weak convergence of probability measures

1

n

n∑
i=1

δxi
⇒ µ

of Dirac’s probability measures δxi
on the regressor space X , the conditions (5.48), (5.49)

hold for

Σ =

∫
X
I(x′θ0)

2xx′µ(dx), Φ =

∫
X
I(x′θ0)xx′µ(dx).

Similarly, the conditions (5.40), (5.41) hold but the formulas for the limit matrices are more

complicated. Let us also note that in the generalized linear models of Corollary 5.5, none of

the estimators θ̂
(α)
n , α ∈ R, is in general the MLE. Below is studied a special where θ̂

(0)
n is

the MLE.

A similar asymptotic normality result as presented by Corollary 5.5 has been proved for the

MLE in generalized linear models with natural link functions in Theorem 3 of Fahrmeir and

Kaufmann [5]. The conditions of that theorem are weaker but less easily verifiable than the

conditions (5.47) – (5.49) of Corollary 5.5, and the theorem does not provide the asymptotic

variance-covariance matrix. Therefore the two results are not directly comparable.

The power of Theorem 2.3 has been verified in Section 4 by an application to the linear

and nonlinear regression models. Another verification of this power can be obtained by an

application to the model with observations Yi with distributions from a natural exponential

family. In this special case the L2+α-estimators

ϑ̂(α)
n ∼ 〈t eαt; ċ(ϑ+ α)〉, α ∈ R, (5.51)
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estimate a true value ϑ0 ∈ R of the parameter of these distributions and ϑ̂
(0)
n is the MLE. The

estimators (5.51) are special cases of estimators (5.24) obtained for Θ = R and φ(x, θ) = θ,

so that φi = ϑ0 and φ̇i = 1 in the formulas above. Consequently, in (5.33) and (5.35).

bi(α) = c(ϑ0 + 2α)− c(ϑ0)− 2αċ(ϑ0 + α) =: b(α),

b̃i(α) = c(ϑ0 + α)− c(ϑ0)− αċ(ϑ0 + α) =: b̃(α),

and in (5.37)

σ2
i (α) = eb(α)

[
I(ϑ0 + 2α) + (µ(ϑ0 + 2α)− µ(ϑ0 + α))2

]
=: σ2(α).

Therefore (5.48) and (5.49) hold for

Σn = Σ = σ2(α) (I(ϑ0 + α))2

and

Φn = Φ = eb̃(α)(I(ϑ0 + α))2,

so that in (5.43) we have

Φ−1Σ Φ−1 =
ec(ϑ0+2α)−c(ϑ0)[I(ϑ0 + 2α) + (µ(ϑ0 + 2α)− µ(ϑ0 + α))2]

[ec(ϑ0+α)−c(ϑ0)I(ϑ0 + α)]2
= s2(α). (5.52)

The assumptions of Theorem 5.4 hold except the consistency which is clarified in the next

proposition where we assume T = R for simplicity.

Proposition 5.6 For every exponential family under consideration, the estimators ϑ̂
(α)
n

defined by (5.51) are consistent, with values uniquely given by the formula

µ(ϑ̃(α)
n + α) =

∑n
i=1 Yi e

αYi∑n
i=1 e

αYi
, n ∈ N, (5.53)

for µ(t) = ċ(t) strictly increasing on R.

Proof: Let α ∈ R and n ∈ N be arbitrary fixed. By definition, ϑ̂
(α)
n minimizes

Mn(ϑ) =
n∑

i=1

ρ(Yi − µ(ϑ)), (5.54)

where ρ(t) is given by (5.8). If α = 0 then the assertion is obvious. Suppose that α 6= 0.

Since µ(t) is infinitely differentiable on R, we can consider the derivatives

Ṁn(ϑ) =
d

dϑ
Mn(ϑ) = µ̇(ϑ)

n∑
i=1

ψ(Yi − µ(ϑ))

= µ̇(ϑ) e−αµ(ϑ)

n∑
i=1

(Yi − µ(ϑ)) e−αYi
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and

M̈n(ϑ) =
d2

dϑ2
Mn(ϑ) = µ̈(ϑ)

n∑
i=1

ψ(Yi − µ(ϑ)) + (µ̇(ϑ))2Zn(ϑ),

where

Zn(ϑ) =
n∑

i=1

ψ̇(Yi − µ(ϑ))

= α

n∑
i=1

ψ(Yi − µ(ϑ)) +
n∑

i=1

eα(Yi−µ(ϑ)).

By (5.18), µ̇(ϑ) is the Fisher information I(ϑ) > 0 for all ϑ ∈ R. Therefore ϑ̂
(α)
n given by

(5.53) is the only solution of the equation Ṁn(ϑ) = 0. Further,

M̈n(ϑ̂(α)
n ) = (I(ϑ̂(α)

n ))2Zn(ϑ̂α
n)

= (I(ϑ̂(α)
n ))2

n∑
i=1

eα(Yi−µ(ϑ̂
(α)
n )) > 0,

so that ϑ̂
(α)
n is a unique local minimum of Mn(ϑ) on R. We shall prove the relation

Mn(ϑ) ≥Mn(ϑ̂(α)
n ), ϑ ∈ Θ, (5.55)

which implies that ϑ̂
(α)
n is a unique global minimum of Mn(ϑ) on R, i. e. that the second half

of Proposition 5.6 is valid. By (5.54) and (5.8), for every ϑ ∈ R,

Mn(ϑ) =
1

α2

(
1− Γn(ϑ)

n∑
i=1

eαYi

)
where

Γn(ϑ) =
(
1 + α

[
µ(ϑ+ α)− µ(ϑ̂(α)

n + α)
])
e−αµ(ϑ+α).

Therefore (5.55) holds if

Γn(ϑ) ≤ Γn(ϑ̂(α)
n ) = e−αµ(ϑ̂

(α)
n +α), θ ∈ Θ,

i. e. if ∆n(ϑ) = µ(ϑ+ α)− µ(ϑ̂
(α)
n + α) satisfies the relation

1 + α∆n(ϑ) ≤ eα∆n(ϑ), ϑ ∈ Θ.

This completes the proof of the second half of Proposition 5.6. The first part (consistency

of ϑ̂
(α)
n ) follows, via the strict monotonicity and continuity of µ(t), from the fact that, by

(5.53) and the law of large numbers,

µ(ϑ̂(α)
n + α)

P→ µ(ϑ+ α) as n→∞.
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By combining Proposition (5.6) with what has been said before, we obtain the following

result.

Proposition 5.7 Assume T = R for the exponential family (5.10). The estimators

(5.51) of a true parameter ϑ0 ∈ R are explicitly given by formula (5.53). They are consistent

and asymptotically normal in the sense that, for all α ∈ R,

√
n(ϑ̂(α)

n − ϑ0)
L→ N(0, s2(α)) as n→∞, (5.56)

where s2(α) is given by (5.52).

The asymptotic normality result (5.56) was obtained from the theory of Section 2 under the

same generality as it can be obtained by a direct analysis of the concrete class of estimators

ϑ̂(α)
n = µ−1

(∑n
i=1 Yie

αYi∑n
i=1 e

αYi

)
− α, α ∈ R. (5.57)

None of the assumptions of this theory imposed a superfluous restriction on the model or

α. Again, this verifies in some sense that the general theory is strong enough to deal with

concrete situations.

In the rest of section we study the exponential L2+α-estimators of parameters of two well

known exponential families.

Example 5.8 Let the family (3.2) be standard normal with a location parameter ϑ ∈ R.

Then

c(ϑ) =
ϑ2

2
, µ(ϑ) = ϑ, I(ϑ) = 1, ϑ ∈ R, (5.58)

and the dominating measure ν is the standard normal probability measure. By (5.57), the

exponential L2+α-estimates are given by the formula

ϑ̂(α)
n =

∑n
i=1 Yi e

αYi∑n
i=1 e

αYi
− α, α ∈ R, (5.59)

and, by (5.52) and (5.58), s2(α) = 1 + α2. By Proposition 5.7, the estimators (5.59) are

asymptotically normal with asymptotic mean 0 and asymptotic variances 1 + α2. If instead

of the standard normal law f(y|ϑ0) under consideration, the observations are governed by

(1− ε) f(y|ϑ0) + ε f(y|ϑ0, σ), 0 < ε < 1, (5.60)

where f(y|ϑ0, σ) is a normal density with location ϑ0 and scale σ > 0, then

b(ϑ0|α, ε) =
ε ϑ0σ(σ − 1) exp

{
1
2
[(ϑ0σ + α)2 − ϑ2

0]
}

(1− ε) exp{2ϑ0α}+ εσ exp
{

1
2

[
(ϑ0σ + α)2−ϑ2

0

]}
is the asymptotic bias of ϑ̂

(α)
n . By a suitable choice of α 6= 0, this bias can be held at a

considerably lower levels over an a priori expected domain of ϑ0 than is the level due to the

MLE ϑ̂
(0)
n .
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Example 5.9 Let the family (3.2) be Poisson with a parameter ϑ = lnλ ∈ R. Then

c(ϑ) = µ(ϑ) = I(ϑ) = eϑ, ϑ ∈ R, (5.61)

and the dominating measure ν on R is finite and discrete,

ν =
∞∑

k=0

δk
k!
,

where δk is the Dirac measure concentrating the mass 1 at the point k ∈ R. In this case, by

(5.57), the exponential L2+α-estimates are given by the formula

ϑ̂(α)
n = ln

∑n
i=1 Yi e

αYi∑n
i=1 e

αYi
− α (5.62)

and, by (5.52) and (5.58),

s2(α) = exp
{
eϑ0+α(eα − 1)− ϑ0

} [
1 + eϑ0(eα − 1)2

]
. (5.63)

Therefore, by Proposition 5.7, the estimators defined by (5.62) are asymptotically normal

with asymptotic mean 0 and asymptotic variances (5.63). This means that

√
n
(
eϑ̂

(α)
n − eϑ0

)
= eϑ0

√
n
(
eϑ̂n−ϑ0 − 1

)
tends in law to

N
(
0, exp

{
eϑ0+α(eα+1) + ϑ0

} [
1 + eϑ0(eα − 1)2

])
,

i. e., that the exponential L2+α-estimators λ̂
(α)
n of λ0 = eϑ0 are asymptotically normal in the

sense √
n
(
λ̂(α)

n − λ0

)
L→ N

(
0, λ0 exp {λ0e

α(eα − 1)}
[
1 + λ0(e

α − 1)2
])
.

If instead of the Poisson distribution F (y|ϑ) under consideration the observations are dis-

tributed by

(1− ε)F (y|ϑ) + εG(y), 0 < ε < 1, (5.64)

where

G(y) = ζ(2)−1

∞∑
k=1

1

k2
I(y > k)

and ζ(s), s > 1, is the Riemann function, then the asymptotic bias of the MLE ϑ̂
(0)
n is infinite

for arbitrarily small ε. Indeed, if Ỹi are observations i.i.d. by (5.64) then

E Ỹi = (1− ε) eϑ0 + εζ(2)−1

∞∑
k=1

k

k2
=∞.

On the other hand, the asymptotic bias b(ϑ0|α, ε) of every estimator ϑ̂
(α)
n with α < 0 satisfies

the relation

lim
ε↓0

b(ϑ0|α, ε) = 0 for every ϑ0 ∈ R.
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The results in the last two examples demonstrate that in the class of L2+α-estimators one can

find more robust alternatives to the L2-estimator (MLE). The price payed for the robustness

is a larger asymptotic variance when the observations are not contaminated.

6 Proof of Theorems 2.2 and 2.3

Unless otherwise explicitly stated, we consider in this section arbitrary model (1.1) and

M -estimator θ̂n ∼ 〈ψ;ϕi〉 where ψ can be decomposed as the difference (2.1) of two non-

decreasing functions ψ+ and ψ−. We suppose for simplicity that both these functions are

right-continuous. Then also their sum ψ± introduced in (2.2) and ψ itself are right con-

tinuous. We shall formulate a series of auxiliary statements leading to the proofs of the

Theorems 2.2 and 2.3. All statements refer to the concepts and conditions introduced in

Sections 1 and 2. Most of these statements are technical but some of them are interesting

also from the statistical point of view.

If ξ : R 7→ R is nondecreasing and right continuous then there exists unique measure µξ on

the Borel subsets of R associated with ξ and satisfying relation µ(a, b]) = ξ(b) − ξ(a) for

all real numbers a < b. If φ : R 7→ R is measurable then the Lebesgue-Stieltjes integral is

defined as the Lebesgue integral for the associated measure, e. g.∫
(a,b]

φ(s) dξ(s) =

∫
(a,b]

φ(s)µξ(ds).

If η is another monotone right continuous function then the bivariate Lebesgue–Stieltjes

integral ∫
(a,b]2

φ(s, t) dξ(s) dη(t) (6.1)

can be defined by means of the associated measure µξ⊗µη on the Borel subsets of R2 = R× R.

For locally bounded functions φ(s) (e. g. for linear combinations of monotone functions), and

for differences ξ(s) = ξ+(s)−ξ−(s) of two nondecreasing right-continuous functions, one can

define the Lebesgue–Stieltjes integral∫
(a,b]

φ(s) dξ(s) =

∫
(a,b]

φ(s) dξ+(s)−
∫

(a,b]

φ(s) dξ−(s).

If η = η+ − η− is a similar difference then one can similarly extend the bivariate Lebesgue–

Stieltjes integrals (6.1). Using the bounded measurable function

φ(s, t) = I(a < t ≤ b) I(a < s ≤ t) = I(a < s ≤ b)I(s ≤ t ≤ b)

defined by means of the indicator function I(·), and employing equalities of the type∫
I(a < s ≤ t) dξ(s) = ξ(t)− ξ(a),
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one obtains from the Fubini theorem the per partes rule∫
(a,b]

η(s) dξ(s) +

∫
(a,b]

ξ(s−) dη(s) = ξ(b) η(b)− ξ(a) η(a) (6.2)

for Lebesgue–Stieltjes integrals. In this rule, ξ(s−) denotes the left continuous version of

ξ(s).

Our first statement is concerning the criterion function ρ satisfying according to (1.7) for all

y ∈ R the relation

ρ(y) = ρ(0) +

∫
(0,y]

ψ(s)ds. (6.3)

Proposition 6.1 For all y, t ∈ R holds the generalized Taylor formula

ρ(y + t) = ρ(y) + ψ(y) t+R(y, t) (6.4)

where the remainder is

R(y, t) =

∫ y+t

y

(y + t− s) dψ(s). (6.5)

Proof: By (1.7) and the per partes rule (6.2),

ρ(y + t)− ρ(y) =

∫
(y,y+t]

ψ(s) ds

= ψ(y) t+

∫
(y,y+t]

(y + t− s) dψ(s).

By applying the generalized Taylor formula (6.4) in (1.3) we obtain

Mn(θ)−Mn(θn) =
1

n

n∑
i=1

[ρ(Yi − ϕi(θ))− ρ(Yi − ϕi(θ0))]

=
1

n

n∑
i=1

ψ(Xi) ti +
1

n

n∑
i=1

R(Xi, tk) (6.6)

where Xi = Yi − ϕi(θ0) and ti = ϕi(θ) − ϕi(θ0). The first sum in the last row is linear in

ti. Therefore we are interested in the behavior of the expected remainders ER(Xi, t) in a

neighborhood of t = 0.

Proposition 6.2 Let the regularity condition (R3) hold and let Xi = Yi−ϕi(θ0). Then

the expectations ER(Xi, t) are locally quadratic in the sense that, for the functions hi :

(−τ0, τ0) 7→ R introduced in (R3) and all 0 < τ < τ0

sup
|t|≤τ

∣∣∣∣ER(Xi, t)− hi(0)
t2

2

∣∣∣∣ ≤ t2

2
ω(hi, τ). (6.7)
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Proof: Consider t ∈ (−τ0, τ0). If (R3) holds then, by the Fubini theorem and (6.4),

ER(Xi, t) =

∫ t

0

Eψ(Xi + s) ds− tEψ(Xi)

=

∫ t

0

[Hi(s)−Hi(0)]ds

=

∫ t

0

∫ s

0

hi(u)duds =

∫ t

0

(t− u)hi(u)du

=

∫ t

0

(t− u)hi(0)du+

∫ t

0

(t− u)[hi(u)− hi(0)]du.

The rest is clear from here and from the definition of ω(hi, τ).

The next result estimates fluctuations of the remainders R(Xi, t) around ER(Xi, t).

Proposition 6.3 If the regularity condition (R4+) holds then for τ0, q and κ considered

in (R4+), and for Xi = Yi − ϕi(θ0) and all 0 < τ < τ0,

sup
n∈N

1

n

n∑
i=1

E sup
|t|≤τ

(R(Xi, t))
2 < κ τ 2+q. (6.8)

Proof: Let y ∈ R be arbitrary fixed. By substitution y + t 7→ t and the convention (1.8),

it follows from (6.5)

R(y, t) =

∫
(0,t]

(t− s) dψ(s+ y) =

∫
(t−,t+]

|t− s| dψ(s+ y)

where t− = min{0, t} and t+ = max{0, t}. Hence for every t ∈ R

|R(y, t)| =

∣∣∣∣∫
(t−,t+]

|t− s| dψ+(s)−
∫

(t−,t+]

|t− s| dψ−(s)

∣∣∣∣
≤

∣∣∣∣∫
(t−,t+]

|t− s| dψ±(y + s)

∣∣∣∣ (cf. 2.2)

≤ |t|
[
ψ±(y + t+)− ψ±(y − t−)

]
≤ |t|

[
ψ±(y + |t|)− ψ±(y − |t|)

]
.

Consequently,

sup
|t|≤τ

(R(y, t))2 ≤ t2
[
ψ±(y + τ)− ψ±(y − τ)

]2
and (6.8) follows from (R4+).

