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LoTHAR BERG

Estimates of the Solutions of Two-Scale Difference
Equations

ABSTRACT. The solutions of special classes of two-scale difference equations are estimated

in both directions.

KEY WORDS. Two-scale difference equations, de Rham’s function, one-sided approxima-

tions

1 Introduction

A two-scale difference equation is a functional equation of the form
t n
¢(3)=Sevtt-n tem). (1)
v=0

where ¢, are given real constants with coc,, # 0 and n € N, cf. [3]. As usual, we only seek
non-trivial solutions of (1.1) which vanish for ¢ < 0. Hence, by restriction to ¢t < 1, equation
(1.1) reduces to

t

o (5) — ap(t) (1.2)

with a = ¢o. By the further restriction to ¢ > 0 and a > 0, this equation has the general

solution
(1) = pop (1.3)
o= In2 ‘
where a = —{E—g and where P(-) is an arbitrary 1-periodic function. Hence, for a continuous

(real) solution ¢ of (1.1) with ¢(1) # 0 there always exist estimates of the form

Ap(DE* < o(t) < Agp(1t™ (¢ €0, 1)) (1.4)
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with A\; <1 < Ay in the case ¢(1) > 0. The optimal constants are
P() P()
P(0)’ P(0)’

A1 = min Ay = max

however since, usually speaking, the function P is unknown, we are going to determine
estimates for these optimal constants. In order to prove the estimates (1.4) for concrete Ay,
A it suffices to prove them for ¢ € (%, 1} only because, if (1.4) is satisfied for a fixed t then,
in view of the periodicity of P(-), it is automatically satisfied for 27*¢ with arbitrary k € N,
cf. (1.3).

In the following we shall determine A;, Ay in (1.3) for some classes of equations (1.1) up to

n = 3. The special case

t

¢(3) = w0+ 1= a1 (15)

of (1.1) with n = 1 and a € (0, 1) was already treated in [!] in connection with investigations
concerning the Holder continuity of ¢, but here we shall give a new prove which also works
in more complicated cases. In the case (1.5) one of the constants A;, Ay in (1.4) is always

equal to 1 but, in general, they are both different from 1.

2 Estimates for de Rham’s function

We begin with the equation (1.5). After the normalization ¢(1) = 1 it has the continuous
solution p(t) =0 for t <0, (t) =1 for t > 1 and ¢(t) = @,(t) for t € [0, 1], where ¢, is de

Rham’s function, which is the simultaneous solution of (1.2) and

© (%) =a+ (1 —a)p(t), (2.1)
both equations for ¢ € [0,1]. In [1] it was proved:
Proposition 2.1 In the case a € (0,3] de Rham’s function satisfies the estimates
Cla)t™ < @q(t) <t* (t €[0,1)) (2.2)
and in the case a € [%, 1) it satisfies
t* < pa(t) = Cla)t® (t € 10,1]) (2.3)
Ina

where o = —-3,

C(a) = (1 — qlia>a_1 (2.4)

andq:%—l.
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Proof: The case a = % is elementary and can be excluded now, since a = C' (%) =1 as
well as cp%(t) = t. We first deal with the case a € (0,1) where & > 1. We assume that
the inequalities (2.2) are satisfied for a fixed ¢ and show that they are also satisfied for %
instead of t. From (2.1) and (2.2) we obtain
t+1

a+ (1 —a)Cla)t* < ¢, 5 <a+(1—a)t". (2.5)

In view of 2% = a we have to show that
aCla)(t+1)*<a+(1—a)C(a)t*, a+(1—a)t* <a(t+1)*
for t € [0,1], i.e. that
Cla) < L <1 (2.6)
a) < ——— =1, .
T (t+1)x—qgte T

since (t + 1)® > 1¢* > ¢t®. For this reason we introduce the auxiliary function f(s) =

o a—2
sa +1> — qs with s = t* € [0,1]. We have f"(s) = =2 (sé +1> sa=2 < 0 and

«

f(0) = f(1) = 1 so that f is concave and the second inequality of (2.6) is proved. The

—
maximum of f is attained at sy = (qﬁ — 1> , i.e. the minimum of the quotient in (2.6)

-1
at ty = <qﬁ — 1) . A short calculation shows that this minimum is equal to (2.4) so that

the first inequality of (2.6) is proved, too.

