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Isma Bouchemakh

On the König and the dual König property of order-
interval hypergraphs of series-parallel posets

ABSTRACT. Let P be a finite poset. We consider the hypergraph H(P ) whose vertices are

the elements of P and whose edges are the maximal intervals of P. We prove the König and

the dual König property of H(P ) for the class of series-parallel posets.

1 Introduction

Let P be a finite poset. A subset I of P of the form I = {v ∈ P : p ≤ v ≤ q} (denoted [p, q])

is called an interval. If p resp. q is a minimal resp. maximal element of P , then [p, q] is

called maximal interval. Let I(P ) be the family of maximal intervals of P . The hypergraph

H(P ) = (P, I(P )), briefly denoted by H = (P, I), whose vertices are the elements of P and

whose edges are the maximal intervals of P is said to be the order-interval hypergraph of P.

The representative graph or line-graph L(H) of H is a graph whose vertices are points

e1, . . . , em representing the edges I1, . . . , Im of H(P ), the vertices ei, ej being adjacent iff

Ii ∩ Ij 6= ∅. The dual H∗ of the order-interval hypergraph H is a hypergraph whose vertices

e1, . . . , em correspond to intervals of P and with edges Xi = {ej : xi ∈ Ij}. The line-graph

L(H∗) of the dual of the order-interval hypergraph of P is called the representative graph of

P . More precisely, the vertices of L(H∗) are the points of P and two vertices are joined iff

they belong to the same interval of P .

Let α, ν, ρ and τ be the independence, matching, edge-covering, and vertex-covering number

of a hypergraphH, respectively. H has the König property if ν(H) = τ(H) and it has the dual

König property if ν(H∗) = τ(H∗) (or α(H) = ρ(H) since α(H) = ν(H∗) and ρ(H) = τ(H∗)).

Several interesting results exist about the matching, covering, independence and chromatic

numbers of H such as the algorithmic complexity and min-max relations (see [2, 3, 4, 5]).

Let P and Q be two posets. The disjoint sum P +Q of P and Q is the poset on the union

P ∪Q, such that x ≤ y in P +Q if either x, y ∈ P and x≤Py, or x, y ∈ Q and x≤Qy. The

linear sum P ⊕ Q of P and Q is the poset on the union P ∪ Q, such that x ≤ y in P ⊕ Q

if either x, y ∈ P and x≤Py, or x, y ∈ Q and x≤Qy, or x ∈ P and y ∈ Q. In [3], it is
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proved that for the class of interval orders, i.e. the posets which do not contain a subposet

isomorphic to the disjoint sum of two chains of length 1, H has the König and the dual König

properties. We are interested in this paper in another class of posets called series-parallel,

namely they can be constructed from singletons using the operations of disjoint sum and

linear sum. Series-parallel posets may be characterized by the fact that they do not contain

a subset isomorphic to N, [8, 9] (N represents a subset of four elements {x, y, z, t} such

that x < y > z < t and these are the only comparability relations). We prove that if P is

series-parallel then H(P ) has the König and dual König properties.

Theorem 1 The representative graph L(H∗) of a series-parallel poset is perfect.

Proof: We prove the perfectness of L(H∗) by using Seinsche’s Theorem [7] which states that

every graph with no induced P4 (elementary chain of 4 vertices without chords) is perfect.

Assume that there is an induced P4, say µ = [x1, x2, x3, x4]. In P , x1 ‖ x3, x1 ‖ x4 and

x2 ‖ x4.

Let I1 = [p1, q1] be the interval containing both x1 and x2, I2 = [p2, q2] the interval containing

both x2 and x3, and I3 = [p3, q3] the interval containing both x3 and x4. Let us distinguish

three cases.

Case 1. x1 < x2.

Since the chain µ is chordless and the vertices x2 and x3 belong to the same interval in P ,

we have that p2 < x2, x3 < q2 with x2 ‖ x3 or x2 > x3.

Case 1.1. x2 ‖ x3.

Then the poset induced by {x1, x2, p2, x3} and N are isomorphic. It suffices to verify that

p2 ‖ x1 which is true because otherwise x1x3 is a chord of µ.

Case 1.2. x2 > x3.

Then the poset induced by {x1, x2, x3, x4} and N are isomorphic if x3 < x4. In the other

situation, i.e. when x3 ‖ x4, we have that {x1, x2, p3, x4} and N are isomorphic. Indeed,

p3 < x2 since p3 ≤ x3 < x2 and x1 ‖ p3 since p3 ≤ x1 < x2 implies the existence of the chord

x1x3.

Case 2. x2 < x1.

By duality, this case is similar to the first case.

Case 3. x1 ‖ x2. We have three possibilities:

Case 3.1. x3 > x2.

Then the poset induced by {x1, q1, x2, x3} is isomorphic to N since x1x3 is not a chord of µ,

hence q1 ‖ x3.

Case 3.2. x3 < x2.

Then the poset induced by {x3, x2, p1, x1} is isomorphic to N since p1 ≤ x3 implies p1 ≤
x3 < x2 ≤ q1, i.e. x1x3 is a chord of µ.
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Case 3.3. x3 ‖ x2.

Because it is not possible to have simultaneously x1 > p2 and x1 < q2, we may infer that

the poset induced by {p2, x2, p1, x1} is isomorphic to N if x1 6> p2 and the poset induced by

{x1, q1, x2, q2} is isomorphic to N if x1 6< q2.

Let H = (E1, . . . , Em) be a hypergraph. We say that H has the Helly property or is a Helly

hypergraph if every intersecting family of H is a star, i.e. for J ⊂ {1, . . . ,m}, Ei∩Ej 6= ∅, for

i, j ∈ J implies
⋂

j∈J Ej 6= ∅. A good characterization of a Helly hypergraph, due to Berge

and Duchet [1], is given by the following property:

For any three vertices a1, a2, a3 the family of edges containing at least two of the vertices ai

has a non-empty intersection. This characterization will be used in the following theorem:

Theorem 2 Let H = (P, I) be the order-interval hypergraph of a series-parallel order.

Then H is a Helly hypergraph.

Proof: Let I = {I1, . . . , Im} be the family of maximal intervals of P . We suppose that there

exist three vertices a1, a2, a3 of P such that
⋂

j∈J Ij = ∅, where J = {j : |Ij∩{a1, a2, a3}| ≥
2}.
Then |J | ≥ 3 and there exist three edges, say w.l.o.g., I1 = [p1, q1], I2 = [p2, q2] and

I3 = [p3, q3], such that

a2, a3 ∈ I1 and a1 6∈ I1
a1, a3 ∈ I2 and a2 6∈ I2
a1, a2 ∈ I3 and a3 6∈ I3

Since not simultaneously p3 ≤ a3 and a3 ≤ q3 let w.l.o.g. p3 6≤ a3.

Case 1. a1 ‖ a3.

Then the poset induced by {p3, a1, p2, a3} and N are isomorphic. It suffices to verify that

p2 6= p3 which is true because a3 6≥ p3 but a3 > p2.

Case 2. a1 < a3.

Then we have p3 ≤ a1 < a3, a contradiction.

Case 3. a3 < a1.

We distinguish three subcases:

Case 3.1. a1 < a2.

Then a1 ∈ I1, a contradiction.

Case 3.2. a2 < a1.

Then the poset induced by {p3, a2, p1, a3} is isomorphic to N. Indeed, we have a2 ‖ a3 since

a2 < a3 gives a3 ∈ I3 and a3 < a2 gives a2 ∈ I2; p1 6= p3 since a3 6≥ p3 and a3 > p1.
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Case 3.3. a1 ‖ a2.

Then the poset induced by {a1, q3, a2, q1} is isomorphic to N. Indeed, we have a1 6≤ q1 because

p1 ≤ a3 < a1 ≤ q1 gives a1 ∈ I1; q1 6= q3 since a1 < q3 and a1 6≤ q1.

Theorem 3 The dual H∗ of the order-interval hypergraph H of a series-parallel order

has the Helly property.

Proof: A necessary and sufficient condition for a hypergraph H∗ to have the Helly property

is that for any three edges I1, I2, I3 of H, there exists an edge (of H) containing the set

(I1∩I2)∪(I1∩I3)∪(I2∩I3) [1]. For our hypergraph, we claim that I1∩I2 ⊆ I3 or I1∩I3 ⊆ I2

or I2 ∩ I3 ⊆ I1. Suppose not. Then we have I1 ∩ I2 6⊆ I3, I1 ∩ I3 6⊆ I2 and I2 ∩ I3 6⊆ I1. Let

a1, a2 and a3 be three vertices of P such that

a1 ∈ I2 ∩ I3 and a1 6∈ I1
a2 ∈ I1 ∩ I3 and a2 6∈ I2
a3 ∈ I1 ∩ I2 and a3 6∈ I3

i.e.

a2, a3 ∈ I1 and a1 6∈ I1
a1, a3 ∈ I2 and a2 6∈ I2
a1, a2 ∈ I3 and a3 6∈ I3.

But, we have already seen in the proof of Theorem 2, this leads to a contradiction.

H is said to be normal if every partial hypergraph H′ has the coloured edge property, i.e. it is

possible to colour the edges of H′ with ∆(H′) colours, where ∆(H′) represents the maximum

degree of H′. The normality of H induces the same property for all its partial hypergraphs.

Several sufficient conditions exist for a hypergraph to have the König property [1]. One of

them is its normality. A hypergraph H is normal iff it satisfies the Helly property and L(H)

is a perfect graph. This enables us to present the following corollary:

Corollary If P is a series-parallel poset then every subhypergraph of H(P ) has the dual

König property.

Proof: The line graph L(H∗) is a perfect graph by Theorem 1 and H∗ has the Helly

property by Theorem 3. Hence, H∗ is normal and consequently every partial hypergraph is

also normal. Since the dual of a partial hypergraph of H∗ is a subhypergraph of H, we may

infer that every subhypergraph of H has the dual König property.
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Theorem 4 If P is a series-parallel poset then H(P ) has the König property.

Proof: We are interested only in the case where P is connected, because if P has not this

property, it can be decomposed into k connected subposets and the relations ν(H(P )) =

ν(H(P1)) + ...+ ν(H(Pk)), τ(H(P )) = τ(H(P1)) + ...+ τ(H(Pk)) may be used.

Let P be a connected poset not reduced to a singleton. P can be decomposed into subposets

using only the linear sum, say P =
k⊕

i=1

Pi, with k ≥ 2.

The case k ≥ 3 implies directly ν(H) = τ(H) = 1 because each singleton with one element

of P2 represents a vertex-covering of H.

Let k = 2. Denote by P11, ..., P1k1 and P21, ..., P2k2 the connected components of P1 and P2,

respectively. We suppose w.l.o.g. that k1 ≤ k2.

Let j0 ∈ {1, ..., k1} and aij0 (resp. bij0) any minimal (resp. maximal) element of Pij0 . Since

Pij0 is connected and series-parallel, each maximal element (of Pij0) is above every minimal

element (of Pij0). It follows, p < b1j0 for all p ∈ min(P1j0). Also, we have by the ⊕-operation

b1j0 < p′ for all p′ ∈ min(P2). Hence, each edge of H(P1j0 ⊕ P2) contains the point b1j0 and

more generally, for P = (P11 + ...+ P1k1) ⊕ P2, the set T = {b1j, j = 1, ..., k1} represents a

point cover of H(P ). On the other hand, it is not difficult to see that the family of edges

{[a1j, b2j] , j = 1, ..., k1} forms a matching of H. It follows ν(H) = τ(H) = min{k1, k2}.

Remark An analogous reasoning produces another proof for the dual König property.

Indeed, let P = Q1 + ... + Qk be a series-parallel poset where each component Qi is con-

structed from a ⊕-operation, say Qi = Qi1 ⊕Qi2. Denote by min(Qi) = {ai1, . . . , aik} (resp.

max(Qi) = {bi1, . . . , bil}) the set of minimal (resp. maximal) elements of Qi and consider the

family of edges I(k)
i of H(Qi) such that I(k)

i = {[aij, bij], j = 1, . . . , k}. Let Ri be I(k)
i if k =

l, I(k)
i ∪{[aik, bij], j = k+1, . . . , l} if k < l and I(l)

i ∪{[aij, bil], j = l+1, . . . , k} if l < k. It is

not difficult to see that Ri is an edge-covering of H(Qi) of size max{|min(Qi)|, |max(Qi)|}.
It follows, α(H(Qi)) = ρ(H(Qi)) = max{|min(Qi)|, |max(Qi)|}. Since α(H(Qi + Qj)) =

α(H(Qi)) + α(H(Qj)) and ρ(H(Qi +Qj)) = ρ(H(Qi)) + ρ(H(Qj)), we deduce

α(H(P )) =
∑k

i=1 α(H(Qi)) =
∑k

i=1 max{|min(Qi)|, |max(Qi)|} and

ρ(H(P )) =
∑k

i=1 ρ(H(Qi)) =
∑k

i=1 max{|min(Qi)|, |max(Qi)|}.
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Laure Cardoulis

Existence of solutions for non necessarily cooperative
systems involving Schrödinger operators

ABSTRACT. We study the existence of a solution for a non necessarily cooperative system

of n equations involving Schrödinger operators defined on IRN and we study also a limit case

(the Fredholm Alternative). We derive results for semilinear systems.

KEY WORDS AND PHRASES. Schrödinger operators, M-matrices, non necessarily coop-

erative systems.

1 Introduction

We consider the following elliptic system defined on IRN :

(1)

{
for 1 ≤ i ≤ n,

(1i) Lqi
ui := (−∆ + qi)ui =

∑n
j=1 aijuj + fi in IRN

where :

. n and N are two integers not equal to 0

. ∆ is the Laplacian operator

(H1) for 1 ≤ i, j ≤ n, aij ∈ L∞(IRN)

(H2) for 1 ≤ i ≤ n, qi is a continuous potential defined on IRN such that:

qi(x) ≥ 1, ∀x ∈ IRN and qi(x) → +∞ when |x| → +∞

(H3) for 1 ≤ i ≤ n, fi ∈ L2(IRN)

We do not make here any assumptions on the sign of aij.

Recall that System (1) is called cooperative if aij ≥ 0 pp for i 6= j.
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Our paper is organized as follow:

- in Section 2, we recall some results about M-matrices and about the Maximum Principle

for cooperative systems involving Schrödinger operators −∆ + qi in IRN .

- in Section 3, we show the existence of a solution for a non necessarily cooperative system

of n equations. After that we study a limit case (the Fredholm Alternative) and finally we

study the existence of a solution for a (non necessarily cooperative) semilinear system.

2 Recalls

2.1 M-matrix

We recall some results about the M-matrix([8]th2.3 p.134).

We say that a matrix is positive if all its coefficients are nonnegative and we say that a

symmetric matrix is positive definite if all its principal minors are stictly positive.

Definition 2.1 ([8]) A matrix M = sI −B is called a non singular M-matrix if B is a

positive matrix (i.e. with nonnegative coefficients) and s > ρ(B) > 0 the spectral radius of

B.

Proposition 2.2 ([8]) If M is a matrix with nonpositive off-diagonal coefficients, the

conditions (P0), (P1), (P2), (P3), (P4) are equivalent.

(P0) M is a non singular M-matrix,

(P1) all the principal minors of M are strictly positive,

(P2) M is semi-positive i.e.: ∃X >> 0 such that MX >> 0.

X >> 0 signify ∀i,Xi > 0 if X = (X1, ..., Xn).

(P3) M has a positive inverse.

(P4) there exists a diagonal matrix D, D > 0, such that MD +DtM is positive definite.

Remark: If M is a non singular M-matrix, then tM is also a non singular M-matrix.

So (P4) ⇔ (P5) with (P5) : there exists a diagonal matrix D, D > 0 such that tMD+DM

is positive definite.

2.2 Schrödinger operators

Let D(IRN) = C∞0 (IRN) = C∞c (IRN) the set of functions C∞ on IRN with compact support.

Let q a continuous potential defined on IRN such that :
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q(x) ≥ 1, ∀x ∈ IRN and q(x) → +∞ when |x| → +∞. The variational space is Vq(IR
N) :

the completion of D(IRN) for the norm ‖.‖q where ‖u‖q = [
∫
IRN |∇u|2 + q|u|2] 1

2 .

Vq(IR
N) = {u ∈ H1(IRN),

√
qu ∈ L2(IRN)}

(Vq(IR
N), ‖.‖q) is an Hilbert space.([1] prop.I.1.1)

Moreover:

Proposition 2.3 ([1] propI.1.1; [21]prop1, p.356)

The embedding of Vq(IR
N) into L2(IRN) is compact and with dense range.

To the form :

a(u, v) =

∫
IRN

∇u.∇v +

∫
IRN

quv, ∀(u, v) ∈ (Vq(IR
N))2,

we associate the operator Lq := −∆ + q defined on L2(IRN) by variational methods.

Here D(Lq) denotes the domain of the operator Lq.

D(Lq) = {u ∈ Vq(IR
N), (−∆ + q)u ∈ L2(IRN)} ([5]th1.1, p4)

We have : ∀u ∈ D(Lq),∀v ∈ Vq(IR
N), a(u, v) =

∫
IRN Lqu.v.

The embedding of D(Lq) into Vq(IR
N) is continuous and with dense range.

([1], p.24;[5], p.5,6)

Proposition 2.4 ([1], p.25 to 27;[5]th1.1, p.4,p.6,8,11; [6], p.3, th3.2 p.45;

[14], p.488,489;[26], p.346 to 350; [28]thXIII.16, p.120,thXIII.47 p.207)

Lq, considered as an operator in L2(IRN), is positive, selfadjoint, with compact inverse. Its

spectrum is discrete and consists in an infinite sequence of positive eigenvalues tending to

+∞. The smallest one, denoted by λ(q), is simple and associated with an eigenfunction φq

which does not change sign in IRN . We say that λ(q) is a principal eigenvalue; it is positive

and simple.

Furthermore, we have:

(R1)

{
Lqφq = λ(q)φq in IRN

φq(x) → 0 when x→ +∞;φq > 0 in IRN ;λ(q) > 0

(R2) ∀u ∈ Vq(IR
N), λ(q)

∫
IRN

|u|2 ≤
∫
IRN

[|∇u|2 + q|u|2].

Moreover the equality holds iff u is colinear to φq.

If a ∈ L∞(IRN) let: a∗ = sup
x∈IRN a(x), a∗ = inf

x∈IRN a(x) and

λ(q − a) = inf{
∫
IRN [|∇φ|2 + (q − a)φ2]∫

IRN φ2
;φ ∈ D(IRN );φ 6≡ ′}.
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The operator −∆ + q − a in IRN has a unique selfadjoint realization ([6] p.3) in L2(IRN)

which is denoted Lq−a. (Indeed, q is a continuous potential, a ∈ L∞(IRN), so the condition

in [6] (q − a)− ∈ Lp
loc(IR

N) for a p > N
2
is satisfied.)

We note also that: λ(q − a) ≤ λ(q)− a∗ and:

∀m ∈ IR∗+, λ(q − a+m) = λ(q − a) +m.

The following theorem is classical:

Theorem 2.1 ([1],[11],[28]p.204) We consider the equation:

(E) (−∆ + q)u = au+ f in IRN where a ∈ IR, f ∈ L2(IRN), f ≥ 0

and q is a continuous potential on IRN such that:

q ≥ 1 and q(x) → +∞ when |x| → +∞.

If a < λ(q) then ∃!u ∈ Vq(IR
N) solution of (E). Moreover, we have: u ≥ 0.

2.3 Cooperative systems

We consider in this section System (1) and we assume here that it is cooperative, i.e.:

(H1*) aij ∈ L∞(IRN); aij ≥ 0 pp for i 6= j.

We recall here a sufficient condition for Maximum Principle and existence of solutions for

such cooperative systems.

We say that System (1) satisfies the Maximum Principle if: ∀fi ≥ 0, 1 ≤ i ≤ n, any solution

u = (u1, ..., un) of (1) is nonnegative.

Let E = (eij) be the matrix n× n defined by:

∀1 ≤ i ≤ n, eii = λ(qi − aii) and ∀1 ≤ i, j ≤ n, i 6= j ⇒ eij = −a∗ij.

Theorem 2.2 ([11]) We assume that (H1∗), (H2), (H3) are satisfied.

If E is a non singular M-matrix, then System (1) satisfies the Maximum Principle.

Theorem 2.3 ([11]) We assume that (H1∗), (H2), (H3) are satisfied.

If E is a non singular M-matrix and if fi ≥ 0 for each 1 ≤ i ≤ n, then System (1) has a

unique solution which is nonnegative.

3 Study of a non necessarily cooperative system

3.1 Study of a non necessarily cooperative system of n equations with bounded

coefficients

We adapt here an approximation method used in [9] for problems defined on bounded do-

mains.
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We consider the following elliptic system defined on IRN :

(1)

{
for 1 ≤ i ≤ n,

(1i) Lqi
ui := (−∆ + qi)ui =

∑n
j=1 aijuj + fi in IRN .

Let G = (gij) the matrix n× n defined by: ∀1 ≤ i ≤ n, gii = λ(qi − aii) and

∀1 ≤ i, j ≤ n, i 6= j ⇒ gij = −|aij|∗ where |aij|∗ = sup
x∈IRN

|aij(x)|.

We make the following hypothesis: (H) G is a non singular M-matrix.

Theorem 3.1 We assume that (H1), (H2), (H3) and (H) are satisfied. Then System

(1) has a weak solution (u1, ..., un) ∈ Vq1(IR
N)× ...× Vqn(IRN).

First, we prove the following lemma:

Lemma 3.1 We assume that (H), (H1), (H2), (H3) are satisfied.

Let (u1, ..., un) ∈ Vq1(IR
N)× ...× Vqn(IRN) solution of:

(2)

{
for 1 ≤ i ≤ n,

(2i) Lqi
ui := (−∆ + qi)ui =

∑n
j=1 aijuj in IRN .

Then: (u1, ..., un) = (0, ..., 0).

Proof of the lemma 3.1: Let m ∈ IR∗+ be such that:

∀1 ≤ i ≤ n,m− aii > 0. Let q′i = qi +m− aii ≥ 1.

For any 1 ≤ i ≤ n, we have:∫
IRN

[|∇ui|2 + q′i|ui|2] =

∫
IRN

m|ui|2 +
∑
j;j 6=i

∫
IRN

aijujui

≤
∫
IRN

m|ui|2 +
∑
j;j 6=i

∫
IRN

|aijujui|.

and by the characterization (R2) of the first eigenvalue λ(q′i) we get:

(λ(q′i)−m)
∫
IRN |ui|2 ≤

∑
j;j 6=i |aij|∗(

∫
IRN |uj|2)

1
2 (
∫
IRN |ui|2)

1
2 .

So: (λ(q′i)−m)(
∫
IRN |ui|2)

1
2 ≤

∑
j;j 6=i |aij|∗(

∫
IRN |uj|2)

1
2 .

Let

X =


(
∫
IRN u2

1)
1
2

.

.

.

(
∫
IRN u2

n)
1
2

 .
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We have X ≥ 0 and GX ≤ 0. Since G is a non singular M-matrix, by Proposition 2.2 we

deduce that X ≤ 0. So X = 0 i.e. ∀1 ≤ i ≤ n, ui = 0.

Proof of Theorem 3.1: Let m ∈ IR∗+ such that : ∀1 ≤ i ≤ n,m − aii > 0. Let

q′i = qi − aii +m ≥ 1. (m exists because ∀1 ≤ i ≤ n, aii ∈ L∞(IRN).)

First we note that:

(u1, ..., un) ∈ Vq1(IR
N)× ...× Vqn(IRN) is a weak solution of (1) if and only if (u1, ..., un) is a

weak solution of (1′) where:

(1′)

{
for 1 ≤ i ≤ n,

(1′i) (−∆ + q′i)ui = mui +
∑

j;j 6=i aijuj + fi in IRN .

Let ε ∈]0, 1[, Bε = B(0, 1
ε
) = {x ∈ IRN , |x| < 1

ε
} and 1Bε be the indicator function of Bε.

Let T : L2(IRN) × ... × L2(IRN) → L2(IRN) × ... × L2(IRN) be defined by: T (ξ1, ..., ξn) =

(ω1, ..., ωn) where for any 1 ≤ i ≤ n,

(−∆ + q′i)ωi = m
ξi

1 + ε|ξi|
1Bε +

∑
j;j 6=i

aij
ξj

1 + ε|ξj|
1Bε + fi in IRN .

i) First we prove that T is well defined:

Let: ∀(ξ1, ..., ξn) ∈ L2(IRN)× ...× L2(IRN), ∀1 ≤ i ≤ n,

ψi(ξ1, ..., ξn) = m
ξi

1 + ε|ξi|
1Bε +

∑
j;j 6=i

aij
ξj

1 + ε|ξj|
1Bε .

We have:

| ξi
1 + ε|ξi|

1Bε | =
1

ε
| εξi
1 + ε|ξi|

1Bε | ≤
1

ε
1Bε .

Since 1Bε ∈ L2(IRN) and aij ∈ L∞(IRN), we deduce that for any 1 ≤ i ≤ n ψi(ξ1, ..., ξn) ∈
L2(IRN). By (H3), fi ∈ L2(IRN) and therefore ψi(ξ1, ..., ξn) + fi ∈ L2(IRN).

By Theorem 2.1, we deduce the existence (and uniqueness) of (ω1, ..., ωn) ∈ Vq1(IR
N)×

...Vqn(IRN). So T is well defined.

ii) We note that: ∀(ξ1, ..., ξn), |ψi(ξ1, ..., ξn)| ≤ nmaxj;j 6=i (m, |aij|∗)1
ε
1Bε .

Let h = n
ε
maxi,j;i6=j (m, |aij|∗)1Bε ∈ L2(IRN).

h+ fi ∈ L2(IRN), so, by the scalar case, we deduce that:

∃!ξ0
i ∈ Vqi

(IRN) such that: (−∆ + q′i)ξ
0
i = h+ fi in IRN .

(ξ0
1 , ..., ξ

0
n) is an uppersolution of (1′): ∀1 ≤ i ≤ n,

(−∆ + q′i)ξ
0
i ≥ ψi(ξ1, ..., ξn) + fi
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By the same way, we construct a lowersolution of (1′): ∀1 ≤ i ≤ n,

∃!ξi,0 ∈ Vqi
(IRN) such that: (−∆ + q′i)ξi,0 = −h+ fi in IRN .

(ξ1,0, ..., ξn,0) is a lowersolution of (1′): ∀1 ≤ i ≤ n,

(−∆ + q′i)ξi,0 ≤ ψi(ξ1, ..., ξn) + fi.

We note that: ∀i, ξi,0 ≤ ξ0
i (because (−∆ + q′i)(ξ

0
i − ξi,0) = 2h ≥ 0.)

We consider now the restriction of T , denoted by T ∗, at [ξ1,0, ξ
0
1 ] × ... × [ξn,0, ξ

0
n]. We

prove now that T ∗ has a fixed point by the Schauder Fixed Point Theorem.

iii) First we prove that [ξ1,0, ξ
0
1 ]× ...× [ξn,0, ξ

0
n] is invariant by T ∗.

Let (ξ1, ..., ξn) ∈ [ξ1,0, ξ
0
1 ]× ...× [ξn,0, ξ

0
n]. We put: T ∗(ξ1, ..., ξn) = (ω1, ..., ωn).