Next follows an important technical result which is sharper than a similar result in [21]

and which is proved by a different method. Consider closed balls Bγ ⊂ Rm of diameters
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0 < γ ≤ δ, δ ≤ ∞, centered at 0 ∈ Rm, and a sequence S1(u), S2(u), . . . of continuous

independent zero-mean random processes (Si(u) : u ∈ Bδ) with S1(0) = S2(0) = · · · = 0.

For given 0 < γ ≤ δ and n ∈ N, we shall estimate the expected modulus of continuity

Ωn(γ) = E sup
u∈Bγ

∣∣∣∣∣ 1√
n

n∑
i=1

Si(u)

∣∣∣∣∣ (6.9)

of the normalized sum at u = 0. A useful estimate will be obtained by means of the theory

of empirical processes, in particular by the results in Chapter 2 of [30]. We suppose that for

some δ > 0

|Si(u)− Si(ũ)| ≤ Λi‖u− ũ‖ for all u, ũ ∈ Bδ, i ∈ N, (6.10)

and

sup
n∈N

E
1

n

n∑
i=1

L2
n <∞ for Ln =

(
1

n

n∑
i=1

Λ2
i

)1/2

(6.11)

Set

Γn(γ) = sup
u∈Bγ

[
1

n

n∑
i=1

S2
i (u)

]1/2

.

Proposition 6.4 Suppose that S1(u), S2(u), ... are continuous , independent zero-mean

stochastic processes continuous on Bδ with Si(0) = 0. If the condition (6.10) and (6.11) hold

then there exists a universal constants K and κ(d) such that for γ ≤ δ

E sup
‖u‖≤γ

∣∣∣∣∣ 1√
n

n∑
i=1

Si(u)

∣∣∣∣∣ ≤ γE

[
LnΓ

(
d,

2Γn(γ)

δLn

)]
(6.12)

and

E sup
‖u‖≤δ

∣∣∣∣∣ 1√
n

n∑
i=1

Si(u)

∣∣∣∣∣ ≤ δΓ (d, 2) ELn (6.13)

where

Γ(d, s) = 2K

∫ s

0

√
|ln(κ(d)td)|dt.

For every 0 < α < 1 there exists a constant C(α, d) such that

E sup
‖u‖≤γ

∣∣∣∣∣ 1√
n

n∑
i=1

Si(u)

∣∣∣∣∣ ≤ C(α, d)γαΓα(d, γ)EL1−α
n . (6.14)

Proof: Suppose ε1, ..., εn are independent binary random variables taking on the values 1

and −1 with equal probability 1/2. Assume that for n = 1, 2, ... the set An ⊂ Rn is bounded

with respect to the Euclidean distance ‖·‖n on Rn. Denote by N(ε, An) the minimal number
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of balls of radius ε > 0 covering An. Then by Corollary 2.2.8 in [30] there is a universal

constant K such that

E sup
(a1,...,an)∈An

∣∣∣∣∣
n∑

i=1

aiεi

∣∣∣∣∣ ≤ K

∫ ∞

0

√
lnN

(ε
2
, An

)
dε. (6.15)

The symmetrization Lemma 2.3.6 of [30] yields

E sup
‖u‖≤γ

∣∣∣∣∣ 1√
n

n∑
i=1

Si(u)

∣∣∣∣∣ ≤ E

(
Eε sup

‖u‖≤γ

∣∣∣∣∣ 1√
n

n∑
i=1

Si(u)εi

∣∣∣∣∣
)

(6.16)

where the ε1, ..., εn are independent Bernoulli variables which are independent of the pro-

cesses S1(u), ..., Sn(u) and take on the values 1 and −1 with probability 1/2. The symbol

Eε denotes the expectation w.r.t. ε1, ..., εn. To estimate the right hand term we suppose

that the processes S1(u), ..., Sn(u) and random variables ε1, ..., εn are defined on a product

space, say (Ω1×Ω2,F1⊗F2,P1×P2) where the processes depend on ω1 ∈ Ω1 and the binary

variables depend on ω2 ∈ Ω2. Fix ω1 ∈ Ω1 and introduce

An,γ(ω1) =

{
1√
n
S1(u, ω1), ...,

1√
n
Sn(u, ω1),u ∈ Bγ

}
⊆ Rn.

For fixed ω1 we estimate the entropy number appearing in (6.15). The Lipschitz condition

(6.10) implies that for every ε-net for Bγ there is an Lnε−net for An,γ(ω1). For γ ≤ δ the

entropy number of Bγ does not exceed κ(d)(γ
ε
)d where κ(d) is a constant depending on d

only. As the diameter of An,γ does not exceed, 2Γn(γ) we have

N
(ε

2
, An,γ

)
≤

{
κ(d)

[
γ
ε

]d
(2Ln)d for ε ≤ 4Γn(γ)

1 for ε > 4Γn(γ)
(6.17)

and

E sup
(a1,...,an)∈An,δ

∣∣∣∣∣
n∑

i=1

aiεi

∣∣∣∣∣ ≤ K

∫ 4Γn(γ)

0

√√√√∣∣∣∣∣ln
[
κ(d)

(
2Lnγ

ε

)d
]∣∣∣∣∣dε

= K2δLn

∫ 2Γn(γ)/(δLn)

0

√
|ln(κ(d)td)|dt.

To complete the proof we set

Γ(d, s) = 2K

∫ s

0

√
|ln(κ(d)td)|dt,

and obtain (6.12). To prove (6.13) it suffices to observe that the assumption (6.10) yields

Γn(γ)/(δLn) ≤ 1. Using the inequality

lnx ≤ x1−α

1− α
for x ≥ 1 and 0 < α < 1
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we find a constant C(d, α) such that

2K

∫ s

0

√
|ln(κ(d)td)|dt ≤ C(d, α)s1−α,

which proves the statement (6.14).

In the next proposition we assume that the adaptation condition (2.3) and the regularity

conditions (R1), (R2) and (R4) hold. We introduce the local parameter

u = θ − θ0 ∈ Bδ = {u ∈ Rm : ‖u‖ ≤ δ}

where δ > 0 is the same as in the definition (2.7) of the ball B in (R2). In the proposition

we study the zero-mean version Dn(u) − EDn(u) of the random process (Dn(u) : u ∈ Bδ)

defined by

Dn(u) =
√
n (Mn(θ0 + u)−Mn(θ0)) . (6.18)

To simplify formulas we use the notations

ϕi = ϕi(θ0), ξi(u) = ϕi(θ0 + u)− ϕi, Xi = Yi − ϕi, ϕ̇i = ϕ̇i(θ0). (6.19)

By (1.3) and (6.4),

Dn(u) =
1√
n

(
n∑

i=1

[ρ(Xi − ξi(u))− ρ(Xi)]

)

=
1√
n

n∑
i=1

ψ(Xi) ξi(u) +
1√
n

n∑
i=1

Ri(u)

where we put for simplicity

Ri(u) = R(Xi, ξi(u)), u ∈ Bδ.

It follows that

Dn(u) = Ln(u) +Dn(u) +Rn(u), u ∈ Bδ,

where the linear term Ln, deviation Dn and remainder Rn are given by

Ln(u) =
1√
n

n∑
i=1

ψ(Xi) (ϕ̇′iu), (6.20)

Dn(u) =
1√
n

n∑
i=1

ψ(Xi)[ξi(u)− ϕ̇′iu],

Rn(u) =
1√
n

n∑
i=1

Ri(u).
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Since θ̂n is adapted, (2.3) implies ELn(u) = EDn(u) = 0, so that

Dn(u)− EDn(u) = Ln(u) +Dn(u) + Sn(u), (6.21)

where

Sn(u) =
1√
n

n∑
i=1

Si(u) for Si(u) = Ri(u)− ERi(u). (6.22)

Proposition 6.5 Let Bγ be a zero centered ball of radius γ and let the adaption condi-

tion (2.3) and the regularity conditions (R1), (R2) and (R4) hold. Then for every 0 < α < 1

and the above considered processes Ln(u), Dn(u), Sn(u) defined on Bδ there exist constants

c0, c1, c2 such that, for all n ∈ N,

E sup
u∈Bγ

|Ln(u)| ≤ c0γ if 0 < γ ≤ δ, (6.23)

E sup
u∈Bγ

|Dn(u)| ≤ c1γ
2 if 0 < γ ≤ δ, (6.24)

E sup
u∈Bγ

|Sn(u)| ≤ c2γ if 0 < γ ≤ δ. (6.25)

If in addition (R4+) holds then for every 0 < α < 1 there exist a constants c3 and q > 0

such that, for all n ∈ N,

E sup
u∈Bγ

|Sn(u)| ≤ c3γ
1+αq/2 if 0 < γ ≤ δ.

Proof: The regularity condition (2.8) implies

|ϕi(θ0 + u)− ϕi(θ0)| ≤ λ ‖u‖ ≤ λγ for γ ≤ δ (6.26)

and

ϕi(θ0 + u)− ϕi(θ0)− ϕ̇′iu =

∫ 1

0

[ϕ̇′i(θ0 + su)− ϕ̇′i(θ0)]uds. (6.27)

Hence by the Lipschitz continuity of ϕ̇i required in (2.9)

|ϕi(θ0 + u)− ϕi − ϕ̇′iu| ≤ ‖u‖
∫ 1

0

λ ‖u‖ sds

=
λ

2
‖u‖2 . (6.28)

By the definition of Ln(u), for every γ ≤ δ

E sup
u∈Bγ

|Ln(u)| ≤ γE

∥∥∥∥∥ 1√
n

n∑
i=1

ψ(Xi) ϕ̇i

∥∥∥∥∥ .
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By assumption (2.3) we have Eψ(Xi) = 0. Hence it follows from the independence of Xi that(
E

∥∥∥∥∥ 1√
n

n∑
i=1

ψ(Xi) ϕ̇i

∥∥∥∥∥
)2

≤ 1

n

n∑
i=1

‖ϕ̇i‖2 Eψ2(Xi).

We see from (3.10) and (2.5) that (6.23) holds for c0 =
√
λC, where λ is the constant figuring

in (3.10) and C is the supremum in (2.5). Similarly, by the definition of Dn(u) and (6.28),(
E sup

u∈Bγ

|Dn(u)|

)2

≤ λγ2

2n

n∑
i=1

E(ψ(Xi))
2.

To prove (6.25) we shall apply Proposition 6.4. The independent zero-mean processes (Si(u) :

u ∈ Bγ), i ∈ N, satisfy all assumptions of Proposition 6.4. Indeed, since ξi(u) = ϕi(θ0 +

u) − ϕi, it holds Si(0) = 0. Using similar arguments as in the proof of Proposition 6.3 we

get that the modulus of the function

|t− s|I(t− < s ≤ t+)− |t̃− s|I(t̃− < s ≤ t̃+)

is for every t, t̃ ∈ R bounded above by |t − t̃|. Therefore using similar arguments as in the

mentioned proof, we obtain that for all t, t̃ ∈ (−τ, τ)∣∣R(y, t)−R(y, t̃)
∣∣ ≤ |t− t̃| [ψ±(y + τ)− ψ±(y − τ)

]
.

It follows from here that the processes (Ri(u) : u ∈ Bγ) satisfy for all u, ũ ∈ Bγ the

inequalities

|Ri(u)−Ri(ũ)| ≤
[
ψ±(Xi − ϕi + τi)− ψ±(Xi − ϕi − τi)

]
|ξi(u)− ξi(ũ)|

where

τi = τi(u, ũ) = max {|ξi(u)|, |ξi(ũ)|} .

We get from (6.26) τi(u, ũ) ≤ λδ, so that the monotonicity of ψ± implies

|Ri(u)−Ri(ũ)| ≤ Zi|ξi(u)− ξi(ũ)|

= Zi

∣∣∣∣∫ 1

0

[ϕ̇i(θ0 + ũ + s(u− ũ))]′[u− ũ]ds

∣∣∣∣
where

Zi = ψ±(Xi − ϕi + λδ0)− ψ±(Xi − ϕi − λδ0).

Hence by (6.10)

|Ri(u)−Ri(ũ)| ≤ λZi ‖u− ũ‖ .

Thus the zero-mean versions Si(u) = Ri(u)− ERi(u) satisfy the inequalities

|Si(u)− Si(ũ)| ≤ Z̃i ‖u− ũ‖ where Z̃i = λZi + λEZi.
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Note that

E(Z̃i)
2 ≤ 4λ2E(Zi)

2. (6.29)

The statement (6.25) now follows from (6.13) with

ELn = sup
n

E

(
1

n

n∑
i=1

(Z̃i)
2

)1/2

≤ 2λ2

(
1

n

n∑
i=1

EZi
2

)1/2

because (R4) guarantees that the right-hand terms are bouded by a constant.

In the following result we use the above considered ball Bδ, and also similar balls Bγ centered

at 0 ∈ Rm with arbitrary γ > 0.

Proposition 6.6 (van der Vaart and Wellner). Let θ̂n be consistent. If there exist

constants 0 < δ0 ≤ δ and κ1, κ2 > 0 such that

lim inf
n→∞

inf
u∈Bδ0

(
1√
n

EDn(u)− κ1‖u‖2
)
≥ 0 (6.30)

and

lim sup
n→∞

E sup
u∈Bγ

|Dn(u)− EDn(u)| ≤ κ2γ for all 0 < γ ≤ δ0 (6.31)

then the estimator θ̂n under consideration is
√
n-consistent in the sense of (1.11).

Proof: See Theorem 3.2.5 of [30].

Proposition 6.7 Let the estimator satisfy the adaption condition 2.3, the regularity

conditions (R2)-(R4) and the condition (2.14) of Theorem (2.3). Then for every u ∈ Bδ and

the matrix Φn defined in (2.14),

sup
u∈Bδ

∣∣∣∣ 1√
n

EDn(u)− 1

2
u′Φnu

∣∣∣∣ ≤ (λδ)2

2n

n∑
i=1

ω(hi, λδ), (6.32)

where λ is the constant from the regularity condition (2.9). Furthermore, (6.30) holds for

some δ0 and some κ1 > 0.

Proof: By (6.21),

1√
n

EDn(u)− 1

2

n∑
i=1

hi(0) ξ2
i (u) =

1

n

n∑
i=1

[
ER(Yi − ϕi, ξi(u))− 1

2
hi(0)ξ

2
i (u)

]
,

where ‖ξi(u)‖ ≤ λδ. Relation (6.32) follows from here and from Proposition 6.2. To complete

the proof we note that by (6.28) and (a− b)2 ≤ 2a2 + 2b2 it holds

ξ2
i (u) ≥ (ϕ̇i(u))2 − 1

2

(
λ

2
‖u‖2

)2

.
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Proof of Theorem 2.2 Clear from Propositions 6.5-6.7. �

Introduce

D̃n(v) =
√
nDn(v/

√
n), L̃n(v) =

√
nLn(v/

√
n)

and, similarly, also D̃n(v), R̃n(v) and S̃n(v) = R̃n(v)−ER̃n(v), for v ∈ Br and all sufficiently

large n.

Proposition 6.8 If all assumptions of Proposition 6.5 hold then for every closed ball

Br,

lim
n→∞

E sup
v∈Br

|D̃n(v)| = lim
n→∞

E sup
v∈Br

|S̃n(v)| = 0. (6.33)

Consequently,

sup
v∈Br

∣∣∣D̃n(v)− E D̃n(v)− L̃n(v)
∣∣∣ P→ 0 as n→∞. (6.34)

Proof: By Proposition 6.5, for all r > 0

E sup
v∈Br

|D̃n(v)| ≤
√
n c1

(
r√
n

)2

and E sup
v∈Br

|S̃n(v)| ≤
√
n c2

(
r√
n

)1+αq/2

.

(6.33) is clear from here.

In the following lemma we consider

Z = (Z1, . . . , Zm)′ ∼ N(0,Σ), (6.35)

where Σ is the matrix defined by (2.13).

Proposition 6.9 If the assumptions of Theorem 2.3 hold then for every r > 0, the

distribution of the process (L̃n(v) : v ∈ Br) tends weakly to the distribution of (v′Z : v ∈ Br).

Proof: For a fixed v ∈ Br, v′Σnv is the variance of the vector L̃n(v), where Σn is defined

in (2.13). By (2.17),

L̃n(v)
L→ N(0,v′Σv) as n→∞.

The stated convergence follows from the fact that L̃n(v) is linear in v.

In the next lemma and its proof, we consider the matrices Φ and Φn defined in (2.14) and

the random vector Z defined by (6.35).

Proposition 6.10 If the assumptions of Proposition 6.7 hold then for every closed ball

Br,

lim
n→∞

sup
v∈Br

∣∣∣∣E D̃n(v)− 1

2
v′Φv

∣∣∣∣ = 0 (6.36)
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and the process

D̃(v) =
1

2
v′Φv − v′Z , v ∈ Rm, (6.37)

is minimized at the unique Φ−1Z, i.e.

Φ−1Z = arg minv∈Rm D̃(v). (6.38)

Proof: By Proposition 6.7, for every Br under consideration

sup
v∈Br

∣∣∣∣E D̃n(v)− 1

2
v′Φnv

∣∣∣∣ ≤ (λr)2

2n

n∑
i=1

ω(hi, r/
√
n)

and, by (2.12), the right hand side tends to zero as n→∞. The relation (6.37) follows from

the easily verifiable formula

D̃(v) =
1

2

∥∥Φ1/2v − Φ−1/2Z
∥∥− Z ′ΦZ,

where Φ1/2 is the symmetric root of the matrix Φ.

Proof of Theorem 2.3. Define a random sequence

v̂n =
√
n(θ̂n − θ0), n ∈ N.