In the case a € (1,1) where a € (0,1), we assume that (2.3) is satisfied for a fixed ¢, conclude
from (2.1) and (2.3) that
t+1

a+ (1 —a)t* < g, (T) <a+(1-a)C(a)t*, (2.7)

and have to show that
at+1)*<a+(1—-a)t*, a+(1—a)C(a)t* <aCla)(t+ 1)*

for t € [0,1], i.e.

1
1<— < (Cf(a). 2.8
< e < 0@ )
In this case the auxiliary function f is convex in view of a € (0,1), and the quotient in (2.8)

attains its minimum at the same ¢, as before, i.e. also (2.8) is proved.

After these preliminaries we can prove the inequalities (2.2) and (2.3) by means of an in-

ductive process. In the case a € (0, %) we see from (2.6) that C'(a) < 1, and in the case

a € (3,1) we see from (2.8) that 1 < C(a). Hence according to ¢(1) = 1, the inequalities
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(2.2) and (2.3) are satisfied for t = 1, and in view of a > 0 they are also satisfied for ¢ = 0.
Now, we assume that the inequalities in question are satisfied for t = 5, v = 0,1,..., 2k
and a fixed k € Ny. According to a remark in the introduction, they are also satisfied for
t=s55r,v=0,1,... .2k but in view of (2.5)-(2.8), they are moreover satisfied for t = ST
v =2F41,2F+2 ... 251 Hence by induction, the inequalities (2.2) and (2.3) are sat-
isfied for all (rational) dyadic points, and by continuity for all points of [0, 1], so that the

proposition is proved. [ |

Improvement As already mentioned (but not proved) in [1], the constant C'(a) in Propo-
sition 2.1 is not optimal for a # % It can be improved by splitting the interval [0, 1] into
several subintervals. In the simplest case of two subintervals we have to use the equation
(2.1) only for ¢ € [0, 3] and additionally the consequence of (2.1)

- (?) — 2 —a®+ (1 - a)’p(t)

for t € [0,1]. In order to prove Ct* < ¢(t) for a € (0,1) inductively, we now have to fulfil
the former inequality aC'(t + 1)* < a + (1 — a)Ct* only for ¢ € [0, 5], and additionally the
inequality

a®’C(t+3)* <2a—a*+ (1 —a)*Ct*

for t € [0,1]. After determining maximal C, (v = 1,2) with C,, < g,(t) where

gl(t)zm (te [O%D ’

0l = g (tel01).

we have to choose C' = min(Cy, Cy). For t € [0,1] the minimum of ¢; is attained as before

—1
at ty = (qﬁ — 1) . For a € (}L,%) we have ty € (%, %), and we get no improvement.

,}l) we have tg > %, so that for ¢t € [O, %} the function g, () attains its

However, for a € (0
%, and it follows
1

“ g

-1
The function g, attains its minimum at t, = 3 (q% — 1) and this is equal to
2q + 1 2 a—1
Cy = ( =1 1) .
2 3042 q
It turns out that C'; > () in the case a < 0.10322, and C < (Y in the case a > 0.10322, i.e.

C = (% in the first and C' = (] in the second case. However, the improvement in comparison

with C'(a) is not essential and likewise not optimal.
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Example 2.1 The special case

¢ (5) =ar+ ot -1+ 1= et -2 (29)

of (1.1) with n = 2 and a € (0,1) can be reduced to the foregoing one, since (2.9) has a

continuous solution with

90<t) = 90a<t)7 90<t + 1) = Qpl—a(l - t)

for t € [0,1] and ¢(t) = 0 for t ¢ (0,2), cf. [I] and in particular the relation p;_,(1 —t) =

1 — ¢4 (t). Hence, besides of the estimates (2.2) resp. (2.3) we get the
Corollary 2.1 In the case a € (0,3] the foregoing solution of (2.9) satisfies the esti-
mates

Q- <pt+1) <C-a)1-t)  (te01]). (2.10)
and in the case a € [%, 1) it satisfies

Cl—a)(1-t<pt+1)<@-t" (te]o1]), (2.11)

where 3 = —ln(hll;a) and C(-) as in (2.4).