We have: (−∆ + q′i)(ξ
0
i − ωi) = h− ψi(ξ1, ..., ξn) ≥ O.

By the scalar case, we deduce that: ξ0
i ≥ ωi pp.

By the same way we get: (−∆ + q′i)(ωi − ξi,0) = ψi(ξ1, ..., ξn) + h ≥ 0 and ωi ≥ ξi,0 pp.

So [ξ1,0, ξ
0
1 ]× ...× [ξn,0, ξ

0
n] is invariant by T ∗.

iv) We prove that T ∗ is a compact continuous operator.

T ∗ is continuous if and only if ∀i, ψ∗i is continuous where ψ∗i is the restriction of ψi to

[ξ1,0, ξ
0
1 ]× ...× [ξn,0, ξ

0
n].

Let (ξ1, ..., ξn) ∈ [ξ1,0, ξ
0
1 ]× ...× [ξn,0, ξ

0
n].

Let (ξp
1 , ..., ξ

p
n)p a sequence in [ξ1,0, ξ

0
1 ] × ... × [ξn,0, ξ

0
n] converging to (ξ1, ..., ξn) for

‖.‖
(L2(IRN

))n
.

We have: ∀1 ≤ i ≤ n,

‖ ξp
i

1 + ε|ξp
i |

1Bε −
ξi

1 + ε|ξi|
1Bε‖L2(IRN

)
≤ 1

ε
‖ εξp

i

1 + ε|ξp
i |
− εξi

1 + ε|ξi|
‖

L2(IRN
)
.

However the function l defined on IR by: ∀x ∈ IR, l(x) = x
1+|x| is Lipschitz and satisfies:

∀x, y ∈ IR, |l(x)− l(y)| ≤ |x− y|.
So:

‖ ξp
i

1 + ε|ξp
i |
− ξi

1 + ε|ξi|
‖

L2(IRN
)
≤ 1

ε
‖εξp

i − εξi‖L2(IRN
)
= ‖ξp

i − ξi‖L2(IRN
)
.

Hence:
ξp
i

1 + ε|ξp
i |

1Bε −
ξi

1 + ε|ξi|
1Bε → 0 in L2(IRN) when p→ +∞.

So ψ∗i is continuous and therefore T ∗is a continuous operator.

Moreover, by Proposition 2.4, (−∆ + q′i)
−1 is a compact operator.

So T ∗ is compact.

v) [ξ1,0, ξ
0
1 ]× ...× [ξn,0, ξ

0
n] is a closed convex subset.

Hence, by the Schauder Fixed Point Theorem, we deduce the existence of (ξ1, ..., ξn) ∈
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[ξ1,0, ξ
0
1 ]× ...× [ξn,0, ξ

0
n] such that:

T ∗(ξ1, ..., ξn) = (ξ1, ..., ξn).

∀i, ξi depends of ε, so we denote: ξi = ui,ε.

u1,ε, ..., un,ε satisfy:

(S)

{
∀1 ≤ i ≤ n

(Si) (−∆ + q′i)ui,ε = m
ui,ε

1+ε|ui,ε|1Bε +
∑

j;j 6=i aij
uj,ε

1+ε|uj,ε|1Bε + fi in IRN .

vi) Now we prove that ∀i, (εui,ε)ε is a bounded sequence in Vq′i
(IRN).

Let ‖u‖q′i
= [
∫
IRN |∇u|2 + q′i|u|2]

1
2 . We multiply (Si) by ε2ui,ε and we integrate over

IRN .

We get:

‖εui,ε‖2
q′i
≤ m

∫
IRN

| εui,ε

1 + ε|ui,ε|
1Bεεui,ε|+

∑
j;j 6=i

|aij|∗
∫
IRN

| εuj,ε

1 + ε|uj,ε|
1Bεεui,ε|

+

∫
IRN

|εfiεui,ε| .

But: ∀j, | εuj,ε

1+ε|uj,ε| | < 1.

So there exists a strictly positive constant K such that: ‖εui,ε‖2
q′i
≤ K‖εui,ε‖L2(IRN

)
≤

K‖εui,ε‖q′i
and therefore: ‖εui,ε‖q′i

≤ K.

vii) We prove now that εui,ε → 0 when ε→ 0 strongly in L2(IRN) and weakly in Vq′i
(IRN).

We know that the imbedding of Vq′i
(IRN) into L2(IRN) is compact.

The sequence (εui,ε)ε is bounded in Vq′i
(IRN) so (for a subsequence), we deduce that

∃u∗i such that:

εui,ε → u∗i when ε→ 0 strongly in L2(IRN) and weakly in Vq′i
(IRN).

Multiplying (Si) by ε, we get:

(−∆ + q′i)εui,ε = m
εui,ε

1 + ε|ui,ε|
1Bε +

∑
j;j 6=i

aij
εuj,ε

1 + ε|uj,ε|
1Bε + εfi in IRN .

But εui,ε ⇀ u∗i weakly in Vqi
(IRN).

So: ∀φ ∈ D(IRN),∫
IRN

[∇(εui,ε).∇φ+ q′iεui,εφ] →
∫
IRN

[∇u∗i .∇φ+ q′iu
∗
iφ] when ε→ 0.

Moreover: ∀φ ∈ D(IRN),
∫
IRN εfiφ→ 0 when ε→ 0.

Moreover we have: ∀j

‖ εuj,ε

1 + ε|uj,ε|
1Bε −

u∗j
1 + |u∗j |

‖2

L2(IRN
)
=

∫
Bε

[
εuj,ε

1 + ε|uj,ε|
−

u∗j
1 + |u∗j |

]2
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+

∫
IRN

−Bε

(
u∗j

1 + |u∗j |
)2 .

Since: | u∗j
1+|u∗j |

| ≤ |u∗j |,
u∗j

1+|u∗j |
∈ L2(IRN), hence

∫
IRN

−Bε
(

u∗j
1+|u∗j |

)2 → 0 when ε→ 0.

Moreover:
∫

Bε
[

εuj,ε

1+ε|uj,ε| −
u∗j

1+|u∗j |
]2 ≤

∫
IRN [

εuj,ε

1+ε|uj,ε| −
u∗j

1+|u∗j |
]2

≤ ‖εuj,ε − u∗j‖2

L2(IRN
)
.

But: εuj,ε → u∗j when ε→ 0 strongly in L2(IRN).

So:
εuj,ε

1+ε|uj,ε|1Bε →
u∗j

1+|u∗j |
when ε→ 0 strongly in L2(IRN).

Therefore we can pass through the limit and we get:

(S ′)

{
∀1 ≤ i ≤ n

(S ′i) (−∆ + q′i)u
∗
i = m

u∗i
1+|u∗i |

+
∑

j;j 6=i aij
u∗j

1+|u∗j |
in IRN .

We prove now that for any i, u∗i = 0. We multiply (S ′i) by u∗i , we integrate over IRN

and we obtain:∫
IRN

[|∇u∗i |2 + q′i|u∗i |2] =

∫
IRN

m
|u∗i |2

1 + |u∗i |
+
∑
j;j 6=i

∫
IRN

aij

u∗ju
∗
i

1 + |u∗j |

≤
∫
IRN

m
|u∗i |2

1 + |u∗i |
+
∑
j;j 6=i

∫
IRN

|aij|∗
|u∗j ||u∗i |
1 + |u∗j |

.

But: ∀j, 1
1+|u∗j |

≤ 1.

So we get:

λ(q′i)

∫
IRN

|u∗i |2 ≤ m

∫
IRN

|u∗i |2 +
∑
j;j 6=i

|aij|∗(
∫
IRN

|u∗j |2)
1
2 (

∫
IRN

|u∗i |2)
1
2 .

Replacing ui by u∗i , we proceed exactly as in lemma 3.1 and we get that ∀1 ≤ i ≤ n,

u∗i = 0.

viii) We prove now by contradiction that ∀1 ≤ i ≤ n, (ui,ε)ε is bounded in Vqi
(IRN) .

We suppose that: ∃i0, ‖ui0,ε‖qi0
→ +∞ when ε→ 0. Let: ∀1 ≤ i ≤ n,

tε = max
i

(‖ui,ε‖qi
) and vi,ε =

1

tε
ui,ε.

We have ‖vi,ε‖qi
≤ 1 so (vi,ε)ε is a bounded sequence in Vqi

(IRN).

Since the imbedding of Vqi
(IRN) in L2(IRN) is compact (Proposition 2.3), there exists

vi such that vi,ε → vi when ε→ 0 strongly in L2(IRN) and weakly in Vqi
(IRN).

In a weak sense, we have: ∀1 ≤ i ≤ n,

(−∆ + q′i)vi,ε = m
vi,ε

1 + ε|ui,ε|
1Bε +

∑
j;j 6=i

aij
vj,ε

1 + ε|uj,ε|
1Bε +

1

tε
fi in IRN .
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We have: ∀φ ∈ D(IRN),∫
IRN

[∇vi,ε.∇φ+ q′ivi,εφ] →
∫
IRN

[∇vi.∇φ+ q′iviφ] when ε→ 0.

Moreover tε → +∞ when ε→ 0 so:

∀φ ∈ D(IRN),
∫
IRN

1
tε
fiφ→ 0 when ε→ 0.

We have also: ∀1 ≤ j ≤ n,

‖ vj,ε

1 + ε|uj,ε|
1Bε − vj‖2

L2(IRN
)
=

∫
Bε

[
vj,ε

1 + ε|uj,ε|
− vj]

2 +

∫
IRN

−Bε

v2
j .

But: vj ∈ L2(IRN) so :
∫
IRN

−Bε
v2

j → 0 when ε→ 0.

Moreover: ∫
Bε

[
vj,ε

1 + ε|uj,ε|
− vj]

2 ≤
∫
IRN

[
vj,ε

1 + ε|uj,ε|
− vj]

2

≤ 2[

∫
IRN

(vj,ε − vj)
2

(1 + ε|uj,ε|)2
+

∫
IRN

(εvj|uj,ε|)2

(1 + ε|uj,ε|)2
] .

But: 1 + ε|uj,ε| ≥ 1. So:
∫
IRN

(vj,ε−vj)
2

(1+ε|uj,ε|)2 ≤
∫
IRN (vj,ε − vj)

2.

Since vj,ε → vj in L2(IRN),we get:
∫
IRN

(vj,ε−vj)
2

(1+ε|uj,ε|)2 → 0 when ε→ 0.

Moreover:
(εvj|uj,ε|)2

(1 + ε|uj,ε|)2
→ 0 pp when ε→ 0

(at least for a subsequence because εuj,ε → 0 when ε→ 0.)

By using the Dominated Convergence Theorem, we deduce that:∫
IRN

(εvj |uj,ε|)2
(1+ε|uj,ε|)2 → 0 when ε→ 0.

So we can pass through the limit and we get: ∀1 ≤ i ≤ n,

(−∆ + q′i)vi = mvi +
∑
j;j 6=i

aijvj in IRN .

By the precedent lemma, we deduce that: ∀1 ≤ i ≤ n, vi = 0.

However there exists a sequence (εn) such that ∃i1, ‖vi1,εn‖qi1
= 1.

But vi1,εn → vi1 when n→ +∞. So we get a contradiction.

ix) There exists u0
i such that :

ui,ε → u0
i strongly in L2(IRN) and weakly in Vqi

(IRN).

We have in a weak sense:

(−∆ + q′i)ui,ε = m
ui,ε

1 + ε|ui,ε|
1Bε +

∑
j;j 6=i

aij
uj,ε

1 + ε|uj,ε|
1Bε + fi in IRN .
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But ui,ε ⇀ u0
i when ε→ 0 weakly in Vqi

(IRN). Hence ∀φ ∈ D(IRN),∫
IRN

[∇ui,ε.∇φ+ q′iui,εφ] →
∫
IRN

[∇u0
i .∇φ+ q′iu

0
iφ] when ε→ 0.

We have also:

‖ ui,ε

1 + ε|ui,ε|
1Bε − u0

i ‖2

L2(IRN
)
=

∫
Bε

[
ui,ε

1 + ε|ui,ε|
− u0

i ]
2 +

∫
IRN

−Bε

|u0
i |2 .

By u0
i ∈ L2(IRN) we derive:

∫
IRN

−Bε
|u0

i |2 → 0 when ε→ 0.

Moreover: ∫
Bε

[
ui,ε

1 + ε|ui,ε|
− u0

i ]
2 ≤

∫
IRN

[
ui,ε

1 + ε|ui,ε|
− u0

i ]
2

≤ 2[

∫
IRN

(ui,ε − u0
i )

2

(1 + ε|ui,ε|)2
+

∫
IRN

(εu0
i |ui,ε|)2

(1 + ε|ui,ε|)2
].

Since 1 + ε|ui,ε| ≥ 1 we get:
∫
IRN

(ui,ε−u0
i )2

(1+ε|ui,ε|)2 ≤
∫
IRN (ui,ε − u0

i )
2.

But: ui,ε → u0
i in L2(IRN). So:

∫
IRN

(ui,ε−u0
i )2

(1+ε|ui,ε|)2 → 0 when ε→ 0.

Moreover:
(εu0

i |ui,ε|)2

(1 + ε|ui,ε|)2
→ 0 pp when ε→ 0

(at least for a subsequence because εui,ε → 0 when ε→ 0)

and
(εu0

i |ui,ε|)2
(1+ε|ui,ε|)2 ≤ |u

0
i |2 and |u0

i |2 ∈ L1(IRN).

By using the Dominated Convergence Theorem, we deduce that:∫
IRN

(εu0
i |ui,ε|)2

(1+ε|ui,ε|)2 → 0 when ε→ 0.

So we can pass through the limit and we get: ∀1 ≤ i ≤ n,

(−∆ + q′i)u
0
i = mu0

i +
∑
j;j 6=i

aiju
0
j + fi in IRN .

So we get: (−∆ + qi)u
0
i = aiiu

0
i +

∑
j;j 6=i aiju

0
j + fi in IRN .

(u0
1, ..., u

0
n) is a weak solution of (1).

3.2 Study of a limit case

We use again a method in [9]. We rewrite System (1), assuming ∀1 ≤ i ≤ n, qi = q:

(1)

{
for 1 ≤ i ≤ n,

(1i) Lqui := (−∆ + q)ui =
∑n

j=1 aijuj + fi(x, u1, ..., un) in IRN .

Each aij is a real constant.

We denote A = (aij) the n × n matrix, I the n × n identity matrix, tU = (u1...un) and
tF = (f1...fn).
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Theorem 3.2 We suppose that (H1), (H2) and (H3) are satisfied.

We suppose that A has only real eigenvalues. We suppose also that λ(q), the principal

eigenvalue of −∆ + q, is the largest eigenvalue of A and that it is simple.

Let X ∈ IRN such that: tX(λ(q)I − A) = 0.

Then System (1) has a solution if and only if
∫
IRN

tXFφq = 0, where φq is the eigenfunction

associated to λ(q).

Proof of Theorem 3.2: Let P be a n× n non singular matrix such that the last line of P

is tX and such that T = PAP−1 := (tij) where:

tij = 0 if i > j ; tnn = λ(q) and ∀1 ≤ i ≤ n− 1, tii < λ(q).

Let: W = PU.

System (1) is equivalent to System (2) : (−∆ + q)W = TW + PF.

Let: tW = (w1...wn) and πi = (δij) where: δij = 0 if i 6= j and δii = 1.

So System (2) is:

(2)

{
for 1 ≤ i ≤ n,

(2i) Lqwi := (−∆ + q)wi = tiiwi +
∑

j;j>i tijwj + πiPF in IRN .

We have: (2n) (−∆ + q)wn = λ(q)wn +t XF in IRN . Equation (2n) has a solution if and

only if
∫
IRN

tXFφq = 0.

If
∫
IRN

tXFφq = 0 is satisfied, first we solve (2n), then we solve (2.n−1) until (2.1) because

∀1 ≤ i ≤ n− 1, tii < λ(q). Then we deduce U (because Matrix P is a non singular matrix).

3.3 Study of a non necessarily cooperative semilinear system of n equations

We rewrite System (1) :

(1)

{
for 1 ≤ i ≤ n,

(1i) Lqi
ui := (−∆ + qi)ui =

∑n
j=1 aijuj + fi(x, u1, ..., un) in IRN .

We recall G = (gij) the n× n matrix defined by:

∀1 ≤ i ≤ n, gii = λ(qi − aii) and

∀1 ≤ i, j ≤ n, i 6= j ⇒ gij = −|aij|∗ where |aij|∗ = sup
x∈IRN

|aij(x)|.

Let I be the identity matrix.

Theorem 3.3 We assume that (H1), (H2) and (H3) are satisfied.

We assume also that Hypothesis (H4), (H5), (H6) are satisfied where

(H4) ∃s > 0 such that F − sI is a non singular M-matrix.
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(H5) ∀1 ≤ i ≤ n, ∃θi ∈ L2(IRN), θi > 0, such that :

∀1 ≤ i ≤ n, ∀u1, ..., un, 0 ≤ fi(x, u1, ..., un) ≤ sui + θi;

(H6) ∀1 ≤ i ≤ n, fi is Lipschitz for (u1, ..., un), uniformly in x.

Then System (1) has at least a solution.

Proof of Thorem 3.3:

a) Construction of an upper and lower solution.

We consider the following system (S):

(S)

{
∀1 ≤ i ≤ n ,

Lqi
ui := (−∆ + qi)ui = aiiui +

∑
j;j 6=i |aij|uj + sui + θi in IRN .

By Hypothesis (H4), (H5) we can apply Theorem 2.3.

We deduce the existence of a positive solution U0 = (u0
1, ..., u

0
n) in Vq1(IR

N) × ... ×
Vqn(IRN) for the system (S). U0 is an upper solution of System (1).

Let: U0 = −U0 = (−u0
1, ...,−u0

n).

We have: ∀1 ≤ i ≤ n, (−∆ + qi)(−u0
i ) = −(−∆ + qi)u

0
i .

Hence: (−∆ + qi)(−u0
i ) = −aiiu

0
i −

∑
j;j 6=i |aij|u0

j − su0
i − θi.

So: ∀1 ≤ i ≤ n,

(−∆ + qi)(−u0
i ) ≤ aii(−u0

i ) +
∑
j;j 6=i

aij(−u0
j) + fi(x,−u0

1, ...,−u0
n).

Therefore U0 is a lower solution of System (1).

b) Definition of a compact operator.

Let m ∈ IR∗+ be such that : ∀1 ≤ i ≤ n, m− aii > 0.

Let: q′i = qi − aii +m.

Let T : (L2(IRN))n → (L2(IRN))n defined by: T (u1, ..., un) = (w1, ..., wn) such that:

(S ′)

{
∀1 ≤ i ≤ n ,

(S ′i) (−∆ + q′i)wi = mui +
∑n

j=1;j 6=i aijuj + fi(x, u1, ..., un) in IRN .

We prove easily that T is a well defined operator by the scalar case, continuous by

(H6) and compact (because (−∆ + q′i)
−1 is compact).

We prove now that T ([U0, U
0]) ⊂ [U0, U

0].

Let U = (u1, ..., un) ∈ [U0, U
0].

We have: ∀1 ≤ i ≤ n, −u0
i ≤ ui ≤ u0

i .

We have: (−∆ + q′i)(u
0
i − wi) = m(u0

i − ui) +
∑

j;j 6=i |aij|u0
j
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−
∑

j;j 6=i aijuj + su0
i + θi − fi(x, u1, ..., un).

We have: m(u0
i − ui) ≥ 0.

By (H5), we have: fi(x, u1, ..., un) ≤ sui + θi ≤ su0
i + θi.

Moreover: |aijuj| ≤ |aij|u0
j so aijuj ≤ |aij|u0

j .

So: (−∆ + q′i)(u
0
i − wi) ≥ 0 and by the scalar case: u0

i − wi ≥ 0.

In the same way, we have:

(−∆ + q′i)(wi − (−u0
i )) = m(u0

i + ui) +
∑

j;j 6=i |aij|u0
j

+
∑

j;j 6=i aijuj + su0
i + θi + fi(x, u1, ..., un).

But −u0
i ≤ ui. So m(u0

i + ui) ≥ 0. Moreover: −aijuj ≤ |aij|u0
j .

By using (H5), we conclude that: (−∆ + q′i)(wi + u0
i ) ≥ 0 and hence: wi ≥ −u0

i . So:

T ([U0, U
0]) ⊂ [U0, U

0].

[U0, U
0] is a convex, closed, and bounded subset of (L2(IRN))n, so by the Schauder

Fixed Point Theorem, we deduce that T has a fixed point.

Therefore System (1) has at least a solution.

I thank Prof. Jacqueline Fleckinger for her remarks.
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Lothar Berg

On the Solution of Jordan’s System of Difference
Equations

ABSTRACT. By means of generalized Bernoulli numbers an explicit solution is given for

the homogeneous system of difference equations in Jordan’s normal form.

KEY WORDS. Difference equations, Jordan’s normal form, Bernoulli numbers.

1 Introduction

In U. Krause and T. Nesemann [1], Lemma 3.9, there was determined the general solution

of the system

xi(t+ 1) = λxi(t) + xi+1(t) (1.1)

for 1 ≤ i ≤ n, t ∈ N and xn+1(t) ≡ 0. For λ 6= 0 it reads

xi(t) = λt+i−1∆i−1p(t) , (1.2)

where p is an arbitrary polynomial of degree ≤ n − 1 and ∆p(t) = p(t + 1) − p(t). The

system (1.1) corresponds to a homogeneous matrix difference equation in Jordan’s normal

form with upper unities. After simple modifications, the result can easily be transferred to

the system

yi(t+ 1) = λyi(t) + yi−1(t) (1.3)

for 0 ≤ i ≤ n with y−1(t) ≡ 0, where the solution turns over into

yi(t) = λt−i∆n−ip(t) (1.4)

with an arbitrary polynomial p of degree ≤ n. The system (1.3) corresponds to Jordan’s

normal form with lower unities.
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The solution (1.4) has the disadvantage that its shape depends on n. In the sequel we derive

a representation for the solution of (1.3) which is independent of n and in which, surprisingly,

the Bernoulli numbers appear. The result can be transferred to inhomogeneous equations.

Let us mention that (1.2) and (1.4) are also the general solutions of (1.1) and (1.3), respec-

tively, in the case t ∈ R, if p denotes a polynomial in t with arbitrary 1-periodic coefficients.

An analogous remark comes true for the latter solutions.

2 Solution of (1.3)

In order to solve (1.3) with y−1(t) ≡ 0 and λ 6= 0 for i = 0, 1, 2, . . . we make the ansatz

yi(t) = λt−i

i∑
j=0

1

j!
ai,i−jt

j . (2.1)

The homogeneous equation, corresponding to (1.3) with fixed i, has the general solution

yi = ciλ
i with arbitrary ci so that in (1.3) aii must remain arbitrarily. Comparing

yi(t+ 1)− λyi(t) = λt+1−i

i∑
j=1

1

j!
ai,i−j

j−1∑
k=0

(
j

k

)
tk

with (2.1) for i− 1 instead of i, equation (1.3) implies

i∑
j=k+1

1

(j − k)!
ai,i−j = ai−1,i−1−k

for k = 0, 1, . . . , i− 1 and therefore

k∑
j=0

1

(i+ 1− j)!
aij = ai−1,k (2.2)

for the same k. Defining auxiliary coefficients aij also for j > i, we introduce the generating

functions

fi(z) =
∞∑

j=0

aijz
j (2.3)

as formal power series. Choosing the new aij for i = 0 arbitrarily and for i ∈ N in a suitable

way, the equations (2.2) are equivalent to the recursions

ez − 1

z
fi(z) = fi−1(z)
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with the solution

fi(z) =

(
z

ez − 1

)i

f0(z) . (2.4)

Now, we define coefficients bij by (
z

ez − 1

)i

=
∞∑

j=0

bijz
j (2.5)

so that (2.3)-(2.4) imply the relations

aij =

j∑
k=0

bik a0,j−k , (2.6)

which, in view of (2.2), are valid for 0 ≤ j ≤ i − 1. But we can use (2.6) also for j = i,

if we take a0i as arbitrary constants instead of aii. The foregoing considerations can be

summarized as follows:

Proposition For λ 6= 0 the equations (1.3) with i ∈ N0 and y−1(t) ≡ 0 have the general

solution (2.1) with (2.6), the coefficients bik defined by (2.5), and arbitrary constants a0j.

Usually, the coefficients in (2.5) are written in the form

bij =
1

j!
B

(i)
j ,

where B
(i)
j are the generalized Bernoulli numbers, cf. [2], p. 145 or [3], p. 4. The generalized

Bernoulli numbers are polynomials in i of degree j. For 0 ≤ j ≤ 12 they are listed in [2],

p. 459, from which we obtain in particular

bi0 = 1 , bi1 = − i
2
, bi2 =

i

24
(3i− 1) , bi3 = − i2

48
(i− 1) .

These results can be checked by means of the recursions

bi+1,j =

(
1− j

i

)
bij − bi,j−1 (i, j ∈ N) ,

cf. [2], p. 145, and the initial values bi0 = 1, b1j = 1
j!
Bj for i, j ∈ N0, where Bj are the

ordinary Bernoulli numbers.

3 The inhomogeneous case

The foregoing considerations also allow to solve the inhomogeneous equation

y(t+ 1) = λy(t) + ti−1λt , (3.1)
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i ∈ N, if we interprete (3.1) as equation (1.3) with y(t) = yi(t) and ti−1λt = yi−1(t) with

(2.1), i.e. in particular ai−1,0 = (i − 1)!λi−1 and ai−1,j = 0 elsewhere. Now, instead of (2.4)

we only need the relation

fi(z) =
z

ez − 1
fi−1(z) ,

and since fi−1(z) = (i− 1)!λi−1, we obtain

aij = (i− 1)!λi−1 1

j!
Bj (3.2)

for j = 0, 1, . . . , i−1, whereas aii is an arbitrary constant. Hence, we have found the solution

y(t) = yi(t) of (3.1) with (2.1) and (3.2).

The solution of

y(t+ 1) = λy(t) + p(t)λt , (3.3)

where p is a polynomial of degree i − 1, can be reduced to the solution of (3.1) by means

of linear combinations. Successive application of the solution of (3.3) for i = 1, 2, 3, . . .

again leads to the solution of the system (1.3) constructed in the foregoing preposition.
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Laure Cardoulis

Existence of solutions for some semilinear elliptic
systems

ABSTRACT. We obtain results on the existence of solutions for the semilinear elliptic

equation (−∆ + q)u = λρu + f(x, u) in IRN under the hypothesis that N ≥ 3, q(x) →
+∞ as |x| → +∞ and ρ ∈ LN

2 (IRN). Similar results for semilinear systems of n equations

are also established.