By definition of D̃n(v), for each n ∈ N,

ṽn = arg min
v∈Rm

D̃n(v). (6.39)

By Propsition 6.7, θ̂n is
√
n-consistent, so that the sequence of distributions of ṽn is tight. By

(6.34) and (6.36), for every closed ball Br, the distribution of the process (D̃n(v) : v ∈ Br)

converges weakly to the distribution of (D̃(v) : v ∈ Br) defined by (6.37) and satisfying

(6.38). By the argmax continuous mapping Theorem 3.2.2 of [30], this implies

v̂n
L→ Φ−1Z = N(0,Φ−1ΣΦ) as n→∞,

which proves (1.12) and (2.18). �
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[13] Jurečková, J. , and Procházka, B. : Regression quantiles and trimmed squares

estimator in nonlinear regression model. Nonparametric Statistics 3, 201–222 (1994)
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CZ-182 08 Praha

Czech Republic

e-mail: vajda@utia.cas.cz

mailto:friedrich.liese@mathematik.uni-rostock.de
mailto:vajda@utia.cas.cz




Rostock. Math. Kolloq. 57, 53–70 (2003) Subject Classification (AMS)

35K55,35B40,35B65

Fouzi Zaouch

Global Existence and Boundedness of Solutions of
the Time-Dependent Ginzburg-Landau Equations
with a Time-Dependent Magnetic Field

ABSTRACT. This paper is concerned with existence, uniqueness and long-time asymptotic

behavior of the solutions of the time-dependent Ginzburg-Landau equations of supercon-

ductivity, in the case where the applied magnetic field H is time-dependent. We first prove

existence and uniqueness of solutions with H1-initial data. This result is obtained under the

“φ = −ω(∇ · A)” gauge with ω > 0. These solutions become then uniformly bounded in

time for the H1-norm, by assuming time-uniform boundedness on H and its time derivative.

KEY WORDS. Superconductivity, Ginzburg-Landau equation, gauge, initial boundary

value problems, global existence and uniqueness.

1 Introduction

In this paper we consider the Ginzburg-Landau model for superconductivity in the nonsta-

tionary case. Based on an averaging method of the BCS theory, a time-dependent Ginzburg-

Landau model was derived by Gor’kov and Eliashberg in 1968 [1]. The study of this model

for superconductivity may give a better understanding of the physical state of a supercon-

ductor, especially for the high-temperature superconductors. It is known from the physics

literature that the realization of this physical phenomena and then the validation of this

model is only possible under temperatures near the critical temperature. The equations

describing the state of a superconducting material near the critical temperature are nonlin-

ear differential equations for the order-parameter ψ, the vector potential A and the electric

potential φ, whose evolution in presence of a magnetic field H is governed by the following

system

η

(
∂

∂t
+ iκφ

)
ψ = −

(
i

κ
∇+ A

)2

ψ +
(
1− |ψ|2

)
ψ in Ω× (0,∞), (1.1)

∂A

∂t
+∇φ = −∇×∇×A + Js +∇×H in Ω× (0,∞), (1.2)
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where Js is given by

Js ≡ Js(ψ,A) =
1

2iκ
(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2A = −Re

[
ψ∗
(
i

κ
∇+ A

)
ψ

]
. (1.3)

Equations (1.1)-(1.3) are satisfied everywhere in a domain Ω, which is the region occupied

by the superconducting material and at all times t > 0. The associated boundary conditions

are

n ·
(
i

κ
∇+ A

)
ψ +

i

κ
γψ = 0 and n× (∇×A−H) = 0 on ∂Ω, (1.4)

where ∂Ω is the boundary of Ω and n the local outer unit normal to ∂Ω. They must be

satisfied at all times t > 0. Henceforth, the term
”
TDGL Equations“ refers to the system of

equations (1.1)-(1.4).

We assume that Ω is a bounded domain in Rn (n = 2 or 3) with a boundary ∂Ω of

class C1,1. The parameters appearing in the TDGL equations are dimensionless physical

constants; η is the friction coefficient and κ is the Ginzburg-Landau parameter. Here η mea-

sures the temporal rate of change and the value of κ determines the type of superconductor:

κ ≤ 1/
√

2 describes what is known as a type I superconductor and κ ≥ 1/
√

2 as a type II.

The function γ is defined and Lipschitz continuous on ∂Ω and γ(x) ≥ 0 for x ∈ ∂Ω. We use

the following common notation: ∇ ≡ grad, ∇· ≡ div, ∇× ≡ curl and ∇2 = ∇ · ∇ ≡ ∆, i is

the imaginary unit and a superscript* denotes the complex conjugation.

The order parameter ψ is a complex-valued function, it describes the center-of-mass

motion of the “superelectron”, whose density is ns = |ψ|2 and whose flux is Js. ψ = 0

corresponds to the normal state, and in a perfect superconducting state |ψ| = 1. The vector

potential A takes its values in Rn, it represents the magnetic potential, i.e. B = ∇×A. The

scalar potential φ determines the electric field E = −∂A
∂t
−∇φ. The vector H represents the

(externally) applied magnetic field; it is a given function of space and time, which is diver-

gence free, ∇·H = 0 at all time. The difference M = B−H is known as the magnetisation.

The trivial solution (ψ = 0, B = H, E = 0) represents the normal state, where all super-

conducting properties have been lost. For further physics details about Ginzburg-Landau

equations, one may consult [1] or [2].

Several works have been devoted recently to questions of existence, uniqueness and long

time asymptotic behavior of the solutions of equations (1.1)-(1.4) when the applied mag-

netic field is stationary, i.e. H(t) = H0; as a bibliographical review, we refer to [3], [4], [5],

[6], [7] and [8]. To overcome the uniqueness deficiency in equations (1.1)-(1.4), the authors

in the mentioned references adopted some gauge transformation like the zero-electric gauge

(φ = 0), the London gauge (∇ ·A = 0) or the Lorentz gauge (φ = −∇ ·A). On the other
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hand, it is known that in presence of an applied time-independent magnetic field H, the

TDGL equations enjoy the free energy functional, whose advantage is the getting of some

estimates on the solutions.

In contrast to the above situation, Fleckinger, Kaper and Takáč considered in [9] equa-

tions (1.1)-(1.4) with a time-dependent magnetic field H(t). They established in the general

context of “φ = −ω(∇ ·A)” gauge (ω > 0) the existence of a dynamical process. However,

some regularities of the solutions obtained are lost in the limit case ω = 0. When H is

stationary, this process becomes a dynamical system enjoying the existence of a global at-

tractor. Subsequently Kaper and Takáč [11] proved that in the special case where the applied

magnetic field is asymptotically stationary, the dynamical process generated by the TDGL

equations is asymptotically autonomous, i.e. its large-time asymptotic limit is a dynamical

system, whose attractor coincides with the one of the dynamical process.

In this paper, we present new, more general results concerning existence, uniqueness and

regularity of solutions to the TDGL equations when the applied magnetic field H exhibits

strong temporal fluctuations. In practice H is either time-independent or time-periodic. For

instance, we are able to show global existence for all times t ≥ 0 if H is time-periodic. The

Lyapunov functional method applied in [9], [10] and [11] is not suitable for treating other

than weak temporal fluctuations that disappear for large time with certain convergence

rate. Our method of proving global existence and boundedness of solutions for all times

t ≥ 0 significantly improves and extends the classical Lyapunov functional method. Our

discussion will rely on the choice of the “φ = −ω(∇ ·A)” gauge (ω > 0), introduced in [10].

We omit the degenerate case ω = 0. The outline of the paper is as follows. In section 2,

we introduce preliminary material, gauge invariance among others, and recall basic results

for use in subsequent sections. In section3, we first homogenize the boundary conditions,

give definitions of the function spaces we are going to use and assumptions on the data, and

after we reformulate the problem into an equivalent abstract initial value problem. Section 4

contains results concerning existence, uniqueness and regularity of solutions to the original

equations, the proof of local existence is based on the contraction mapping principle, while

global existence is derived from estimates on the energy type functional. In our existence

result, we obtain solutions of the TDGL equations fromH1-initial data and without requiring

L∞-bound of the initial order parameter ψ0. In section 5, we establish that the solutions

obtained become uniformly bounded with respect to t ≥ 0, this will lead to the existence of

an absorbing set for the process.
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2 Preliminaries

The TDGL equations are not mathematically well posed unless some gauge fixing has been

done. It is known in [12] that the solutions of equations (1.1)-(1.4) are unique up to a gauge

transformation Gχ

Gχ : (ψ, A, φ) −→
(
ψeiκχ, A +∇χ, φ− ∂χ

∂t

)
,

here χ is a given real-valued function (sufficiently smooth) of position and time. In our

investigation we adopt the “φ = −ω(∇ ·A)” gauge. We restrict ourselves to the case ω > 0.

Formaly we determine this gauge by taking χ ≡ χω(x, t) as a solution of the following

boundary value problem

∂χ

∂t
− ω∆χ = φ+ ω(∇ ·A) in Ω× (0,∞),

n · (∇χ) = −n ·A on ∂Ω× (0,∞).

The initial condition χ(·, 0) = χ0 can be chosen arbitrarily. By virtue of the current gauge,

A and φ satisfy the identities

φ+ ω(∇ ·A) = 0 in Ω× (0,∞), (2.1)

n ·A = 0 on ∂Ω× (0,∞). (2.2)

On the other hand the TDGL equations may be given as

η
∂ψ

∂t
= −

(
i

κ
∇+ A

)2

ψ + iηκωψ(∇ ·A) +
(
1− |ψ|2

)
ψ in Ω× (0,∞), (2.3)

∂A

∂t
= −∇×∇×A + ω∇(∇ ·A) + Js +∇×H in Ω× (0,∞), (2.4)

where Js is given by (1.3) and the boundary conditions become

n · ∇ψ + γψ = 0, n ·A = 0, n× (∇×A−H) = 0 on ∂Ω× (0,∞). (2.5)

For the initial condition, we put

ψ(·, 0) = ψ0 and A(·, 0) = A0 in Ω, (2.6)

where ψ0 and A0 are given.

Now we introduce notations conventions concerning functional spaces, in order to re-

formulate the gauged TDGL equations (2.3)-(2.6) as an abstract evolution equation in a

real Banach space. Throughout, for p ≥ 1, Lp(Ω) will denote the usual Lebesgue space,
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with the norm ‖ · ‖p , (·, ·) is the usual inner-product in L2(Ω). For nonnegative integer

m, we will denote by Hm(Ω) the usual Sobolev space, with norm ‖ · ‖Hm . In the case of

nonintegers m, Hm(Ω) is the fractional Sobolev space defined by interpolation, see [12]. The

corresponding spaces of complex-valued functions will be denoted by Lp(Ω) and Hm(Ω) and

the corresponding spaces of vector valued functions will be denoted by Lp(Ω) and Hm(Ω).

Without any possible ambiguity, we use the same symbol ‖·‖p to indicate the norms in Lp(Ω)

and Lp(Ω), and the inner-product for p = 2 is defined in the usual way. We sometimes use

‖ · ‖X to denote the norm defined on a Banach space X. To fix the time-dependence of the

functions entering equations (2.3)-(2.5), we define the following spaces: For any given T > 0,

p ≥ 1 and any given Banach space X,

Lp(0, T ;X) =

{
u : t ∈ (0, T )→ u(·, t) ∈ X measurable, and

∫ T

0

‖u(·, t)‖pX dt <∞
}
,

L∞(0, T ;X) =

{
u : t ∈ (0, T )→ u(·, t) ∈ X measurable, and sup

0<t<T
‖u(·, t)‖X <∞

}
,

W 1,p(0, T ;X) =

{
u ∈ Lp(0, T ;X) absolutely continuous :

∂u

∂t
∈ Lp(0, T ;X)

}
.

The spaces Wm,p(0, T ;X) are defined in similar ways. C(0, T ;X) denotes the space of con-

tinuously X-valued functions defined in [0, T ].

For later purpose we recall some known inequalities and formulas concering vector-valued

functions, details and proofs are contained in [13] and [14].

Poincaré inequality: For all A ∈ H1(Ω), with n ·A = 0 on ∂Ω

λ0‖A‖2H1 ≤ ‖∇×A‖22 + ‖∇ ·A‖22, (2.7)

λ0 is a positive constant.

Green′s formulas:

(i) For any A ∈ H(div; Ω) := {A ∈ L2(Ω) : ∇ ·A ∈ L2(Ω)} and ϕ ∈ H1(Ω)∫
Ω

(∇ ·A)ϕ dx+

∫
Ω

A · (∇ϕ) dx =

∫
∂Ω

(n ·A)ϕ dσ(x). (2.8)

(ii) For any A ∈ H(curl; Ω) := {A ∈ L2(Ω) : ∇×A ∈ L2(Ω)} and B ∈ H1(Ω)∫
Ω

(∇×A) ·B dx−
∫

Ω

A · (∇×B) dx =

∫
∂Ω

B · (A× n) dσ(x). (2.9)

Gronwall′s inequality: Let η(t) be a positive, absolutely continuous function on [0, T ],

T > 0, satisfying η′(t) ≤ µ(t)η(t) + ν(t) a.e. t ∈ [0, T ], where µ and ν are integrable on
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[0, T ], then

η(t) ≤ e
∫ t
0 µ(s)ds

[
η(0) +

∫ t

0

e−
∫ s
0 µ(r)drν(s) ds

]
for all t ∈ [0, T ]. (2.10)

3 Abstract Equation

Before we start to reformulate the gauged TDGL equations (2.3)-(2.6) into an equivalent

abstract initial-value problem, we turn the boundary condition in the right hand side of

(2.5) into a homogenous one. This is achieved at each fixed instant. At each time t, assume

H ∈ L2(Ω) and consider AH the unique weak solution of the strongly elliptic boundary-value

problem

∇ ·AH = 0 and ∇×∇×AH = ∇×H in Ω, (3.1)

n ·AH = 0 and n× (∇×AH −H) = 0 on ∂Ω. (3.2)

The existence of AH is guaranted by the Lax-Milgram theorem applied to the continuous

and coercive bilinear form

Q(A,B) =

∫
Ω

(∇×A) · (∇×B) dx+ ω

∫
Ω

(∇ ·A)(∇ ·B) dx,

on the space {A ∈ H1(Ω) : n ·A = 0 on ∂Ω}.

The mapping H ∈ L2(Ω) 7−→ AH ∈ H1(Ω) is linear, time independent and continuous,

see [9].

The gauged TDGL equations (2.3)-(2.4) are equivalent to a problem in terms of ψ and

the reduced vector potential Ã := A−AH

η
∂ψ

∂t
= −

(
i

κ
∇+ Ã + AH

)2

ψ + iηκωψ(∇ · Ã) +
(
1− |ψ|2

)
ψ in Ω× (0,∞), (3.3)

∂Ã

∂t
= −∇×∇× Ã + ω∇(∇ · Ã) + J̃s − |ψ|2AH −

∂AH

∂t
in Ω× (0,∞), (3.4)

where J̃s = Js(ψ, Ã) is given by the expression in (1.3), and the boundary condition (2.5)

reduces to

n · ∇ψ + γψ = 0, n · Ã = 0 and n× (∇× Ã) = 0 on ∂Ω× (0,∞). (3.5)

The supplemented initial condition is

ψ(·, 0) = ψ0 and Ã(·, 0) = Ã0 = A0 −AH(0) in Ω. (3.6)
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We come now to introduce a convenient abstract frame for the system of equations (3.3)-

(3.6). In the sequel we will consider the solutions ψ and Ã of the system of equations

(3.3)-(3.6) as a vector representing the pair

ũ = (ψ, Ã) = (ψ,A−AH), (3.7)

so we adopt the notations

Lp(Ω) = Lp(Ω)× Lp(Ω) and Hs(Ω) = Hs(Ω)×Hs(Ω),

and indicate, without any possible confusion, the norm in Lp(Ω) by ‖·‖p. We set X = L2(Ω)

and define some suitable operators related to the dissipative terms in (3.3) and (3.4), we

define two linear operators L1 and L2 respectively from H1(Ω) and H1(Ω) to their dual

spaces by

(L1ψ, φ) =

∫
Ω

∇ψ · ∇φ∗ dx+

∫
∂Ω

γψφ∗ dσ(x), (3.8)

(L2A,B) =

∫
Ω

(∇×A) · (∇×B) dx+ ω

∫
Ω

(∇ ·A)(∇ ·B) dx. (3.9)

Operators L1 and L2 are selfadjoint and positive definite. Moreover the classical theory of

second order differential operators allows the extension of L1 and L2 as unbounded linear

selfadjoint operators respectively on L2(Ω) and L2(Ω), in which case L1ψ = −∆ψ and

L2A = ∇×∇×A− ω∇(∇ ·A) in Ω, with

D(L1) = {ψ ∈ H2(Ω) : n · ∇ψ + γψ = 0 on ∂Ω},
D(L2) = {A ∈ H2(Ω) : n ·A = 0 on ∂Ω}.

Let A be the linear selfadjoint operator in X defined by

D(A) = D(L1)×D(L2),

Av =

(
− 1

ηκ2
∆ψ , ∇×∇×A− ω∇(∇ ·A)

)
, v = (ψ,A) ∈ D(A) .

(3.10)

Since A is positive definite on X, it is then a sectorial operator. It follows that −A is the

infinitesimal generator of an holomorphic semigroup (e−At)t≥0, see [15] and [16], Fractional

powers Aα are well defined for α ∈ R, they are unbounded for α > 0 and Xα := D(Aα) is

a closed linear subspace of H2α(Ω) for 0 < α < 1 and contains the range of e−At for α ≥ 0

and t > 0. In particular we have

X1/2 = {v = (ψ,A) ∈ H1(Ω) : n ·A = 0 on ∂Ω}. (3.11)

In general it is possible to consider A as a linear operator in Lp(Ω) with 1 < p < ∞, we

will use the same symbol A if no confusion is possible. In this case the Lp-theory for elliptic
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differential operators proves that−A generates an holomorphic semigroup (e−At)t≥0 in Lp(Ω).