Example 2.2 The special case

© (%) =ap(t)+apt—1)+ (1 —a)p(t —2)+ (1 —a)p(t — 3) (2.12)

of (1.1) with n = 3, a € (0,1), can also be reduced to Proposition 2.1, since it has a

continuous solution with

o(t) = apa(t), ¢t +1) = a+ (1= 2a)pa(t), p(t+2)=(1-a)pi-a(l—1)
for t € [0,1], and ¢(t) =0 for t ¢ (0, 3).
Example 2.3 Moreover, the special case

t

© (5) =ap(t)+ (1 —a)pt—1)+ap(t —2)+ (1 —a)p(t —3) (2.13)

of (1.1) with n = 3, a € (0, 1), can be reduced to Proposition 2.1, since it has a continuous

solution ® with the representation
(1) = ¢(t) — p(t = 2),
where ¢ is the solution of (1.5) studied before. This means in particular that
@(t) = @a(t)7 (I)(t + 1) = 1a (I)(t + 2) = Qpl—a(l - t)

for t € [0,1] and ®(t) = 0 for ¢ ¢ (0,3). In the last two cases the corresponding estimates

are obvious in view of Proposition 2.1.
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Example 2.4 Finally, we can estimate the solution

t

olt) = / palt — T)pn(r)dr

0

of the equation

w(f):924@+(a+b—m9wu—1y+gif§£1@¢@—m, (2.14)

2 2 2

a,b € (0,1), by means of Proposition 2.1. Namely, after writing the estimates (2.2) resp.
(2.3) in the form

At < @a(t) < Mot Ast? < y(t) < At?

with « as before and G = —%, we immediately obtain
Ma+1)I(GB+1) Fla+1)I(B+1)
A LT < o(t) < M oAl
T+ 5+ 2) e S (TR Fy

for t € [0,1]. The method can easily be transferred to more complicated cases, but we do
not deal with that.

3 The four-coefficient equation

Usually, two-scale difference equations (1.1) are considered under the so-called sum rules
ZCQV = 1, 262y+1 = 1, (31)
cf. [3]. These are satisfied in the cases (2.9) and (2.12), but not in the cases (1.5), (2.13) and

(2.14). The general form of (1.1) with n = 3 and (3.1) is a generalization of (2.12) and reads

© (%) =ap(t)+ (1 =0b)p(t—1)+ (1 —a)p(t —2) +bp(t — 3), (3.2)

this equation was well investigated in [2]. We only look for compactly supported solutions,
i.e. for solutions with ¢(t) = 0 for ¢ ¢ (0, 3), so that it suffices to restrict ourselves to ¢t € [0, 3]

in what follows. We assume that
0<a, b<1. (3.3)

Then there exists a continuous solution with

p(l)=a, ¢2)=0, (34)
pt) ot + 1)+t +2)=a+b  (te0,1]). (3.5)



Estimates of the Solutions of T'wo-Scale Difference Equations 9

The equations (3.2) and (3.5) imply

t+1
@ (T) =ala+b)+(1—a—>b)p(t) —ap(t+2) (t €]0,1]). (3.6)
We begin with two special cases. In the case b= 1 —a and a € (0, 3) the solution of (3.2) is
even differentiable, cf. [2], and satisfies the additional relation ¢(t) — o(t+2) = a+ 3(t — 1)

for ¢ € [0,1], so that (3.6) with a + b = 3 simplifies to

- (%) 4 (a + %) + (% _ a) o) (te[0,1]). (3.7)

Proposition 3.1 The solution of (3.2) withb =1 —a, a € (0,1) and p(1) = a satisfies

the estimates (1.4) with o« = —22 and

A =min f(t), A = max f(t) (t € 10,1]) (3.8)

where

20+t

) = 2a(t + 1)* — (1 — 2a)te (39)

Proof: Following the philosophy of the inductive proof of Proposition 2.1, and using (3.7)
instead of (2.1), we only have to show that

t 1
a/\l(t+1)a§a+§+ <§—a) Ait?,

t 1
a-+ 3 + (5 — a) Aot® < ag(t 4+ 1)
for t € [0,1]. According to 2a(t + 1)* — (1 — 2a)t* > (1 + 2a)t*, the denominator of (3.9)
is positive, so that the inequalities in question are equivalent to A\; < f(t) < Ay. In view of