1 Introduction

In the present paper we will study the maximum principle and existence of solutions for the

following elliptic equation:

(Eq) Lqu := (−∆ + q)u = λρu+ f(x, u) in IRN ,

where 0 ≤ ρ ∈ L
N
2 (IRN), λ ∈ IR, and q ∈ L1

loc(IR
N) ∪ L2

loc(IR
N) ∪ C(IRN) is such that

q ≥ constant c > 0 and q(x) → +∞ as |x| → +∞. Such topic has been studied already

in [8] for the case that ρ ∈ L∞(IRN) using the first eigenvalue λ(q) of the operator −∆ + q

in L2(IRN). Here we obtain results on existence of solutions to (Eq) in terms of the first

eigenvalue λ(ρ) of the following problem studied in [6]:

(Eρ)

{
−∆u = λρu in IRN

u(x) → 0 as |x| → +∞

We study also the following elliptic systems on IRN :

Lqi
ui := (−∆ + qi)ui = λiρi +

n∑
j=1;j 6=i

aijuj + fi in IRN (1 ≤ i ≤ n).

Under mild assumptions we have obtained the existence of solutions to the above systems.
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2 Recalls

2.1 About one equation

Let D(IRN) = C∞0 (IRN) = C∞c (IRN) be the set of C∞ functions on IRN with compact support.

Let 3 ≤ N ∈ IN; 0 ≤ ρ ∈ L
N
2 (IRN), ρ 6= 0. Let D1,2 be the completion of D(IRN) under the

norm [
∫
IRN |∇u|2] 1

2 .

We recall from [6] that the following equation

(Eρ)

{
−∆u = λρu in IRN

u(x) → 0 as |x| → +∞

admits a simple and positive eigenvalue λ(ρ), called the principal eigenvalue, associated with

a positive eigenfunction ψρ, such that

λ(ρ) ·
∫
IRN

ρu2 ≤
∫
IRN

|∇u|2 (∀u ∈ D1,2).

2.2 Schrödinger operators

Let q ∈ L1
loc(IR

N) ∪ L2
loc(IR

N) ∪ C(IRN) be such that: q ≥ constant c > 0 and q(x) →
+∞ as |x| → +∞, cf. [2, 3, p.3, 44, 68] and [15, Theorem XIII.47, p.207]. The variational

space is the Hilbert space Vq(IR
N) which is the completion of D(IRN) under the norm ‖u‖q =

[
∫
IRN |∇u|2 + q|u|2] 1

2 .

Proposition 2.1 (see [1, Prop.I.1.1])

The embedding of Vq(IR
N) into L2(IRN) is compact and has dense range.

Proposition 2.2 (see e.g. [1, p.25 to 27])

−∆ + q, considered as an operator in L2(IRN), is positive, selfadjoint, with compact in-

verse. Its spectrum is discrete and consists of an infinite sequence of positive eigenval-

ues tending to +∞. The smallest eigenvalue, called the principal eigenvalue and denoted

by λ(q), is simple and has a nonnegative eigenfunction φq. Moreover, there holds: ∀u ∈
Vq(IR

N), λ(q)
∫
IRN |u|2 ≤

∫
IRN [|∇u|2 + q|u|2].

2.3 M-matrix

We say that a matrix is positive if all of its entries are positive.

Definition 2.1 A matrix M = sI − B is called a non singular M-matrix if B is a

positive matrix and s > ρ(B) > 0, where ρ(B) denotes the spectral radius of B.
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Proposition 2.3 (see [4, Theorem 2.3, p.134])

If M is a matrix with nonpositive off-diagonal entries, then the following conditions (P0),

(P1), (P2), (P3), (P4) are equivalents:

(P0) M is a non singular M-matrix.

(P1) All the principal minors of M are strictly positives.

(P2) M is semi-positive i.e.: ∃X >> 0 such that MX >> 0.

Here X >> 0 means that the entries of X are strictly positive.

(P3) M has a positive inverse.

(P4) There exists a diagonale matrix D, D > 0, such that MD +DtM is positive definite.

3 The scalar case

3.1 Case of a linear equation

We consider the following elliptic equation:

(Eq) Lqu := (−∆ + q)u = λρu+ f in IRN

where N ≥ 3, f ∈ L2(IRN), 0 ≤ ρ ∈ LN
2 (IRN), ρ 6= 0, λ ∈ IR and q ∈ L1

loc(IR
N)∪L2

loc(IR
N)∪

C(IRN) is such that q ≥ constant c > 0 and q(x) → +∞ as |x| → +∞. We say that u is a

weak solution of (Eq) if u ∈ Vq(IR
N) and∫

IRN
(∇u.∇φ+ quφ) = λ

∫
IRN

ρuφ+

∫
IRN

fφ (∀φ ∈ D(IRN)).

Theorem 3.1 Assume λ < λ(ρ). Then (Eq) admits a unique weak solution u ∈ Vq(IR
N).

Moreover, if f ≥ 0, then u ≥ 0.

The proof of Theorem 3.1 is elmentary and thus the details are omitted.

By using a theorem obtained in [8] we can derive the following result for the asymptotic

behaviour of the solutions.

Theorem 3.2 Let u be a weak solution of (Eq). Then there holds the convergence that

lim|x|→∞ u(x) = 0 under each of the following conditions a)-b):

a) N = 3.

b) N ≥ 3 and either |f | ∈ Hm(IRN) with m > N
2
− 2 or f ∈ L d

2 (IRN) with d > N.
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3.2 Case of a semilinear equation

Of concern is the following semilinear elliptic equation

(Eq) Lqu(x) := (−∆ + q(x))u(x) = λρ(x)u(x) + f(x, u(x)) for x ∈ IRN .

In [8], in case the coefficient ρ is bounded, we have established already the existence of

solutions for (Eq) by the sub and supper solutions method combining with the Schauder

fixed point Theorem. Here we are interested in the more general case ρ ∈ L
N
2 (IRN) to

which the above method fails and thus we have to use the approximation method due to

L. Boccardo, J. Fleckinger and F. de Thlin [5].

Theorem 3.3 Let the following conditions (h1)− (h4) be satisfied:

(h1) N ≥ 3; 0 ≤ ρ ∈ L
N
2 (IRN) ∩ L∞loc(IR

N), ρ 6= 0; λ ∈ IR; and q ∈ L1
loc(IR

N) ∪ L2
loc(IR

N) ∪
C(IRN) is such that q ≥ constant c > 0 and q(x) → +∞ as |x| → ∞.

(h2) ∃θ ∈ L2(IRN),∀u ∈ L2(IRN), |f(x, u)| ≤ θ.

(h3) f is Lipschitz respect to u, uniformly in x.

(h4) λ < λ(ρ).

Then (Eq) has a weak solution.

Proof: Let ε ∈]0, 1[ and Bε = B(0, 1
ε
) = {x ∈ IRN , |x| < 1

ε
}. Let 1Bε be the indicator

function of Bε. Let m ∈ IR∗+ be such that λ+m > 0.

Let Tε : L2(IRN) → L2(IRN) be defined by Tε(u) = v, where u, v are determined as follows:

(E1) (−∆ + q +mρ)v = (λ+m)
ρu

1 + ερ|u|
1Bε + f(x, u) in IRN .

i) First we prove that Tε is well defined.

By (h2) and the scalar case, since −m < 0 < λ(ρ), we deduce the existence (and

uniqueness) of the weak solution v ∈ Vq(IR
N) of (E1).

ii) Construction of a sub and supper solution for (E1).

We have: (λ + m)1
ε
1Bε + θ ∈ L2(IRN) so by the scalar case, we deduce that: ∃!ξ0

ε ∈
Vq(IR

N), ξ0
ε ≥ 0 such that: (−∆ + q + mρ)ξ0

ε = (λ + m)1
ε
1Bε + θ in IRN . ξ0

ε is a

suppersolution of (E1). By the same way, ξε,0 = −ξ0
ε is a subsolution of (E1). Note

that Tε(σε) ⊂ σε where σε = [ξε,0, ξ
0
ε ].

iii) We prove that Tε is continuous.

Let (un)
n∈IN be a sequence in σε = [ξε,0, ξ

0
ε ] converging to u in ‖.‖

L2(IRN
)
. Set Tε(un) =

vn (n ∈ IN) and Tε(u) = v. We have in a weak sense:

(−∆ + q +mρ)(vn − v) = (λ+m)[ ρun

1+ερ|un| −
ρu

1+ερ|u| ]1Bε + f(x, un)− f(x, u).

Multiplying by vn− v, integrating over IRN and using the Cauchy-Schwartz inequality,
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we get:

‖vn − v‖2
q+mρ ≤ (λ+m)[

∫
Bε

( ρun

1+ερ|un| −
ρu

1+ερ|u|)
2]

1
2‖vn − v‖

L2(IRN
)

+‖f(x, un)− f(x, u)‖
L2(IRN

)
‖vn − v‖

L2(IRN
)
.

But the function l on IR defined by l(x) := x
1+|x| (∀x ∈ IR) is Lipschitz and satisfies:

∀x, y ∈ IR, |l(x)− l(y)| ≤ |x− y|. So, by (h3), we deduce that

‖vn − v‖q+mρ ≤ [(λ + m)[
∫

Bε
ρ2(un − u)2]

1
2 + k‖un − u‖

L2(IRN
)
]‖vn − v‖

L2(IRN
)

for

some positive constant k. Since ρ ∈ L∞loc(IR
N) we find that ‖vn − v‖q+mρ ≤ K(ε)‖un −

u‖
L2(IRN

)
for some positive constant K(ε). Hence (vn)n is a sequence converging to v

in ‖.‖
L2(IRN

)
.

iv) Let (vn)n be a sequence such that: Tε(un) = vn.

We want to prove that there exists a subsequence of (vn) converging in L2(IRN). We

have: ∀n, (−∆ + q +mρ)vn = (λ+m) ρun

1+ερ|un|1Bε + f(x, un) in IRN .

By the Cauchy-Schwartz inequality and by (h2), we obtain:

‖vn‖2
q+mρ ≤ (λ+m)1

ε
[
∫

Bε
1]

1
2‖vn‖L2(Bε) + ‖θ‖

L2(IRN
)
‖vn‖L2(IRN

)
.

So the sequence (vn) is bounded in Vq(IR
N). Since the embedding of Vq(IR

N) into

L2(IRN) is compact, we can find a subsequence of (vn) which is convergent in L2(IRN).

Therefore Tε(σε) is compact.

v) By the Schauder Fixed Point Theorem, we deduce the existence of uε ∈ σε such that:

Tε(uε) = uε. Moreover, there holds

(−∆ + q +mρ)uε = (λ+m)
ρuε

1 + ερ|uε|
1Bε + f(x, uε) in IRN .

vi) Now we prove that (εuε)ε is a bounded sequence in Vq(IR
N).

Multiplying by ε2uε, integrating over IRN , using the Cauchy-Schwartz inequality and

since
1Bε

1+ερ|uε| ≤ 1 we deduce that

‖εuε‖2
q+mρ ≤ (λ+m)

∫
IRN

ρε2u2
ε + ‖θ‖

L2(IRN
)
‖εuε‖L2(IRN

)
.

Therefore, ‖εuε‖2
q+mρ ≤ λ+m

λ(ρ)+m
‖εuε‖2

q+mρ + ‖θ‖
L2(IRN

)
‖εuε‖L2(IRN

)
.

It follows that 0 ≤ λ(ρ)−λ
λ(ρ)+m

‖εuε‖2
q+mρ ≤ ‖θ‖

L2(IRN
)
‖εuε‖L2(IRN

)
. Hence: ∃K > 0, K

independent of ε such that ‖εuε‖q+mρ ≤ K.

vii) We prove now that εuε → 0 as ε → 0 strongly in L2(IRN) and weakly in Vq(IR
N). We

know that the imbedding of Vq(IR
N) into L2(IRN) is compact. The sequence (εuε)ε

is bounded in Vq(IR
N) so (for a subsequence), we deduce that ∃u∗ such that: εuε →

u∗ as ε→ 0 strongly in L2(IRN) and weakly in Vq(IR
N). Multiplying by ε, we get:

(−∆ + q +mρ)εuε = (λ+m) ρεuε

1+ερ|uε|1Bε + εf(x, uε) in IRN .
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We have: ∀φ ∈ D(IRN), |
∫
IRN εf(x, uε)φ| ≤ ε

∫
IRN θ|φ|.

We deduce that:
∫
IRN εf(x, uε)φ→ 0 as ε→ 0.

We have also: [ ερuε

1+ερ|uε|1Bε − ρu∗

1+ρ|u∗| ]φ→ 0 as ε→ 0.

Since ερ|uε|
1+ερ|uε| ≤ 1 and ρ|u∗|

1+ρ|u∗| ≤ 1 we get

|[ ερuε

1 + ερ|uε|
1Bε −

ρu∗

1 + ρ|u∗|
]φ| ≤ 2|φ| ∈ L1(IRN).

Using the Dominated Convergence Theorem, we deduce that∫
IRN

ερuε

1 + ερ|uε|
1Bεφ→

∫
IRN

ρu∗

1 + ρ|u∗|
φ as ε→ 0.

So u∗ is a weak solution of the equation (−∆ + q +mρ)u∗ = (λ+m) ρu∗

1+ρ|u∗| in IRN .

We prove u∗ = 0. Multiplying by u∗ and integrating over IRN yields∫
IRN

[|∇u∗|2 + (q +mρ)|u∗|2] = (λ+m)

∫
IRN

ρ|u∗|2

1 + ρ|u∗|
≤ (λ+m)

∫
IRN

ρu∗2.

Since λ(ρ)
∫
IRN ρu∗2 ≤

∫
IRN |∇u∗|2 we have (λ(ρ) +m)

∫
IRN ρu∗2 ≤ (λ+m)

∫
IRN ρu∗2.

But λ(ρ)− λ > 0, we find that
∫
IRN ρu∗2 = 0 and thus u∗ = 0 a.e.

viii) We prove now by contradiction that (uε)ε is bounded in Vq(IR
N) .

We suppose that (for a subsequence): ‖uε‖q+mρ → +∞ as ε→ 0. Let zε = 1
‖uε‖q+mρ

uε.

Then ‖zε‖q+mρ = 1 and thus (zε)ε is a bounded sequence in Vq(IR
N). There exists z

such that zε → z as ε → 0 strongly in L2(IRN) and weakly in Vq(IR
N). Furthermore:

∃h ∈ L2(IRN),∀ε, |zε| ≤ h a.e (for a subsequence) (see [7, p.58]) In a weak sense, we

have:

(−∆ + q +mρ)zε = (λ+m)
‖uε‖q+mρ

ρuε
1+ερ|uε|1Bε + 1

‖uε‖q+mρ
f(x, uε) in IRN .

We have: ∀φ ∈ D(IRN),
∫
IRN

1
‖uε‖q+mρ

f(x, uε)φ→ 0 as ε→ 0.

We have also: [ ρzε

1+ερ|uε|1Bε − ρz]φ→ 0 as ε→ 0 a.e.

|[ ρzε

1+ερ|uε|1Bε−ρz]φ| ≤ |ρ(zε1Bε−z)||φ|+ |
ερ|uε|

1+ερ|uε|ρzφ| ≤ |ρ(|z|+ |h|)φ|+ |ρzφ| ∈ L
1(IRN)

since ρ ∈ L∞loc(IR
N). Using the Dominated Convergence Theorem, we deduce that∫

IRN
ρzε

1+ερ|uε|1Bεφ→
∫
IRN ρzφ as ε→ 0. So z is a weak solution of the equation (−∆ +

q)z = λρz in IRN . Since λ < λ(ρ) we find z = 0. Using ‖zε‖L2(IRN
)
= 1 → ‖z‖

L2(IRN
)
=

0 as ε→ 0, we get a contradiction.

ix) There exists u0 such that uε → u0 strongly in L2(IRN) and weakly in Vq(IR
N).

We have in a weak sense:

(−∆ + q +mρ)uε = (λ+m) ρuε

1+ερ|uε|1Bε + f(x, uε) in IRN .

But uε ⇀ u0 as ε → 0 weakly in Vq(IR
N). Furthermore: ∃h′ ∈ L2(IRN), ∀ε, |uε| ≤

h′ a.e (for a subsequence.) By (h3) we have also:

‖f(x, uε)− f(x, u0)‖2

L2(IRN
)
≤ const · ‖uε − u0‖2

L2(IRN
)
.
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Therefore: ∀φ ∈ D(IRN),
∫
IRN f(x, uε)φ→

∫
IRN f(x, u0)φ as ε→ 0.

Moreover: [ ρuε

1+ερ|uε|1Bε − ρu0]φ→ 0 as ε→ 0 a.e. and

|[ ρuε

1+ερ|uε|1Bε − ρu0]φ| ≤ ρ(|h′|+ 2|u0|)|φ| ∈ L1(IRN).

Using the Dominated Convergence Theorem, we deduce that
∫
IRN

ρuε

1+ερ|uε|1Bεφ →∫
IRN ρu0φ as ε → 0. So u0 is a weak solution of the equation (−∆ + q)u0 = λρu0 +

f(x, u0) in IRN .

4 Study of a system

The system which we will study has the form

Lqi
ui := (−∆ + qi)ui = λiρi +

n∑
j=1;j 6=i

aijuj + fi in IRN (1 ≤ i ≤ n). (1)

We assume N ≥ 3 and impose the following conditions (H0)-(H3) for each index i :

(H0) λi ∈ IR.

(H1) 0 ≤ ρi ∈ LN/2(IRN), ρi 6= 0.

(H2) qi ∈ L1
loc(IR

N)∪L2
loc(IR

N)∪C(IR) is such that qi ≥ ci for some positive constant ci and

qi(x) → +∞ as |x| → ∞.

(H3) fi ∈ L2(IRN).

We say that (u1, ..., un) ∈ Vq1(IR
N) × ... × Vqn(IRN) is a weak solution of System (1) if:

∀1 ≤ i ≤ n, ∀φ ∈ D(IRN),∫
IRN [∇ui.∇φ+ qiuiφ] = λi

∫
IRN ρiuiφ+

∫
IRN

∑n
j=1;j 6=i aijujφ+

∫
IRN fiφ.

We call System (1) cooperative if aij ≥ 0 for all i 6= j. We say that System (1) satisfies the

maximum principle if: ∀fi ≥ 0, 1 ≤ i ≤ n, each solution u = (u1, ..., un) of (1) is nonnegative.

4.1 Study of a linear system

Theorem 4.1 Assume conditions (H0)− (H3) and the following ones

(H4) ∀i, j i 6= j ⇒ 0 ≤ aij ≤ kij
√
ρi
√
ρj with kij ∈ IR+.

Let D = (dij) be the n × n matrix given by dii = λ(ρi)− λi and dij = −kij otherwise. If D

is a non singular M-matrix, then System (1) satisfies the maximum principle.
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Proof: Assume that: ∀1 ≤ i ≤ n, fi ≥ 0. Let (u1, ..., un) be a weak solution of (1) and

u−i = max (0,−ui). Using (H4) and the Cauchy-Schwartz inequality, we obtain

(λ(ρi)− λi)(

∫
IRN

ρi|u−i |2)
1
2 −

∑
j;j 6=i

kij(

∫
IRN

ρj|u−j |2)
1
2 ≤ 0.

Let tX = (x1, ..., xn) be such that: ∀1 ≤ i ≤ n, xi = (
∫
IRN ρi|u−i |2)

1
2 . We have DX ≤ 0.

Since D is a non singular M-matrix, by (P3), D has a positive inverse. Hence, X ≤ 0. It

follows that u−i ≡ 0 for all i.

Theorem 4.2 Assume conditions (H0)− (H3) and the following ones

(H4∗) ∀i, j i 6= j ⇒ |aij| ≤ kij
√
ρi
√
ρj with kij ∈ IR+.

If D (given in Theorem 4.1) is a non singular M-matrix, then System (1) has a unique weak

solution (u1, ..., un). Furthermore if System (1) is cooperative and if fi ≥ 0 for all i, then,

by the maximum principle, we have that ui ≥ 0 for all i.

Proof: By (P4), there exists a diagonale matrix E such that tDE+ED is positive definite,

with: E = (eij) where ∀1 ≤ i ≤ n, eii = ei > 0. Let ∀i, mi ∈ IR∗+ such that: ∀1 ≤ i ≤
n, λi +mi > 0. Let l : (Vq1(IR

N)× ...× Vqn(IRN))2 → IR be defined by

l((u1, ..., un), (v1, ..., vn)) =
∑n

i=1 ei

∫
IRN [∇ui.∇vi + (qi +miρi)uivi]

−
∑n

i=1 ei(λi +mi)
∫
IRN ρiuivi −

∑
i,j;i6=j ei

∫
IRN aijujvi.

l is a bilinear continuous form. By (H4∗) and the Cauchy-Schwartz inequality, we prove that

l is coercive. So, using the Lax-Milgram Theorem, we obtain a unique solution for System

(1).

4.2 Study of a semilinear system

Theorem 4.3 Keep conditions (H0)− (H3) and (H4∗) and assume that the condition

(H1) is strengthened as follows: ρi ∈ L∞loc(IR
N) ∩ L1(IRN) for each i. Assume further the

following conditions (H6)− (H7):

(H6) ∀i, ∃θi ∈ L2(IRN), ∀u1, ..., un ∈ L2(IRN), |fi(x, u1, ..., un)| ≤ θi.

(H7) ∀i, fi is Lipschitz respect to ui, uniformly in x.

If D (given in Theorem 4.1) is a non singular M-matrix, then System (1) has a weak solution

(u1, ..., un).

Since the proof of Theorem 4.3 is very similar to that of Theorem 3.3, we omit the details.
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A Nonlinear Elliptic Eigenvalue Problem in Un-
bounded Domain
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bounded domain.

1 Introduction and main result

We find a localization of λ such that the problem

(Pλ) :


−∆pu+ V (x)|u|p−2u = λf(x, u)

u|∂Ω = 0

lim
|x|−→∞

u(x) = 0

has a solution, where Ω ⊂ RN is an unbounded domain, N > p ≥ 2, f : Ω × R → R is a

continuous function, and V ∈ Lp
loc(Ω) is a continuous potential on Ω satisfying

lim inf
|x|−→∞

V (x) ≥ min
x∈Ω

V (x) > 0.

Several authors for example P.Felmer, M.Del Pino [1] and P.H.Rabinowitz [4] have

studied the problem (Pλ) when p = 2 and λ = 1 under the following assumption:

H) : ∃θ > 2 / 0 ≤ θF (s) < f(s)s, where F (s) =

∫ s

0

f(t)dt.

They proved that the Palais-Smale sequence given by the mountain-pass lemma for the

functional J(u) = 1
2
‖u‖2

H −
∫

Ω
F (u)dx, has a convergent subsequence, where the limit is a

weak solution of the problem.

In [5], I. Schindler has studied the problem (Pλ) when p = 2 and lim
|x|→∞

V (x) = +∞,

without assumption H). He gave an interval I such that (Pλ) has a solution for almost every

λ satisfying 1
λ
∈ I.
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In this paper, we will follow the ideas in [5], and prove two existence theorems under weaker

assumptions on the potential V . The first result uses conditions on V similar to those in [1],

the second uses conditions similar to those in [3].

We denote by B the Banach space defined by the closure of C∞
0 (Ω) under the norm

‖u‖B :=

(∫
Ω

|∇u(x)|p + V (x)|u(x)|pdx
) 1

p

.

We use the following notations:

. F (x, s) :=

∫ s

0

f(x, t)dt.

. St := {u ∈ B : ‖u‖p
B = t} .

. g(u) :=

∫
Ω

F (x, u)dx, and γ(t) := sup
u∈St

g(u).

. I :=

(
p inf

t6=s

γ(t)− γ(s)

t− s
, p sup

t6=s

γ(t)− γ(s)

t− s

)
.

We will use the following assumptions:

H1) There exist a bounded subset K of Ω, and a real α such that

∀x ∈ Ω \K, ∀s ∈ R : f(x, s)s ≤ αV (x)|s|p.

H2) lim sup
s−→0

f(x, s)

|s|p−1
= 0.

H3) lim
|s|−→∞

f(x, s)

|s|p∗−1
= 0 uniformly in x.

H4) V belongs to the reverse Hölder class Ap.

We recall that a nonnegative locally Lq-integrable function V on RN is said to belong

to the reverse Hölder class Aq (1 < q <∞) if there exists C > 0 such that the reverse

Hölder inequality (
1

|B|

∫
B

|V (x)|qdx
) 1

q

≤ C

(
1

|B|

∫
B

|V (x)|dx
)

(1)

holds for every ball B in RN ; and we say that V ∈ A∞ if for any α, 0 < α < 1, there

exists a β, 0 < β < 1 such that for all balls B ⊂ RN and all subsets E ⊂ B,

|E| ≥ α|B| =⇒
∫

E

V (x)dx ≥ β

∫
B

V (x)dx. (2)

Note that if V ∈ Aq then V ∈ A∞; and if V ∈ A∞, then there exists a q, 1 < q < ∞
such that V ∈ Aq.
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H5) lim
|x|→∞

m(x, V ) = +∞, where m(x, V ) is an auxiliary function defined by:

1

m(x, V )
:= sup

{
r > 0,

1

rN−p

∫
B(x,r)

V (y)dy ≤ 1

}
.

B(x, r) is the ball of RN of center x and radius r.

The function m(x, V ) was introduced by Z. Shen in [8] for p = 2, to study the Neu-

mann problem for the operator −∆+V (x) on the domain above a Lipschitzian graph.

Recently, K.Kurata [3] has used this function to prove the existence of least energy

solution for a Schrödinger equation with magnetic potential.

Note that 0 < m(x, V ) < +∞ ∀x ∈ RN , and if r =
1

m(x, V )
, then

1

rN−p

∫
B(x,r)

V (y)dy = 1.

The problem (Pλ) is equivalent to finding the values of ρ =
1

λ
for which there exists u such

that

g′(u) = ρ‖u‖p−2
B u . (3)

Let Gρ(u) :=
ρ

p
‖u‖p

B − g(u).

Our main results are:

Theorem 1.1 If H1 and H3 hold, then for almost every λ satisfying
1

λ
∈ I ∩ (α,+∞)

the problem (Pλ) has a solution in B \ {0}.
If each critical sequence of Gρ is bounded, then (Pλ) has a solution for every λ satisfying
1

λ
∈ I ∩ (α,+∞).

Theorem 1.2 If H2–H5 hold, then for almost every λ satisfying 1
λ
∈ I the problem

(Pλ) has a solution in B \ {0}.
If each critical sequence of Gρ is bounded, then (Pλ) has a solution for every λ satisfying
1
λ
∈ I.

2 Mountain pass and impasse lemma

We use a modification of the usual Palais-Smale condition:

Definition 2.1 We say that Gρ satisfies the property (P) if any sequence (un) ⊂ B
satisfying

‖un‖p
B −−−→n→∞

t 6= 0 (4)
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G′
ρ(un) −−−→

n→∞
0 (5)

has a converging subsequence.

Remark 2.1 If a sequence (un)n satisfying (5) and

Gρ(un) −−−→
n→∞

b 6= 0 (6)

is bounded, then modulo a subsequence we have (4).

We recall mountain pass results due to K.Tintarev [11].

Definition 2.2 We say that Gρ has the mountain-pass geometry if:

. Gρ(0) = 0.

. ∃t0 > 0, δ > 0 such that for ‖u‖p
B = t0, Gρ(u) > δ.

. ∃e ∈ B \ {0}, ‖e‖p
B > t0 such that Gρ(e) ≤ 0.