On the other hand we consider the initial value problem for the transformed solution

ũ = (ψ, Ã)
dũ

dt
+Aũ = F(t, ũ(t)) for t > 0 and ũ(0) = ũ0, (3.12)

in X, where F(t, ũ) = (ϕ,F), ũ0 = (ψ0, Ã0), ϕ and F are given by the following

ϕ ≡ ϕ(t, ψ, Ã) =
1

η

[
− 2i

κ
(∇ψ) · (Ã + AH)− i

κ
(1− ηκ2ω)ψ(∇ · Ã)

−ψ|Ã + AH|2 +
(
1− |ψ|2

)
ψ
]
, (3.13)

F ≡ F(t, ψ, Ã) = J̃s − |ψ|2AH −
∂AH

∂t
. (3.14)

Let ũ0 ∈ H1(Ω), we say that ũ is a mild solution of equation (3.12) on the interval [0, T ],

for some T ∈ (0,∞), if ũ : [0, T ] −→ H1(Ω) is continuous and

ũ(t) = e−Atũ0 +

∫ t

0

e−A(t−s)F(s, ũ(s)) ds for 0 ≤ t ≤ T. (3.15)

In particular a mild solution plays the role of a weak solution (ψ, Ã) for the system of

equation (3.3)-(3.5). Of course the existence of a weak solution u = (ψ,A) to the gauged

TDGL equations (2.3)-(2.5) requires some regularity about AH; this suggests that some

control should be imposed on the time-dependence of H. Clearly, in definition (3.15) of

mild solution, the action of the semigroup (e−At) on F is in L3/2(Ω), this is because F maps

[0, T ] × H1(Ω) in L3/2(Ω), so it is to distinguish that the operator A appearing under the

symbol integral in (3.15) is considered in L3/2(Ω). Furthermore we see that the regularity of

the integral in (3.15) introduced by the term ∂AH

∂t
, namely

∫ t

0
e−L2(t−s) ∂AH

∂s
(s) ds, determines

the regularity of the mild solution ũ of equation (3.12).

4 Existence and Uniqueness

In this section, we study the existence and uniqueness of a mild solution of the initial value

problem (3.12). We assume the applied magnetic field H(t) in L2(Ω) at each t ≥ 0 and

(H0) H ∈ L∞ (0, T ;L2(Ω)) ∩W 1,2 (0, T ;L2(Ω)) , 0 < T <∞.

Note that by virtue of [9], (H0) implies

t ∈ [0, T ] −→
∫ t

0

e−L2(t−s)∂AH

∂t
(s) ds ∈ H1(Ω) is Hölder continuous. (4.1)
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Theorem 1 For every initial data ũ0 = (ψ0, Ã0) ∈ X1/2 the initial value problem (3.12)

has a unique mild solution ũ = (ψ, Ã) such that

ũ ∈ C
(
0, T ; H1(Ω)

)
∩W 1,2

(
0, T ; L2(Ω)

)
.

Proof: The proof of local existence and uniqueness is based on the contraction mapping

principle. To this goal, we construct a Banach space C (0, τ ; H1(Ω)) (τ small enough) such

that the mapping G defined from the integral equation in (3.15), namely

Gũ(t) = e−Atũ0 +

∫ t

0

e−A(t−s)F(s, ũ(s)) ds, (4.2)

acts as a contraction map on some closed subset. We need to prove the following properties

F(t, ·) : H1(Ω) −→ L3/2(Ω) is locally Lipschitz for each t ∈ [0, T ], (4.3)

e−At : L3/2(Ω) −→ H1(Ω) for t > 0 and

∫ τ

0

‖e−At‖L(L3/2,H1) dt <∞. (4.4)

Given (4.3) and (4.4), the standard proof of [15, theorem 3.3.3] can be used; we show

that there are some positive constants τ and ε both small enough such that if we denote

X =
{
v ∈ C

(
0, τ ;X1/2

)
: v(0) = ũ0, ‖v(t)− ũ0‖H1 ≤ ε

}
, then G : X → X is a contraction

map and hence possesses a unique fixed point.

In order to establish (4.3), we need to estimate each term separately. Let two elements

ũ1 = (ψ1, Ã1) and ũ2 = (ψ2, Ã2) of H1(Ω), we have for example

‖∇ψ2 · Ã2 −∇ψ1 · Ã1‖3/2 ≤ ‖∇(ψ2 − ψ1)‖2‖Ã2‖6 + ‖∇ψ1‖2‖Ã2 − Ã1‖6
≤ C‖ũ2 − ũ1‖H1 ,

where C is a positive constant depending only on the norm of ũ1 and ũ2 in H1(Ω). Here

we have used the continuous Sobolev imbedding of H1(Ω) in L6(Ω). For the other terms in

F , we argue analogously. It follows that if BR denotes the ball of radius R centered at the

origin in H1(Ω), then

‖F(t, ũ1)−F(t, ũ2)‖3/2 ≤ C‖ũ1 − ũ2‖H1 for all ũ1, ũ2 ∈ BR, (4.5)

C is the Lipschitz constant, it depends on R but not on t.

The proof of the claim in (4.4) uses the smoothing action of the semigroup e−At and
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some imbedding theorems established for second-order elliptic differential operators. More

precisely, rather than (4.4) we can check

‖e−At‖L(L3/2,H1) ≤ Ct−γe−δt for all t > 0, (4.6)

for some positive constants C, δ and γ > 3/4 independent on t. We refer to [14, theorem

1.6.1] for the proof of this, see also [16].

Next, to show the solution ũ = (ψ, Ã) of equation (3.12) is global, some estimates on

the energy type functional defined in H1(Ω) by

Eω[ψ,A] =

∫
Ω

[ ∣∣∣∣( iκ∇+ A

)
ψ

∣∣∣∣2 +
1

2

(
1− |ψ|2

)2
+ 2ω(∇ ·A)2

+|∇ ×A−H|2
]

dx+
1

κ2

∫
∂Ω

γ|ψ|2 dσ(x), (4.7)

are needed. In fact, from the consideration on H stated in (H0), it can be shown ( see [9]),

that the pair u = (ψ,A) related to ũ = (ψ, Ã) by (3.7) satisfies

u ∈ L∞
(
0, T ; H1(Ω)

)
∩W 1,2

(
0, T ; L2(Ω)

)
and ∇ ·A ∈ L2

(
0, T ; H1(Ω)

)
.

Thus, again by (H0), we obtain

ũ ∈ L∞
(
0, T ; H1(Ω)

)
∩W 1,2

(
0, T ; L2(Ω)

)
.

However, this regularity result concerning ũ can be improved by the smoothness of the

action of e−At to prove continuity of ũ. In fact, we have as claimed in (4.1) the map

t ∈ [0, T ] −→
∫ t

0
e−L2(t−s) ∂AH

∂t
(s) ds ∈ H1(Ω) is continuous, it suffices then to show that

t ∈ [0, T ] −→
∫ t

0

e−A(t−s)F ′ (s, ũ(s)) ds ∈ H1(Ω) is continuous,

where F ′ (t, ũ(t)) = F (t, ũ(t)) +
(
0, ∂AH

∂t
(t)
)
. At first, we remark that

(t −→ F ′(t, ũ(t))) ∈ L∞
(
0, T ; L3/2(Ω)

)
. (4.8)

To check this, we shall estimate each term in F ′ separately. For example

‖∇ψ(t) · Ã(t)‖3/2 ≤ ‖∇ψ(t)‖2‖Ã(t)‖6 ≤ C‖ψ(t)‖H1‖Ã(t)‖H1 ,

where C is the Sobolev constant relative to the continuous imbedding of H1(Ω) in L6(Ω).

The other remaining terms can be estimated in the similar way, which confirm (4.8). In the

sequel, we define

Fλ(t) =

∫ t−λ

0

e−A(t−s)F ′(s, ũ(s)) ds for λ ≤ t ≤ T,

Fλ(t) = 0 for 0 ≤ t ≤ λ.
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For λ > 0 small, Fλ is well defined and continuous. Indeed we write for λ < t < T

Fλ(t+ h)−Fλ(t) = I1 + I2

where

I1 =

∫ t−λ

0

e−A(t−s)(e−Ah − I)F ′(s, ũ(s)) ds

I2 =

∫ t+h−λ

t−λ

e−A(t+h−s)F ′(s, ũ(s)) ds.

By using (4.6), we have

‖I1‖H1 ≤ C

∫ t−λ

0

(t− s)−γe−δ(t−s)‖(e−Ah − I)F ′(s, ũ(s))‖3/2 ds.

Furthermore thanks to (4.8), we can apply Lebesgue theorem to obtain

‖I1‖H1 −→ 0 as h→ 0

On the other hand

‖I2‖H1 ≤ C

∫ t+h−λ

t−λ

(t+ h− s)−γe−δ(t+h−s)‖F ′(s, ũ(s))‖3/2 ds

≤ C sup
0≤t≤T

‖F ′(s, ũ(s))‖3/2

∫ h+λ

λ

s−γe−δs ds

and we obtain

‖I2‖H1 −→ 0 as h→ 0

When h → 0−, we obtain a similar estimate and the remaining case 0 ≤ t ≤ λ is trivial.

Therefore Fλ ∈ C (0, T ; H1(Ω)).

Now for t ∈ [t0, t1] ⊂ (0, T ) , we estimate∥∥∥∥Fλ(t)−
∫ t

0

e−A(t−s)F ′(s, ũ(s)) ds

∥∥∥∥
H1

≤
∫ t

t−λ

‖e−A(t−s)F ′(s, ũ(s))‖H1 ds

≤ C

∫ λ

0

s−γe−δs ds.

Passing to limit λ → 0+, uniformly for t0 ≤ t ≤ t1 (t0 and t1 are arbitrary), we obtain

that the map
(
t ∈ (0, T ) −→

∫ t

0
e−A(t−s)F ′(s, ũ(s)) ds

)
is continuous. It remains to show

continuity for t=0 and t=T and this is achieved analogously. Therefore

ũ = (ψ, Ã) ∈ C
(
0, T ; H1(Ω)

)
.
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Remark 1 It is not hard to see that the order parameter ψ satisfies moreover the

“maximum principle”: if ψ0 ∈ L∞(Ω) then

|ψ(x, t)| ≤ max (1, ‖ψ0‖∞) for all (x, t) ∈ Ω̄× [0, T ]. (4.9)

As a consequence of theorem 1, we obtain that the pair (ψ, Ã) is a weak solution of equations

(3.3) and (3.4), while the boundary condition (3.5) is satisfied in some sense of traces.

Observe that theorem 1 includes a comparable result for the pair u = (ψ,A), providing

that continuity of AH in time occurs. Such a regularity is completely controlled by the

continuity of H in time and the hypothesis (H0) seems to be only a natural minimal condition

for the existence and uniqueness result in theorem 1. However condition (H0) may be

strengthened by requiring that H ∈ C (0, T ;L2(Ω)), in this case we obtain the solution

u = (ψ,A) ∈ C (0, T ; H1(Ω)) and satisfies the gauged TDGL equations (2.3)-(2.4) in a weak

sense.

We now concentrate on the regularity of the dependence of the solution ũ on the initial

data ũ0. As in [9], we can verify as well that the map ũ0 ∈ X1/2 −→ ũ ∈ C (0, T ; H1(Ω)) is

uniformly Lipschitz continuous on bounded subsets of X1/2. This implies the following

Theorem 2 The solutions of the abstract initial-value problem (3.12) generate a dynam-

ical process U = {U(t, s) : 0 ≤ s ≤ t ≤ T} on X1/2 by the definition

ũ(t) = U(t, s)ũ(s) for 0 ≤ s ≤ t ≤ T. (4.10)

Also, for 0 ≤ s < t ≤ T , each map U(t, s) : X1/2 → X1/2 is compact.

We omit the proof since the arguments are similar.

Remark 2 Let us mention that in the particular case, where the magnetic field H is time

constant, the result obtained in [10] concerning asymptotic behavior of the mild solution as

t→∞ remains true, namely the process U becomes a dynamical system S = {S(t) : t ≥ 0}
on X1/2, by the definition

S(t− s) = U(t, s) for t ≥ s ≥ 0.

Moreover the dynamical system enjoys the following properties

(i) The functional Eω defined in (4.7) is a Liapunov functional for S.

(ii) Each ũ0 ∈ X1/2 has a relatively compact orbit in H1(Ω).

(iii) The ω-limit set of each ũ0 ∈ X1/2 is a nonempty compact connected
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set of divergence-free equilibria.

(iv) There is a global attractor for S.

Here the sense of definitions is borrowed from [17].

5 Global Boundedness

In the sequel, we would like to show that in a special case of a smooth magnetic field H, the

solutions ψ and A of the gauged TDGL equations (2.3)-(2.5) become bounded uniformly

with respect to t ≥ 0. In what follows C will denote various constants depending only on

the data κ, η, H and the constants entering the equations (2.3)-(2.4), but not on t. Also we

use the symbol ∂t to denote the time derivative d
dt

. Throughout this section, we shall assume

that H(t) ∈ H1(Ω) for t ≥ 0 with H ∈ C (0, T ;L2(Ω)) for all T > 0, u0 = (ψ0,A0) ∈ X1/2,

with ψ0 ∈ L∞(Ω) and ‖ψ0‖∞ ≤ 1. Let u = (ψ,A) the corresponding solution of the TDGL

equations starting from u0. Remark that since H is time continuous, it is also the case for

the solution u. We have the following estimate on the L2-norm of ψ and A.

Lemma 1 Assume H ∈ L∞ (0,∞;L2(Ω)), then there exists C > 0 such that

‖ψ(t)‖22 + ‖A(t)‖22 ≤ C
[
e−λ0ω0t

(
‖ψ0‖22 + ‖A0‖22

)
+ 1
]

for all t ≥ 0, (5.1)

where ω0 = min(1, ω).

Proof: Multiplying the equation (2.3) by the complex conjugate ψ∗, integrating over Ω and

taking the real part, we obtain

η

2
∂t‖ψ‖22 = − 1

κ2

∫
∂Ω

γ|ψ|2 dσ(x)−
∥∥∥∥( iκ∇+ A

)
ψ

∥∥∥∥2

2

+ ‖ψ‖22 − ‖ψ‖44. (5.2)

On the other hand taking the inner product of (2.4) with A, it yields from (2.8) and (2.9)

1

2
∂t‖A‖22 = −‖∇×A‖22 − ω‖∇ ·A‖22 +

∫
Ω

A · Js dx+

∫
Ω

H · (∇×A) dx. (5.3)

The last two terms in the right-hand side of (5.3) can be majorized as follows: let ε > 0,

replace Js in (1.3), so we can apply (4.9) and standard Hölder’s and Young’s inequalities to

obtain ∣∣∣∣∫
Ω

A · Js dx

∣∣∣∣ ≤ ε

2
‖A‖22 +

1

2ε

∥∥∥∥( iκ∇+ A

)
ψ

∥∥∥∥2

2

,
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∣∣∣∣∫
Ω

H · (∇×A) dx

∣∣∣∣ ≤ ε

2
‖∇ ×A‖22 +

1

2ε
‖H‖22.

Thanks to (2.7), we get

1

2
∂t

(
η‖ψ‖22 + ε‖A‖22

)
≤ −1

2

∥∥∥∥( iκ∇+ A

)
ψ

∥∥∥∥2

2

− ελ0ω0‖A‖2H1 + ε2‖A‖2H1

+‖ψ‖22 +
1

2
‖H‖22. (5.4)

Set ζ(t) = η‖ψ(t)‖22 + ε‖A(t)‖22. Since H ∈ L∞ (0,∞;L2(Ω)), it follows by choosing 0 < ε <
λ0ω0

2
that

∂tζ(t) + λ0ω0ζ(t) ≤ C for all t ≥ 0.

Thus after substituting in inequality (2.10), we obtain

ζ(t) ≤ e−λ0ω0tζ(0) +
C

λ0ω0

for all t ≥ 0.

This concludes the proof of the lemma.

The next theorem establishes the H1-norm global boundedness of the solutions ψ and

A of the TDGL equations (2.3)-(2.6).

Theorem 3 Provided H ∈ W 1,∞ (0,∞;L2(Ω)), there exists C > 0 such that

‖ψ(t)‖2H1 + ‖A(t)‖2H1 ≤ C
[
e−εt

(
‖ψ0‖2H1 + ‖A0‖2H1

)
+ 1
]

for all t ≥ 0, (5.5)

where ε > 0 is small enough.

Proof: First we estimate the H1-norm of A. Taking the inner product of (2.4) with ∂tA,

we have

1

2
∂t

(
‖∇ ×A‖22 + ω‖∇ ·A‖22

)
= −

∫
Ω

∂tH · (∇×A) dx+ ∂t

(∫
Ω

H · (∇×A) dx

)
− ‖∂tA‖22 +

∫
Ω

Js · ∂tA dx. (5.6)

Using similar arguments as above, we get∣∣∣∣∫
Ω

∂tH · (∇×A) dx

∣∣∣∣ ≤ ε

2
‖∇ ×A‖22 +

1

2ε
‖∂tH‖22,∣∣∣∣∫

Ω

Js · ∂tA dx

∣∣∣∣ ≤ 1

2
‖∂tA‖22 +

1

2

∥∥∥∥( iκ∇+ A

)
ψ

∥∥∥∥2

2

.