(3.8) these inequalities are evident, and the proposition is proved. |

a t1 to A A2

.01 | .938013 .153740 .975664 3.359434
. 791639  .163395 .972564 1.105538
201.672925 114190 .991617 1.007689
. 057474 568021 .998655 1.006186
4 1.010468 473003 .999829 1.009885
45 1 .000558 .428706 .999997 1.006748

Table 1: Some extremal points ¢, and the bounds A, = f(t,), v = 1,2
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Numerical results are contained in Table 1. The case a = % with a = 2 is elementary with
f(t) = A1 = A2 = 1 and therefore p(t) = 3¢* for ¢ € [0,1]. Elementary is also the limit case
a = 3 with o =1 and ¢(t) = 3¢, where (3.2) reduces to (2.9) with a = 3.
Second, we consider the symmetric case b = a in (3.2), so that ¢(t) = ¢(3 — t), and (3.6)

can be written in the form

- (%) 202 1 (1—2a)p(t) —ap(1—1)  (te[0,1]). (3.10)

Proposition 3.2 The solution of (3.2) with b = a, a € (0,3) and ¢(1) = a satisfies
the estimates (1.4) with a = =82 X\, =1—¢, \y=1+¢ and

T n2’

e = max | f(¢)] (t €]0,1]) (3.11)

where
~ 2a+(1—=2a)t* —a(t+1)* —a(l —t)*
 a(t+ 12 —a(l —t)> — (1 —2a)te

f(#) (3.12)

Proof: Once more, we follow the philosophy of the foregoing proofs, however, since (3.10)

contains a negative coefficient, we have to show that

(l/\l(t + 1)a S 2a + (]. - 2@))\1ta - CL)\Q(]_ — t)a s
2a + (1 — 2a) Mot —aX (1 —1)* < alg(t +1)*.

For t = 0 these inequalities imply that A\; + Xy < 2 < A\ + Ay must be satisfied, i.e. \;y =1—¢

and Ay = 1 4 ¢ with a nonnegative €. Hence, the foregoing inequalities turn over into
—eN(t) <2a+ (1 —2a)t* —a(t+1)* —a(l —t)* <eN(t) (3.13)
with N(t) = a(t +1)* — a(1 — ¢)* — (1 — 2a)t*. Substituting z = 7 > 1, we obtain
tTN({t) =alz+1)* —a(z — 1) — (1 —2a).

According to @ > 1 and 2% = i, the derivative of this function with respect to x reads
aa ((z+1)*"! — (x —1)*>7') > 0, and the initial value for z = 1 is equal to N(1) = 2a.
Hence N(t) > 0 for ¢ € [0, 1], and the inequalities (3.13) are equivalent to —e < f(t) <e. In

view of (3.11) these inequalities are evident, and the proposition is proved. [ |
a ‘ t f(t) a ‘tz f(t2)
1] .506816 -.030511 3| .490557 .012852
2] .505478  -.013624 4] .457641 024888

Table 2: Some extremal points ¢, and the extrema f(t,), v = 1,2
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Numerical results are contained in Table 2, where f < 0 for 0 < a < % and f > 0 for

a € [%l, %), so that € = — fiiy in the first and € = f.¢ in the second case. Again the cases
a = }l and a = %, the last as a limit case, are elementary.

For a € (3,1) the denominator N(¢) of (3.12) changes its sign so that the foregoing method
fails. However, the method works again if (3.10) is replaced by

) <¥) =2a*(1 —a) + (1 —a)p(t) + a(2a — 1)p(|2t — 1|),

but we are not concerned with this case.

Finally, we come back to the general four-coefficient equation (3.2), where besides of (1.4)

with ¢(1) = a we also ask for estimates of the form
bas(1—1)° < (t+2) <b\(1 -1t  (te]0,1]) (3.14)

with 3 = =28 and A3 <1 < Ay, cf. (3.4). The following fact can easily be seen: If ¢(t) is a

solution of (3.2) with (3.4), then ¢(3 —1) satisfies the same equations, only with interchanged
coefficients. In particular, the inequalities (1.4) and (3.14) interchange, if we interchange a

and b, and (3.6) interchanges with

g0<2+%) =bla+b)+(1—a—b)p(2+1t) — bp(t) (t €0,1]). (3.15)

In the following we use the notations

flt,a,b) =a+b+(1—a—bt* —a(t+1)* —b(1—1)7, } (3.16)

g(t,a,b) =at +1)* —a(l —t)° — (1 —a — b)t~.