We have the following mountain impasse lemma:

Lemma 2.1 Assume that Gρ0 has the mountain-pass geometry and satisfies the property

(P). Then either there exists u0 ∈ B \ {0} such that G′
ρ(u0) = 0, or there exists a sequence

(un, hn) ∈ B \ {0} × R such that:

0 < hn −→ 0

‖un‖p
B = tn ↗∞

Gρ0(un) = c(tn) ↘ c

G′
ρ0+hn

(un) = 0.

Using results from [11] we have the following lemma 1:

Lemma 2.2 Let ρ0 ∈ R such that Gρ0 satisfies the property (P), and has the mountain-

pass geometry. Then for a dense set of ρ in a neighborhood of ρ0, there exists uρ ∈ B \ {0}
such that

G′
ρ(uρ) = 0

1Using a technique used by M.Struwe in [10] page 60, one should be able to improve the statement in
lemma 2.2 to almost every ρ in a neighborhood of ρ0. I. Schindler attempted to prove this in [5], but the
proof is not complete.
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3 Proof of the main results

The critical sequence converging to the solution of (Pλ) is given by the following lemma

which is proved in [5] when p = 2. The proof for general p is similar and will be omitted.

Lemma 3.1 Under assumption H3, if ρ ∈ I, then Gρ has critical sequence (un)n which

tends either to a local minimizer of Gρ, or satisfies equations (6) and (5), and is of mountain-

pass type. If the sequence tends to a local minimizer of Gρ, then ∃t0 6= 0 : ‖un‖B −→ t0.

To prove Theorem 1.1 and Theorem 1.2 it suffices to prove that Gρ satisfies property (P ):

Lemma 3.2 Assume H1 and H3. Then Gρ satisfies property (P ) for ρ > α.

Proof: Let (un)n be a sequence satisfying (4) and (5). By (4), the sequence (un)n is bounded,

which means that there is a renumbered subsequence converging to a weak limit u. In fact,

this convergence is strong. To prove this, it suffices to check that for each ε > 0 there exist

R > 0 such that:

lim sup
n→∞

∫
Ω\BR

{|∇un|p + V (x)|un|p}dx < ε.

Let R be chosen such that K ⊂ BR/2, and let

ηR =

{
0 on BR/2

1 on Ω \BR

with 0 ≤ ηR ≤ 1 and |∇ηR| ≤
C

R
.

Since (un)n is a bounded sequence of Palais-Smale type, then

< G
′

ρ(un), ηRun >= o(1)

i.e:∫
Ω

{|∇un|p + V (x)|un|p} ηRdx+

∫
Ω

un|∇un|p−2∇un.∇ηRdx =

∫
Ω

λf(x, un)unηRdx+ o(1)

Using H1 we obtain∫
Ω

{|∇un|p + V (x)|un|p}ηRdx+

∫
Ω

un|∇un|p−2∇un.∇ηRdx ≤ λα

∫
Ω\BR/2

V (x)|un|pηRdx

+o(1)

≤ λα

∫
Ω

{|∇un|p + V (x)

·|un|p}ηRdx+ o(1).
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Since ρ =
1

λ
, we have

(ρ− α)

∫
Ω

{|∇un|p + V (x)|un|p}ηRdx ≤ −ρ
∫

Ω

un|∇un|p−2∇un.∇ηRdx+ o(1)

≤
∣∣∣∣ρ∫

Ω

un|∇un|p−2∇un.∇ηRdx

∣∣∣∣+ o(1)

≤ ρ
C

R

∫
Ω

|un||∇un|p−1dx+ o(1)

≤ ρ
C

R

(
‖un‖Lp(Ω)‖∇un‖

p
q

Lp(Ω)

)
+ o(1),

where 1
p

+ 1
q

= 1. Thus:∫
Ω\BR

{|∇un|p + V (x)|un|p}dx ≤
ρC

R(ρ− α)

(
‖un‖Lp(Ω)‖∇un‖

p
q

Lp(Ω)

)
+ o(1)

which completes the proof.

Lemma 3.3 If H2–H5 hold, then Gρ satisfies the property (P) for all ρ ∈ R.

For the proof, we use the concentration-compactness method. We recall the concentration-

compactness lemma used in [5]:

Lemma 3.4 Let (φn)n be a sequence of non negatives functions in L1(Ω) such that

‖φn‖L1(Ω) = t. Then either:

1. ∀R <∞, lim
n→∞

sup
y∈RN

∫
BR+y

φn(x)dx = 0,

or

2. there exist a renumbered subsequence (φn)n , a β ∈ (0, t], and sequences of nonnegative

functions (rn)n, (φ1
n)n, (φ2

n)n in L1(RN) such that (φ1
n)n is tight up to translations,

and

φn = φ1
n + φ2

n + rn,

‖φn − (φ1
n + φ2

n)‖L1(Ω) = ‖rn‖L1(Ω) −−−→
n→∞

0,

‖φ1
n‖L1(Ω) −−−→

n→∞
β, ‖φ2

n‖L1(Ω) −−−→
n→∞

t− β,

dist
(
Supp(φ1

n), Supp(φ2
n)
)
−−−→
n→∞

∞,

φi
nrn = 0 a.e, i = 1, 2.

Furthermore, if there exists R < ∞ such that lim
n→∞

∫
BR

φndx = δ > 0, then we may

assume the φ1
n to be tight.
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Using the preceding lemma one can prove the following smooth version of concentration

compactness:

Lemma 3.5 Let (un) be a sequence in St, and let φn := |∇un|p + V (x)|un|p. Assume

(φn)n is as in lemma 3.4 case 2. Then there exist two sequences (u1
n)n, (u2

n)n in B such that

‖un − (u1
n + u2

n)‖B −−−→
n→∞

0,

dist
(
Supp(u1

n), Supp(u2
n)
)
−−−→
n→∞

∞,

‖u1
n‖

p
B = β, ‖u2

n‖
p
B = t− β.

Moreover, ψ1
n := |∇u1

n|p + V (x)|u1
n|p is tight up to translations.

We also recall

Lemma 3.6 Let (un)n be a sequence in St, and assume that H2 and H3 hold.

If

∫
Ω

|un(x)|pdx −−−→
n→∞

0, then

(g′(un), un) −−−→
n→∞

0.

We need also the following lemma originally proved for polynomial V by C.Fefferman

and D.H.Phong in [2], and extended to V ∈ Aq with 1 < q <∞ and p = 2 by Z. Shen in

[7, 8].

Lemma 3.7 Let u ∈ C1
c (RN). Then:∫

RN

|u(x)|pm(x, V )pdx ≤ C

∫
RN

|∇u(x)|p + V (x)|u(x)|pdx

To prove this result, we need the following lemma which is the first statement of Lemma 1.8

in [8]. Its proof is based on the fact that V ∈ Ap.

Lemma 3.8 For x, y ∈ RN , m(x, V ) ∼ m(y, V ) if |x− y| ≤ 1

m(x, V )
.

The proof of Lemma 3.7 is similar to that for p = 2 in [7, 8]. It is included for completeness

without the confusing typographical error in [7, 8].

Proof of Lemma 3.7: Since V ∈ Ap, then V ∈ A∞. Hence, according to (2), there exists

ε ∈]0, 1[ such that for each ball B ⊂ RN , we have∣∣∣∣{y ∈ B : V (y) ≥ ε

|B|

∫
B

V (x)dx

}∣∣∣∣ ≥ 1

2
|B|.



46 N. Megrez

Let x0 ∈ RN , r0 =
1

m(x0, V )
, B = B(x0, r0), and E :=

{
y ∈ B : V (y) ≥ ε

|B|

∫
B

V (x)dx

}
,

where ε is chosen such that
ε

wN

≤ 1. (wN = |B(0, 1)|).

For y ∈ E we have V (y) ≥ ε

wNrN
0

∫
B

V (x)dx =
c0
rp
0

, where c0 =
ε

wN

.

Thus,

∫
B

min

{
c0
rp
0

, V (y)

}
dy ≥

∫
E

min

{
c0
rp
0

, V (y)

}
dy ≥ CrN−p

0 .

On the other hand we have∫
B

|∇u(x)|pdx ≥ C

rp+N
0

∫
B

∫
B

|u(x)− u(y)|pdxdy,

and ∫
B

V (x)|u(x)|pdx ≥ C

rN
0

∫
B

∫
B

V (x)|u(x)|pdxdy.

Summing those two inequalities, we obtain:∫
B

|∇u(x)|pdx+
∫

B

V (x)|u(x)|pdx ≥ C

rN
0

∫
B

∫
B

{
c0
rp
0

|u(x)− u(y)|p + V (y)|u(y)|p
}
dxdy

≥ C

rN
0

∫
B

∫
B

min

{
c0
rp
0

, V (y)

}
(|u(x)− u(y)|p + |u(y)|p) dxdy

≥ C

rN
0

∫
B

∫
B

min

{
c0
rp
0

, V (y)

}
|u(x)|pdxdy

≥ C

∫
B

1

rp
0

|u(x)|pdx

Using Lemma 3.8 we obtain:∫
B

|u(x)|pm(x, V )pdx ≤ C

∫
B

{|∇u(x)|p + V (x)|u(x)|p} dx .

Multiplying this last inequality by m(x0, V )N and using Lemma 3.8 we obtain:∫
RN

|u(x)|pm(x, V )p+NχB(x0,r0)(x)dx

≤ C

∫
RN

{|∇u(x)|p + V (x)|u(x)|p}m(x, V )NχB(x0,r0)(x)dx .

Remarking that χB(x0,r0)(x)=χB(x,r0)(x0), and integrating in x0, we obtain:∫
RN

|u(x)|pm(x, V )p+N

(∫
B(x,r0)

dx0

)
dx ≤ C

{∫
RN

|∇u(x)|pm(x, V )N

(∫
B(x,r0)

dx0

)
dx

+

∫
RN

V (x)|u(x)|pm(x, V )N

(∫
B(x,r0)

dx0

)
dx

}
.
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With Lemma 3.8, we deduce that∫
|x0−x|<r0

dx0 ∼
(

1

m(x, V )

)N

which completes the proof.

Proof of Lemma 3.3: Let (un)n be a sequence satisfying (4) and (5). We may assume

that ‖un‖p
B = t for every n. Let φn := |∇un|p +V (x)|un|p which we claim to be in the case 2

of Lemma 3.4. Suppose this were not the case, then there is a relabeled subsequence (un)n

such that ∫
BR

|∇un(x)|p + V (x)|un(x)|pdx −−−→
n→∞

0 ∀R <∞ (7)

According to lemma 3.7, there exists M > 0 such that

∫
RN

m(x, V )p|un(x)|pdx ≤M .

Since lim
|x|→∞

m(x, V ) = +∞, then ∀ε > 0,∃R > 0 such that m(x, V )p ≥ M

ε
on {x : |x| ≥ R}.

Hence ∫
{|x|≥R}

|un(x)|pdx ≤ ε ∀k. (8)

From (7) and (8), we conclude that∫
Ω

|un(x)|pdx −−−→
n→∞

0. (9)

According to lemma 3.6 we have:

(g′(un), un) −−−→
n→∞

0.

Furthermore, (5) and the fact that (un)n is bounded implies that

ρ‖un‖p
B − (g′(un), un) −−−→

n→∞
0.

Thus ‖un‖p
B = t = 0, a contradiction. This completes the proof, see [5], [6].

Proof of Theorem 1.1 : By Lemma 3.1, Remark 2.1, and Lemma 2.2, we deduce the first

statement. The second one is a consequence of Lemma 3.1 and the fact that Gρ satisfies

property (P).

The proof of Theorem 1.2 is similar.

Acknowledgment: I acknowledge Ian Schindler for useful criticisms and conversations

on some questions treated in this paper.
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Ian Schindler, Kyril Tintarev†

A nonlinear Schrödinger equation with external
magnetic field

ABSTRACT. The paper presents an existence result for a nonlinear Schrödinger equation

with magnetic potential on unbounded domains.

1 Introduction

In this paper we study a Dirichlet boundary value problem for a nonlinear Schrödinger

equation (
1

i
∇+ A(x)

)2

u+ V (x)u = |u|q−1u (1)

with a subcritical q on Ω ⊂ R3 an open, possibly unbounded, set. Equation (1) is a mod-

ification of the linear Schrödinger equation for standing waves ψ(x, t) = e−iEtu(x) with a

magnetic potential and an energy term dependent on the magnitude of the wave function.

The problem (1) has been studied by [2], where existence was proved for the constant mag-

netic field B = curlA on RN , N = 2, 3. In the case of variable magnetic field [2] gives only an

implicit condition in terms of asymptotic values of the functional. The problem on RN was

also studied by [3]. This paper provides existence under explicit conditions on the electric

and magnetic fields only in part overlapping with those [3], and for problems on more general

domains than RN .

The proof of existence is variational: convergence of a critical sequence is obtained by applica-

tion of an abstract concentration compactness framework ([7, 8]) which provides a functional-

analytic generalization of original concentration compactness ([5, 6]).

2 Concentration compactness in Hilbert space and in Sobolev space

In what follows we quote results from [8].

†Research supported by a grant from NFR, partially done at University of Toulouse 1
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Definition 2.1 Let H be a separable Hilbert space. A bounded set D of bounded linear

operators on H is called a set of dislocations if the following properties are satisfied:

(I) g ∈ D ⇒ g−1 ∈ D, I ∈ D;

(II) if gk, hk ∈ D and gkh
−1
k does not converge weakly to 0,

then there exists a renamed subsequence of gkh
−1
k such that

uk ⇀ 0 ⇒ gkh
−1
k uk ⇀ 0;

(III) gk ∈ D, uk ⇀ 0 ⇒ g∗kgkuk ⇀ 0.

Definition 2.2 Let u, uk ∈ H. We will say that uk converges to u weakly with concen-

tration which we will denote as

uk
cw→ u,

if for all ϕ ∈ H,

lim
k→∞

sup
g∈D

(g(uk − u), ϕ) = 0 . (1)

Theorem 2.3 Let uk ∈ H be a bounded sequence. Then there exists w(n) ∈ H, g
(n)
k ∈ D,

k, n ∈ N such that for a renumbered subsequence

w(n) = w-lim g
(n)
k

−1
uk , (2)

g
(n)
k

−1
g

(m)
k ⇀ 0 for n 6= m, (3)

∑
n∈N

‖w(n)‖2 ≤ lim sup ‖uk‖2 (4)

and

uk −
∑
n∈N

g
(n)
k w(n) cw→ 0 . (5)

We now specify the implications of the theorem above for the case when H = H1(RN) and

D is a group of shifts:

D = {gα : u 7→ u(·+ α)}α∈ZN . (6)

Let N > 1 and let 2∗ = 2N
N−2

(for N = 2 we set 2∗ = ∞). It is proved in [8] that D is a

set of dislocations, so that Theorem 2.3 applies. Moreover ([8, 4, 6]), for bounded sequences

concentrated weak convergence is same as Lp − convergence

Lemma 2.4 Let H,D be as above, let 2 < p < 2∗ and let uk be a bounded sequence in

H. Then uk ∈ H1(RN)
cw→ 0 if and only if ‖uk‖Lp(RN ) → 0.
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An easy corollary from the above lemma is the following statement.

Lemma 2.5 Let uk, w
(n), and g

(n)
k be as in Theorem 2.3. If F : R → R is a continuous

function and for every ε > 0 there is a Cε <∞ and a pε such that 2 < pε < 2∗ and

|F (s)| ≤ ε(|s|2 + |s|p∗) + Cε|s|pε (7)

then, on a renamed subsequence

lim
k→∞

∫
RN

F (|uk|) =
∑

n

∫
RN

F (|w(n)|). (8)

Definition 2.6 An open set Ω ⊂ RN will be called asymptotically contractive if for every

sequence uk ∈ H1
0 (Ω) and every sequence αk ∈ RN such that uk(· + αk) converges weakly in

H1(RN) to some w, there exists a γ ∈ RN such that w(· − γ) ∈ H1
0 (Ω).

A sufficient geometric condition for asymptotic contractiveness can be formulated in the

terms of lower limit for sequences of sets,

lim inf Ωk :=
⋃
n∈N

⋂
k≥n

Ωk , (9)

namely,

Lemma 2.7 Let Ω ⊂ RN be an open set such that ∂Ω = ∂(RN \ Ω̄). It is asymptotically

contractive if for every sequence αk ∈ ZN there exist a set Y ⊂ RN of zero measure and a

convergent sequence γk ∈ RN such that, on a renumbered subsequence,

lim inf(Ω + αk − γk) ⊂ Ω ∪ Y . (10)

3 A nonlinear magnetic Schrödinger equation

Let Ω ⊂ R3 be an open set. Let V ∈ L1
loc(Ω) and assume that

η := inf
x∈Ω

(V (x) + λ0) > 0 , (1)

where λ0 = infuC∞0 (Ω):
∫
|u|2=1

∫
|∇u|2. Note that λ0 might be positive even for unbounded Ω.

Let A ∈ L2
loc(Ω; R3) satisfy

∃φ ∈ H1
loc(Ω) : |A(x)−∇φ|2 < lim inf

|y|→∞
V (y)− V (x), x ∈ Ω . (2)

Theorem 3.1 Let q ∈ (1, 5) and assume that A, V satisfy (2, 1). If Ω ⊂ R3 is an

asymptotically contractive set, then there is a solution u ∈ H1
0 (Ω; C) \ {0} satisfying the

equation (
1

i
∇+ A(x)

)2

u+ V (x)u = |u|q−1u . (3)
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Proof: It suffices to prove existence of the minimizer for the following variational problem.

Let

c = inf∫
Ω |u|p=1

I(u), p = q + 1 , (4)

where

I(u) =

∫
Ω

Pu · Pu+ V (x)|u|2, P =
1

i
∇+ A(x) . (5)

Without loss of generality we can assume that φ=0 in (2), since the value of c does not

change when one replaces A by A+∇φ. For smooth φ this is verified by replacing u by eiφu,

for general φ one can replace a minimizing sequence uk by eiφkuk with appropriate smooth

approximations φk of φ.

Let uk be the maximizing sequence and let u(0) := w-limuk. The weak limit here is un-

derstood with respect to the metric of the quadratic form I(u). We will make use of the

following inequality (cf. [2]): ∫
|Pu|2 ≥

∫
|∇|u||2 (6)

that together with (1) implies that c > 0 and that vk := |uk − u(0)| ∈ H1
0 (Ω). We apply

Theorem 2.3 in H1(R3) to the extensions of functions vk (by zero on the complement of Ω).

Since Ω is asymptotically contractive, the dislocated weak limits of vk, w
(n) (redefined by

appropriate constant shifts) lie in H1
0 (Ω). Moreover, since vk ⇀ 0, one has |α(n)

k | → ∞ for

all n.

From Lemma 2.5 we have

lim

∫
vp

k =
∞∑

n=1

∫
w(n)p (7)

and, since all |α(n)
k | → ∞,

1 = lim

∫
|uk|p =

∫
|u(0)|p +

∞∑
n=1

∫
w(n)p . (8)

To continue with the proof we need the following inequality:∫
|Puk|2 +V (x)|uk|2 ≥

∫
|Pu(0)|2 +V (x)|u(0)|2 +

∞∑
n=1

∫
(|∇w(n)|2 +lim inf

|x|→∞
V (x)w(n)2) . (9)

We start with:∫
|Puk|2 =

∫
|Pu(0)|2 +

∫
|P (uk− u(0))|2−

∫
P (uk− u(0)) ·Pu(0)−

∫
Pu(0) ·P (uk − u(0)) .

(10)

Passing to the limit we have

lim inf

∫
|Puk|2 ≥

∫
|Pu(0)|2 + lim inf

∫
|P (uk − u(0))|2 . (11)
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Applying (6), we get

lim inf

∫
|Puk|2 ≥

∫
|Pu(0)|2 + lim inf

∫
|∇vk|2 , (12)

which in turn can be estimated from below by (4) if we apply Theorem 2.3 to the sequence

vk as a bounded sequence in D1,2, so that

c = lim inf

∫
|Puk|2 ≥

∫
|Pu(0)|2 +

∑
n

∫
|∇w(n)|2 . (13)

A similar argument allows also to show that∫
V (x)|uk|2 ≥

∫
V (x)|u(0)|2 +

∞∑
n=1

lim inf
|x|→∞

V (x)

∫
w(n)2 . (14)

This and (13) yield (9). Using the notations

tn =

∫
w(n)p, t0 =

∫
|u(0)|p , (15)

cn = t−2/p
n

∫
|∇w(n)|2 + lim inf

|x|→∞
V (x)

∫
w(n)2, c0 = t

−2/p
0

∫
|Pu(0)|2 + V (x)|u(0)|2 , (16)

one has from (8), (9)
∞∑

n=0

tn = 1,
∞∑

n=0

cnt
2/p
n ≤ c . (17)

However, due to (2), cn > c, while c0 ≥ c, so it is possible to satisfy (17) only with t0 = 1,

tn = 0, N = 1, 2 . . . This also implies that the minimizing sequence converges to u(0) in

norm.
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On Polynomials Related with Generalized Bernoulli
Numbers

ABSTRACT. The generalized Bernoulli numbers are connected with a sequence of polyno-

mials, which are defined recursively and which can be represented by means of a generalized

Rodrigues formula. A relation between the coefficients of a polynomial and corresponding

moments is derived. A generating function with an unusual shape is constructed.

KEY WORDS. Bernoulli numbers, recursions, Rodrigues formula, moments, generating

function

The generalized Bernoulli numbers B
(z)
m are defined by(

w

ew − 1

)z

=
∞∑

m=0

1

m!
B(z)

m wm (z ∈ C) , (1)

cf. [1], [2], they contain the ordinary Bernoulli numbers Bm as special case with z = 1. The

generalized Bernoulli numbers satisfy the difference equation

B(z+1)
m =

(
1− m

z

)
B(z)

m −mB
(z)
m−1 (2)

from which they can be calculated recursively for natural m, z subject to the initial values

B
(z)
0 = 1 and B

(1)
m = Bm. They are polynomials in z of degree m, the first of them are listed

in [1, p. 459] for 0 ≤ m ≤ 12.

The substitution

dm(z) = (−1)m

(
z − 1

m

)
B(z)

m (3)

transfers (2) into the simpler recursion

dm(z + 1)− dm(z) = zdm−1(z) . (4)
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Under the initial values d0(z) = 1, dm(1) = 0 for m ∈ N the last has polynomial solutions of

the form

dm(z) =
m∑

µ=1

cmµ

(
z

m+ µ

)
(5)

from which, conversely, B
(z)
m can be calculated by means of (3). Using the identity

z

(
z

n− 1

)
= n

(
z

n

)
+ (n− 1)

(
z

n− 1

)
substitution of (5) into (4) yields the recursion

cm,µ+1 = (m+ µ)(cm−1,µ + cm−1,µ+1) (m ≥ 2) (6)

for µ = 0, 1, . . . ,m− 1 with c11 = 1 and cm0 = cm,m+1 = 0 (m ∈ N). From (6) and the initial

values we immediately obtain the values of cmµ (1 ≤ µ ≤ m) in form of a Pascal triangle

m cmµ

1 1

2 2 3

3 6 20 15

4 24 130 210 105

5 120 924 2380 2520 945

6 720 7308 26432 44100 34650 10395

and, moreover,

cmm = (2m− 1)!!, cm,m−1 =
2

3
(m− 1)(2m− 1)!!, cm1 = m! . (7)

In order to learn more about the coefficients cmµ we introduce the polynomials

fn(z) =
n∑

ν=0

cn+1,ν+1z
ν (n ∈ N0) . (8)

The recursions (6) and the corresponding initial values imply

fn(z) = ((n+ 2)z + n+ 1)fn−1(z) + z(z + 1)f ′n−1(z) (n ∈ N) (9)

and f0(z) = 1. These equations yield immediately

fn(0) = (n+ 1)!, fn(−1) = (−1)n . (10)

Equation (9) can also be written in the compact form

znfn(z) = (zn+1(z + 1)fn−1(z))
′ (n ∈ N) (11)
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from which, introducing the operator D = d
dz

[z2(z+1)(.)], the generalized Rodrigues formula

fn(z) =
1

zn
Dn1 (n ∈ N0) (12)

can be derived. Using Rolle’s theorem, formula (11) shows that fn has exactly n simple zeros

in (0,1), and that the zeros of fn−1 separate those of fn.

For the next considerations the moments

Jnk =

0∫
−1

zkfn(z)dz (n, k ∈ N0) (13)

are a crucial remedy. Using (11), partial integration yields

Jnk = (n− k)(Jn−1,k+1 + Jn−1,k) (n ∈ N, k ∈ N0) (14)

with the special cases

Jnn = 0, Jn+1,n = Jn,n+1, Jn+1,n−1 = 2Jn,n−1 (n ∈ N) (15)

whereas J00 = 1. Substituting (8) into (13) we see that

Jnk = (−1)n+k k!

(n+ k + 1)!
pn(k) (16)

with certain polynomials pn of degree n, and by means of the DERIVE system it follows

p0(k) = 1, p1(k) = k − 1, p2(k) = (k − 2)(k − 3), p3(k) = (k − 2)(k − 3)(k − 11),

p4(k) = (k − 2)(k − 4)(k − 5)(k − 31), p5(k) = (k − 4)(k − 5)(k3 − 90k2 + 1019k − 1770),

p6(k) = (k − 4)(k − 6)(k − 7)(k3 − 202k2 + 4267k − 8490).

These special cases suggest:

Proposition 1 For n ≥ 3 the moments (13) vanish in the following cases:

n odd and k ∈ {n− 1, n},
n even and k ∈ {n− 2, n, n+ 1}.

Proof: In view of (15) we only have to show that Jn,n+1 = 0 for positive even n. For this

reason we introduce the abbreviations ϕ(z) = z2(z + 1) and Φn(z) = znfn(z) (n ∈ N0), so

that (11) turns over into

Φn = (ϕΦn−1)
′ , (17)
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and (13) for k = n+ 1 into

Jn,n+1 =

0∫
−1

zΦndz .

Using (17) and ϕ = 0 both for z = 0 and z = −1, partial integration yields

Jn,n+1 = −
0∫

−1

ϕΦn−1dz (18)

and k − 1 further partial integrations yield

Jn,n+1 = (−1)k

0∫
−1

ϕΦk−1Φn−kdz .

For k = n we obtain, in view of (18), Jn,n+1 = (−1)n+1Jn,n+1. This proves the

assertion �

From (15) and (16) we obtain the relations

pn+1(n) = (n+ 1)pn(n+ 1), pn+1(n− 1) = −(4n+ 2)pn(n− 1) (n ∈ N) .

According to Proposition 1 the first of these are only interesting for n odd, and the last for

n even.

Proposition 2 The coefficients in (8) can be expressed by means of the polynomials in

(16):

cn+1,ν+1 = (−1)n 1

n!

(
n

ν

)
pn(−ν − 1) . (19)

Proof: Substituting (8) into (13) we find

Jnk =
n∑

ν=0

cn+1,ν+1
(−1)k+ν

k + ν + 1
,

and decomposition of (16) into partial fractions immediately yields (19) �

According to (19) the relations (7) transfer into

pn(−1) = (−1)nn!(n+ 1)!, pn(−n) =
2

3
(−1)nn!(2n+ 1)!! ,

pn(−n− 1) = (−1)nn!(2n+ 1)!! .