Global Existence and Boundedness of Solutions of . . . 67

Thus

1

2
∂t

(
‖∇ ×A‖22 + ω‖∇ ·A‖22 − 2

∫
Ω

H · (∇×A) dx

)
≤ 1

2

∥∥∥∥( iκ∇+ A

)
ψ

∥∥∥∥2

2

+
ε

2
‖∇ ×A‖22 +

1

2ε
‖∂tH‖22. (5.7)

Multiplying (5.7) by ε, 0 < ε < 1 and adding estimate (5.4) yield

1

2
∂t

[
η‖ψ‖22 + ε(‖A‖22 + ‖∇ ×A‖22 + ω‖∇ ·A‖22)− 2ε

∫
Ω

H · (∇×A) dx

]
≤ −ελ0ω0‖A‖2H1 +

3

2
ε2‖A‖2H1 + ‖ψ‖22 +

1

2

(
‖H‖22 + ‖∂tH‖22

)
, (5.8)

so by putting

ϑ(t) = η‖ψ(t)‖22 + ε
(
‖A(t)‖22 + ‖∇ ×A(t)‖22 + ω‖∇ ·A(t)‖22

)
−2ε

∫
Ω

H(t) · (∇×A(t)) dx,

we deduce

∂tϑ(t) + εϑ(t) ≤ −2ελ0ω0‖A‖2H1 + ε2(4 + ω1)‖A‖2H1 + (2 + εη)‖ψ‖22
+2‖H‖22 + ‖∂tH‖22, (5.9)

with ω1 = max(1, ω), which with the assumption H ∈ W 1,∞ (0,∞;L2(Ω)) implies

∂tϑ(t) + εϑ(t) ≤ C for all t ≥ 0,

provided 0 < ε < 2λ0ω0

4+ω1
. Hence Gronwall’s inequality (2.10) shows

ϑ(t) ≤ e−εtϑ(0) +
C

ε
for all t ≥ 0.

Therefore

‖ψ(t)‖22 + ‖A(t)‖2H1 ≤ C
[
e−εt(‖ψ0‖22 + ‖A0‖2H1) + 1

]
for all t ≥ 0. (5.10)

On the other hand, to estimate the H1-norm of ψ, we make use of the energy type functional

Eω introduced in (4.7). Since ψ and A satisfy equations (2.3)-(2.4), the time derivative of

Eω is

∂tEω(t) = −2

∫
Ω

[
η|∂tψ − iκωψ(∇ ·A)|2 + |∂tA|2 + ω2|∇(∇ ·A)|2

]
dx

−2

∫
Ω

∂tH · (∇×A−H) dx.
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This implies

∂tEω(t) ≤ −2

∫
Ω

∂tH · (∇×A−H) dx. (5.11)

Now adding estimates (4.7) and (5.11), thanks to Hölder’s and Young’s inequalities, so it

follows

∂tEω(t) + Eω(t) ≤
∥∥∥∥( iκ∇+ A

)
ψ

∥∥∥∥2

2

+ C
(
‖A‖2H1 + ‖H‖22 + ‖∂tH‖22 + 1

)
, (5.12)

therefore by putting ξ(t) = Eω(t) + η‖ψ(t)‖22, we derive from (5.2) and (5.12)

∂tξ(t) + ξ(t) ≤ C(‖A‖2H1 + 1) for all t ≥ 0.

Once more, Gronwall’s inequality (2.10) yields

ξ(t) ≤ e−t

[
ξ(0) + C

∫ t

0

es(‖A(s)‖2H1 + 1) ds

]
for all t ≥ 0,

and by (5.10), we infer that

ξ(t) ≤ C
[
e−εt

(
‖ψ0‖2H1 + ‖A0‖2H1

)
+ 1
]

for all t ≥ 0.

Consequently by replacing Eω in (4.7) and taking in mind (5.10), we conclude

‖∇ψ(t)‖22 ≤ C
[
e−εt(‖ψ0‖2H1 + ‖A0‖2H1) + 1

]
,

which proves theorem 2.

Remark 3 Theorem 3 remains true also for the pair ũ = (ψ, Ã) of solutions of the reduced

homogeneous problem (3.3)- (3.4). On the other hand, we can use equation (3.15) to improve

the regularity of the dependence of ũ on the initial data ũ0; that is the set {U(t, 0)ũ0 : t ≥
0, ‖ũ0‖H1 ≤ R} (R > 0), is relatively compact in H1(Ω).
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Katharina Habermann, Andreas Klein

Lie derivative of symplectic spinor fields, metaplectic
representation, and quantization

ABSTRACT. In the context of Riemannian spin geometry it requires skilful handling to

define a Lie derivative of (Riemannian) spinor fields.

A Lie derivative of symplectic spinor fields in the direction of Hamiltonian vector fields can

be defined in a very natural way. It is the aim of this note to present this construction.

Furthermore, an immediate interpretation of this Lie derivative in the language of natural

ordering quantization is given.

Introduction

In the context of Riemannian spin geometry, the general question of constructing a Lie

derivative for spinor fields has been studied by several authors. Yvette Kosmann, for in-

stance, gave a geometric construction of a so-called metric Lie derivative of spinor fields in

[12]. This approach was extended by Jean–Pierre Bourguignon and Paul Gauduchon in [2].

The problem with it is to compare spinor fields for different metrics, since a diffeomorphism

φ transforms the metric tensor g to φ∗g and the (Riemannian) spinor fields over (M, g) will

be transformed into spinor fields over (M,φ∗g). Other studies focussed on relations between

Killing vector fields and Killing spinors such as [14] by Andrei Moroianu and [1] Dmitri Alek-

seevsky et al. A further result in this direction was the finding of Katharina Habermann

that conformal vector fields act by a certain kind of conformal Lie derivative on the space of

solutions of the twistor equation. In [7] she discussed the relevant Z2-graded algebra.

Studing the problem in the symplectic setting, one deals with symplectic spinor fields over

(M,ω) and (M,φ∗ω), respectively. In the case of a Hamiltonian vector field all spinor fields

live over the same symplectic manifold and a definition of a Lie derivative for symplectic

spinor fields in the direction of a Hamiltonian vector field in the classical way of defining a

Lie derivative for geometrical objects is possible. It is the aim of this note to present this

construction.
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Furthermore, an immediate interpretation of this Lie derivative in the language of natural

ordering quantization is given. This interpretation was inspired by Theorem 1 in the book [6]

of Maurice de Gosson. The observation is that there is a one-parameter group of metaplectic

operators, which is associated to a quadratic Hamiltonian and gives solutions of a Schrödinger

equation. A similar Schrödinger equation but without any spinorial context was established

in the book [5] of Victor Guillemin and Shlomo Sternberg. Moreover, a detailed discussion

of this Schrödinger equation can be found in the mentioned book of Maurice de Gosson. In

this paper, we put the Schrödinger equation in the context of symplectic spin geometry and

give a new and completely self-contained proof. Finally, the Schrödinger equation gives the

Lie derivative of constant symplectic spinor fields on R2n in the direction of the Hamiltonian

vector field associated to the quadratic Hamiltonian.

Altogether, our computations also illustrate a remark of Bertram Kostant in his paper

on symplectic spinors. There, symplectic spinor fields were introduced in order to give

the construction of the half-form bundle and the half-form pairings in the context of ge-

ometric quantization. These half–densities are related to a certain line subbundle of the

symplectic spinor bundle, which sometimes is also known as metaplectic correction. And

Bertram Kostant notices that Hamiltonian vector fields clearly operate as Lie differentiation

on smooth symplectic spinor fields ([13] 5.5).

Acknowledgement. This work was partially supported by the Gerhard Hess – programme of

the Deutsche Forschungsgemeinschaft (DFG). Additionally, parts of this paper were written

during the stay of the first author at the Blekinge Technical University in Karlskrona (Swe-

den). She wishes to thank in particular Professor Maurice de Gosson for the kind hospitality

and many useful discussions.

1 Preparations

1.1 Some Notations

We consider the standard space R2n with the Euklidean product 〈 , 〉. Further, let J be

the 2n× 2n-matrix given by

J =

(
0 −1

1 0

)
,

where 1 denotes the n×n-matrix 1 = diag(1, . . . , 1). Then the standard symplectic structure

ω0 on R2n is defined to be

ω0( , ) = 〈J , 〉 .
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We remark that for local coordinates (p, q) = (p1, . . . , pn, q1, . . . , qn) on R2n the standard

symplectic structure ω0 writes as

ω0 =
n∑

j=1

dpj ∧ dqj .

For the canonical standard basis {a1, . . . , an, b1, . . . , bn} of R2n one computes readily

ω0(aj, ak) = 0 , ω0(bj, bk) = 0 , and ω0(aj, bk) = δjk for j, k = 1, . . . , n .

This says that {a1, . . . , an, b1, . . . , bn} is a symplectic basis of the symplectic vector space

(R2n, ω0).

The symplectic group Sp(2n,R) is the group of real 2n× 2n-matrices leaving the standard

symplectic structure ω0 on R2n invariant, i.e. the group Sp(2n,R) consists of those real

2n× 2n-matrices A satisfying the relation

A>JA = J . (1.1)

Thus, the Lie algebra sp(2n,R) of the symplectic group is given by the space of all real

2n× 2n-matrices B with

B>J + JB = 0 . (1.2)

Moreover, let

Bjk =

 0
... 0

. . . 1 . . .

0
... 0

 ← j-th row

↑ k-th column

be the n × n-matrix with a 1 as the only nonvanishing entry at the j-th row and the k-th

column for j, k = 1, . . . , n. Using these n× n-matrices, we introduce the following 2n× 2n-

matrices

Xjk =

(
Bjk 0

0 −Bkj

)
, Yjk =

(
0 Bjk +Bkj

0 0

)
, and Zjk =

(
0 0

Bjk +Bkj 0

)

for j, k = 1, . . . , n. Now, it is a well known fact that the set

{Yjk and Zjk for 1 ≤ j ≤ k ≤ n , Xjk for 1 ≤ j, k ≤ n}

of 2n× 2n-matrices is a basis of the symplectic Lie algebra sp(2n,R).
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1.2 The Metaplectic Representation and symplectic Clifford multiplication

This section recalls well known basics on the metaplectic group and its representation. See

also [10, 15].

For the symplectic group, the subgroup Sp(2n,R) ∩ O(2n,R) ∼= U(n) is maximal compact.

This implies π1(Sp(2n,R)) ∼= Z for the fundamental group of Sp(2n,R). Consequently, the

symplectic group has a – up to isomorphism – uniquely determined covering group of order 2.

The metaplectic group Mp(2n,R) is defined to be this two-fold covering group of Sp(2n,R),

giving the exact sequence

ρ

1 → Z2 → Mp(2n,R) → Sp(2n,R) → 1

with double covering map ρ. For our computations, it is sufficient to know the differential

ρ∗ : mp(2n,R)→ sp(2n,R) of this double covering. Due to Crumeyrolle [3], the Lie algebra

of the metaplectic group is given by the set of all symmetric homogeneous polynomials of

degree 2 in the elements of R2n. Thus, the set

{aj · ak and bj · bk for 1 ≤ j ≤ k ≤ n , aj · bk + bk · aj for 1 ≤ j, k ≤ n}

is a basis of the metaplectic Lie algebra mp(2n,R). This Lie algebra may be represented

as a Lie subalgebra of the symplectic Clifford algebra. So we write formally v · w for the

polynomial given by the two vectors v and w. Later, this notation will be consistent with

the Clifford multiplication of vectors and functions.

Then one proves (cf. [9] Proposition 1.2)

Lemma 1.1 The differential ρ∗ : mp(2n,R)→ sp(2n,R) is given by ρ∗(aj · ak) = −Yjk ,

ρ∗(bj · bk) = Zjk , and ρ∗(aj · bk + bk · aj) = 2Xjk for j, k = 1, . . . , n. �

The Schrödinger quantization prescription

1 ∈ R 7→ σ(1) := multiplication by i,

aj ∈ R2n 7→ σ(aj) := multiplication by ixj , and

bj ∈ R2n 7→ σ(bj) :=
∂

∂xj

for j = 1, . . . , n ,

where the operators σ(1), σ(aj), and σ(bj) for j = 1, . . . , n are continuous operators acting on

the Schwartz space S(Rn) of rapidly decreasing smooth functions on Rn, gives the symplectic
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Clifford multiplication

µ : R2n × S(Rn) → S(Rn)

(v, f) 7→ µ(v, f) = v · f := σ(v)f .

It is an elementary computation to prove the relation

v · w · f − w · v · f = −iω0(v, w)f

for vectors v, w ∈ R2n and functions f ∈ S(Rn).

The metaplectic group has a natural representation acting on the Hilbert space L2(Rn). A

concrete realization of this representation is given by the following specification (cf. [10]).

Consider g(a) =

(√
det(a),

(
a 0

0 (a>)−1

))
where a ∈ GL(n,R). Choosing a square root

of det(a), one has g(a) ∈Mp(2n,R) and

(L(g(a))f)(x) =
√

det(a)f(a>x) , x ∈ Rn . (1.3)

The set of all matrices τ(b) =

(
1 b

0 1

)
, where b> = b and 1 denotes the n × n-matrix

1 = diag(1, . . . , 1) is simply connected. Thus, τ(b) can be understood as an element of

Mp(2n,R), such that t(0) is the unit element in Mp(2n,R). For τ(b) it is

(L(τ(b))f)(x) = e−
i
2
〈bx,x〉f(x) , x ∈ Rn . (1.4)

Choosing a square root i1/2, the element σ = (i1/2, J) can be considered as an element

σ ∈Mp(2n,R). Here, one obtains

(L(σ)f)(x) =

(
i

2π

)n
2
∫

Rn

ei〈x,y〉f(y)dy , x ∈ Rn . (1.5)

That gives L(σ) = i
n
2F−1, where F : L2(Rn)→ L2(Rn) denotes the usual Fourier transform.

Finally, we remark that the metaplectic group is generated by all these types of elements,

since the corresponding matrices in Sp(2n,R) already give the whole symplectic group.

With respect to this representation, the symplectic Clifford multiplication is Mp(2n,R)-

equivariant, i.e. we have the relation

µ(ρ(g)v, L(g)f) = L(g)µ(v, f)

for all g ∈Mp(2n,R), v ∈ R2n, and f ∈ S(Rn).

The differential of the metaplectic representation is more interesting for our computations.

In order to be able to give precise calculations, we are going to deduce the differential detailly.
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Proposition 1.2 The differential L∗ : mp(2n,R)→ u(S(Rn)) of the metaplectic repre-

sentation L is given by

L∗(aj · ak)(f) = −iaj · ak · f
L∗(bj · bk)(f) = −ibj · bk · f

L∗(aj · bk + bk · aj)(f) = −i(aj · bk + bk · aj) · f

for j, k = 1, . . . , n.

Proof: Generally, the differential L∗ : mp(2n,R)→ u(S(Rn)) may be computed via

L∗(X)f =
d

dt
(L(exp(tX))f|t=0 .

We will make use of this formula in the progress of this proof.

First, the relation ρ(exp(tX)) = exp(tρ∗(X)) gives

ρ(exp(t aj · ak)) = exp(tρ∗(aj · ak)) = exp(−tYjk)

= exp

(
0 −t(Bjk +Bkj)

0 0

)
=

(
1 −t(Bjk +Bkj)

0 1

)
,

ρ(exp(t bj · bk)) = exp(tρ∗(bj · bk)) = exp(tZjk)

= exp

(
0 0

t(Bjk +Bkj) 0

)
=

(
1 0

t(Bjk +Bkj) 1

)

= J

(
1 −t(Bjk +Bkj)

0 1

)
J−1 ,

and

ρ(exp(t(aj · bk + bk · aj))) = exp(tρ∗(aj · bk + bk · aj)) = exp(2tXjk)

= exp

(
2tBjk 0

0 −2tBkj

)

=

(
exp(2tBjk) 0

0 exp(−2tBjk)
>

)
.

Thus,

exp(t aj · ak) = τ(−t(bjk +Bkj)) ,

exp(t bj · bk) = σ τ(−t(Bjk +Bkj))σ
−1,

and

exp(t(aj · bk + bk · aj)) = g(exp(2tBjk)) .
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Finally, this gives

(L∗(aj · ak)f)(x) =
d

dt
(L(exp(t aj · ak))f)(x)|t=0

=
d

dt
e

i
2
t〈(Bjk+Bkj)x,x〉f(x)|t=0

=
i

2
〈(Bjk +Bkj)x, x〉f(x)

= ixjxk f(x) = −iaj · ak · f(x) ,

(L∗(bj · bk)f)(x) =
d

dt
(L(exp(t bj · bk))f)(x)|t=0

=
d

dt
(L(σ) ◦ L(τ(−t(Bjk +Bkj))) ◦ L(σ)−1(f))(x)|t=0

= iF−1(xjxkF(f))(x)

= −i ∂2f

∂xj∂xk

(x) = −ibj · bk · f(x) ,

and

(L∗(aj · bk + bk · aj)f)(x) =
d

dt
(L(exp(t(aj · bk + bk · aj)))f)(x)|t=0

=
d

dt

√
det(exp(2tBjk)) f(exp(2tBjk)

>x)|t=0

=
1

2

d

dt
det(exp(2tBjk))|t=0 f(x) +

d

dt
f(exp(2tBjk)

>x)|t=0

=
1

2
Tr

(
d

dt
exp(2tBjk)|t=0

)
f(x) + df

(
d

dt
exp(2tBjk)

>
|t=0x

)
=

1

2
Tr(2Bjk)f(x) + df(2Bkjx)

= δjkf(x) + 2xj
∂f

∂xk

(x)

= xj
∂f

∂xk

(x) +
∂

∂xk

xjf(x) = −i(aj · bk + bk · aj) · f(x) ,

which are the asserted relations. �

1.3 Symplectic Spinor Fields

Let (M,ω) be a 2n-dimensional symplectic manifold and R the Sp(2n,R)-principal fibre

bundle of all symplectic frames over M . A metaplectic structure on (M,ω) is a principal fibre

bundle P over M having Mp(2n,R) as structure group together with a bundle morphism f :

P → R which is equivariant with respect to the homomorphism ρ : Mp(2n,R)→ Sp(2n,R).
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That is, we have the following commutative diagram

P ×Mp(2n,R) → P

↘
↓ f × ρ ↓ f M

↗
R× Sp(2n,R) → R

such that a metaplectic structure can be understood as a lift of the symplectic frame bundle

R with respect to the double covering ρ.