Proposition 3.3 Under the conditions (3.3) and a + b < 1 the solution of (3.2) with
(3.4) satisfies the estimates

o(t) <adgt®, bAs(1—t) <pt+2)  (t€]0,1] (3.17)
with Ao =1+ be, A3 =1—ac and € > 0, so long as both inequalities
f(t,a,b) <bg(t,a,b)e, —f(t,b,a) < ag(t,b,a)e (t €10,1]) (3.18)
are satisfied. It satisfies the estimates
at® < p(t), pt+2) <b\(1—t)"  (t€]0,1] (3.19)
with \y =1 —be, \y =1+ ae and € > 0, so long as both inequalities
f(t,b,a) <ag(t,b,a)e, —f(t,a,b) <bg(t,a,b)e (t € 10,1]) (3.20)

are satisfied.
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Proof: The inequalities (3.17) are satisfied for ¢ = 0 and ¢ = 1. In order to prove them for
all ¢ € [0,1], we proceed analogously as before using (3.6) and (3.15), i.e. we have to show

that both inequalities

a4+b+ (1 —a—b)t® —brs(1 — )% <ay(t +1)*
and

bA3(2—1) <a+b+ (1 —a—bAs(1—1)° —art®
are satisfied. Replacing ¢t by 1 — ¢ in the last inequality, it turns over into

WAt + 1) <a4+b4 (1 —a—b)Ast’ —ady(1—1)*.
For t = 0 we obtain from the first and the last inequality

adg +bA3 < a+b<aly+ bls

and therefore aly + b3 = a+b. Choosing Ay = 1+ be and A3 = 1 — ae with a non-negative ¢
and considering the notations (3.16), we see that the inequalities in question are equivalent
with (3.18). The inequalities (3.20) can be derived analogously or by interchanging a and b.

Hence, the proposition is proved. [ |

There are two interesting special cases which shall be formulated for the conditions (3.18)

only, but which can also be transferred to the conditions (3.20).

Corollary 3.1 The conditions (3.18) of Proposition 3.3 simplify to
f(t,a,b) <0< f(t,b,a) (t €10,1]) (3.21)

in the case ¢ =0, and to ¢ = max(ey,e9) with

= max f(t.a,b)
£ = bg(}f,ta,bb)a) (te[0,1]), 22,
g9 = maX_ag(t, ba) (t€10,1])

in the case that the denominators in (3.22) are non-negative.

Example 3.1 As an example to the case ¢ = 0 we shall show that the conditions (3.21)
with a + b = 1, i.e. the inequalities

= (%)a - (%)ﬂ <0<1- (%)B_ (%)a te.1]), (323
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are satisfied in the case a € (O, %) and therefore « > 1, b € (%, 1), B € (0,1). (Again, the
case a = 3 is elementary). Substituting ¢ + 1 = 2z so that 1 —t = 2(1 — z), we have to show
that the auxiliary function h(z) = (1 — (1 — z)%)a — x satisfies h(z) > 0 for z € [0,1], and

h(z) <0 for z € [5,1]. From

Wia) - é(l _ (1= )P - ) ((ﬁ _ 1> (1—2)+1— 6)

« (%

we see that h”(x) has exactly one zero in (0, 1), and that h”(z) < 0 before as well as h”(z) > 0
afterwards. This means that h(z) has exactly one turning point in [0, 1], and h(z) is concave
before as well as convex afterwards. Together with h(0) = h (3) = h(1) = 0 this proves
the assertion, and Corollary 3.1 implies the estimates (3.17) with Ay = A3 = 1 in the case
ac (O, %)

Of course, these estimates are already known from Example 2.3 (where the normalization
(1) = 1 was used instead of ¢(1) = a here), but the conditions (3.23) are only sufficient,

and therefore no consequences of the results in Example 2.3.