Remark Here, we are interested in formula (19) only concerning the coefficients cmµ from

(5). But Proposition 2 is even valid for an arbitrary polynomial (8) with the moments (13)

and polynomials pn(k) defined by (16).
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Finally, we introduce the function

ψ = ln

(
1 +

1

z

)
− 1

z
, (20)

which is analytic for z /∈ {−1, 0}. Both for z < −1 and for z > 0 the function ψ is real,

whereas ψ(z) = ln
∣∣1 + 1

z

∣∣ − 1
z
− iπ for −1 < z < 0, cf. Figure 1. Differentiation of (20)

yields ψ′ = 1
ϕ

where ϕ = z2(z + 1) as before. Hence, for z /∈ {−1, 0} there exists the inverse

function F with

F (ψ) = z . (21)

We want to determine the generating function

G(z, w) =
∞∑

n=0

1

n!
fn(z)wn , (22)

which will have an unusual shape.

4

3

2

1

-1

-2

-3

-4

z

-3 -2 -1 1 2 3

6

5

4

3

2

1

-1

z

-3 -2 -1 1 2 3

Figure 1: <
(
ln
(
1 + 1

z

)
− 1

z

)
Figure 2: abs

[
z ln

(
1 + 1

z

)
− 1
]

Proposition 3 With the function F defined by (21) and (20) the generating function

(22) has the representation

G(z, w) =
1

z2(z + 1)
F ′
(
w − 1

z
+ ln

(
1 +

1

z

))
(z /∈ {−1, 0}) , (23)

and (22) converges for |w| < |zψ(z)|, cf. Figure 2.

Proof: We give two proofs of this proposition, the first will be a constructive one.

The recursion (9) can be transferred into the partial differential equation

z(z + 1)Gz + (w(z + 1)− 1)Gw + (3z + 2)G = 0 . (24)

The corresponding characteristics satisfy the system

dz

z(z + 1)
=

dw

w(z + 1)− 1
= − dG

(3z + 2)G
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with the integrals

c1 =
w − 1

z
+ ln

(
1 +

1

z

)
, c2 = z2(z + 1)G .

Hence (24) has the general solution

G =
1

z2(z + 1)
Φ
(w
z

+ ψ(z)
)

with (20) and an arbitrary differentiable function Φ. The initial condition G(z, 0) = 1 yields

Φ(ψ(z)) = z2(z + 1) .

Differentiation of (21) yields Φ = F ′ which proves (23).

Second we want to check (23) directly. The function F is singular only in the point 0. Hence,

the Taylor expansion (22) converges for |w| < |zψ(z)|. Comparing it with (22) we find that

fn =
1

ϕzn
F (n+1)(ψ)

for n ∈ N0 and therefore F (n)(ψ) = ϕzn−1fn−1 for n ∈ N. Differentiation with respect to z

yields (
ϕzn+1fn−1

)′
=

d

dz
F (n)(ψ) =

1

ϕ
F (n+1)(ψ) = znfn ,

i.e. equation (11) which, together with f0 = 1
ϕ
F ′(ψ) = 1, defines fn uniquely �

In the excluded cases z ∈ {−1, 0}, where (23) is not applicable, the formulas (10) imply the

special values of (22)

G(0, w) =
1

(1− w)2
, G(−1, w) = e−w .
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On Discrete Solutions of Two-Scale Difference
Equations

ABSTRACT. Two-scale difference equations are considered at dyadic points. The corre-

sponding solutions are called discrete solutions. They are calculated explicitly and accom-

panied by generating functions. As intermediate step there are also derived formulas which

are valid for distributional solutions.

KEY WORDS. Two-scale difference equations, discrete solutions, distributional solutions,

two-slanted matrices, generating functions

1 Introduction

Two scale difference equations

ϕ

(
t

2

)
=

N∑
n=0

cnϕ(t− n) (1.1)

(t ∈ R) with N ∈ N, cn ∈ C, c0cN 6= 0, appear in wavelet theory and subdivision schemes,

where nontrivial L1-solutions are sought which are necessarily compactly supported, cf. [7],

[9], [12]. A necessary condition for the existence of such solutions is

N∑
n=0

cn = 2M (1.2)

with M ∈ N (cf. [9]). Here, we require the two boundary conditions (cf. [3]):

(i) ϕ(t) = 0 for t < 0,

(ii) ϕ(t) is equal to a polynomial π(t) for t > N .

Then in (1.2) the foregoing condition M ∈ N weakens to M ∈ Z and, for M ≤ 0, the

polynomials π in (ii) are of degree m = −M , whereas they vanish identically for M > 0.
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Vice versa, under the condition (1.2) with M ∈ Z there always exists a distributional solution

of (1.1) with (i) and (ii), i.e. a solution which is a derivative of finite order of a continuous

function. This solution is a simple one, i.e. it is nontrivial and uniquely determined up to a

constant factor. For M ≤ 0 the polynomial π in condition (ii) can be calculated explicitly,

and the natural extension of it to the whole set R is itself a simple solution of (1.1), cf. [6].

The case N = 1 in equation (1.1) is closely connected with de Rham’s singular function

which already is well investigated, cf. [1] and the literature quoted there. Hence we require

in this paper

(iii) N ≥ 2 and M ∈ Z in (1.2).

The natural domain for the solutions of (1.1) is not necessarily the whole set R but a subset

containing with a number t also t− 1, t+ 1, t
2

and 2t. For this reason we introduce discrete

solutions of (1.1), which satisfy this equation at dyadic points t = j
2` (j ∈ Z, ` ∈ N0)

and which satisfy the boundary conditions (at dyadic points) in the corresponding closed

intervals, i.e.

(i’) ϕ(t) = 0 for t ≤ 0,

(ii’) ϕ(t) is equal to a polynomial for t ≥ N .

Discrete solutions determine uniquely corresponding continuous solutions and vice versa, but

we do not require the existence of a nontrivial continuous solution. However, in the case

of a discontinuous or even distributional solution there is in general no connection between

such a solution and a discrete one. For discrete solutions it is convenient to restrict the

arguments automatically to dyadic points. According to [6] it is also possible to calculate

discrete solutions at the points t = j
2`(2k−1)

with a fixed k ∈ N, but we are not concerned

with this modification.

Our aim is to establish formulas for the explicit calculation of discrete solutions without

claim that they are more effective than the usual subdivision algorithms. It suffices to

determine the solutions in the interval 0 ≤ t ≤ 1, since for t > 1 they can be extended by

means of (1.1). The main result in this direction is the later formula (2.25). Preliminarily,

we derive consequences of (1.1) which are even valid for distributional solutions, and if we

speak about such solutions we tacitly assume that the sufficient conditions (i), (ii) and

(iii) for their existence are satisfied. The main result concerning distributional solutions

is contained in Theorem 2.4. Finally, discrete solutions are connected with corresponding

generating functions.
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Remark 1.1

1. Equalities in open intervals (with integer endpoints) for distributional solutions are valid

for discrete solutions also in the endpoints. This follows from the differences in the boundary

conditions.

2. Under the condition (i) equation (1.1) implies

ϕ(0) = c0ϕ(0).

This means for discrete solutions that the sharpening (i’) of (i) is quite natural in the case

c0 6= 1. In the case c0 = 1 it would be possible to generalize the notion of a discrete solution

allowing ϕ(0) to be an arbitrary constant. An analogous generalization concerning ϕ(N)

would be possible in the case cN = 1. We come back to these generalizations in Example

3.3.

In this paper we refer to polynomials zk = zk(p, q), which are recursively determined by the

system of two discrete two-scale difference equations

z2k = p zk, z2k+1 = q zk + zk+1 (k ∈ N) (1.3)

and the initial condition

z1 = 1. (1.4)

These polynomials are intensively investigated in [2], and concerning their properties we

refer to this paper. In particular, the polynomials zk have the explicit representation

zk =
k−1∑
j=0

αν(j) βν(k−1−j) (1.5)

where α and β are determined by

p = α+ β, q = αβ (1.6)

and where ν(j) is the binary sum-of-digits function, i.e. the number of ′′1s′′ in the dyadic

representation of j.

2 The main results

We begin with some notations. Equation (1.1) is connected with the polynomial

Q(z) =
N∑

n=0

cnz
n (2.1)
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which we term characteristic polynomial of equation (1.1) in order to distinguish it from the

so-called symbol in such cases where it is used with a factor 1
2

or 1
2

√
2. By means of (2.1)

we can write condition (1.2) as Q(1) = 2M . Moreover, we introduce the infinite vector

Ψ(t) = (ϕ(t), ϕ(t+ 1), ϕ(t+ 2), . . .)T (2.2)

and the infinite two-slanted matrix

A = (c2j−k) (j, k ≥ 1) (2.3)

with cj = 0 for j /∈ {0, . . . , N}, so that the solution of (1.1) is equivalent to the solution of

Ψ

(
t+ 1

2

)
= AΨ(t) (2.4)

for t < 1, both equations subject to (i), cf. [10], [5] and the literature quoted there. In the

case (i’) equation (1.1) is equivalent to (2.4) for t ≤ 1. We also introduce the vector

ψ(t) = (ϕ(t), ϕ(t+ 1), . . . , ϕ(t+N − 2))T (2.5)

and the matrix

A = (c2j−k) (1 ≤ j, k ≤ N − 1). (2.6)

In the following existence theorem a simple eigenvalue means an eigenvalue with geometric

multiplicity one:

Theorem 2.1 Let (iii) be satisfied. For M ≥ 1 in condition (1.2) let 1 be a simple

eigenvalue of A whereas for M ≤ 0 let 1 be no eigenvalue of A. Then (1.1) has exactly one

simple discrete solution.

Proof: Introducing suitable block matrices B, C, O where O is a zero matrix, we can split

Ψ and A into

Ψ(t) =

(
ψ(t)

Ψ(t+N − 1)

)
, A =

(
A B

O C

)
.

Choosing t = 1 in (2.4), this equation turns over into the two equations

ψ(1) = Aψ(1) + BΨ(N), Ψ(N) = CΨ(N). (2.7)

In the case M ≥ 1 we have to look for a discrete solution with ϕ(t) = 0 for t ≥ N . Hence

Ψ(N) = 0, and ψ(1) can be determined as a simple right eigenvector to the eigenvalue 1 of

A out of the first equation in (2.7). In the case M ≤ 0 there exists a simple polynomial

solution of (1.1), cf. [6], Theorem 6.1, which determines Ψ(N) as a simple vector satisfying

the second equation of (2.7), and ψ(1) can likewise be determined out of the first of these
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equations. Hence, in any case, we have a simple vector Ψ(1), satisfying (2.4) for t = 1, and

the values of Ψ at the dyadic points and therefore also the values of the discrete solution ϕ,

follow recursively from (2.4) and (i’) for −1 ≤ t ≤ 1. Finally, the simplicity of Ψ(1) transfers

to ϕ which finishes the proof �

Remark 2.2 If 1 is an eigenvalue of A with the geometric multiplicity r > 1, then there

exist r linearly independent eigenvectors and, in the case M ≥ 1, therefore r linearly inde-

pendent discrete solutions, but at most one of these can be extended to a continuous solution.

Concerning the choice of the correct eigenvector ψ(1) cf. [6]. If we speak about a discrete

solution of (1.1), we tacitly assume that besides of the conditions (i’) and (ii’) either the

conditions of Theorem 2.1 are satisfied or in the case of a multiple eigenvalue that a fixed

eigenvector ψ(1) is chosen for the construction of the discrete solution.

Concerning the multiplication of the matrix from the right A has always the eigenvalue cN ,

since cN 6= 0 is the entry of A for j = k = N , and c2j−k = 0 for j ≥ N, k ≤ N provided that

(j, k) 6= (N,N).

Proposition 2.3 To the eigenvalue cN of A there belongs a left eigenvector

x = (x1, x2, x3, . . .) (2.8)

with x1 = . . . = xN−1 = 0, xN = 1. The generating function

G(z) =
∞∑

k=0

xN+kz
k (2.9)

with G(0) = 0 has the product representation

G(z) =
∞∏

j=0

z2jN

cN
Q
(
z−2j

)
, (2.10)

and both representations converge for |z| < 1.

Proof: The components of the left eigenvector (2.8) must satisfy the equations

∞∑
j=1

c2j−kxj = cN xk (2.11)

for k ∈ N. In the case k ≤ N these equations are satisfied for x1 = . . . = xN−1 = 0, xN = 1,

and in the case k > N they are recursions, which determine xk uniquely. By multiplication

with zk−N and summation over k we obtain formally

cNG(z) = zNQ

(
1

z

)
G(z2). (2.12)
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A continuous solution of this equation with G(0) = 1 must have the form (2.10) for |z| < 1.

Vice versa, (2.10) converges uniformly for |z| ≤ % < 1 and satisfies (2.12), hence also (2.9)

is convergent for |z| < 1 �

The next three values of xj after xN = 1 are

xN+1 =
cN−1

cN
, xN+2 =

cN−1 + cN−2

cN
, xN+3 =

(
cN−1

cN

)2

+
cN−3

cN
. (2.13)

Besides of x from (2.8) we introduce the vector y = (y1, y2, y3, . . .), the components of which

are determined by the initial values

y1 = . . . = yN−1 = 0, yN = 1 (2.14)

and the recursions
∞∑

j=1

cN+k−2j yj = c0 yk (k ∈ N). (2.15)

These recursions mean that

cN−1 y` + cN−3 y`+1 + . . . = c0 y2`−1,

cN y` + cN−2 y`+1 + . . . = c0 y2`,

 (` ∈ N). (2.16)

The vector y arises from x if cj is replaced by cN−j for j = 0, . . . , N , i.e. if (2.1) is replaced

by the reversed polynomial zNQ(1
z
), cf. [3]. Hence for |z| < 1 we see from (2.10) that its

generating function

F (z) =
∞∑

k=0

yN+kz
k (2.17)

simplifies to

F (z) =
∞∏

j=0

1

c0
Q
(
z2j
)
, (2.18)

and (2.12) simplifies to

F (z) =
1

c0
Q(z)F

(
z2
)
. (2.19)

Extending the components of the vector y by yj = 0 for j ≤ 0 we can state:

Theorem 2.4 For ` ∈ N0 the matrix A` has the entries

c`0 y2`+N−1, c`0 y2`+N−2, . . . (2.20)

in the first row, and the first 2` +N − 1 entries of the N th row read

c`N x1, c
`
N x2, . . . , c

`
N x2`+N−1. (2.21)
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Moreover, for non-negative integers k < 2` the distributional solution of (1.1) satisfies the

equations

ϕ

(
k + t

2`

)
= c`0

k∑
j=0

yN+k−jϕ(j + t) (t < 1). (2.22)

Proof: The statement about (2.21) is valid for ` = 0 (and in view of (2.13) also for ` = 1).

If it is valid for a fixed ` ∈ N, then A`A = A`+1 and (2.11) with k ≤ 2`+1 +N − 1 as well as

2j − k ≤ N , i.e. j ≤ 2` + N − 1, show its validity also for ` + 1 instead of `. Analogously,

the statement about (2.20) is valid for ` = 0 and proved in general, if

∞∑
j=1

c2j−k y2`+N−j = c0 y2`+1+N−k (k ∈ N).

But this equation is equivalent to (2.15).

The equation (2.4) implies that

Ψ

(
2` + t− 1

2`

)
= A`Ψ(t) (t < 1). (2.23)

Replacing t by t + k + 1 − 2` with k ≤ 2` − 1 and considering the properties of (2.20), we

obtain for the first component of Ψ

ϕ

(
k + t

2`

)
= c`0

∞∑
j=1

y2`+N−jϕ(k + t+ j − 2`) (2.24)

and therefore (2.22) in view of yn = 0 for n < N �

Using equation (2.22) for t = 0 and according to Remark 1.1/1 also for t = 1, we obtain

Corollary 2.5 The discrete solution of (1.1) (cf. Remark 2.2.) has the representation

ϕ

(
k

2`

)
= c`0

k∑
j=1

yN+k−jϕ(j) (2.25)

(0 ≤ k ≤ 2`, ` ∈ N0), where the sequence yj is defined by (2.14) and (2.16).

Remark 2.6

1. Usually, one works with the matrices T0 = (c2j−k−1), T1 = (c2j−k), j, k = 1, . . . , N ,

instead of A, cf. [10]. The products of these matrices turn out to be submatrices of A`.

Namely, if K ∈ N0 with K < 2` has the dyadic representation K = d`d`−1 . . . d1, di ∈ {0, 1},
i = 1, . . . , ` (d` = 0 is allowed), then the product Td`

Td`−1
. . . Td1 is equal to the submatrix

of A` with 1 ≤ j ≤ N , 2` −K ≤ k ≤ 2` +N −K − 1.
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2. In the case 0 < t < 1 the terms ϕ(j + t) with j ≥ N in (2.22) can be replaced by the

polynomials π(j + t) known from condition (ii), so that we obtain for k ≥ N

ϕ

(
k + t

2`

)
= c`0

N−1∑
j=0

yN+k−jϕ(j + t) + c`0

k∑
j=N

yN+k−jπ(j + t) (0 < t < 1). (2.26)

For t = 0 we get a modification of (2.25).

3. By means of a suitable interpretation, the foregoing results are also valid in the excluded

case N = 1. In particular, (2.18) and (2.19) yield for N = 1 that yk+1 = ( c1
c0

)ν(k) with ν as

at the end of Section 1, and (2.26) turns over into [1], (3.16).

Again for N ≥ 2, the equations (2.22) have the disadvantage that they contain values of ϕ

with arguments greater than 1. However, we can eliminate these values out of the first N

equations or out of N arbitrary equations of (2.22) (in the version (2.26) for k ≥ N). The

result simplifies if we use additional equations as

N−1∑
j=0

ξjϕ(t+ j) = S(t) (0 < t < 1) (2.27)

with known coefficients ξj and known polynomials S(t) (Concerning the existence and the

number of linearly independent equations (2.27) cf. [4]). We only want to point out this in

the most important case that we use only one additional relation, namely

ϕ(t) + ϕ(t+ 1) + . . .+ ϕ(t+N − 1) = K (0 < t < 1), (2.28)

which is valid in the case M = 1 in (1.2) almost everywhere for locally Lebesgue-integrable

solutions of (1.1) where
∫ N

0
ϕ(t)dt = K 6= 0, cf. [5], [11]. In the case M = 1 equation (2.28),

with a certain constant K 6= 0, is valid even for distributional solutions if and only if Q in

(2.1) has a representation of the form Q(z) = R(z2)
R(z)

P (z) where R and P are polynomials with

R(0)P (0) 6= 0, R(1) 6= 0 and P (−1) = 0, cf. [3], Theorem 7.2. In this case it is Q(1) = 2

and therefore M = 1 in (1.2), too.

Proposition 2.7 Let ϕ be a distributional solution of (1.1) such that (2.28) is satisfied.

Then for fixed k ∈ N0 there exist constants Yj (j = 0, 1, . . . , N − 2), depending on k, such

that for arbitrary ` ∈ N with 2` > k it holds

1

c`0
ϕ

(
k + t

2`

)
= KYN−1 +

N−2∑
j=0

Yj
1

c
mj

0

ϕ

(
j + t

2mj

)
(0 < t < 1) (2.29)

where mj = [ ln j
ln 2

] + 1.
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Proof: In view of M = 1 we have ϕ(t) = 0 for t > N . On the other side, yn = 0 for n < N

and yN = 1, so that for k = 1, 2, . . . , N − 2 and an arbitrary fixed k the equations (2.22),

divided by c`0, together with (2.28) yield the system

c−`
0 ϕ

(
1+t
2`

)
= yN+1ϕ(t) + ϕ(t+ 1),

c−`
0 ϕ

(
2+t
2`

)
= yN+2ϕ(t) + yN+1ϕ(t+ 1) + ϕ(t+ 2),

...
...

...
. . .

c−`
0 ϕ

(
N−2+t

2`

)
= y2N−2ϕ(t) + y2N−3ϕ(t+ 1) + . . .+ ϕ(t+N − 2),

K = ϕ(t) + ϕ(t+ 1) + . . . + ϕ(t+N − 1),

c−`
0 ϕ

(
k+t
2`

)
= yN+kϕ(t) + yN+k−1ϕ(t+ 1) + . . . + yk+1ϕ(t+N − 1)

with a Hessenberg matrix as coefficient matrix on the right-hand side. Choosing

(Y1, Y2, . . . , YN−1,−1) (2.30)

orthogonal to the last N − 1 columns of this matrix, which is always possible, we obtain by

multiplication from the left

c−`
0

N−2∑
j=1

Yj ϕ

(
j + t

2`

)
+KYN−1 − c−`

0 ϕ

(
k + t

2`

)
= −Y0 ϕ(t)

where

Y0 = yN+k −
N−2∑
j=1

YjyN+j − YN−1. (2.31)

Since c−`
0 ϕ( j+t

2` ) is independent of ` for j ≤ 2` − 1, we finally obtain (2.29) for 1 ≤ k < 2`,

but this equation is also valid for k = 0 with Yj = 0 for j > 0 and Y0 = 1 �

Though k was fixed in Proposition 2.7, the result (2.29) is valid for arbitrary k ∈ {0, 1, . . . , 2`−
1}, where the constants Yj are depending on k, but not on `.

Proposition 2.8 In the case ` > mN−2 the system (2.29) of 2` equations with 0 ≤ k ≤
2` − 1 determines its distributional solution ϕ uniquely.

Proof: The system (2.29) is an inhomogeneous one, since K 6= 0 and YN−1 = yk+1 is equal

to 1 for k = N − 1, and it is N − 1 < 2` in view of N − 2 < 2mN−2 < 2`. After n integrations

with suitable great n (and arbitrary constants of integration) it defines a contractive opera-

tor in C[0, 1]. Hence, the corresponding operator equation has a unique continuous solution,
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and the nth (distributional) derivative of this is ϕ �

As in the discrete case the solution ϕ can be extended from the interval (0,1) to greater t by

means of (1.1) (only the integer values of t require an additional consideration). Note that

the equations in (2.29) are nearly trivial for 0 ≤ k ≤ N − 2, since then we have Yk = 1 and

Yj = 0 for j 6= k.

3 Four-coefficient equations

The foregoing results shall be illustrated by means of the equation

ϕ

(
t

2

)
= aϕ(t) + (1− d)ϕ(t− 1) + (1− a)ϕ(t− 2) + dϕ(t− 3) (t ∈ R) (3.1)

(ad 6= 0) with the characteristic polynomial

Q(z) = a+ (1− d)z + (1− a)z2 + dz3 = (1 + z)(a+ (1− a− d)z + dz2), (3.2)

cf. (2.1), so that N = 3 in (1.1) and M = 1 in (1.2). Colella and Heil have determined the

conditions for real a, d under which (3.1) has a nontrivial integrable compactly supported

and, in particular, such a continuous solution, cf. Example 2 in [8]. Here we look for discrete

and for distributional solutions.

The matrix

A =

(
1− d a

d 1− a

)
,

cf. (2.6), has the eigenvalues 1 and 1− a− d, and a right eigenvector ψ(1) to the eigenvalue

1 reads (
ϕ(1)

ϕ(2)

)
=

(
a

d

)
. (3.3)

It is simple and remains simple also in the case d = −a (6= 0). Hence the conditions of

Theorem 2.1 are satisfied for arbitrary complex a, d and there exists a simple discrete solution

of (3.1) without additional restrictions to the coefficients. According to (2.25) and (3.3) it

has the representation

ϕ

(
k

2`

)
= a`(a yk+2 + d yk+1), (3.4)

k ∈ {0, 1, . . . , 2`} (` ∈ N0), and the recursions (2.16) specialize to

y2k−1 =
1− a

a
yk + yk+1, y2k =

d

a
yk +

1− d

a
yk+1 (k ∈ N). (3.5)

The initial values (2.14) imply in particular y4 = 1−d
a

.
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Moreover, equation (3.1) possesses a distributional solution. In view of Q(1) = 2 and

Q(−1) = 0 it satisfies (2.28) with a certain K, so that we can apply Proposition 2.7. Since

the components of the vector (2.30) with N = 3 determine to

Y1 = yk+2 − yk+1, Y2 = yk+1,

and since (2.31) turns over into

Y0 = yk+3 −
1− d

a
yk+2 +

1− a− d

a
yk+1, (3.6)

we obtain the

Corollary 3.1 For k ∈ {0, 1, . . . , 2` − 1} (` ∈ N), the distributional solution ϕ of (3.1)

with (2.28) satisfies the equations

ϕ

(
k + t

2`

)
= a`

[
K yk+1 + Y0ϕ(t) +

1

a
(yk+2 − yk+1)ϕ

(
t+ 1

2

)]
(0 < t < 1) (3.7)

with y` from (3.5) and Y0 from (3.6).

It is possible to simplify the recursions (3.5) by means of the substitution

zk = yk+2 − yk+1, (3.8)

so that z0 = 0, z1 = 1. A short calculation yields

z2k =
1− a− d

a
zk, z2k+1 =

d

a
zk + zk+1. (3.9)

This means that we have the special case zk = zk(p, q) of (1.3) and (1.4) with p = 1−a−d
a

,

q = d
a
. Since (3.8) implies

yk+1 =
k−1∑
j=1

zj, (3.10)

and (3.6) that Y0 = zk+1 − 1−a−d
a

zk, we obtain from (3.7)

ϕ

(
k + t

2`

)
= a`

[
K

k−1∑
j=1

zj +

(
zk+1 −

1− a− d

a
zk

)
ϕ(t) +

1

a
zkϕ

(
1 + t

2

)]
(3.11)

for 0 < t < 1. According to Remark 1.1/1 the equations (3.11) can be used for a discrete

solution also in the cases t = 0 and t = 1, where in view of ϕ(1
2
) = a2 and (3.9), if we choose

K = a+ d (matching to (3.3)), we obtain the representation

ϕ

(
k

2`

)
= a`+1

k∑
j=1

z2j−1, (3.12)
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k ∈ {0, 1, . . . , 2`} (` ∈ N), which is equivalent to (3.4) owing to (3.10). For k = 2` a simple

consequence of (3.12) is

(p+ q + 1)` =
2`∑

j=1

z2j−1(p, q)

since ϕ(1) = a and 1
a

= p+ q + 1. Further properties of zk are contained in [2].

Remark 3.2

1. In the case d = −a we have K = 0, but (2.28) with this K is only satisfied at dyadic

points, i.e. on a set with Lebesgue measure zero (whereas for a nontrivial distributional

solution we recall that K 6= 0 there). The representation (3.12) simplifies to ϕ( k
2` ) = a`+1zk.

2. In the case d = a equation (3.1) is symmetric (or self-reversed) so that ϕ(t) = ϕ(3 − t)

for all t ∈ R (cf. [3], Corollary 8.6). Hence, (3.1) and (2.28) with N = 3 and K = 2a yield

the relation

ϕ

(
1 + t

2

)
= 2a2 + (1− 2a)ϕ(t)− aϕ(1− t) (0 < t < 1)

which can be substituted into (3.11) with d = a.

Example 3.3 The case

ϕ

(
t

2

)
= ϕ(t) + ϕ(t− 3) (t ∈ R) (3.13)

is a specialization of (3.1) with a = d = 1. The recursions (3.5) read

y2`−1 = y`+1, y2` = y`,

and subject to the initial values (2.14) they have the solution

y3k = 1, y3k−1 = y3k−2 = 0 (k ∈ N).