Generally, one has a cohomological obstruction to lifting the structure group of a principal

fibre bundle. The topological condition to the existence of a metaplectic structure is given

by c1(M) ≡ 0 mod 2.

If (M,ω) is a 2n-dimensional symplectic manifold with fixed metaplectic structure P then

the symplectic spinor bundle is defined to be the associated Hilbert bundle

Q = P ×L L
2(Rn).

Furthermore, we need the subbundle

S = P ×L S(Rn).

Observing that the symplectic Clifford multiplication is Mp(2n,R)-equivariant, it lifts to the

bundle level to a symplectic Clifford multiplication

µ : TM ⊗ S → S
X ⊗ ϕ 7→ µ(X,ϕ) = X · ϕ

on the symplectic spinor bundle S. Obviously, we have the relation

X · Y · ϕ− Y ·X · ϕ = −iω(X,Y )ϕ

for vector fields X, Y and spinor fields ϕ.

Furthermore, the L2(Rn)-scalar product on the fibres gives a canonical Hermitian scalar

product 〈 , 〉 on Q. Γ(Q) = Γ(S) denotes the space of all smooth symplectic spinor fields.

Moreover, any symplectic covariant derivative on the tangent bundle TM of (M,ω) induces

a covariant derivative on the symplectic spinor bundle Q, the spinor derivative

∇ : Γ(Q)→ Γ(T ∗M ⊗Q),

which in the following will also be denoted by ∇. If e1, . . . , en, f1, . . . , fn denotes any local

symplectic frame on (M,ω) then the spinor derivative writes as

∇Xϕ = X(ϕ) +
i

2

n∑
j=1

{ej · ∇Xfj − fj · ∇Xej} · ϕ . (1.6)
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Here a covariant derivative ∇ : Γ(TM)→ Γ(T ∗M ⊗ TM) on a symplectic manifold (M,ω)

is called symplectic if and only if ∇ω = 0. The torsion of such a connection is defined to be

T∇(X, Y ) = ∇XY −∇YX − [X, Y ].

Then the connection is said to be torsionfree, if and only if T∇ ≡ 0.

Finally, for the Clifford multiplication, the spinor derivative, and the Hermitian scalar prod-

uct we have the following relations

(X · Y − Y ·X) · ϕ = −iω(X, Y )ϕ

〈X · ϕ, ψ〉 = −〈ϕ,X · ψ〉
∇X(Y · ϕ) = (∇XY ) · ϕ+ Y · ∇Xϕ

X〈ϕ, ψ〉 = 〈∇Xϕ, ψ〉+ 〈ϕ,∇Xψ〉
〈ϕ, ψ〉 = 〈ψ, ϕ〉.

1.4 Symplectic Spinor Fields and Diffeomorphisms

In order to define the Lie derivative of symplectic spinor fields we first illustrate how symplec-

tic spinor fields behave under diffeomorphisms. In Riemannian spin geometry, the problem

of transforming a spinor field under diffeomorphisms of the manifold is studied in detail in

the paper [4] of Dabrowski and Percacci. This method can be carried over to our situation

of symplectic spinor fields.

Let (M,ω) be a 2n-dimensional symplectic manifold and let φ be any orientation preserving

diffeomorphism of M . Then φ induces an isomorphism φ∗ of the Sp(2n,R)-principal frame

bundles Rφ and R according to the symplectic structures φ∗ω and ω

φ∗ : Rφ → R

(e1, . . . , en, f1, . . . , fn) 7→ (φ∗e1, . . . , φ∗en, φ∗f1, . . . , φ∗fn) .

This isomorphism maps symplectic frames with respect to φ∗ω to symplectic frames for the

symplectic structure ω.

Let (P, f) be a fixed metaplectic structure for (M,ω). Moreover, (P φ, fφ) denotes the meta-

plectic structure for (M,φ∗ω) such that φ∗ lifts to an isomorphism φ̃∗ : P φ → P , i.e. such

that the following diagramm commutes

φ̃∗

P φ → P

fφ ↓ ↓ f .

Rφ → R

φ∗
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Let Q = P ×L L
2(Rn) and Qφ = P φ ×L L

2(Rn) denote the corresponding symplectic spinor

bundles. A symplectic spinor field over (M,ω) is a section of the symplectic spinor bundle

Q, or, equivalently, an L-equivariant map ϕ : P → L2(Rn). Now, we define the transformed

symplectic spinor field (φ−1)∗ϕ by the equation

(φ−1)∗ϕ = ϕ ◦ φ̃∗ : P φ → L2(Rn) ,

where this spinor field also is regarded as an L-equivariant map. Then (φ−1)∗ϕ is a symplectic

spinor field over (M,φ∗ω) with respect to the metaplectic structure (P φ, fφ).

Obviously, φ is a symplectomorphism between the symplectic manifolds (M,ω) and (M,φ∗ω).

Thus, if ∇ is any symplectic covariant derivative on (M,ω) then ∇φ defined by

∇φ
(φ−1)∗X(φ−1)∗Y = (φ−1)∗(∇XY )

for vector fields X and Y gives a symplectic covariant derivative for (M,φ∗ω). This implies

that the induced spinor derivative in Qφ which we also denote by ∇φ satisfies

∇φ
(φ−1)∗X(φ−1)∗ϕ = (φ−1)∗(∇Xϕ).

Furthermore,

((φ−1)∗X) · ((φ−1)∗ϕ) = (φ−1)∗(X · ϕ)

holds true for the symplectic Clifford multiplication.

2 The Lie Derivative of Symplectic Spinor Fields

In this section, we will define the Lie derivative of symplectic spinor fields in the direction

of Hamiltonian vector fields. This can be done in a very natural way.

Let (M,ω) be a symplectic manifold. A vector field X over M is called Hamiltonian vector

field if there is a smooth function h : M → R such that

ω(X, ) = dh .

The Hamiltonian vector field given by a function h often is denoted also by Xh. Further, let

LX denote the Lie derivative in the direction of X. Then, the well known relation

LX = d ◦ iX + iX ◦ d

gives

LXω = d ◦ iXω + iX ◦ dω = d(ω(X, )) = ddh = 0.
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For the sake of simplicity, we assume M to be a closed manifold. For the Hamiltonian vector

fieldX, let {φt : M →M}t∈R be the one-parameter transformation group of diffeomorphisms

induced by X, i.e. we have

X(x) =
d

dt
φt(x)|t=0 for x ∈M .

Then, LXω = 0 gives

φ∗tω = ω for t ∈ R.

Let Q and S denote the symplectic spinor bundles with respect to a fixed metaplectic

structure P over (M,ω).

In section 1.4 we gave a description how a diffeomorphism φ : M →M for a given symplectic

spinor field ϕ ∈ Γ(Q) over (M,ω) induces a symplectic spinor field (φ−1)∗ϕ over (M,φ∗ω).

Since φ∗tω = ω, in our situation each (φt
−1)∗ϕ is a symplectic spinor field over (M,ω), i.e.

lies in Γ(Q). This allows the following definition.

Definition 2.1 The Lie derivative of the symplectic spinor field ϕ ∈ Γ(Q) in the direc-

tion of the Hamiltonian vector field X is defined to be

LXϕ =
d

dt
(φ−1

t )∗ϕ|t=0,

where {φt}t∈R denotes the one-parameter transformation group induced by X.

Recalling the construction of (φ−1)∗ : Γ(Q) → Γ(Qφ) in section 1.4, one sees that (φ−1)∗ is

determined only up to sign. For this reason we additionally require (φ−1
0 )∗ = idΓ(Q) for the

smooth family of mappings (φ−1
t )∗ : Γ(Q)→ Γ(Q).

Proposition 2.2 Let ∇ be any torsionfree symplectic connection on (M,ω) and let X

be any fixed Hamiltonian vector field. Then the Lie derivative of symplectic spinor fields in

the direction of X can be expressed in the following form

LXϕ = ∇Xϕ+
i

2

n∑
j=1

{∇ej
X · fj −∇fj

X · ej} · ϕ for ϕ ∈ Γ(Q),

where e1, . . . , en, f1, . . . , fn denotes any local symplectic frame on (M,ω).

Proof: First, one has the relation

(LXω)(Y, Z) = X(ω(Y, Z))− ω([X,Y ], Z)− ω(Y, [X,Z])
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for vector fields X, Y , Z. Let e1, . . . , en, f1, . . . , fn be a local symplectic frame on (M,ω)

and ϕ ∈ Γ(Q) a symplectic spinor field. Then one obtains for the torsionfree symplectic

connection ∇
n∑

j=1

{ω(∇ej
X, fj) + ω(ej,∇fj

X)} =
n∑

j=1

{ω(∇Xej, fj)− ω([X, ej], fj)

+ω(ej,∇Xfj)− ω(ej, [X, fj])}

=
n∑

j=1

{X(ω(ej, fj))− ω([X, ej], fj)− ω(ej, [X, fj])}

=
n∑

j=1

(LXω)(ej, fj)

= 0, (2.7)

by LXω = 0.

Let s : U → P be a lift of the local symplectic frame s = (e1, . . . , en, f1, . . . , fn) : U → R

into the metaplectic structure. We consider the sections

st = ((φ−1
t )∗e1, . . . , (φ

−1
t )∗en, (φ

−1
t )∗f1, . . . , (φ

−1
t )∗fn) : φ−1

t (U)→ R for t ∈ R

and lifts st : φ−1
t (U)→ P of st, such that st gives a smooth family satisfying s0 = s. If ϕ is

locally given by ϕ|U = [s, u] then

(φ−1
t )∗ϕ|φ−1

t (U) = [st, u ◦ φt].

Furthermore, we have mappings gt : U ∩ φ−1
t (U)→Mp(2n,R) given by

st = sgt .

With

((φ−1
t )∗e1, . . . , (φ

−1
t )∗en, (φ

−1
t )∗f1, . . . , (φ

−1
t )∗fn) =

= (e1, . . . , en, f1, . . . , fn)

(
ω((φ−1

t )∗el, fk) ω((φ−1
t )∗fl, fk)

ω(ek, (φ
−1
t )∗el) ω(ek, (φ

−1
t )∗fl)

)
k,l=1,...,n

one derives

ρ(gt) =

(
ω((φ−1

t )∗el, fk) ω((φ−1
t )∗fl, fk)

ω(ek, (φ
−1
t )∗el) ω(ek, (φ

−1
t )∗fl)

)
k,l=1,...,n

,

where ρ : Mp(2n,R)→ Sp(2n,R) denotes the double covering. With

LXY =
d

dt
(φ−1

t )∗Y = [X, Y ]
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for all vector fields Y on M , one sees

d

dt
ρ(gt)|t=0 =

(
ω(LXel, fk) ω(LXfl, fk)

ω(ek,LXel) ω(ek,LXfl)

)
k,l=1,...,n

=

(
ω([X, el], fk) 0

0 ω(ek, [X, fl])

)
k,l=1,...,n

+

(
0 ω([X, fl], fk)

0 0

)
k,l=1,...,n

+

(
0 0

ω(ek, [X, el]) 0

)
k,l=1,...,n

.

Having LXω = 0, we conclude

ω(ek, [X, fl]) = X(ω(ek, fl))− ω([X, ek], fl) = −ω([X, ek], fl)

as well as

ω([X, fl], fk) = ω([X, fk], fl) and ω([X, ek], el) = ω([X, el], ek) .

We obtain

d

dt
ρ(gt)|t=0 =

n∑
k,l=1

{
ω([X, el], fk)

(
Bkl 0

0 −Blk

)

+
1

2
ω([X, fl], fk)

(
0 Bkl +Blk

0 0

)

+
1

2
ω(ek, [X, el])

(
0 0

Bkl +Blk 0

)}

=
n∑

k,l=1

{
ω([X, el], fk)Xkl +

1

2
ω([X, fl], fk)Ykl +

1

2
ω(ek, [X, el])Zkl

}

=
1

2

n∑
k,l=1

ρ∗
(
ω([X, el], fk)(ak · bl + bl · ak) + ω(fk, [X, fl])ak · al

+ω(ek, [X, el])bk · bl
)
.

With
d

dt
ρ(gt)|t=0 = ρ∗

(
d

dt
gt|t=0

)
,

the definition of the Clifford multiplication, Proposition 1.2, equation (2.7), and relation
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(1.6), we compute on U

LXϕ =
d

dt
[st, u ◦ φt]|t=0

=
d

dt
[sgt, u ◦ φt]|t=0

=
d

dt
[s, L(gt)(u ◦ φt)]|t=0

= [s, L∗(
d

dt
gt|t=0)u+

d

dt
u ◦ φt|t=0]

= X(ϕ)− i

2

n∑
k,l=1

{ω([X, el], fk)(ek · fl + fl · ek)

+ω(fk, [X, fl])ek · el + ω(ek, [X, el])fk · fl} · ϕ

= X(ϕ)− i

4

n∑
k=1

{[X, ek] · fk + fk · [X, ek]− [X, fk] · ek − ek · [X, fk]} · ϕ

= X(ϕ)− i

4

n∑
k=1

{∇Xek · fk −∇ek
X · fk + fk · ∇Xek − fk · ∇ek

X

−∇Xfk · ek +∇fk
X · ek − ek · ∇Xfk + ek · ∇fk

X} · ϕ

= X(ϕ) +
i

2

n∑
k=1

{ek · ∇Xfk − fk · ∇Xek} · ϕ

+
i

4

n∑
k=1

{iω(ek,∇Xfk)− iω(fk,∇Xek)}ϕ

+
i

2

n∑
k=1

{∇ek
X · fk −∇fk

X · ek} · ϕ

+
i

4

n∑
k=1

{iω(∇ek
X, fk)− iω(∇fk

X, ek)}ϕ

= ∇Xϕ−
1

4

n∑
k=1

X(ω(ek, fk))ϕ

+
i

2

n∑
k=1

{∇ek
X · fk −∇fk

X · ek} · ϕ

= ∇Xϕ+
i

2

n∑
k=1

{∇ek
X · fk −∇fk

X · ek} · ϕ ,

which proves the proposition. �

As it is well known, the commutator of two Hamiltonian vector fields is a Hamiltonian vector

field, too. Ideed, if X = Xh is given by the function h and Y = Xg by a function g then the
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commutator is the Hamiltonian vector field defined by the Poisson bracket of g and h, i.e.

[Xh, Xg] = −X{h,g} . (2.8)

For the Lie derivative in the direction of the commutator one has the following relation.

Corollary 2.3 Let ϕ ∈ Γ(Q) a symplectic spinor field and let X,Y are Hamiltonian

vector fields on (M,ω), then

L[X,Y ]ϕ = [LX ,LY ]ϕ.

Proof: Using (2.8) and Proposition 2.2, this proof is immediate. �

In case that M is not closed, all considerations hold true locally.

3 The Lie Derivative as Schrödinger Equation

This section illustrates how the Schrödinger equation for a quadratic Hamiltonian function

relates to the Lie derivative of a constant symplectic spinor field over R2n.

3.1 The Schrödinger equation for quadratic Hamiltonians

We consider quadratic Hamiltonians H of the form H(z) = z>Qz for z ∈ R2n, where Q is

any real 2n×2n-matrix. In general, one could add an additional absolut real term. But, this

is completely inessential, because it does not play any role for the dynamics of the system.

Or, physically speaking, the choice of the zero-energy-level is arbitrary.

Lemma 3.1 Let H : R2n → R be a quadratic Hamiltonian on R2n, which is given

by H(z) = z>Qz, where Q is any 2n × 2n-matrix. Then, there exists a 2n × 2n-matrix

A ∈ sp(2n,R) such that the Hamiltonian vector field XH of H is given by XH(z) = Az for

z ∈ R2n.

Proof: Let γ(t) be a curve in R2n with γ(0) = z and γ̇(0) = w. Then

dH(w)z =
d

dt
H(γ(t))|t=0 =

d

dt
(γ(t))>Q(γ(t))|t=0 = w>Qz + z>Qw = w>(Q+Q>)z .

On the other hand, the Hamiltonian vector field XH of H is given by

dH(w) = ω0(XH , w) = −〈Jw,XH〉 = −(Jw)>XH = −w>J>XH = w>JXH .

Thus, at any point z ∈ R2n we have JXH(z) = (Q+Q>)z, and consequently

XH(z) = −J(Q+Q>)z = J>(Q+Q>)z = ((Q+Q>)J)>z .
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Taking A = −J(Q+Q>), we have XH(z) = Az for z ∈ R2n. Furthermore, this A satisfies

A>J = −(Q+Q>)J>J = −(Q> +Q)

as well as

−JA = −(Q+Q>) ,

which gives A>J + JA = 0, or equivalently, A ∈ sp(2n,R). �

Each quadratic Hamiltonian on R2n can be written as a linear combination, i.e. as a sum of

multiples of the functions on R2n given by the expressions

H1
jk(p, q) = pjpk ,

H2
jk(p, q) = qjqk , and

H3
jk(p, q) = pjqk =

1

2
(pjqk + qkpj) for j, k = 1, . . . , n .

We call these functions generating quadratic Hamiltonians.

Lemma 3.2 For the generating quadratic Hamiltonians the corresponding elements in

sp(2n,R) due to Lemma 3.1 are given in the following way.

(1) If H = H1
jk, then A = −Zjk = −Y >

jk .

(2) If H = H2
jk, then A = Yjk = Z>

jk.

(3) If H = H3
jk, then A = X>

jk.

Proof:

(1) H = H1
jk is given by Q =

(
Bjk 0

0 0

)
. Thus

A = −

(
0 −1

1 0

)(
Bjk +Bkj 0

0 0

)
=

(
0 0

−Bjk −Bkj0

)
= −Zjk = −Y >

jk .