Moreover, the conditions (3.21) and therefore also the estimates (3.17) with Ay = A3 = 1
are satisfied in a subdomain of [%, 1] X [%, 1}, which above and at the right is bounded
by a +b = 1, at the left by the curve aa = b3, and below by the envelope of the curves
f(t,a,b) = 0 with the parameter ¢ € [0,0.61].

t\ \.6 55 .5 45 4 3 2 1 05 \
25| 2557 2839 3103 .3350 .3583 .4006 .4382 4714 4864 | .5
5015 5078 5121 5148 5163 5165 .5138 .5083 .5045 | .5

Table 3: Some points of the envelope f(t,a,b) = fi(t,a,b) =0

0.5 T T T
04 b
0.3r
0.1f b
A\
0.1 0.2 . .

0.5

a

b

)

Figure 1: The level surface € = 0 Figure 2: Some level lines for € > 0
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Numerically, this envelope is given by Table 3, where the corner points belong to all param-
eters t, and the complete subdomain is the black domain in Figure 1. The curves in the
subdomain [0, 5] x [0, 3] of the (a,b)-plane, which are shown in Figure 2, are the level lines
of € from Corollary 3.1 for 1—15 (%) 1 around the three points with ¢ = 0 in (}l, i) and (i, %),
(%7 %), the last two are already known from Figure 1. Both Figures were worked out by K.

Frischmuth [4].

In the case € > 0 the estimates of the general Proposition 3.3 are worse than those following
from the Propositions 3.1 and 3.2 in the special cases considered there, because there we

have used more informations about the solutions.
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Some results on a nonunique fixed point

ABSTRACT. In the present paper, we obtain some nonunique fixed point theorems of
single valued and multivalued maps in metric and generalized metric spaces, one of which

generalizes the corresponding results of [1] and [2].

KEY WORDS AND PHRASES. Nonunique fixed point, T-orbitally continuous, T-orbitally

complete, orbitally upper - semicontinuous.

1 Introduction

In [1], Pachpatte obtained some results on a nonunique fixed point in complete metric spaces

and introduced an inequality as follows:

min{[d(Tz, Ty)]*, d(z, y)d(T=z, Ty), [d(y, Ty)]*} (1)
for any z,y in X, where r is in (0, 1).
In [2], Liu generalized the above result for single valued maps and introduced the following:
min{[d(Tz, Ty)]*, d(z, y)d(Tz, Ty), d(z,y)d(y, TY ), d(z, Tx)d(Tz, Ty), [d(y, Ty)]*}
— min{d(z, T2)d(y, T'y), d(z, Ty)d(y, Tx)} <r-max{d(z, Tz)d(y, Ty), d(z, Ty)d(y, Tx)}
for any z,y in X, where r is in (0, 1).

In the present paper, we obtain some results which generalize Theorem 1 of [1] and Theorem
1 of [2]. Furthermore, we give an example to show that our result indeed generalizes Theorem

1 of [1]. By the way, we show the example in [1] is false.
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2 On a nonunique fixed point for single valued maps

Let (X;d) be a metric space and T be a self map of X. T is called to be orbitally continuous
if lim; T™x = w implies that lim; TT™x = Tu for each x in X. A metric space X is T-
orbitally complete if every Cauchy sequence of the form {7T™z},>; converges in X for z in

X. Throughout this paper R™ denotes the set of nonnegative real numbers.

Theorem 2.1 Let (X,d) be a T-orbitally complete metric space, T be an orbitally con-
tinuous self map of X. If T satisfies the following condition

min{[d(Tz, Ty)?, d(z,y)d(Tz, Ty), d(z,y)d(y, Ty), d(z, Tx)d(Tz, Ty),
d(x, Tx)d(y, Ty), d(y, Ty)d(T, Ty), [d(y, Ty)]*}
— min{d(z, Tx)d(y, Ty),d(x, Ty)d(y, Tx)} (2.1)
< r-max{d(z,y)d(Tz, Ty),d(x,y)d(y, Ty),d(z, Tx)d(Tz, Ty),d(x, Tz)d(y, Ty),
d(z, Ty)d(y, Tx), d(y, Tx)d(Tz, Ty), d(y, Tx)d(y, Ty) }

for any x,y in X, where r is in (0,1), then T has a fized point and for each x in X the

sequence {T"x},>1 converges to a fized point of T

Proof: Let x be in X. We define a sequence {z,} by z,+1 = Tz, for n > 0, where z( = z.
If x,, = 2,41 for some n > 0, then the assertion follows immediately. Therefore we assume
that x, # x,41 for each n > 0. Put d,, = d(x,, z,41) for n > 0. By (2.1) we obtain