According to (3.3) we have ϕ(1) = ϕ(2) = 1, and (2.25) turns over into

ϕ

(
k

2`

)
= yk+2 + yk+1 =

 0 for k ≡ 0 mod 3

1 for k 6≡ 0 mod 3.

Equation (3.13) does not have a nontrivial continuous solution, but it has the discontinuous

solution

ϕ(t) =



c for t = 0

1 for 0 < t < 3

1− c for t = 3

0 elsewhere,
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with an arbitrary c. On the other side, it has a generalized discrete solution with conditions

(i)-(ii), ϕ(0) = c, ϕ(1) = ϕ(2) = 1 and arbitrary ϕ(3), which is interesting only in the case

ϕ(3) = 1− c.

Examples 3.4 Finally, we consider two examples with N = 2, which formally arise from

the case N = 3 as limit case c3 → 0.

1. The three-coefficient equation

ϕ

(
t

2

)
= aϕ(t) + ϕ(t− 1) + (1− a)ϕ(t− 2) (t ∈ R)

is the limit case of (3.1) as d → 0. For 0 < a < 1 it has a nontrivial compactly supported

continuous solution, cf. [13]. According to (1.5) with (1.6) the system (3.9) has the explicit

solution

zk =

(
1

a
− 1

)ν(k−1)

.

The corresponding representation (3.12) is already known from [1] and [13], disregarding one

factor a which stems from a different normalization.

2. The three-coefficient equation

ϕ

(
t

2

)
= aϕ(t) + (1− 2a)ϕ(t− 1) + aϕ(t− 2) (t ∈ R) (3.14)

is neither a limit case of (3.1) nor it can be treated by means of Proposition 2.7 according

to M = 0 in (1.2), but we can apply Theorem 2.4. Equation (3.14) possesses the constant

solution ϕ(t) = 1, which we only use for t ≥ 2 according to condition (ii’). For t = 2 we find

from (3.14) and condition (i’) that ϕ(1) = 1
2

and therefore Ψ(1) = (1
2
, 1, 1, 1, . . .)T. From

(2.25) we obtain the discrete solution

ϕ

(
k

2`

)
= a`

(
1

2
yk+1 + yk + . . .+ y2

)
, (3.15)

and the recursions (2.16) read

y2`−1 =

(
1

a
− 2

)
y`, y2` = y` + y`+1

with the initial values y1 = 0, y2 = 1. In this case we also have a connection to the sequence

defined by (1.3) and (1.4), namely y`+1 = z`(p, q) with p = 1
a
− 2 and q = 1. Let us mention

the curiosity that zk(p, 1) has the property

z3n = (p+ 1)n for n = 0, 1, 2, 3 and 6,

whereas for other integers n such a relation is unknown.
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For the solutions of (3.14) we do not have a relation of the form (2.28). However, in view of

the symmetry of (3.14) as well as (i), (ii) we have ϕ(1 + t) + ϕ(1− t) = 1 for t ∈ R (cf. [3],

Corollary 8.6), so that we immediately obtain

ϕ

(
1 + t

2

)
= a+ (1− 2a)ϕ(t)− aϕ(1− t)

and after replacing t by 1− t

ϕ

(
1− t

2

)
= a− aϕ(t) + (1− 2a)ϕ(1− t).

By means of these two equations and (3.14) for 0 < t < 1 it can iteratively be shown

for fixed k ∈ {0, 1, . . . , 2` − 1} (` ∈ N) that ϕ(k+t
2` ) is a linear combination of 1, ϕ(t) and

ϕ(1 − t). But it is not necessary to carry out this procedure, since it is easy to see that

ϕ3(t) = a [ϕ2(t)− ϕ2(t− 1)] for all t ∈ R, where ϕ2 shall be the solution of (3.14) and ϕ3

the solution of (3.1) with d = a. This means that ϕ2(t) = 1
a
ϕ3(t) for 0 < t < 1, so that the

formulas (3.7) in the case d = a immediately yield the formulas in question. In particular,

the formulas (3.12) and (3.15) are modifications of each other.

4 Generating functions

Let ϕ be a discrete solution of (1.1). Condition (i’) implies ϕ
(

t
2

)
= c0ϕ(t) for t ≤ 1. We

define a function ϕ∗ by

ϕ∗(t) = ϕ(t) for t ≤ 1, (4.1)

and for t > 1 we extend ϕ∗ successively in the intervals (2`−1, 2`] (` ∈ N) by ϕ∗(t) = 1
c0
ϕ∗( t

2
),

so that the equation

ϕ∗
(
t

2

)
= c0ϕ

∗(t) (4.2)

is satisfied for all real (dyadic) t. Obviously, for t ≤ 2` (` ∈ N0) we have

c−`
0 ϕ

(
t

2`

)
= ϕ∗(t), (4.3)

and equation (2.25) can be written as

ϕ∗(k) =
k∑

j=1

yN+k−jϕ(j) (k ∈ N0). (4.4)

In the following we consider the generating function

Φ(z) =
∞∑

k=1

ϕ(k) zk−1 (4.5)
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of the values ϕ(k) (cf. [3], Lemma 2.9), as well as the generating function

Φ∗(z) =
∞∑

k=1

ϕ∗(k) zk−1 (4.6)

of the values ϕ∗(k) defined by (4.1) and (4.2). If M ∈ N in (1.2), then ϕ(t) = 0 for t ≥ N ,

and (4.5) is a polynomial of degree N − 2. Otherwise, (4.5) converges for |z| < 1 in view of

(ii’). The convergence of (4.6) for the same z will follow from the next proposition.

Proposition 4.1 The generating function (4.6) is representable in the form

Φ∗(z) = Φ(z)F (z) (4.7)

where F is given by (2.17), and the generating function (4.5) satisfies the equation

Φ(z2) =
Φ(z)Q(z)− Φ(−z)Q(−z)

2z
(4.8)

with (2.1).

Proof: By multiplication of equation (4.4) with zk−1 and summation over k we find (4.7)

with the functions (2.17) and (4.5). In view of ϕ(t) = 0 for t ≤ 0, equation (1.1) with t = 2k

implies that

ϕ(k) =
2k∑

j=1

c2k−j ϕ(j) (k ∈ N).

By multiplication with z2k−2, summation over k, and by means of

Φ(z)Q(z) =
∞∑

`=1

∑̀
j=1

c`−jϕ(j)z`−1 ,

we obtain (4.8) after short calculations �

Remark 4.2

1. The generating function Φ∗ satisfies the equation

1

c0
Φ∗(z2) =

Φ∗(z)− Φ∗(−z)
2z

(4.9)

which is equivalent to the specialization

ϕ∗(k) = c0 ϕ
∗(2k)

of (4.2) for t = 2k, but which also follows directly from (2.19), (4.7) and (4.8).
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2. Note the connection of the product representation (2.18) for the generating function

(2.17) of the coefficients in (2.24) with respect to the product representation

L{ϕ} = zM−1

∞∏
j=1

1

2M
Q
(
e−

z

2j

)
(cf. [9], p. 175) for the Laplace transform of the solution ϕ of (1.1) satisfying (2.22).

Example 4.3 In the simple case Q(z) = 2
(

1+z
2

)m+1
with m = N − 1 ∈ N we have yj = xj

(j ∈ N) in view of the symmetry of the coefficients. Formula (2.18) yields

F (z) =
∞∏

j=0

(
1 + z2j

)m+1

=
1

(1− z)m+1
. (4.10)

Using the normalization ϕ(1) = 1, the solution of (1.1) is ϕ(t) = m!Nm(t), where Nm(t) is

the B-spline of degree m. Hence, (4.5) turns over into the Euler-Frobenius polynomials

Φ(z) = m!
m∑

k=1

Nm(k)zk−1 = Em(z), (4.11)

cf. [7], [14]. On the other side, we have ϕ(t) = tm for 0 ≤ t ≤ 1 and therefore ϕ∗(t) = tm for

all t ≥ 0 so that (4.6) turns over into

Φ∗(z) =
∞∑

k=1

kmzk−1. (4.12)

According to (4.10) and (4.11) the relation (4.7) expresses the well known fact that for |z| < 1

the series on the right-hand side of (4.12) has the sum

Em(z)

(1− z)m+1
.
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60G44

Egbert Dettweiler

Characteristic Processes associated with a
Discontinuous Martingale

1 Introduction

In [5] the following embedding theorem was proved (cf. [2] for a detailed and complete

proof). Let (Mk)k≥0 be an L4-martingale on a probability space (Ω,F ,P). Then there

exists an extension (Ω̄, F̄ , P̄) of Ω, a Brownian motion (Bt)t≥0 relative to a filtration (Gt)t≥0

on Ω̄, and an increasing sequence (Tn)n≥1 of (Gt)-stopping times, such that the following

properties hold:

(i) Mn = BTn for all n ≥ 1,

(ii) E
{
Tn |M0,M1, · · ·

}
=

1
3

∑n
k=1(Mk −Mk−1)

2 + 2
3

∑n
k=1 E

{
(Mk −Mk−1)

2 |M0, · · · ,Mk−1

}
,

(iii) Var
{
Tn |M0,M1, · · ·

}
=

2
45

∑n
k=1(Mk −Mk−1)

4 + 8
45

∑n
k=1 E

{
(Mk −Mk−1)

4 |M0, · · · ,Mk−1

}
+ (4

9
− c)

∑n
k=1

(
E
{
(Mk −Mk−1)

2 |M0, · · · ,Mk−1

})2
+ c

∑n
k=1(Mk −Mk−1)

2E
{
(Mk −Mk−1)

2 |M0, · · · ,Mk−1

}
− c

∑n
k=1(Mk −Mk−1)E

{
(Mk −Mk−1)

3 |M0, · · · ,Mk−1

}
.

The constant c > 0 in (iii) depends on the embedding and can be explicitely computed (cf.

[2] and [5]).

In [5] a corresponding result is stated (without proof) for continuous time martingales. The

roughly outlined idea in [5] is the approximation of a continuous time martingale (Mt)t≥0 by

the discrete time martingales (M k
2m

)k≥0. But this raises the following problems, which are

the subject of the present paper.
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(A) In which sense do the expressions

[2mt]∑
k=1

E
{
(M k

2m
−M k−1

2m
)2 |M0, · · · ,M k−1

2m

}
up to

[2mt]∑
k=1

(M k
2m
−M k−1

2m
)E
{
(M k

2m
−M k−1

2m
)3 |M0, · · · ,M k−1

2m

}
converge for m→∞ ?

It seems that convergence only holds under additional assumptions on (Mt)t≥0. The reason

is that the above conditioning is a conditioning relative to a filtration depending on m.

If F = (Ft)t≥0 is a given filtration on Ω such that (Mt)t≥0 is an F-martingale, then the

following, slightly changed problem only depends on the fixed filtration F:

(B) In which sense do the expressions

[2mt]∑
k=1

E
{
(M k

2m
−M k−1

2m
)2 | F k−1

2m

}
up to

[2mt]∑
k=1

(M k
2m
−M k−1

2m
)E
{
(M k

2m
−M k−1

2m
)3 | F k−1

2m

}
converge for m→∞ ?

It turns out that (B) has a quite general solution. Convergence always takes place for the

topology σ(L1, L∞). An inspection of the proof of the embedding theorem for continuous

time martingales in [2] shows that this σ(L1, L∞)-convergence is sufficient.

2 Statement of the Problem

Let Π denote the set of all partitions π = (0 = t0 < t1 < · · · ) of R+ for which limk→∞ tk = ∞
and |π| := supk≥1(tk − tk−1) < ∞. We will tacitely identify such a partition π with its

associated point set {tk|k ≥ 0}. A sequence (πn)n≥1 in Π will be called a null-sequence of

partitions, if πm ⊂ πn for m ≤ n and limn→∞ |πn| = 0.

Now suppose that M = (Mt)t≥0 is a right continuous martingale relative to a filtration

F = (Ft)t≥0. More shortly, we will also say that (M,F) is a martingale. (M,F) is called a
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discrete time martingale, if there exists a partition π = (0 = t0 < t1 < · · · ) ∈ Π such that

Mt = Mtk and Ft = Ftk for tk ≤ t < tk+1 and k ≥ 0. More shortly, we will also say that

((Mtk), (Ftk)) is a discrete time martingale. If (M,F) is a general right continuous martingale

and π = (0 = t0 < t1 < · · · ) ∈ Π, and if we set π(M) = (Mtk)k≥0 and π(F) = (Ftk)k≥0,

then clearly (π(M), π(F)) is a discrete time martingale. Moreover, for every filtration H =

(Htk)k≥0 such that

σ(Mt0 , · · · ,Mtk) ⊂ Htk ⊂ Ftk

for all k ≥ 0, also (π(M),H) is a discrete time martingale.

If (πn)n≥1 is a null-sequence of partitions, where πn = (0 = tn0 < tn1 < · · · ), then we will

call a sequence (Hn)n≥1 of discrete filtrations Hn = (Hn
tnk

)k≥0 an approximating sequence of

filtrations for the given martingale (M,F), if (i) Mt is Hn
t -measurable for every t ∈ πn and

n ≥ 1, (ii) Hm
t ⊂ Hn

t for t ∈ πm and m ≤ n, and (iii) Ft− ⊂
∨

n≥1Hn
t ⊂ Ft for all t ≥ 0.

Motivated by the embedding result stated in the introduction, we give the following definition

for discrete time martingales.

Definition 2.1 Let (M,F) = ((Mtk), (Ftk)) be a given discrete time martingale.

(1) If (M,F) is square integrable, then the processes (M,F)(2) and (M,F)(2̃), defined by

(M,F)
(2)
t :=

∑
k≥1

1[0,t](tk)(Mtk −Mtk−1
)2 , and

(M,F)
(2̃)
t :=

∑
k≥1

1[0,t](tk)E
{
(Mtk −Mtk−1

)2 | Ftk−1

}
,

will be called the first order characteristics of (M,F).

(2) If (M,F) is in addition even an L4-martingale, then the processes

(M,F)(4), (M,F)(4̃), (M,F)(2,2̃), (M,F)(2̃,2̃), (M,F)(1,3̃) ,

defined by

(M,F)
(4)
t :=

∑
k≥1

1[0,t](tk)(Mtk −Mtk−1
)4 ,

(M,F)
(4̃)
t :=

∑
k≥1

1[0,t](tk)E
{
(Mtk −Mtk−1

)4 | Ftk−1

}
,

(M,F)
(2,2̃)
t :=

∑
k≥1

1[0,t](tk)(Mtk −Mtk−1
)2E
{
(Mtk −Mtk−1

)2 | Ftk−1

}
,

(M,F)
(2̃,2̃)
t :=

∑
k≥1

1[0,t](tk)
(
E
{
(Mtk −Mtk−1

)2 | Ftk−1

})2
, and

(M,F)
(1,3̃)
t :=

∑
k≥1

1[0,t](tk)(Mtk −Mtk−1
)E
{
(Mtk −Mtk−1

)3 | Ftk−1

}
,
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are called the second order characteristics of (M,F).

Now we can formulate more precisely the problem which is the subject of the present paper:

Let (πn) be a fixed null-sequence in Π and (M,F) be a given right continuous L4-martingale.

Suppose that (Hn)n≥1 is an approximating sequence of filtrations for (M,F). Does there

exists a ”reasonable” topology, for which the processes (πn(M),Hn)(2), (πn(M),Hn)(2̃),

(πn(M),Hn)(4) , (πn(M),Hn)(4̃) , (πn(M),Hn)(2,2̃) , (πn(M),Hn)(2̃,2̃) , and (πn(M),Hn)(1,3̃)

converge for n→∞?

In case that Hn = πn(F) for all n ≥ 1, we will simply write (πn(M))(2), (πn(M))2̃ etc.

instead of (πn(M), πn(F))(2), (πn(M), πn(F))2̃ etc.. Then the main result of this paper is the

following theorem.

Theorem 2.2 The limits

(M)
(2)
t := lim

n→∞
(πn(M))

(2)
t , (M)

(2̃)
t := lim

n→∞
(πn(M))2̃

t ,

(M)
(4)
t := lim

n→∞
(πn(M))

(4)
t , (M)

(4̃)
t := lim

n→∞
(πn(M))

(4̃)
t ,

(M)
(2,2̃)
t := lim

n→∞
(πn(M))

(2,2̃)
t , (M)

(2̃,2̃)
t := lim

n→∞
(πn(M))

(2̃,2̃)
t , and

(M)
(1,3̃)
t := lim

n→∞
(πn(M))

(1,3̃)
t

exist for all t ≥ 0 for the topology σ(L1, L∞).

Definition 2.3 The limit processes (M)(2) and (M)(2̃) are again called the first order

characteristics of (M,F), and the limit processes (M)(4), (M)(4̃), (M)(2,2̃), (M)(2̃,2̃), (M)(1,3̃)

are called the second order characteristics of (M,F).

The first order characteristics (M)(2) and (M)(2̃) are of course just the optional and the

predictable quadratic variation [M ] and <M>, and we will use later also these more usual

notations.

In the next section we present first some known results on the first order characteristics and

give in that case also solutions for the above stated general approximation problem. In the

last section we will finally prove theorem 2.2.

3 Compensators of increasing Processes

The existence of [M ] = (M)(2) for the L1-norm is well known and will not be discussed here.

Since <M>= (M)(2̃) is the so-called compensator of the increasing process [M ], we first

recall some known results on increasing processes and their compensators.
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Suppose that F = (Ft)t≥0 is a fixed standard filtration on Ω, i.e. F is assumed to be

right continuous and every Ft is assumed to contain all P-null sets of the P-completion of

F∞ :=
∨

t≥0Ft. Let X = (Xt)t≥0 be a given increasing, right continuous, F-adapted process,

and denote by X̃ = (X̃t)t≥0 the compensator of X (also called the dual predictable projection

of X). X̃ is the (up to P-equality) unique increasing, right continuous, F-predictable process

with X̃0 = 0 such that X−X̃ is a local martingale (see e.g. [1], theorem 15.2 for the existence

and uniqueness of X̃).

The process X has the following general structure (cf. [1], ch.VI): there exist

(i) an increasing, continuous, F-adapted process Xc, and

(ii) sequences (Sn)n≥1, (Tn)n≥1 of predictable resp. totally inaccessible stopping times with

pairwise disjoint graphs,

such that

X = Xc +
∑
n≥1

4XSn 1[Sn,∞[ +
∑
n≥1

4XTn 1[Tn,∞[ .

Let Gn (n ≥ 1) denote the (necessarily continuous) compensator of the jump process

4XTn 1[Tn,∞[. Then the compensator X̃ of X has the structure

X̃ = X̃c +
∑
n≥1

E
{
4XSn | FSn−

}
1[Sn,∞[ ,

with X̃c = Xc +
∑

n≥1Gn. As a consequence, one has the following equivalent assertions:

(a) X is regular (or quasi-left-continuous),

(b) X has no jumps at predictable stopping times, and

(c) X̃ is continuous.

The following result on the topological relations between increasing processes and their

compensators can be found in [1] (ch.VII, Th.18 and 20).

Theorem 3.1 Suppose that (Xn)n≥0 is a sequence of right continuous, increasing, F-

adapted processes, which belongs uniformly to class (D). If for every stopping time T

lim
n→∞

Xn
T = X0

T for σ(L1, L∞) ,

then also

lim
n→∞

X̃n
T = X̃0

T for σ(L1, L∞) ,

where (X̃n)n≥0 denotes the associated sequence of compensators. If (Xn)n≥0 is a sequence

such that X0 is regular (so that X̃0 is continuous), and if (Xn)n≥1 is increasing with limit

X0, then even

lim
n→∞

X̃n
T = X̃0

T

for the L1-norm.
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As a consequence of the above theorem one gets that the compensator of an increasing

process can be obtained as the limit of compensators of discrete increasing processes (cf. [1],

Th.21). We give a different proof than in [1], which seems to be more elementary. Moreover,

our proof can serve at the same time as an existence proof for the compensator.

Theorem 3.2 Let X = (Xt)t≥0 be a given increasing, right continuous, integrable and

F-adapted process. Let further (πn)n≥1 be a null-sequence of partitions of R+, and define for

every n ≥ 1 and t ≥ 0

Cn(X)t :=
∑
k≥1

1[o,t](t
n
k)E{Xtnk

−Xtnk−1
| Ftnk−1

} .

Then there exists an increasing, right continuous, integrable and predictable process C(X)

such that

lim
n→∞

Cn(X)t = C(X)t for σ(L1, L∞)

for all t ≥ 0, and such that C(X) is the compensator X̃ of X.

Proof: Let Z ∈ L∞(Ω) be given and suppose that (Yt)t≥0 is a cadlag-modification of

(E{Z|Ft})t≥0. Then we get for every fixed t ≥ 0

E{Z Cn(X)t}
= E

{
Z
∑
k≥1

1[o,t](t
n
k)E{Xtnk

−Xtnk−1
| Ftnk−1

}
}

=
∑
k≥1

1[o,t](t
n
k)E

{
Z E{Xtnk

−Xtnk−1
| Ftnk−1

}
}

=
∑
k≥1

1[o,t](t
n
k)E

{
E{Z|Ftnk−1

}(Xtnk
−Xtnk−1

)
}

=
∑
k≥1

1[o,t](t
n
k)E

{
Ytnk−1

(Xtnk
−Xtnk−1

)
}

= E
{∑

k≥1

1[o,t](t
n
k) Ytnk−1

(Xtnk
−Xtnk−1

)
}
.

If we define

Fn :=
∑
k≥1

1[o,t](t
n
k)Ytnk−1

1]tnk−1,tnk ] ,

the above equation just reads

E{Z Cn(X)t} = E
{∫ t

0

Fn(s) dXs

}
.

By the definition of Fn and Y we have limn→∞ Fn(s) = Ys− for every s > 0, and Lebesgue’s

theorem yields

lim
n→∞

E{Z Cn(X)t} = E
{∫ t

0

Ys− dXs

}
.
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Especially, this implies that (Cn(X)t)n≥1 is a σ(L1, L∞)-Cauchy sequence. Because of

E Cn(X)t ≤ EXt =: rt

we have that (Cn(X)t)n≥1 is contained in the L1-ball {X ∈ L1|E|X| ≤ rt}, which is weakly

sequentially complete (cf. e.g. [6], p.121). This now implies that there exists a C̄(X)t ∈ L1

such that

lim
n→∞

E{Z Cn(X)t} = E{Z C̄(X)t}

for all Z ∈ L∞.

Now consider the so obtained process (C̄(X)t)t≥0. It is easy to see that (C̄(X)t)t≥0 is F-

adapted and that

C̄(X)s ≤ C̄(X)t

P-a.s. for all s ≤ t. Clearly, (C̄(X)t)t≥0 is in general not necessarily right continuous. So let

us show that (C̄(X)t)t≥0 has a right continuous, increasing modification.

We choose a null set N such that for all ω /∈ N and all s, t ∈ Q+ with s ≤ t we have

C̄(X)s(ω) ≤ C̄(X)t(ω) .

Then we define

C(X)t := 1Nc inf
u>t,u∈Q

C̄(X)u .

It follows from the properties of F that the process (C(X)t)t≥0 is an F-adapted, increasing

and right continuous process. Furthermore,

E{Z C(X)t} = infu>t,u∈Q E{Z C̄(X)u} = inf
u>t,u∈Q

E{
∫ u

0

Ys− dXs}

= E{
∫ t

0
Ys− dXs} = E{Z C̄(X)t}

for all t ≥ 0 and all Z ∈ L∞ with Z ≥ 0. It follows that

P{C(X)t = C̄(X)t } = 1

for all t ≥ 0, i.e. (C(X)t)t≥0 is a modification of (C̄(X)t)t≥0.

Altogether we have proved up to now that there exists an increasing, right continuous,

integrable and F-adapted process (C(X)t)t≥0 such that

lim
n→∞

E{Z Cn(X)t} = E{Z C(X)t}

for all t ≥ 0 and all Z ∈ L∞.

It is an easy exercise to show that X − C(X) is an F-martingale. This follows from the

σ(L1, L∞)-convergence and the observation that for every n ≥ 1 the process
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(Xtnk
− Cn(X)tnk

)k≥0 is a martingale relative to the filtration (Ftnk
)k≥0. Hence for the proof

of the theorem it remains to show that C(X) is predictable. We do this by proving the

equivalent assertion that C(X) is a natural process. This means that we have to show that

E{YtC(X)t} = E{
∫ t

0

Ys− dC(X)s}

holds for every t ≥ 0 and every non-negative, bounded cadlag F-martingale (Yt)t≥0.

The idea is to apply to C(X) the same procedure which we applied to X. For n ≥ m > 1

we have the following simple relation:

Cm(Cn(X))t

=
∑
j≥1

1[0,t](t
m
j )E

{
Cn(X)tmj

− Cn(X)tmj−1
| Ftmj−1

}
=

∑
j≥1

1[0,t](t
m
j )E

{ ∑
k∈Im

j

E
{
Xtnk

−Xtnk−1
| Ftnk−1

}
| Ftmj−1

}
(Im

j := {k|tmj−1 < tnk ≤ tmj })
=

∑
j≥1

1[0,t](t
m
j )
∑
k∈Im

j

E
{
Xtnk

−Xtnk−1
| Ftmj−1

}
=

∑
j≥1

1[0,t](t
m
j )E

{
Xtmj

−Xtmj−1
| Ftmj−1

}
= Cm(X)t .

Now let (Yt)t≥0 be a given non-negative, bounded F-cadlag-martingale. Then we have for

every t ≥ 0 on one side

(i) limm→∞E{YtC
m(X)t} = E{YtC(X)t} ,

and on the other side we get

E{YtC
m(X)t} = E{YtC

m(Cn(X))t} (n ≥ m)

= E
{
Yt

∑
j≥1

1[0,t](t
m
j )E

{
Cn(X)tmj

− Cn(X)tmj−1
| Ftmj−1

}}
= E

{∑
j≥1

1[0,t](t
m
j )Ytmj−1

(
Cn(X)tmj

− Cn(X)tmj−1

)}
,

which gives for n→∞

E{YtC
m(X)t} = E

{∑
j≥1

1[0,t](t
m
j )Ytmj−1

(
C(X)tmj

− C(X)tmj−1

)}
,

and hence

(ii) limm→∞E{YtC
m(X)t} = E{

∫ t

0
Ys− dC(X)s} ,

and we have proved that C(X) is natural. 2
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Remark 3.3 If X is continuous, then one can prove that limn→∞Cn(X)t = C(X)t =

Xt even for the L1-norm. But in general this is not true. There is a counterexample of

Dellacherie and Doléans (cf. [1] for a reference).

Let (Hn)n≥1 be an increasing sequence of filtrations Hn = (Hn
t )t≥0. Define H∞ by H∞

t :=∨
n≥1Hn

t for t ≥ 0 and let F be the standard filtration generated by H∞. In analogy to the-

orem 3.2 one could ask the following question (which is related to the general approximation

problem stated in section 2):

Let X = (Xt)t≥0 be an increasing, right continuous, F-adapted process. Define for every

n ≥ 1

Cn(X)t :=
∑
k≥1

1[0,t](t
n
k)E

{
Xtnk

−Xtnk−1
| Hn

tnk−1

}
.