(2) H = H2
jk is given by Q =

(
0 0

0 Bjk

)
, which implies

A = −

(
0 −1

1 0

)(
0 0

0 Bjk +Bkj

)
=

(
0 Bjk +Bkj

0 0

)
= Yjk = Z>

jk .
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(3) Finally, H = H3
jk is given by Q =

1

2

(
0 Bjk

Bkj 0

)
. This yields

A =

(
0 −1

1 0

)(
0 Bjk

Bkj 0

)
=

(
Bkj 0

0 −Bjk

)
= X>

jk .

�

Let H denote the Hamilton operator which is given by H via normal ordering quantization,

i.e. one obtains H by replacing in H formally the variable pj by the multiplication operator

ixj and qk by the operator
∂

∂xk

. Thereby “normal ordering” means that the expression

pjqk =
1

2
(pjqk + qkpj) is replaced be the operator

i

2

(
xj

∂

∂xk

+
∂

∂xk

xj

)
.

Corollary 3.3 For the quadratic Hamiltonian H let A be given by Lemma 3.1 and let H
be the Hamilton operator given via normal ordering quantization. Then, one has the relation

L∗ ◦ ρ−1
∗ (A>) = −iH .

Proof: Since L∗ and ρ−1
∗ are linear and H is a linear combination of the generating quadratic

Hamiltonians, it suffices to prove the assertion for the generating quadratic Hamiltonians.

Then, by Lemma 1.1, Lemma 3.2, and Proposition 1.2 one has

L∗ ◦ ρ−1
∗ (−Yjk) = ixjxk = −i(ixj)(ixk) = −iH for H = H1

jk,

L∗ ◦ ρ−1
∗ (Zjk) = −i ∂2

∂xj∂xk

= −iH for H = H2
jk, and

L∗ ◦ ρ−1
∗ (Xjk) = − i

2

(
ixj

∂

∂xk

+
∂

∂xk

ixj

)
= −iH for H = H3

jk .

�

We consider a quadratic Hamiltonian H on R2n with A ∈ sp(2n,R) given according to

Lemma 3.1. Then, we consider the family St ∈ Sp(2n,R) of symplectic matrices defined by

St = exp(tA>) for t ∈ R. We lift this family of symplectic matrices into the double covering

of Sp(2n,R). That is, we consider the family Mt ∈ Mp(2n,R) given by ρ(Mt) = St such

that M0 is the unit element in Mp(2n,R).

Definition 3.4 For fixed ψ0 ∈ S(Rn) we define ψ(t, x) := L(Mt)(ψ0)(x), where t ∈ R
and x ∈ Rn.

Furthermore let ψ(t) be the curve in S(Rn) given by ψ(t)(x) := ψ(t, x) for x ∈ Rn, i.e.

ψ(t) = L(Mt)ψ0.
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Proposition 3.5 ψ(t) satisfies the Schrödinger equation

d

dt
ψ(t)|t=0 = −iH(ψ0) .

Proof: We have

d

dt
ψ(t)|t=0 =

d

dt
L(Mt)(ψ0)|t=0 = L∗

(
d

dt
Mt|t=0

)
(ψ0) .

The definition of Mt gives

ρ∗

(
d

dt
Mt|t=0

)
=

d

dt
ρ(Mt)|t=0 =

d

dt
St|t=0 =

d

dt
exp(tA>)|t=0 = A> .

Hence
d

dt
Mt|t=0 = ρ−1

∗ (A>)

and finally
d

dt
ψ(t)|t=0 = L∗ ◦ ρ−1

∗ (A>)(ψ0) = −iH(ψ0)

by the previous Lemma. �

Let us now give the announced interpretation of the Lie derivative.

3.2 Interpretation as Lie derivative

In fact, the Schrödinger equation above gives the Lie derivative of a constant symplectic

spinor field ϕ0 on R2n in the direction of the Hamiltonian vector field X.

First observe that the symplectic standard basis {a1, . . . , an, b1, . . . , bn} gives a global section

s of the symplectic frame bundle R of R2n. Then s denotes a lift of s into the canonical

metaplectic structure P of R2n.

Now, if ψ0 is any fixed function in S(Rn) the symplectic spinor field ϕ0 over R2n is defined

to be

ϕ0 = [s, ψ0] .

Further, we consider the family {φt : R2n → R2n}t∈R given by

φt(z) := exp(tA)z for z ∈ R2n ,

where A denotes the matrix according to Lemma 3.1. Then,

d

dt
φt(z)|t=0 = Az = X(z) ,
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which says that {φt}t∈R is exactly the one-parametergroup of diffeomorphisms induced by

the Hamiltonian vector field X. Recalling the computations in the proof of Proposition 2.2,

one has

(φ−1
t )∗ϕ0 = [st, ψ0]

with st = s exp(−tA) and st its lift to P . Since P is an Mp(2n,R)-principal fibre bundle,

we obtain a family of elements Nt ∈Mp(2n,R) such that

st = sNt with ρ(Nt) = exp(−tA) .

Hence,

(φ−1
t )∗ϕ0 = [st, ψ0] = [sNt, ψ0] = [s, L(Nt)ψ0] .

For a fixed element J̃ ∈ ρ−1(J) the metaplectic representation was given by L(J̃) = i
n
2F−1

(cf. equation (1.5)). Thus, i−
n
2L(J̃) ◦ F = id. Using relation (1.1) we obtain

ρ(Nt)ρ(J̃) = exp(−tA)J = (exp(tA))−1J = J(exp(tA))> = J exp(tA>) = ρ(J̃)ρ(Mt) ,

where Mt is given above. Consequently,

L(Nt) ◦ L(J̃) = L(J̃) ◦ L(Mt) .

Altogether, we arrive at

(φ−1
t )∗ϕ0 = i−

n
2 [s, L(Nt) ◦ L(J̃) ◦ Fψ0] = i−

n
2 [s, L(J̃) ◦ L(Mt) ◦ Fψ0] .

Finally, we compute the Lie derivative of ϕ0 in the direction of X and obtain, by Definition

2.1,

LXϕ0 = i−
n
2

[
s, L(J̃)

(
d

dt
L(Mt)(Fψ0)|t=0

)]
= −i[s,F−1 ◦ H ◦ F(ψ0)] .

Here, the Fourier transform F means the transition between position and momentum rep-

resentations.

Concluding Remarks

Fixing a compatible almost complex structure for (M,ω), Andreas Klein introduced a glob-

ally defined Fourier transform acting on symplectic spinor fields. See [11]. If one would

define a Hamilton operator Ĥ acting on symplectic spinor fields in the way that

Ĥ[s, ψ] := [s,Hψ] ,

however, this does not work in general. The reason is that Ĥ is not well defined by this

relation.
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But, setting formally

q(h)ϕ := iLXh
ϕ , (3.9)

equation (2.3) gives

q({h, g})ϕ = iLX{h,g}ϕ = −iL[Xh,Xg ]ϕ = −iLXh
◦ LXgϕ+ iLXh

◦ LXh
ϕ

= iq(h) ◦ q(g)ϕ− iq(g) ◦ q(h)ϕ = i[q(h), q(g)]ϕ ,

which is in fact the “magic” Heisenberg relation

[q(h), q(g)]ϕ = −iq({h, g})ϕ .

We do not claim that (3.9) gives a quantization procedure for arbitrary Hamiltonians over

any symplectic manifold, although this expression makes sense in the general situation. We

deduced the Heisenberg relation purely formal.
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Lothar Berg

On the Representation of Continuous Solutions of
Two-Scale Difference Equations at Dyadic Points

ABSTRACT. The paper gives some insight into the structure of continuous solutions of

two-scale difference equations at dyadic points. An example is given in which the solution

is estimated.

KEY WORDS. Two-scale difference equations, 2l-slanted matrices, recursions

Let ϕ be a continuous compactly supported solution of the two-scaled difference equation

(cf. [3])

ϕ

(
t

2

)
=

N∑
n=0

cnϕ(t− n) (1)

(t ∈ R) with N ∈ N (in fact it must be N ≥ 2), cn ∈ C, c0cN 6= 0 and

N∑
n=0

cn = 2M ,

(M ∈ N). In [2, Corollary 2.5] it was shown that the restriction of ϕ to [0, 1] possesses at

dyadic points the representation

ϕ

(
k

2l

)
= cl0

N−1∑
j=1

yN+k−jϕ(j) (2)

(k, l ∈ N0, 0 ≤ k ≤ 2l) where the coefficients are defined by the initial values

y1 = · · · = yN−1 = 0, yN = 1 (3)

and the recursions

c0yk =

bN+k
2 c∑

j=d k
2e
cN+k−2jyj . (4)
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Here b.c denotes the floor, and d.e the ceiling function, cf. [4, p. 52]. It is suitable to use

the extensions yj = 0 for j < 0 and cn = 0 for both n < 0 and n > N , respectively, and to

introduce the infinite two-scale matrix

A = (c2j−k) (1 ≤ j, k) .

Then, for l ∈ N, the matrix Al possesses the entries

cl0y2l+N−1, c
l
0y2l+N−2, c

l
0y2l+N−3, . . . (5)

in its first row, cf. [2, Theorem 2.4]. It can easily be seen that Al is a 2l-slanted matrix, i.e.

Al =
(
c
(l)

2lj−k

)
(1 ≤ j, k) (6)

where c
(1)
n = cn and

c
(l+m)

2l+mj−k
=

∞∑
i=1

c
(l)

2lj−i
c
(m)
2mi−k ,

in particular c
(l)
0 = cl0, c

(l)

(2l−1)N
= clN , and c

(l)
n = 0 for both n < 0 and n > (2l − 1)N ,

respectively.

For our next considerations we need the following submatrices of A:

Al = (c2j−k) (1 ≤ j, k ≤ 2l +N − 1)

with l ∈ N0. If A0 is diagonalizable then there exist matrices Λ = diag(λ1, . . . , λN) and E

with

A0 = E−1ΛE , (7)

where the j-th row (ej1, . . . , ejN) of E is a left eigenvector of A0 to the eigenvalue λi(j ∈
{1, . . . , N}). This eigenvector can be continued to a left eigenvector (ej1, ej2, . . . ) of A to

the same eigenvalue. The matrix of these eigenvectors we denote by

E = (ejk) (1 ≤ j ≤ N, 1 ≤ k) ,

and we also need the finite submatrices

Gl = (ejk) (1 ≤ j ≤ N, 1 ≤ k ≤ 2l +N − 1) . (8)

Theorem Let A0 be diagonalizable. Then with the foregoing notations the first 2l +N−1

terms of (5) can be represented as

cl0y2l+N−k =
N∑

i=1

λl
if1ieik (k = 1, . . . , 2l +N − 1, l ∈ N0) (9)

where (f11, . . . , f1N) is the first row of E−1 = (fjk).
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Proof: The right-hand sides of (9) for k = 1, . . . , 2l +N − 1 are the entries of the first row

of the matrix E−1ΛGl. We have to show that they coincide with the first 2l +N − 1 entries

of the first row of Al. For l = 0 this is clear. For l ≥ 1 the matrices A and Al can be splitted

into the following block forms

A =

(
Al ∗
O ∗

)
, Al =

(
A0 ∗
O ∗

)
,

where the asterisks indicate suitable submatrices and O suitable zero matrices. Hence,

Al =

(
Al

l ∗
O ∗

)
, Al

l =

(
Al

0 ∗
O ∗

)
, (10)

where Al
l = (c

(l)

2lj−k
) (1 ≤ j, k ≤ 2l + N − 1) using the notation (6). Since c

(l)

2lj−k
= 0 for

2lj − k > (2l − 1)N , and therefore for both N + 1 ≤ j and 1 ≤ k ≤ 2l +N − 1, we have in

fact

Al
l =

(
Al

0 ∗
O O

)
. (11)

Comparison of the Jordan normal form

Al = E−1
l

(
Λ O

O J

)
El (12)

with (7) and (8) shows that the outer factors must have the block forms

E−1
l =

(
E−1 ∗
O ∗

)
, El =

(
E ∗
O ∗

)
=

(
Gl

∗

)
.

Comparison of (11) with (12) implies that J l = 0 and therefore

Al
l =

(
E−1 ∗
O ∗

)(
ΛlGl

O

)
=

(
E−1ΛlGl

O

)
.

Now, the assertion follows from (10)

Remarks 1◦. Choosing in (2) k = 2l −m then by means of (9) with k = m + j we get

some insight into the structure of ϕ
(
1− m

2l

)
, 0 ≤ m ≤ 2l. Though the result can be

used for explicit calculations of ϕ, this is not recommended.

2◦. The entries of the eigenvectors (ei1, ei2, . . . ) satisfy analogous recursions as in (4),

namely

λieik =

bN+k
2 c∑

j=d k
2e
c2j−keij .
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3◦. In the case N = 2 formula (9) was already set up (with other notations) in [1, (3.1)].

4◦. The case that A0 is non-diagonalizable can be treated with some more effort, cf. [1,

(3.3)] in the case N = 2.

5◦. In [2, Proposition 2.7] it must be m0 = 0.

6◦. The first column of E−1 is a right eigenvector of A0 to the eigenvector 1. This implies

ϕ(j) = fj1 (up to a constant factor), cf. [2, (2.4)] with t = 1.

7◦. Formula (9) can be simplified if the entries f1k of the first row of E−1 are normlized

according to f1k = 1 so far as f1k 6= 0. But it is also possible that f1k = 0 for a fixed k

as in the folowing

Example Choosing c0 = 1
4
, c3 = 1, c4 = 3

4
and cn = 0 otherwise, so that N = 4, then

Λ = diag
(
1 1

2
− 1

2
3
4

)
and

E−1 =


0 1 1 1

0 2 −2 3

1 −3 1 −9

0 0 0 5

 , E =


1 1 1 1
1
2

1
4

0 −1
4

1
2
−1

4
0 1

20

0 0 0 1
5

 .

Hence, (9) yields in particular

y2l+3 = 2l−1(1 + (−1)l) , y2l+2 = (1− (−1)l)2l−2 ,

y2l+1 = 0 , y2l =
1

5

(
3l − (5− (−1)l)2l−2

)
(l ∈ N0). Formula (2) with ϕ(3) = 1 and ϕ(j) = 0 otherwise specializes to

ϕ

(
k

2l

)
=

1

4l
yk+1 (13)

for 0 ≤ k ≤ 2l. But (13) is even valid for 0 ≤ k ≤ 3 · 2l, since ϕ(t) = 0 for t ≤ 0 and (1)

imply ϕ( t
2
) = 1

4
ϕ(t) for 0 ≤ t ≤ 3. The recursions (4) specialize to

y2j = 3yj + yj+2, y2j−1 = 4yj (14)

for j ∈ N, and with the initial values (3) with N = 4 we obtain for the first values

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

yj 0 0 0 1 0 0 4 3 0 4 0 3 16 12 12 13 0 0 16 15 0 16 12 21 64 60

where it easily follows by induction that

y(22n+1)2m+1 = 0 (15)

for all m,n ∈ N0. The solution s = ϕ(t) is plotted in the following picture:
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Introducing the notations

xn = y3·2n+1, zn = y3·2n+3, un = y3·2n+2, vn = y3·2n , wn = y3·2n−1

(n ∈ N0) and using (14) we find the recursions

xn = 4xn−1, zn = 12xn−2 + 4zn−2,

un = 3xn−1 + zn−1, vn = 3vn−1 + un−1, wn = 12vn−2 + 4un−2,

and by means of the initial values from the forgoing table their solutions

xn = 4n, zn = 4n + ((−1)n − 3)2n−1, un = 4n − ((−1)n + 3)2n−2,

vn = 4n + 3 · 2n−2 +
1

5
((−2)n−2 − 3n+2), wn = 4n + 3 · 2n−1 +

1

5
((−2)n−1 − 4 · 3n+1) .

Proposition The solutions yk of (14) with (3) for N = 4 satisfy the estimates

0 ≤ yk ≤
(
k − 1

3

)2

(16)

(k ∈ N) where both bounds are sharp for infinitely many k.

Proof: The first inequality of (16) follows from (14) and the initial values (3) with N = 4,

the sharpness from (15). For k = 3 · 2n + 1 (n ∈ N0) the second inequality is in fact an

equality in view of xn = 4n. For 1 ≤ k ≤ 3 it is trivial. For k 6= 3 · 2n + 1 and k ≥ 5 we shall

prove the better inequality

yk ≤
1

9
k(k − 2) . (17)

For k = 3 · 2n + 2 (n ∈ N0) we have

yk = un ≤ 4n − 2n−1 =
1

9
(k − 2)

(
k − 7

2

)
and (17) is valid. For k = 3 · 2n − 2 we have

yk = 3wn−1 + xn−1 ≤ 4n +
12

5
(2n − 3n)
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and (17) is valid when n ≥ 2 (n = 1 corresponds to y4 = 1).

In order to complete the proof we introduce the sets Mn = {3 · 2n +2, . . . , 3 · 2n+1} (n ∈ N0).

The inequality (17) is valid for k ∈ M0 = {5, 6}. If (17) is valid for k ∈ Mn then by means

of the recursions (14) it follows that (17) is valid for the odd k from Mn+1. Analogously, we

see that (17) is also valid for the even k from Mn+1 if we simultaneously take into account

the already treated two special cases. Hence by induction, (17) is valid for all k ∈
∞⋃

n=0

Mn

In view of (13) and the continuity of ϕ we immediately get the

Corollary For 0 ≤ t ≤ 3 the solution of our example for (1) with ϕ(3) = 1 satisfies the

estimates

0 ≤ ϕ(t) ≤ 1

9
t2

where both bound are sharp for infinitely many t.
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Somashekhar Naimpally

Proximity and Hyperspace Topologies

Dedicated to my friend Professor Dr. Harry Poppe on his 70th birthday.