Is it again true that

lim
n→∞

Cn(X)t = X̃t

for every t ≥ 0 for the topology σ(L1, L∞)?

Looking at the proof of theorem (3.2), there is the following problem. If Z ∈ L∞ is given,

and if the function Fn is now defined as

Fn =
∑
k≥1

1[0,t](t
n
k)E

{
Z | Hn

tnk−1

}
1]tnk−1,tnk ] ,

then clearly

Fn(s) −→ Ys− := E{Z|Fs−}

P-a.s. (!) for every s ≥ 0. But it is not at all clear (and probably not true) that outside

one fixed null-set one has the convergence Fn(s) → Ys− for all s ≥ 0. The reason is a kind

of regularity problem for two-parameter martingales: Consider(
E{Z|Hn

t }
)
1≤n≤∞,t≥0

.

This is a two-parameter martingale. Does there exist a modification (Yn,t)1≤n≤∞,t≥0, such

that

lim
n→∞,s↗t

Yn,s = Y∞,t

for all t ≥ 0?

The following result indicates that even in case that X is a continuous process the situation

differs from the situation, where just one filtration F is involved.

Theorem 3.4 Let (πn)n≥1 be a null-sequence of partitions and Hn (n ≥ 1), F filtrations

as above. If X is an increasing, continuous, F-adapted process, and if

Cn(X)t :=
∑
k≥1

1[0,t](t
n
k)E

{
Xtnk

−Xtnk−1
| Hn

tnk−1

}
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for n ≥ 1 and t ≥ 0, then for every t ≥ 0

lim
n→∞

Cn(X)t = Xt

for the topolgy σ(L1, L∞).

Proof: (1) For every integrable process Y = (Yt)t≥0 we set

Cn(X)t :=
∑
k≥1

1[0,t](t
n
k)E

{
Ytnk

− Ytnk−1
| Hn

tnk−1

}
.

Now assume that Y is even square integrable. Then we will first prove an elementary

inequality for E{Cn(Y )2
t}. For a shorter notation we set

m(t) := m(t, n) := max{k ≥ 1| tnk ≤ t} .

Then we get

E{Cn(Y )2
t} = E

(m(t)∑
k=1

E
{
Ytnk

− Ytnk−1
| Hn

tnk−1

})2
= E

m(t)∑
k=1

(
E
{
Ytnk

− Ytnk−1
| Hn

tnk−1

})2
+ 2

∑
k<j

E
(
E
{
Ytnk

− Ytnk−1
| Hn

tnk−1

}
E
{
Ytnj

− Ytnj−1
| Hn

tnj−1

})
= E

m(t)∑
k=1

(
E
{
Ytnk

− Ytnk−1
| Hn

tnk−1

})2
+ 2

∑
k<j

E
(
E
{
Ytnk

− Ytnk−1
| Hn

tnk−1

}
E
{
Ytnj

− Ytnj−1
| Hn

tnk−1

})
≤ 2

∑
k≤j

E
(
E
{
Ytnk

− Ytnk−1
| Hn

tnk−1

}
E
{
Ytnj

− Ytnj−1
| Hn

tnk−1

})
= 2

m(t)∑
k=1

E
(
E
{
Ytnk

− Ytnk−1
| Hn

tnk−1

}
E
{
Ytn

m(t)
− Ytnk−1

| Hn
tnk−1

})
= 2

m(t)∑
k=1

E
(
(Ytn

m(t)
− Ytnk−1

)E
{
Ytnk

− Ytnk−1
| Hn

tnk−1

})
.

and we have obtained the inequality

E{Cn(Y )2
t} ≤ 2E

(
max

0≤k<m(t)
|Ytn

m(t)
− Ytnk

|
m(t)∑
k=1

∣∣E{Ytnk
− Ytnk−1

| Hn
tnk−1

}∣∣) . (3.4.1)
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If Y is increasing we have especially

E{Cn(Y )2
t} ≤ 2E

(
(Yt − Y0)C

n(Y )t

)
≤ 2

(
E(Yt − Y0)

2
) 1

2
(
E(Cn(Y )2

t )
) 1

2 ,

which implies

E{Cn(Y )2
t} ≤ 4E(Yt − Y0)

2 . (3.4.2)

Now suppose that Z = X − Y , where X and Y are increasing and square integrable

processes. Then we get from (3.4.1)

E{Cn(Y )2
t}

≤ 2E
(

max
0≤k<m(t)

|Ztn
m(t)

− Ztnk
| (Cn(X)t + Cn(Y )t)

)
≤ 2

(
E
{

max
0≤k<m(t)

(Ztn
m(t)

− Ztnk
)2
}) 1

2
(
E
{
Cn(X)t + Cn(Y )t

}2) 1
2 ,

and (3.4.2) gives

E{Cn(Y )2
t}

≤ 4
(
E
{

max
0≤k<m(t)

(Ztn
m(t)

− Ztnk
)2
}) 1

2

((
E(Xt −X0)

2
) 1

2 +
(
E(Yt − Y0)

2
) 1

2

)
. (3.4.3)

This inequality will be used in the next step of the proof.

(2) Now let X be the increasing, continuous, F-adapted process, for which we want to prove

the assertion of the theorem. In this step of the proof we also assume in addition that X is

square integrable. For every m ≥ 1 we define the process Xm = (Xm
t )t≥0 by

Xm :=
∑
j≥1

Xtmj−1
1[tmj−1,tmj [ .

To prove the asserted σ(L1, L∞)-convergence, let Z be an arbitrary given element of L∞.

Then

E{Z Cn(X)t} = E{Z Cn(Xm)t} + Rm,n
1 (t) , (3.4.4)

where

Rm,n
1 (t) = E{Z (Cn(X)t − Cn(Xm)t)} .

First we compute E{Z Cn(Xm)t}:

E{Z Cn(Xm)t}

= E
{
Z

m(t)∑
k=1

E{Xtnk
−Xtnk−1

| Hn
tnk−1

}
}

= E
{m(t)∑

k=1

E{Z | Hn
tnk−1

}(Xtnk
−Xtnk−1

)
}
,
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and with the definition

Fn :=

m(t)∑
k=1

E{Z | Hn
tnk−1

} 1[tmk−1,tmk [

we have an F-predictable function such that

E{Z Cn(Xm)t} = E
{∫ t

0

Fn(s) dXm
s

}
. (3.4.5)

The increasing process Xm corresponds to the measure∑
j≥1

(Xtmj
−Xtmj−1

) δtmj .

Hence, if k(j) denotes that integer for which

tnk(j) = tmj (n ≥ m) ,

then ∫ t

0

Fn(s) dXm
s

=
∑
j≥1

Fn(tnk(j))(Xtmj
−Xtmj−1

)

=
∑
j≥1

1[0,t](t
m
j )E{Z|Hn

tn
k(j)−1

}(Xtmj
−Xtmj−1

) .

Thus we have

E{Z Cn(Xm)t} = E
(∑

j≥1

1[0,t](t
m
j )E{Z|Ftmj −}(Xtmj

−Xtmj−1
)
)

+ Rm,n
2 (t) , (3.4.6)

with

Rm,n
2 (t) := E

(∑
j≥1

1[0,t](t
m
j )
[
E{Z|Hn

tn
k(j)−1

} − E{Z|Ftmj −}
]
(Xtmj

−Xtmj−1
)
)
.

The continuity of X implies that every Xt is Ft−-measurable. This gives

E
(
E{Z|Ftmj −}(Xtmj

−Xtmj−1
)
)

= E
{
Z (Xtmj

−Xtmj−1
)
}
,

and we get from (3.4.6) that

E{Z Cn(Xm)t} = E{Z (Xt −X0)} + Rm,n
2 (t)

and altogether we have proved that

E{Z Cn(X)t} = E{Z (Xt −X0)} + Rm,n
1 (t) + Rm,n

2 (t) (3.4.7)



Characteristic Processes associated with a Discontinuous Martingale 93

for m ≤ n. So we have to prove for the asserted σ(L1, L∞)-convergence that for every ε > 0

there exists an m ≥ 1 such that for every n ≥ m we have

|Rm,n
1 (t)| < ε and |Rm,n

2 (t)| < ε .

For Rm,n
1 (t) we use the inequality (3.4.3). With D := ‖Z‖∞ we get

|Rm,n
1 (t)| ≤ DE|Cn(X)t − Cn(Xm)t|

= DECn(X −Xm)t

≤ D
(
E{Cn(X −Xm)t}2

) 1
2

and hence

Rm,n
1 (t)4

≤ D4
(
E{Cn(X −Xm)t}2

)2
≤ 24D4E

{
max

0≤k<m(t)

(
(X −Xm)tn

m(t)
− (X −Xm)tnk

)2}
·
(
[E(Xt −X0)

2]
1
2 + [E(Xm

t −Xm
0 )2]

1
2

)2
≤ 26D4E(Xt −X0)

2 E
{

max
0≤k<m(t)

(
(X −Xm)tn

m(t)
− (X −Xm)tnk

)2}
≤ 27D4E(Xt −X0)

2 E
{

max
0≤k≤m(t)

(
(X −Xm)tnk

)2}
≤ 27D4E(Xt −X0)

2 E
{

max
j≥1

1[0,t](t
m
j )(Xtmj

−Xtmj−1
)2
}
.

Since X is assumed to be continuous, it follows easily that

lim
m→∞

E
{

max
j≥1

1[0,t](t
m
j )(Xtmj

−Xtmj−1
)2
}

= 0 ,

and thus we have proved that there exists an m1 = m1(ε) such that for all n ≥ m ≥ m1 we

have |Rm,n
1 (t)| < ε.

For Rm,n
2 (t) we get from the definition

Rm,n
2 (t)2 ≤ E(Xt −X0)

2 E
{

max
j≥1

(
1[0,t](t

m
j )
(
E{Z |Hn

tn
k(j)−1

} − E{Z|Ftmj −}
))2}

.

Since tnk(j)−1 ↗ tmj for n→∞, we have∨
n≥1

Hn
tn
k(j)−1

= H∞
tmj −

,

and it is easy to show that E{Z|H∞
t−} = E{Z|Ft−} for all t > 0. Hence

lim
n→∞

E{Z|Hn
tn
k(j)−1

} = E{Z|Ftmj −}
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P-a.s. for all j ≥ 1. Since Z ∈ L∞, it follows from Lebesgue’s theorem that limn→∞Rm,n
2 (t) =

0. Hence for a given ε > 0 and m ≥ 1 there exists an n(ε,m) ≥ m such that

|Rm,n
2 (t)| < ε

for all n ≥ n(ε,m).

So let ε > 0 be given. Then first we can choose an m(ε) such that |Rm(ε),n
1 (t)| < ε for all

n ≥ m(ε). Then we choose an n(ε) := n(ε,m(ε)) ≥ m(ε) such that |Rm(ε),n
2 (t)| < ε for all

n ≥ n(ε). Then we obtain from (3.4.7)

|E{Z Cn(X)t} − E{Z (Xt −X0)} | < 2ε

for all n ≥ n(ε). Since ε > 0 and Z ∈ L∞ were arbitrarily chosen, we have proved the

asserted σ(L1, L∞)-convergence under the assumption that X is square integrable.

(3) Now just suppose that X is integrable. For Z ∈ L∞ and ε > 0 given we choose a constant

c > 0 such that

E{Xt − (X ∧ c)t} <
ε

2‖Z‖∞
.

Then we have

E{Z Cn(X)t} − E{Z (Xt −X0)} = E{Z Cn(X ∧ c)t} − E{Z((X ∧ c)t − (X ∧ c)0)}+Rn,c
t ,

where

Rn,c
t = E{Z(Cn(X)t − Cn(X ∧ c)t)} + E{Z ((Xt − (X ∧ c)t)− (X0 − (X ∧ c)0))} .

Then

|Rn,c
t | ≤ 2‖Z‖∞E(X − (X ∧ c))t < ε .

This proves finally the assertion of the theorem for the general case that X is only assumed

to be integrable. 2

One special application of the theorem is formulated in the following corollary.

Corollary 3.5 Let M = (Mt)t≥0 be a square integrable martingale and let F be the

standard filtration generated by the canonical filtration of M . Let as before (πn)n≥1 denote a

null-sequence of partitions and define for every n ≥ 1 the filtration Hn = (Hn
t )t≥0 by

Hn
t := σ

(
{Mtnk

| tnk ≤ t}
)
.

If the predictable quadratic variation <M> of M is continuous, then

lim
n→∞

∑
k≥1

1[0,t](t
n
k)E

{
(Mtnk

−Mtnk−1
)2 | Hn

tnk−1

}
=<M>t

for every t > 0 in the topology σ(L1, L∞).
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To get convergence in the L1-norm, it seems that in general one has to assume a stronger

condition on the limit process X than just continuity. In principle, it will be a condition

implying that there is a kind of uniform nearness of the conditional expectations E{Xtnk
−

Xtnk−1
|Hn

tnk−1
} to E{Xtnk

−Xtnk−1
|Ftnk−1

}. The condition which we impose on X in the following

theorem is a condition which is usually fulfilled in applications (survival analysis, queuing

theory, risk theory etc.).

Theorem 3.6 Let (Hn)n≥1 and F be given as before, and let X be an increasing, right

continuous, F-adapted and integrable process. Suppose that in addition X has P-a.s. a

density Z relative to a non-random measure µ on R+, i.e.

Xt =

∫ t

0

Zs µ(ds)

for every t > 0 P-a.s.. Then limn→∞Cn(X)t = Xt in the L1-norm for every t > 0.

Proof: (1) We will denote by P the predictable σ-algebra on R+ × Ω for the filtration F.

For every n ≥ 1 we define then Pn as the sub-σ-algebra of P generated by the sets {0}×A,

where A ∈ Hn
0 and by the sets ]tnk−1, t

n
k ]× A, where A ∈ Hn

tnk−1
and k ≥ 1. Furthermore, we

define a sequence (Mn)n≥1 of maps Mn : R+ × Ω → R+ by

Mn :=:
∑
k≥1

E{Xtnk
−Xtnk−1

|Hn
tnk−1

}
µ(]tnk−1, t

n
k ])

1]tnk−1,tnk ] , (3.6.1)

with the (admissible) convention that

E{Xtnk
−Xtnk−1

|Hn
tnk−1

}
µ(]tnk−1, t

n
k ])

:= 0 ,

in case that µ(]tnk−1, t
n
k ]) = 0. Now let t > 0 be given. We set P t := P ∩ ([0, t] × Ω) and

P t
n := Pn ∩ ([0, t]× Ω) for n ≥ 1. Then we define the probability space

Ωt :=
(
[0, t]× Ω,P t,

µ

µ([0, t])
⊗P

)
.

In the following we will view (Mn)n≥1 as a process on Ωt. By definition, every Mn is P t
n-

measurable, i.e. (Mn)n≥1 is a (P t
n)-adapted process. It is also clear that (Mn)n≥1 is integrable.

We will prove now that (Mn)n≥1 is even a (P t
n)-martingale.

We set µt :=
µ

µ([0, t])
. For m < n we take a set A ∈ Hm

tmj−1
. Furthermore, we set Im

j := {k ≥
1| tmj−1 < tnk ≤ tmj } and

Y n
k :=

E{Xtnk
−Xtnk−1

|Hn
tnk−1

}
µ(]tnk−1, t

n
k ])

.
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Then ∫
]tmj−1,tmj ]×A

Mn d(µt ⊗P)

=

∫
1]tmj−1,tmj ]×A

( ∑
k∈Im

j

Y n
k 1]tnk−1,tnk ]

)
d(µt ⊗P)

=
∑
k∈Im

j

∫
Ω

∫
R+

1A Y
n
k 1]tnk−1,tnk ] dµt dP

=
∑
k∈Im

j

µt(]t
n
k−1, t

n
k ])

∫
A

Y n
k dP

=
∑
k∈Im

j

µt(]t
n
k−1, t

n
k ])

µ(]tnk−1, t
n
k ])

∫
A

E{Xtnk
−Xtnk−1

|Hn
tnk−1

} dP

= µ([0, t])−1

∫
A

E{Xtmj
−Xtmj−1

|Hm
tmj−1
} dP

=
µ(]tmj−1, t

m
j ])

µ([0, t])

∫
A

E{Xtmj
−Xtmj−1

|Hm
tmj−1
}

µ(]tmj−1, t
m
j ])

dP

=

∫
Ω

∫
R+

1A 1]tmj−1,tmj ] dµt dP

=

∫
]tmj−1,tmj ]×A

Mm d(µt ⊗P) .

Since the sets ]tmj−1, t
m
j ]×A (j ≥ 1, A ∈ Hm

tmj−1
) together with the sets {0}×A (A ∈ Hm

0 ) form

a ∩-stable system generating Pm, it follows from the just proved equation that (Mn)n≥1 is a

(P t
n)-martingale.

Since in addition, (Mn)n≥1 is non-negative, the martingale convergence theorem implies that

(Mn)n≥1 is a.s. convergent.

(2) Now we prove that (Mn)n≥1 also converges in L1([0, t] × Ω). By (1) it is necessary and

sufficient to show that (Mn)n≥1 is uniformly integrable. We prove this under the momentary

extra condition that the process (Zs)0≤s≤t belongs to L2([0, t] × Ω). Then it is sufficient to

prove that

sup
n≥1

∫
M2

n d(µt ⊗P) < ∞ .

For every s ∈]tnk−1, t
n
k ] we have

Mn(s, ·) =
E{Xtnk

−Xtnk−1
|Hn

tnk−1
}

µ(]tnk−1, t
n
k ])

=

∫
]tnk−1,tnk ]

E{Zr |Hn
tnk−1

}µ(dr)

µ(]tnk−1, t
n
k ])

,
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and hence

Mn(s, ·)2 ≤

∫
]tnk−1,tnk ]

(
E{Zr |Hn

tnk−1
}
)2
µ(dr)

µ(]tnk−1, t
n
k ])

≤

∫
]tnk−1,tnk ]

E{Z2
r |Hn

tnk−1
}µ(dr)

µ(]tnk−1, t
n
k ])

.

Therefore we obtain∫
M2

n d(µt ⊗P)

≤
∫

[0,t]

(∑
k≥1

µ(]tnk−1, t
n
k ])−11]tnk−1,tnk ](u)

∫
]tnk−1,tnk ]

E
(
E{Z2

r |Hn
tnk−1

}
)
µ(dr)

)
µt(du)

=

∫
[0,t]

(∑
k≥1

µ(]tnk−1, t
n
k ])−11]tnk−1,tnk ](u)

( ∫
]tnk−1,tnk ]

EZ2
r µ(dr)

))
µt(du)

=

∫
[0,t]

Z2 d(µt ⊗P) ,

and it follows that (Mn)n≥1 is uniformly integrable. Since (Mn)n≥1 is also (µt ⊗ P)-a.s.

convergent, there exists an L1([0, t]× Ω)-limit M of (Mn)n≥1. Because of

E
∣∣ ∫

[0,t]

Mn dµt −
∫

[0,t]

M dµt

∣∣ ≤ E

∫
[0,t]

|Mn −M | dµt

and the observation that∫
[0,t]

Mn dµt

= µ([0, t])−1
∑
k≥1

1[0,t](t
n
k)E{Xtnk

−Xtnk−1
|Hn

tnk−1
}

= µ([0, t])−1Cn(X)t ,

we have especially proved that

lim
n→∞

Cn(X)t = Xt

in the L1-norm for every t > 0.

(3) Finally, if (Zs)0≤s≤t is not assumed to be square integrable, we set for every constant

c > 0

Xc
t :=

∫
[0,t]

(Zs ∧ c)µ(ds) .

For any given ε > 0 it is then possible to find a c = c(ε) such that

EXt − EXc
t < ε .
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If we denote by M c
n the map of step (2) associated with Xc, then (M c

n)n≥1 converges in

L1([0, t]× Ω) by step (2). Furthermore, we have∫
[0,t]×Ω

(Mn − M c
n) d(µt ⊗P)

≤
∫

[0,t]

(∑
k≥1

µ(]tnk−1, t
n
k ])−11]tnk−1,tnk ](u)

·
∫

Ω

∫
]tnk−1,tnk ]

∣∣E{Zr|Hn
tnk−1

} − E{Zr ∧ c|Hn
tnk−1

}
∣∣µ(dr) dP

)
µt(du)

≤
∫

Ω

∫
[0,t]

(Zr − Zr ∧ c)µt(dr) dP

= µ([0, t])−1E(Xt − Xc
t ) .

Now it follows easily that (Mn)n≥1 is a Cauchy sequence in L1([0, t]×Ω) and hence convergent.

As in the last part of step (2) one finally gets limn→∞Cn(X)t = Xt in L1(Ω). This finishes

the proof of the theorem. 2

4 Existence of the Second Order Characteristics

In this section we will prove that in the sense of theorem 2.2 all second order characteristics

exist for every L4-martingale. So let M = (Mt)t≥0 be in the following a fixed cadlag F-

martingale such that Mt ∈ L4(Ω) for all t ≥ 0. We will often make use of the following

structure of M (cf. [3], ch.4). First we have the decomposition

M = M c + Md

into two L4-martingales. M c is a continuous martingale, called the continuous part of M .

The martingale Md, called the purely discontinuous part of M , has the structure

Md = Mp + M t ,

where the martingales Mp and M t are called the predictable and the totally inaccessible part

resp. of M . We have

Mp =
∑
i≥1

Xi 1[Si,∞[ ,

where the Si are predictable stopping times and Xi = 4MSi
. M t has the structure

M t =
∑
j≥1

(
Yj 1[Tj ,∞[ − Ãj

)
.

Here the Tj are totally inaccessible stopping times, Ãj denotes the (continuous) compensator

of Yj 1[Tj ,∞[ and Yj = 4MTj
. Moreover, the family{
T |T = Si or T = Tj, i, j ∈ N

}
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may and will be assumed to have pairwise disjoint graphs. Then the following orthogonality

relation holds:

EM2
t = E (M c

t )
2 +

∑
i≥1

E
(
X2

i 1[Si≤t]

)
+
∑
j≥1

E
(
Yj 1[Tj≤t] − Ãj

t

)2
.

Theorem 4.1 (Existence of (M)(4)) For every t ≥ 0,

(M)
(4)
t := lim

n→∞

∑
k≥1

1[0,t](t
n
k) (Mtnk

− Mtnk−1
)4

exists in L1 and (with the notations introduced above)

(M)
(4)
t =

∑
i≥1

X4
i 1[Si≤t] +

∑
j≥1

Y 4
j 1[Tj≤t] .

Proof: (1) First we assume that M c and Md are bounded by some constant C > 0. For

every n ≥ 1 we set as before

m(t) = mn(t) := max{k ≥ 1|tnk ≤ t} .

Then we have

m(t)∑
k=1

(Mtnk
−Mtnk−1

)4 =

m(t)∑
k=1

(Md
tnk
−Md

tnk−1
)4 +

4∑
i=1

An
i (t) ,

where

An
1 (t) := 4

m(t)∑
k=1

(M c
tnk
−M c

tnk−1
)(Md

tnk
−Md

tnk−1
)3 ,

An
2 (t) := 6

m(t)∑
k=1

(M c
tnk
−M c

tnk−1
)2(Md

tnk
−Md

tnk−1
)2 ,

An
3 (t) := 4

m(t)∑
k=1

(M c
tnk
−M c

tnk−1
)3(Md

tnk
−Md

tnk−1
) , and

An
4 (t) :=

m(t)∑
k=1

(M c
tnk
−M c

tnk−1
)4 .

We assert that limn→∞An
i (t) = 0 in L1(Ω) for i = 1, 2, 3, 4. Since the proofs are very similar,

we only show that limn→∞An
1 (t) = 0 in L1(Ω). For the proof of that assertion we will use

the obvious inequality

|An
1 (t)| ≤ 8Cmax

k
|M c

tnk
−M c

tnk−1
|

m(t)∑
k=1

(Md
tnk
−Md

tnk−1
)2 .
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Now let ε > 0 be given. Since

lim
n→∞

m(t)∑
k=1

(Md
tnk
−Md

tnk−1
)2 = [Md]t

in L1(Ω), we can find an n1 ∈ N such that

E
∣∣m(t)∑

k=1

(Md
tnk
−Md

tnk−1
)2 − [Md]t

∣∣ < ε

48C2

for all n ≥ n1. For every m ≥ 1 and η > 0 we set

Ωm,η :=
{
ω | max

k
|M c

tnk
(ω)−M c

tnk−1
(ω)| < η for all n ≥ m

}
.

Then the sequence (Ωm,η)m≥1 is increasing with
⋃

m≥1 Ωm,η = Ω. We choose

η =
1

24C E [Md]t
.

Then there exists an m ∈ N such that

E
{

1Ωc
m,η

[Md]t
}
<

ε

48C2
.

With n0 := max(n1,m) we have for all n ≥ n0

E |An
1 (t)|

≤ 16C2 E
∣∣m(t)∑

k=1

(Md
tnk
−Md

tnk−1
)2 − [Md]t

∣∣+ 8C E
(
max

k
|M c

tnk
−M c

tnk−1
| · [Md]t

)
<

ε

3
+ 8C

∫
Ωm,η

max
k
|M c

tnk
−M c

tnk−1
| · [Md]t dP + 16C2

∫
Ωc

m,η

[Md]t dP

<
ε

3
+ 8C ηE[Md]t + 16C2 E

{
1Ωc

m,η
[Md]t

}
< ε

by the choice of n0. Since ε > 0 was arbitrary, we have proved that limn→∞An
1 (t) = 0 in

L1(Ω) and limn→∞An
i (t) = 0 (i = 2, 3, 4) follows similarly.

It remains to prove the existence of

lim
n→∞

m(t)∑
k=1

(Md
tnk
−Md

tnk−1
)4

in L1(Ω). This is proved similarly to the proof of the existence of [Md] in [3] (th. 18.6). So

let us assume first that the number of jumps of M on [0, t] is bounded, which means that

Md
s =

k1∑
i=1

Xi 1[Si≤s] +

k2∑
j=1

(Yj 1[Ti≤s] − Ãj
s)
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for k1, k2 ∈ N and s ≤ t. Since (Md
s )s≤t is now a process of finite variation having only finite

many jumps, one can prove that even pathwise

lim
n→∞

m(t)∑
k=1

(Md
tnk
−Md

tnk−1
)4 =

k1∑
i=1

X4
i , 1[Si≤t] +

k2∑
j=1

Y 4
j 1[Ti≤t] ,

and the boundedness assumption on M implies that this convergence also takes place in the

L1-norm.

If the number of jumps of M on [0, t] is not bounded, we set

Md,m :=
m∑

i=1

Zi ,

where every Zi is either of the form Xi1[Si,∞[ or of the form (Yj1[Tj ,∞[ − Ãj). For a shorter

notation we will write

(N)
(4),n
t :=

m(t)∑
k=0

(Ntnk
−Ntnk−1

)4

for every L4-martingale N = (Nt)t≥0. Now set

M̄d,m := Md −Md,m .

Then

(Md)
(4),n
t − (Md,m)

(4),n
t =

4∑
i=1

Bn,m
i ,

where

Bn,m
1 (t) := 4

m(t)∑
k=1

(Md,m
tnk

−Md,m
tnk−1

)3(M̄d,m
tnk

− M̄d,m
tnk−1

) ,

Bn,m
2 (t) := 6

m(t)∑
k=1

(Md,m
tnk

−Md,m
tnk−1

)2(M̄d,m
tnk

− M̄d,m
tnk−1

)2 ,

Bn,m
3 (t) := 4

m(t)∑
k=1

(Md,m
tnk

−Md,m
tnk−1

)(M̄d,m
tnk

− M̄d,m
tnk−1

)3 , and

Bn,m
4 (t) :=

m(t)∑
k=1

(M̄d,m
tnk

− M̄d,m
tnk−1

)4 ,

and we prove that limm→∞Bn,m
i = 0 in L1 for i = 1, 2, 3, 4 uniformly in n. By the bound-

edness assumption we have

|Bn,m
1 | ≤ 4C

(m(t)∑
k=1

(Md,m
tnk

−Md,m
tnk−1

)2
)
max

k
|M̄d,m

tnk
− M̄d,m

tnk−1
|

≤ 8C sup
s≤t

|M̄d,m
s |

m(t)∑
k=1

(Md,m
tnk

−Md,m
tnk−1

)2 .
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It follows from the Burkholder-Davis-Gundy-inequality (applied to Md,m) that

E|Bn,m
1 | ≤ K

(
E sup

s≤t
(Md,m

s )4
) 1

2
(
E sup

s≤t
(M̄d,m

s )2
) 1

2

for some constant K > 0. Since

lim
m→∞

E sup
s≤t

(M̄d,m
s )2 = 0 ,

we have proved that limm→∞Bn,m
1 = 0 in L1 uniformly in n. Similar proofs show that

also limm→∞Bn,m
i = 0 (i = 2, 3, 4) in L1 uniformly in n. Hence under the boundedness

assumption on M we have proved altogether that the sequence ((M)
(4),n
t )n≥1 converges in

L1 and has the asserted limit.

(2) If M c and Md are not necessarily bounded, we introduce for every C > 0 the set

FC :=
{
ω | sup

s≤t
|M c

s (ω) ≤ C and sup
s≤t

|Md
s (ω) ≤ C

}
.

Similar as in (1) one can prove that

lim
n→∞

1FC
(M)

(4),n
t

exists in L1. Since limC↗∞PF c
C = 0, it follows that the sequence ((M)

(4),n
t )n≥1 con-

verges in probability. For the asserted L1-convergence it is therefore sufficient to show that

((M)
(4),n
t )n≥1 is uniformly integrable. Now, for every A ∈ F we have

E
(
1A

m(t)∑
k=1

(Mtnk
−Mtnk−1

)4
)

≤ 2E
(
1A sup

s≤t
M2

s

m(t)∑
k=1

(Mtnk
−Mtnk−1

)2
)

≤ 2K
(
E 1A sup

s≤t
M4

s

) 1
2
(
E sup

s≤t
M4

s

) 1
2 ,

where the last line follows again from the Burkholder-Davis-Gundy-inequality. The uniform

integrability is now obvious and the theorem is proved. 2

Theorem 4.2 (Existence of (M)(4̃)) For every t ≥ 0,

(M)
(4̃)
t := lim

n→∞

m(t)∑
k=1

E
{
(Mtnk

−Mtnk−1
)4 | Ftnk−1

}
exists for the topology σ(L1, L∞). Moreover,

(M)(4̃) =
∑
i≥1

E{X4
i | FSi−}1[Si,∞[ +

∑
j≥1

B̃j ,

where the processes B̃j are the (continuous) compensators of the Y 4
j 1[Tj ,∞[.
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Proof: We take an arbitrary, fixed Z ∈ L∞ and denote by (Yt)t≥0 a cadlag-modification of

(E{Z|Ft})t≥0. Then we have

EZ (M)
(4̃),n
t

:= EZ

m(t)∑
k=1

E
{
(Mtnk

−Mtnk−1
)4 | Ftnk−1

}
= E

m(t)∑
k=1

Ytnk−1
(Mtnk

−Mtnk−1
)4 .

As in the proof of theorem 4.1 one can now show that

lim
n→∞

m(t)∑
k=1

Ytnk−1
(Mtnk

−Mtnk−1
)4

= lim
n→∞

m(t)∑
k=1

Ytnk−1
(Md

tnk
−Md

tnk−1
)4

=

∫
[0,t]

Ys− d(M)(4)
s

in L1. The process

(̃M)(4) =
∑
i≥1

E{X4
i | FSi−}1[Si,∞[ +

∑
j≥1

B̃j

is the compensator of (M)(4), and hence

E

∫
[0,t]

Ys− d(M)(4)
s = E

∫
[0,t]

Ys− d(̃M)(4)
s .

From ∣∣EZ (M)
(4̃),n
t − EZ (̃M)(4)

t

∣∣
=

∣∣EZ (M)
(4̃),n
t − E

∫
[0,t]

Ys− d(̃M)(4)
s

∣∣
≤ E

∣∣∣m(t)∑
k=1

Ytnk−1
(Mtnk

−Mtnk−1
)4 −

∫
[0,t]

Ys− d(M)(4)
s

∣∣∣
we get that

lim
n→∞

(M)
(4̃),n
t = (̃M)(4)

t

for σ(L1, L∞) and the theorem is proved. 2

Theorem 4.3 (Existence of (M)(2,2̃)) For every t ≥ 0,

(M)
(2,2̃)
t := lim

n→∞

m(t)∑
k=1

(Mtnk
−Mtnk−1

)2E
{
(Mtnk

−Mtnk−1
)2 | Ftnk−1

}
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exists for the topology σ(L1, L∞), and

(M)(2,2̃) =
∑
i≥1

X2
i E{X2

i | FSi−} 1[Si,∞[ .

Proof: We set M̄p := M − Mp. Then we have

(M)
(2,2̃),n
t

:=

m(t)∑
k=1

(Mtnk
−Mtnk−1

)2E
{
(Mtnk

−Mtnk−1
)2 | Ftnk−1

}
=

m(t)∑
k=1

(
(M̄p

tnk
− M̄p

tnk−1
) + (Mp

tnk
−Mp

tnk−1
)
)2

· E
{(

(M̄p
tnk
− M̄p

tnk−1
) + (Mp

tnk
−Mp

tnk−1
)
)2|Ftnk−1

}
=

m(t)∑
k=1

(Mp
tnk
−Mp

tnk−1
)2E
{
<Mp>tnk

− <Mp>tnk−1
|Ftnk−1

}
+ Cn

1 + Cn
2 + 2Cn

3 ,

where

Cn
1 :=

m(t)∑
k=1

(M̄p
tnk
− M̄p

tnk−1
)2E
{
<M>tnk

− <M>tnk−1
|Ftnk−1

}
,

Cn
2 :=

m(t)∑
k=1

(Mp
tnk
−Mp

tnk−1
)2E
{
<M̄p>tnk

− <M̄p>tnk−1
|Ftnk−1

}
, and

Cn
3 :=

m(t)∑
k=1

(M̄p
tnk
− M̄p

tnk−1
)(Mp

tnk
−Mp

tnk−1
)E
{
<M>tnk

− <M>tnk−1
|Ftnk−1

}
.

First we prove that limn→∞Cn
i = 0 in L1 (i = 1, 2, 3). We have

E |Cn
1 |

= E
(m(t)∑

k=1

E
{
<M̄p>tnk

− <M̄p>tnk−1
|Ftnk−1

}(
<M>tnk

− <M>tnk−1

))
≤ E

(
max

k
E
{
<M̄p>tnk

− <M̄p>tnk−1
|Ftnk−1

}
<M>t

)
≤

[
E
(

max
k

(
E
{
<M̄p>tnk

− <M̄p>tnk−1
|Ftnk−1

})2)] 1
2 [

E <M>2
t

] 1
2 .
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Now

E max
k

(
E
{
<M̄p>tnk

− <M̄p>tnk−1
|Ftnk−1

})2
≤ E

m(t)∑
k=1

(
E
{
<M̄p>tnk

− <M̄p>tnk−1
|Ftnk−1

})2
≤ E

m(t)∑
k=1

(
<M̄p>tnk

− <M̄p>tnk−1

)2
,

and the last expression tends to zero for n → ∞, since <M̄p> is continuous. So we have

proved that limn→∞Cn
1 = 0 in L1.

Again using the continuity of <M̄p>, one can prove similarly that also limn→∞Cn
2 = 0 in

L1.

For the proof that limn→∞Cn
3 = 0 we first show that one can reduce the problem to the case

where the number of jumps of M on [0, t] is bounded. Then

Cn
3 = Dn

1 + Dn
2

with

Dn
1 :=

m(t)∑
k=1

(M c
tnk
−M c

tnk−1
)(Mp

tnk
−Mp

tnk−1
)E
{
<M>tnk

− <M>tnk−1
|Ftnk−1

}
and

Dn
2 :=

m(t)∑
k=1

(M t
tnk
−M t

tnk−1
)(Mp

tnk
−Mp

tnk−1
)E
{
<M>tnk

− <M>tnk−1
|Ftnk−1

}
.

Then limn→∞EDn
1 = 0 because of the continuity of M c, and limn→∞EDn

2 = 0, since the

finite many jumps of M t and Mp have pairwise disjoint graphs.

As far we have proved that for the existence of (M)(2,2̃) we only have to prove that

(Mp)
(2,2̃)
t = lim

n→∞
(Mp)

(2,2̃),n
t

exists for σ(L1, L∞), where

(Mp)
(2,2̃),n
t :=

m(t)∑
k=1

(Mp
tnk
−Mp

tnk−1
)2 E

{
<Mp>tnk

− <Mp>tnk−1
|Ftnk−1

}
.

Again, one first proves that this problem can be reduced to the case that Mp has only finite

many jumps. We omit this proof and assume now that

Mp =
m∑

i=1

Xi 1[Si,∞[ .

To prove the assertion for an Mp of the above form, we need the following lemma.
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Lemma 4.4 Let X = (Xt)t≥0 be an increasing, right continuous, integrable, F-predictable

process. For every stopping time T we set

X̃n
T :=

∑
k≥1

( k∑
j=1

E{Xtnj
−Xtnj−1|Ftnj−1

}
)
1]tnk−1,tnk ](T ) , and

X̄n
T :=

∑
k≥1

( k−1∑
j=1

E{Xtnj
−Xtnj−1|Ftnj−1

}
)
1]tnk−1,tnk ](T )

for every n ≥ 1. If T is predictable, then

lim
n→∞

(X̃n
T − X̄n

T ) = 4XT

for the topoloy σ(L1, L∞).

Proof of the lemma: It follows from theorem 3.2 that limn→∞ X̃n
T = XT for σ(L1, L∞).

Hence it remains to prove that limn→∞ X̄n
T = XT− for σ(L1, L∞).

Let (Ti)i≥1 be an announcing sequence for T . From theorem 3.2 we have limn→∞ X̃n
Ti

= XTi

for σ(L1, L∞) uniformly in i ∈ N. Moreover, the σ(L1, L∞)-convergence of (X̃n
Ti

)n≥1 implies

(cf. [4],p.20) that for every fixed non-negative Z ∈ L∞ the sequence (Z X̃n
Ti

)n≥1 is uniformly

integrable for every i ≥ 1. Hence for every ε > 0 there exists a δ = δ(ε, i) such that

E 1[T−Ti≤δ] Z X̃
n
Ti

< ε .

Now, for every ω ∈ [T − Ti > δ] there exists an n(δ) such that

X̃n
Ti(ω)(ω) ≤ X̄n

T (ω)(ω)

for n ≥ n(δ). Therefore,

EZ X̃n
Ti
≤ E 1[T−Ti> δ] Z X̃

n
Ti

+ ε ≤ EZ X̄n
T + ε

for every n ≥ n(δ). It follows that

EZ XTi
= lim

n→∞
EZ X̃n

Ti
≤ lim sup

n→∞
EZ X̄n

T + ε .

On the other side, we have for every fixed n ≥ 1

EZ X̃n
T = lim

i→∞
EZ X̃n

Ti
,

and hence

EZ X̄n
T ≤ EZ X̃n

T ≤ EZ X̃n
Ti

+ ε
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for all i ≥ i(n, ε). Since

lim
n→∞

EZ X̃n
Ti

= EZ XTi

uniformly in i ≥ 1, there exists an n(ε) such that for n ≥ n(ε) and for an i(n),

EZ X̃n
Ti(n)

≤ EZ XTi(n)
+ ε .

Hence we have

lim sup
n→∞

EZ X̄n
T ≤ lim sup

n→∞
EZ XTi(n)

+ 2 ε .

So far we have proved

EZ XT− = lim
i→∞

EZ Xn
Ti

≤ lim inf
n→∞

EZ X̄n
T + ε

≤ lim sup
n→∞

EZ X̄n
T + ε

≤ lim sup
n→∞

EZ XTi(n)
+ 3 ε ,

or

EZ XT− − ε ≤ lim inf
n→∞

EZ X̄n
T

≤ lim sup
n→∞

EZ X̄n
T

≤ EZ XT− + 2 ε .

Since ε > 0 was arbitrarily chosen,

lim
n→∞

EZ X̄n
T = EZ XT−

and the lemma is proved. 2

Now we complete the proof of theorem 4.3 using the above lemma. We set

M j = Xj 1[Sj ,∞[ .

Then Mp =
∑m(t)

j=1 M
j. For a fixed j = 1, · · · ,m we set T := Sj and X :=<Mp>. Then

m(t)∑
k=1

(M j
tnk
−M j

tnk−1
)2 E

{
<Mp>tnk

− <Mp>tnk−1
|Ftnk−1

}
=

m(t)∑
k=1

X2
j 1]tnk−1,tnk ](T )E{Xtnk

−Xtnk−1|Ftnk−1
}

= X2
j (X̃n

T − X̄n
T ) 1[T≤t] .
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Suppose first that the jump height Xj is bounded. Then we get from the lemma that

lim
n→∞

X2
j (X̃n

T − X̄n
T ) 1[T≤t] = X2

j 4XT 1[T≤t]

= X2
j 4 <Mp>Sj

1[Sj≤t] = X2
j E{X2

j |FSj−} 1[Sj≤t]

for σ(L1, L∞). By a uniform integrability argument, this limit relation also holds, if Xj is

not necessarily bounded, and we have thus proved that for σ(L1, L∞)

lim
n→∞

(Mp)
(2,2̃),n
t =

m∑
i=1

X2
i E{X2

i |FSi−} 1[Si≤t] .

This finishes the proof of the theorem. 2

Theorem 4.5 (Existence of (M)(2̃,2̃)) For every t ≥ 0,

(M)
(2̃,2̃)
t := lim

n→∞

m(t)∑
k=1

(
E
{
(Mtnk

−Mtnk−1
)2 | Ftnk−1

})2

exists for the topology σ(L1, L∞) and

(M)(2̃,2̃) =
∑
i≥1

(
E{X2

i |FSi−}
)2

1[Si,∞[ .

Proof: With similar arguments as in the proof of theorem 4.3 one first shows that the

σ(L1, L∞)-convergence of

(M)
(2̃,2̃),n
t :=

m(t)∑
k=1

(
E
{
(Mtnk

−Mtnk−1
)2 | Ftnk−1

})2

can be reduced to the problem of the σ(L1, L∞)-convergence of

(Mp)
(2̃,2̃),n
t :=

m(t)∑
k=1

(
E
{
(Mp

tnk
−Mp

tnk−1
)2 | Ftnk−1

})2

,

and that one can even assume that Mp has only a finite number of jumps, i.e. we assume

that

Mp =
m∑

i=1

Xi 1[Si,∞[ .

Now let Z be a fixed non-negative element of L∞(Ω) and denote by (Yt)t≥0 a cadlag-

modification of the martingale (E{Z|Ft})t≥0. Then we have

EZ (Mp)
(2̃,2̃),n
t

= EZ

m(t)∑
k=1

(
E
{
<Mp>tnk

− <Mp>tnk−1
| Ftnk−1

})2

= E

m(t)∑
k=1

Ytnk−1

(
<Mp>tnk

− <Mp>tnk−1

)
E
{
<Mp>tnk

− <Mp>tnk−1
| Ftnk−1

}
.
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Since

<Mp>=
m∑

i=1

E{X2
i |FSi−} 1[Si,∞[ ,

we have to prove for the convergence of the sequence (EZ (Mp)
(2̃,2̃),n
t )n≥1 that for every fixed

i = 1, · · · ,m the sequence(
E

m(t)∑
k=1

Ytnk−1
E{X2

i |FSi−} 1]tnk−1,tnk ](Si)E
{
<Mp>tnk

− <Mp>tnk−1
| Ftnk−1

})
n≥1

converges. As in the proof of the last theorem we show the convergence of that sequence by

proving that the sequence( m(t)∑
k=1

Ytnk−1
1]tnk−1,tnk ](Si)E

{
<Mp>tnk

− <Mp>tnk−1
| Ftnk−1

})
n≥1

converges for σ(L1, L∞).

We set T := Si and X :=<Mp> and define for every t ≥ 0,

Ỹ n
t :=

∑
k≥1

( k∑
j=1

Ytnj−1
E{Xtnj

−Xtnj−1
| Ftnj−1

}
)

1]tnk−1,tnk ](t) .

Then we assert that the sequence (Ỹ n
t )n≥1 converges for σ(L1, L∞). We take an arbitrary

V ∈ L∞ and a cadlag-modification (Ut)t≥0 of (E{V |Ft})t≥0. Then

lim
n→∞

EV Ỹ n
t

= lim
n→∞

E

m(t)∑
k=1

Utnk−1
Ytnk−1

E{Xtnk
−Xtnk−1

| Ftnk−1
}

= lim
n→∞

E

m(t)∑
k=1

Utnk−1
Ytnk−1

(Xtnk
−Xtnk−1

)

= E

∫ t

0

Us− Ys− dXs

= E

∫ t

0

Us− dWs

(where W is the predictable process given by Wt =

∫ t

0

Ys−dXs)

= EUt

∫ t

0

Ys− dXs

= EV

∫ t

0

Ys− dXs ,
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and we have proved that

lim
n→∞

Ỹ n
t =

∫ t

0

Ys− dXs

for the σ(L1, L∞)-topology. more general, if T is a stopping time such that XT ∈ L1, then

lim
n→∞

Ỹ n
S =

∫ S

0

Ys− dXs

for σ(L1, L∞) uniformly on the set of all stopping times S with S ≤ T .

Now we define for every n ≥ 1 and t ≥ 0,

Ȳ n
t :=

∑
k≥1

( k−1∑
j=1

Ytnj−1
E{Xtnj

−Xtnj−1
| Ftnj−1

}
)

1]tnk−1,tnk ](t) .

Then one can prove exactly as in the proof of lemma 4.4 that

lim
n→∞

(Ỹ n
T − Ȳ n

T ) =

∫ T

0

Ys− dXs −
∫ T−

0

Ys− dXs = YT−4XT

for σ(L1, L∞), using the predictability of T . So we have proved that

lim
n→∞

m(t)∑
k=1

Ytnk−1
1]tnk−1,tnk ](Si)E

{
<Mp>tnk

− <Mp>tnk−1
| Ftnk−1

}
= YSi−4 <Mp>Si

1[Si≤t]

= YSi−E{X2
i |FSi−} 1[Si≤t]

for σ(L1, L∞). Assuming first that the jump Xi is bounded, the just proved relation implies

lim
n→∞

E

(m(t)∑
k=1

Ytnk−1
E{X2

i |FSi−} 1]tnk−1,tnk ](Si) · E
{
<Mp>tnk

− <Mp>tnk−1
| Ftnk−1

})
= E

(
YSi−

(
E{X2

i |FSi−}
)2

1[Si≤t]

)
= E

(
Z
(
E{X2

i |FSi−}
)2

1[Si≤t]

)
.

Again, one can prove by a uniform integrability argument that the last limit relation also

holds for general Xi, and the theorem is proved. 2

Theorem 4.6 (Existence of (M)(1,3̃)) For every t ≥ 0,

(M)
(1,3̃)
t := lim

n→∞

m(t)∑
k=1

(Mtnk
−Mtnk−1

)E
{
(Mtnk

−Mtnk−1
)3 | Ftnk−1

}
exists for the σ(L1, L∞)-topology, and

(M)(1,3̃) =
∑
i≥1

XiE{X3
i | FSi−} 1[Si,∞[ .
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Proof: Partially,we just indicate the ideas of the proof, since the arguments are often similar

to those in the proofs of the foregoing results.

(1) First one shows that

(M)
(3)
t := lim

n→∞

m(t)∑
k=1

(Mtnk
−Mtnk−1

)3

exists in L1 and that

(M)(3) =
∑
i≥1

X3
i 1[Si,∞[ +

∑
j≥1

Y 3
j 1[Tj ,∞[ .

The proof is similar to the proof of theorem 4.1. Now let C̃j denote the continuous compen-

sator of Y 3
j 1[Tj ,∞[. Then the compensator of (M)(3) is given by

(M)(3̃) :=
∑
i≥1

E{X3
i |FSi−} 1[Si,∞[ +

∑
j≥1

C̃j .

(2) For every n ≥ 1 and t ≥ 0 we set

(M)
(3̃),n
t :=

m(t)∑
k=1

E
{
(Mtnk

−Mtnk−1
)3 | Ftnk−1

}
.

Let Z ∈ L∞ be given and denote again by (Yt)t≥0 a cadlag-modification of (E{Z|Ft})t≥0.

Then

EZ (M)
(3̃),n
t = E

m(t)∑
k=1

Ytnk−1
(Mtnk

−Mtnk−1
)3 .

As in the proof of theorem 4.2 it follows that

lim
n→∞

EZ (M)
(3̃),n
t

= lim
n→∞

EZ (Md)
(3̃),n
t

= E

∫ t

0

Ys− d(M
d)(3)

s

= E

∫ t

0

Ys− d(M
d)(3̃)

s

= EZ (Md)
(3̃)
t ,

and hence we have proved that

lim
n→∞

(M)
(3̃),n
t = (M)

(3̃)
t = lim

n→∞
(Md)

(3̃),n
t = (Md)

(3̃)
t
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for σ(L1, L∞).

Consider now the sequence ((M)
(1,3̃),n
t )n≥1 defined by

(M)
(1,3̃),n
t :=

m(t)∑
k=1

(Mtnk
−Mtnk−1

)E
{
(Mtnk

−Mtnk−1
)3 | Ftnk−1

}
.

It is not difficult to see that the σ(L1, L∞)-convergence of that sequence is equivalent to the

σ(L1, L∞)-convergence of the corresponding sequence ((Md)
(1,3̃),n
t )n≥1, where M is replaced

by Md. For analyzing the limit behaviour of the last sequence, let us first assume that Md

is of the simple form

Md = X 1[S,∞[ + Y 1[T,∞[

with X, Y ∈ L4 and S, T stopping times. We get

(Md)
(1,3̃),n
t

=

m(t)∑
k=1

[(
X 1]tnk−1,tnk ](S) + Y 1]tnk−1,tnk ](T )

)
· E
{
X3 1]tnk−1,tnk ](S) + Y 3 1]tnk−1,tnk ](T ) | Ftnk−1

}]
+ An ,

where

An :=

m(t)∑
k=1

[(
X 1]tnk−1,tnk ](S) + Y 1]tnk−1,tnk ](T )

)
· E
{
3(XY 2 + X2Y )1]tnk−1,tnk ](S) 1]tnk−1,tnk ](T ) | Ftnk−1

}]
.

For An we get (with Z := 3(XY 2 +X2Y ))

E |An|

≤ E

m(t)∑
k=1

[(
|X| 1]tnk−1,tnk ](S) + |Y | 1]tnk−1,tnk ](T )

)
· E
{
|Z| 1]tnk−1,tnk ](S) 1]tnk−1,tnk ](T ) | Ftnk−1

}]
= E

m(t)∑
k=1

[
E
{
|X| 1]tnk−1,tnk ](S) + |Y | 1]tnk−1,tnk ](T ) | Ftnk−1

}
·
(
|Z| 1]tnk−1,tnk ](S) 1]tnk−1,tnk ](T )

)]
.

If the stopping times S and T have disjoint graphs, it is not difficult to conclude from the

above inequality that

lim
n→∞

E |An| = 0 .
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Suppose now that S is predictable and T is totally inaccessible and denote by D̃i (i = 1, 2)

the continuous compensators of |Y | 1T,∞[ and |Y 3| 1T,∞[ resp.. Then we have

(Md)
(1,3̃),n
t − An

=

m(t)∑
k=1

X 1]tnk−1,tnk ](S)E
{
X3 1]tnk−1,tnk ](S) | Ftnk−1

}
+Bn + Cn

with

Bn :=

m(t)∑
k=1

(
Y 1]tnk−1,tnk ](T )E

{
X3 1]tnk−1,tnk ](S) + Y 3 1]tnk−1,tnk ](T ) | Ftnk−1

})
and

Cn :=

m(t)∑
k=1

X 1]tnk−1,tnk ](S)E
{
Y 3 1]tnk−1,tnk ](S) | Ftnk−1

}
.

We get

E |Bn|

≤ E

m(t)∑
k=1

(
|Y | 1]tnk−1,tnk ](T )

· E
{
|X3| 1]tnk−1,tnk ](S) + |Y 3| 1]tnk−1,tnk ](T ) | Ftnk−1

})
= E

m(t)∑
k=1

(
|Y | 1]tnk−1,tnk ](T )

· E
{
E
{
|X3|

∣∣FS−
}

1]tnk−1,tnk ](S) + (D̃2
tnk
− D̃2

tnk−1
)
∣∣ Ftnk−1

})
= E

m(t)∑
k=1

(
E
{
|Y | 1]tnk−1,tnk ](T )

∣∣ Ftnk−1

}
·
[
E
{
|X3|

∣∣FS−
}

1]tnk−1,tnk ](S) + (D̃2
tnk
− D̃2

tnk−1
)
])

= E

m(t)∑
k=1

(
E
{
(D̃1

tnk
− D̃1

tnk−1
)
∣∣ Ftnk−1

}
·
[
E
{
|X3|

∣∣FS−
}

1]tnk−1,tnk ](S) + (D̃2
tnk
− D̃2

tnk−1
)
])
.

Using the continuity of D̃1, it is now easy to show that

lim
n→∞

E |Bn| = 0 .

Similarly, one can show by using the continuity of D̃2 that

lim
n→∞

E |Cn| = 0 .
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We assumed that Md had just two jumps mainly to avoid overburdening of notation. If

Md has more than two jumps, similar arguments as above give that the convergence of the

sequence ((Md)
(1,3̃),n
t )n≥1 is equivalent to the convergence of the sequence(m(t)∑

k=1

(∑
i≥1

Xi 1]tnk−1,tnk ](Si)
)
E
{∑

i≥1

X3
i 1]tnk−1,tnk ](Si) | Ftnk−1

})
n≥1

.

Now we can proceed as in the proof of theorem 4.3 (cf. especially lemma 4.4) to obtain that

the last sequence is convergent for σ(L1, L∞) and has the limit∑
i≥1

Xi E{X3
i |FSi−} 1[Si≤t] .

This finishes the proof of the theorem. 2
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