ABSTRACT. In this paper we give a survey of the use of proximities in hyperspace topolo-

gies. A proximal hypertopology corresponding to a LO-proximity is a g eneralization of

the well known Vietoris topology. In case we start with an EF-proximity, the proximal hy-

pertopology equals the Hausdorff uniform topology corresponding to the totally bounded

uniformity and, being contained in both the Vietoris and Hausdorff uniform topologies,

serves as a bridge between the two. Wattenberg and Beer-Himmelberg-Prickry-Van Vleck

showed that the locally finite hypertopology induced by a metrizable space is the sup of the

Hausdorff metric topologies induced by all compatible metrics. Naimpally-Sharma showed

that this follows from the fact that a Tychonoff space is normal iff its fine uniformity induces

the locally finite hypertopology. Di Concilio-Naimpally-Sharma showed that in a Tychonoff

space the fine uniformity induces the proximal locally finite hypertopology.

We study DELTA topologies introduced by Poppe, and their proximal variations. We show

that a short proof can be given of the Beer-Tamaki result concerning the uniformizabil-

ity of (proximal) DELTA hypertopologies via the Attouch-Wets approach used by Beer in

dealing with the Fell topology. Finally we present a result concerning (Proximal) DELTA-

U-hypertopolgies. Several new hypertopologies are introduced.

KEY WORDS AND PHRASES. proximity, hyperspace, ∆-topology, proximal ∆-topology,

U-topology, ∆U-topology, proximal ∆U-topology, Function space, Vietoris topology, Fell

topology, Hausdorff uniformity.

1 Introduction

Suppose (X,T) (respectively (X,V)) is a T1 topological space (respectively a uniform space).

Then it is well known that on CL(X), the hyperspace of all non-empty closed subsets of X,

one can define Vietoris topology τ(V) (respectively a Hausdorff uniformity VH) such that X
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is topologically (respectively, uniformly) embedded in CL(X). But it is not known how one

can define directly a proximity on the hyperspace of a given proximity space (X, δ). Nachman

([21]) tackled this problem in the case of an EF-proximity δ on X via Hausdorff uniformities

associated with compatible uniformities on X. An attempt was made to use proximity in

hyperspaces in [16] and a little later in [4]. Since the paper [16] remains unpublished and

the paper [4] dealt with proximities in the context of metric spaces, an impression continues

in the literature that proximal hypertopologies exist only in metric spaces. The aim of this

paper is to correct this impression and show that proximal topologies can be defined using

LO-proximities in any T1 space. Recently there has been some work done in the general

case. (See e. g. [9], [10]) See [1] for the latest results on compactness in function spaces via

hyperspaces and (uniform) convergence structures.

(X,T) denotes a T1-topological space and δ denotes any compatible LO-proximity on X.

The symbol δ0 denotes the fine LO-proximity and it is well known (Urysohn Theorem) that

it is EF iff X is normal. If (X,T) is Tychonoff, then we generally choose δ to be EF. CL(X)

denotes the family of all non-empty closed subsets of X and K(X) denotes the family of

all non-empty compact subsets. We use the symbol ∆ to denote a subfamily of CL(X) and

we assume, without any loss of generality, that it is a cover of X and is closed under finite

unions and contains all singletons.

For any set E ⊂ X and E ⊂ T we use the following notation:

E− = {A ∈ CL(X) : A ∩ E 6= ∅}

E− = {A ∈ CL(X) : A ∩ E 6= ∅} for each E ∈ E}

E++ = {A ∈ CL(X) : A� E w. r. t. δ i. e. A δ Ec}

E+ = {A ∈ CL(X) : A ⊂ E i. e. A� E w. r. t. δ0}

The ∆-topology τ(∆) is generated by a basis of the form E+ ∨ E−, where Ec ∈ ∆ and

E ⊂ T is finite. ([26], [27])

The proximal ∆-topology (w. r. t. δ) σ(δ∆) is generated by a basis of the form E++∨E−,

where Ec ∈ ∆ and E ⊂ T is finite. We omit δ if it is obvious from the context.

If in the above, the family E is locally finite, then we have the locally finite ∆-topology

τ(LF∆) and the proximal locally finite ∆-topology (w. r. t. δ) σ(LFδ∆).

The ∆U-topology τ(∆U) is generated by a basis of the form E+ ∨ E−, where Ec ∈ ∆ or

clE ∈ ∆ and E ⊂ T is finite.

The proximal ∆U-topology (w. r. t. δ) σ(δ∆U) is generated by a basis of the form

E++ ∨ E−, where Ec ∈ ∆ or clE ∈ ∆ and E ⊂ T is finite.

If in the above, the family E is locally finite, then we have the locally finite ∆U-topology

τ(LF∆U) and the proximal locally finite ∆U-topology (w. r. t. δ) σ (LFδ∆U).
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Well known special cases are:

(a) when ∆ = CL(X), τ(∆)= τ(V) the Vietoris or finite topology ([20])

σ(δ∆)=σ(δ) the proximal topology ([16])

τ(LF∆)= τ(LF) the locally finite topology ([19])

σ(LFδ∆)=σ(LFδ) the proximal locally finite topology ([16])

To make the notation simpler, we’ll omit δ from all proximal topologies

whenever it is understood from the context: thus we’ll use σ for σ(δ), σ(LF) for

σ(LFδ) etc.

(b) When ∆ = K(X), τ(∆)= τ(F) the Fell topology ([17])

and we define three new ones

σ(δ∆)=σ(δF) the proximal Fell topology

τ(LF∆)= τ(LFF) the locally finite Fell topology

σ(LFδ∆)=σ(LFδF) the proximal locally finite Fell topology

τ(∆U)= τ(U) the U-topology ([8])

and we define three new ones

σ(δ∆U)=σ(δU) the proximal U-topology

τ(LF∆U)= τ(LFU) the locally finite U-topology

σ(LFδ∆U)=σ(LFδU) the proximal locally finite U-topology

Of course, if the proximity δ is EF or R (and so X is Tychonoff or regular respectively)

then τ(F) = σ(F), τ(LFF) = σ(LFF), τ(U) = σ(U) and τ(LFU) = σ(LFU).

Many interesting properties of the Fell topology stem from the fact that

it is also a proximal topology!. In generalizing results from the Fell topology to

∆-topologies, we find that some hold for τ(∆) and others for σ(∆)!!

(c) If (X, d) is a metric space, δ is the metric proximity induced by d and ∆ denotes the

ring generated by closed balls of non-negative radii, then

τ(∆)= τ(B) the Ball topology ([2])

σ(∆)=σ(B) the proximal Ball topology ([14])

and we introduce two new ones

τ(LF∆)= τ(LFB) the locally finite Ball topology,

σ(LF∆)=σ(LFB) the proximal locally finite Ball topology

In addition we have the well known Hausdorff metric dH and the Hausdorff metric

topology τ(dH).

If (X,V) is a uniform space, then we have the Hausdorff uniformity VH and the

Hausdorff uniform topology τ(VH).
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[2] is a standard reference on hyperspace topologies and we give below other relevant

bibliography for the interested reader.

2 VIETORIS, PROXIMAL AND (PROXIMAL) LOCALLY FI-

NITE TOPOLOGIES

Suppose (X,T) is a T1 topological space, δ any compatible LO-proximity on X and δ0 the

fine LO-proximity. If (X,T) is Tychonoff, the fine EF-proximity is denoted by δ# (the

functionally indistinguishable EF-proximity), the fine uniformity is denoted by V#, and the

finest totally bounded uniformity is denoted by V∗. If δ is a compatible EF-proximity on

X, then Π(δ) is the family of all uniformities which induce δ and Vω denotes the coarsest

totally bounded member of Π(δ) ([25]). We note that since, in general, there are many

proximities compatible with (X,T), proximal hypertopologies provide us with a large number

of hypertopologies. For further details see [16].

Theorem 2.1 ([16]) (a) τ(V) = σ(δ0)

(b) τ(LF) = σ(LFδ0)

(c) σ ⊂ σ(LF) and τ(V) ⊂ τ(LF).

In each case ⊂ is replaced by = if and only if X is feebly compact (i. e. every locally

finite family of open sets in X is finite).

(d) In general τ(V) and σ are independent.

(e) If δ < δ′ and δ is EF, then σ(δ) ⊂ σ(δ′) and σ(LFδ) ⊂ σ.(LFδ′).

Consequently, σ ⊂ τ(V).

(f) If δ is EF and δ 6= δ0, then σ 6= τ(V) and σ(LF) 6= τ(LF).

Corollary 2.2 ([16]) If δ is EF, then (a), (b) and (c) are mutually equivalent and

each implies (d):

(a) τ(V) = σ

(b) τ(LF) = σ(LF)

(c) δ = δ0

(d) (X,T) is normal.
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Corollary 2.3 ([4]) If (X, d) is a metric space and δ is the metric proximity, then the

following are equivalent:

(a) (X, d) is Atsuji or UC

(i. e. every real valued continuous function on X is uniformly continuous.)

(b) τ(V) ⊂ τ(dH)

(c) δ = δ0

(d) τ(V) = σ

Theorem 2.4 ([16]) Suppose (X, δ) is an EF-proximity space and V and Vω are in

Π(δ). Then

(a) σ = τ(VωH) ⊂ τ(VH) ⊂ σ(LFδ#) ⊂ τ(LF) and σ = τ(VH) implies V = Vω.

It follows that if (X,T) is normal, then τ(V) = τ(V∗
H) ⊂ τ(LF).

(b) σ = τ(VωH) ⊂ τ(V) ⊂ τ(LF)

(c) σ(LFδ#) = τ(V∗
H)

(d) σ(δ#) = τ(V∗
H)

Corollary 2.5 ([24]) The following are equivalent:

(a) (X,T) is normal.

(b) δ0 is EF.

(c) τ(V#
H) = τ(LF).

(d) σ(δ#) = τ(LF).

The following Hesse diagram shows the various relationships:

τ(LF) = σ(LFδ0) ./ ∖
σ(LFδ#) = τ(V#

H) τ(V) = σ(δ0)∖ /
σ(δ#) = τ(V∗

H)∣∣∣
σ = τ(VωH)
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Remark 2.6 In [5] it was shown that if X is a metrizable space, the locally finite topology

τ(LF) on CL(X) is the sup of the Hausdorff metric topologies {τ(dH)} corresponding to

equivalent compatible metrics {d} onX. This result was generalized in ([24]) to : a Tychonoff

space X is normal if and only if the locally finite topology τ(LF) equals τ(V#
H), the topology

induced by the Hausdorff uniformity corresponding to the fine uniformity V#
H . The question

then arises: in a non-normal Tychonoff space what is τ(V#
H)? The answer was provided in

([16]) that it is precisely the proximal locally finite topology σ(LFδ#) induced by the fine

proximity δ# on X. This shows the importance of proximal topologies in this problem.

3 (PROXIMAL) DELTA TOPOLOGIES

Poppe ([26], [27]) first studied ∆-topologies as generalizations of the Fell topology. On the

other hand, many workers in this area have used, in the context of metric spaces, bounded

sets to study new hyperspace topologies e.g. the bounded Vietoris (proximal) topology ([12]),

Attouch-Wets topology ([3]) etc. It is not widely known that boundedness can also be defined

in general topological spaces in an abstract way ([18]) and this provides a technique to give

simple proofs and generalizations of several results in this area. In this section we give a

glimpse of this approach and refer the interested readers to ([15]) for further information.

A boundedness H in a T1-space (X,T) is a non-empty family of subsets of X which contains

finite unions and subsets of its members. Well known examples of H include

(a) metrically bounded subsets of a metric space

(b) the family of subsets of compact sets in a topological space

(c) the family of all totally bounded subsets of a uniform space etc.

In what follows we’ll usually take ∆H ∩ CL(X). Then τ(∆) is a generalization of the

bounded Vietoris topology. We note here that the upper ∆-topology τ+(∆) is gener-

ated by {E+ : Ec ∈ ∆} and we have similar definitions of other “upper“ topologies.

Theorem 3.1 (cf. [12]) Suppose (X,T) is a T1-topological space and ∆, ∆′ are two

subrings of CL(X).

Then the following are equivalent on CL(X):

(a) τ(∆) ⊂ τ(∆′)

(b) τ+(∆) ⊂ τ+(∆′)
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(c) For each B ∈ ∆ − {X}, B ⊂ U ∈ T implies the existence of B′ ∈ ∆′ such that

B ⊂ B′ ⊂ U .

Corollary 3.2 Suppose H is a boundedness in a is a T1-topological space (X,T) such

that K(X) ⊂ H and ∆H ∩ CL(X). Then the following are equivalent:

(a) τ(F) = τ(∆) on CL(X),

(b) ∆− {X} ⊂ K(X),

(c) X is boundedly compact.

We have the well known results:

Corollary 3.3 (a) If (X, d) is a metric space, then on CL(X) the Fell topology equals

the bounded Vietoris topology if and only if X is boundedly compact.

Replacing the metric d by the equivalent bounded metric d′ = min{d, 1}, we get the

result:

(b) τ(F) = τ(V) on CL(X) if and only if X is compact.

There are analogous results using abstract boundedness in proximity and uniform spaces

and we refer to ([15]).

We now prove some simple results that will generalize relations between τ(F), τ(V) as

well as between τ(F), τ(VH). Proofs in the following are similar to those in (3.1).

Theorem 3.4 Suppose (X,T) is a T1-space and suppose ∆ ⊂ CL(X) is a ring contain-

ing K(X). Then the following are equivalent:

(a) τ(∆) = τ(∆U)

(b) τ+(∆) = τ+(∆U)

(c) X ∈ ∆.

(d) τ(∆) = τ(V).

Theorem 3.5 Suppose (X,V) is a Hausdorff uniform space with a compatible EF-

proximity δ. Suppose ∆ ⊂ CL(X) is a ring containing K(X). Then the following are

equivalent:

(a) σ(∆) = σ(∆U)

(b) σ+(∆) = σ+(∆U)
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(c) X ∈ ∆.

(d) σ(∆) = τ(VH)

Remark 3.6 As we noted above, τ(F) = σ(F) and so the two above results generalize the

well known result that the following are equivalent:

(a) τ(F) = τ(V)

(b) τ(F) = τ(VH)

(c) X is compact.

4 UNIFORMIZATION OF (PROXIMAL) DELTA TOPOLOGIES

Beer and Tamaki ([6], [7]) investigated necessary and sufficient conditions for the unformiz-

ability of (proximal) ∆-topologies. Their proof involves construction of special Urysohn

functions. In ([22]) we study these and (proximal) ∆U-topologies and provide an alternate

approach.

Suppose (X,T) is a Tychonoff space with a compatible EF-proximity δ and suppose ∆ ⊂
CL(X) is a ring.

(a) ∆ is called proximally Urysohn iff whenever D ∈ ∆ and A ∈ CL(X) are far w. r. t.

δ then there exists an S ∈ ∆ such that D � S ⊂ Ac.

It is easy to see that the above definition is equivalent to one where the last relation

is replaced by D � S � Ac.

∆ is called Urysohn if ∆ is proximally Urysohn w. r. t. the LO-proximity δ0.

(b) ∆ is called a local family iff for each x ∈ X and V ∈ T with x ∈ V , implies the

existence of a D ∈ ∆ such that x ∈ Do ⊂ D ⊂ V .

(c) For each K ∈ ∆ and W ∈ V, we set

[K,W ] = {(A,B) ∈ CL(X)× CL(X) : A ∩K ⊂ W (B) and B ∩K ⊂ W (A)} .

The family {[K,W ] : K ∈ ∆ and W ∈ V} is a base for a uniformity on CL(X) called

the Attouch-Wets uniformity V∆.

The proof of the following result due to Beer and Tamaki uses the Attouch-Wets technique

developed by Beer in ([7]) for studying the Fell topology.
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Theorem 4.1 Suppose (X,T) is a Tychonoff space with a compatible EF-proximity δ,

Vω the unique totally bounded uniformity compatible with δ. Suppose ∆ is a local proximally

Urysohn family. Then the proximal ∆-topology σ(∆) on CL(X) is the topology τ(Vω∆)

induced by the ∆-Attouch-Wets uniformity Vω∆ and hence is Tychonoff.

Conversely, if σ(∆) is Tychonoff then ∆ is a local proximally Urysohn family.

Corollary 4.2 Suppose (X,T) is a Tychonoff space. Then ∆ is a local Urysohn family

if and only if (CL(X), τ(∆)) is Tychonoff.

We conclude with a characterization of completely regular proximal ∆U-topology σ(∆U).

Theorem 4.3 Suppose (X,T) is a Tychonoff space with a compatible LO-proximity δ

and ∆ is a proximally Urysohn family. Then δ′ defined by

Aδ′B iff cl A ∈ ∆ or cl B ∈ ∆ and AδB (∗)

is a compatible EF-proximity on X. Further δ′ ≤ δ and σ(∆U) = σ(δ′).

Corollary 4.4 Suppose (X,T) is a Tychonoff space and ∆ is a Urysohn family. Then

δ′ defined by

Aδ′B iff cl A ∈ ∆ or cl B ∈ ∆ and Aδ0B (∗∗)

is a compatible EF-proximity on X . Further δ′ ≤ δ0 and τ(∆U) = σ(δ′).

Thus τ(∆U) is completely regular.

Corollary 4.5 Suppose (X,T) is a locally compact Hausdorff space. Then the U-

topology τ(U) is the proximal topology corresponding to the EF-proximity δ1 induced by the

one-point-compactification of X viz:

Aδ1B iff cl A or cl B is compact and Aδ0B . (∗ ∗ ∗)

Remark 4.6 (a) It is interesting to note that in (4.5) if (X,T) is not normal, then δ0 is

not EF but the proximity δ1 induced by ∆ = K(X) is indeed EF!

(b) If (X,T) is not locally compact, then the proximity δ1 as defined by (∗ ∗ ∗) is not EF

but is a compatible LO-proximity on X. In this case for any compatible EF-proximity

δ on X, δ1 < δ but σ(δ1) 6⊂ σ(δ). (Cf. (2.1)(e)).
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wir den Autoren dankbar, sich betreffs der Form der Manuskripte an den in Rostock. Math.
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