min{diﬂ, Andyi1, dpdyi1, dpdpsy, dpdy g, diﬂ, diﬂ}
- min{dndn—i—la d(xna .Tn+2)d(l'n+1, xn—i—l)}
S r- max{dndn—Ha dndn-l-lu dndn+17 dndn-l—la d([L’n, [L’n+2)d(l'n+1, xn—&-l),

d(anrl? xn+1>dn+1; d(antl’ xn+1)dn+1}
ie.,
diﬂ = min{diﬂa dodni1} < rdadpnyiq

which implies that d, 11 < rd,. It is easy to see that {x,},>1 is a Cauchy sequence. Since
X is orbitally complete there is some u in X such that v = lim,, T"x. By the T-orbitally
continuity of T, Tu = lim,, TT"x = u. This completes the proof.

Remark 2.1 Theorem 2.1 extends Theorem 1 of [1] and Theorem 1 of [2]. The following
example shows that Theorem 2.1 is a proper generalization of Theorem 1 of [1].

Example 2.1 Let X ={0,1,2,3,4},d(z,y) = d(y,z) for all x in X and d(z,y) = 0 if and
only if x =y, d(0,1) = 1, d(0,2) = 2.5, d(0,3) = 1, d(0,4) = 1, d(1,2) = 1.5, d(1,3) = 2,
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d(1,4) =1, d(2,3) = 2, d(2,4) = 1.5, d(3,4) = 1. Obviously, (X,d) is a complete metric
space. Now let T': X — X, T0=1,T1=0,T2=3,T3 =2, T4 = 4. It is easy to verify
that the conditions of Theorem 2.1 are satisfied for » = 0.3. But Theorem 1 of [I] is not
applicable, because T" doesn’t satisfy (I) for x =0, y = 2 and all  in (0, 1).

Remark 2.2 In 1990, Ciric [1] gave an example to show that the corresponding results of
Dhage [5], Mishra [0] and Pathak [7] are false. Unfortunately the example is false. In fact,
through strictly examining the proofs of Dhage, Pathak and Mishra’s results we assert that

the results of [5], [0] and [7] are true.

Mishra [0], Daghe [5], Pathak [7] assume that T satisfies respectively the following conditions
(4), (B) and (C):

(A) min{d(Tz,Ty),d(v,Tx),d(y, Ty),d(T>,T?x),d(y, T*v)}
— min{d(x, ty), d(y, Tw), d(x, T?x), d(Ty, T?0)} < qd(x,y)
for all z,y in X, where 0 < ¢ < 1;

(B) min{d(Tz,Ty),d(z,Tx),d(y, Ty)} + a-min{d(x, Ty),d(y, Tz)} < qd(z,y)+ pd(z, Tx)
for all x,y in X, where 0 < p+ ¢ < 1, a is a real number;

(C) min{d(Txz,Ty),d(y, Ty)}+a-min{d(z, Ty),d(y, Tx)} < qd(z,y)+pd(x, Tz)+rd(x,Ty)
for all z,y in X, where a,p,q and r are real numbers such that 0 < r < 1, 0 <
p+q+2r <1

The example of Ciric [1] is as follows:

Let M = {0, 1,3} with the usual metric d(z,y) = | — y|. Define the mapping 7" by 70 = 1,
71 =3,7T3=0.

Ciric [1] claimed that T satisfies each of conditions (A), (B) and C. We find that 7" doesn’t

satisfy any one of (A), (B) and (C), because if T satisfies (A), taking z = 0, y = 1, we have
from (A)

min{d(1,3),d(0,1),d(1,3),d(1,3)} — min{d(0,3), d(1,1),d(0,3),d(3,3)} < qd(0,1)

i.e., 1 < g. This contradicts the condition 0 < g < 1; if T satisfies (B), similarly we have
1 < g+ p < 1, which is a contradiction, too; if T satisfies (C), we have 2 < p+ ¢+ 3r. Since
0<p+qg+2r<1,it follows that 2 < p+q+ 3r <r + 1 < 2, which is impossible.
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Theorem 2.2 Let (X,d) be a T-orbitally complete metric space, T be an orbitally con-
tinuous self map of X. If T satisfies the following condition

ar[d(Txz, Ty))? + axd(x,y)d(Tx, Ty) + asd(x,y)d(y, Ty) + asd(x, Tx)d(Tx.Ty)
+asd(w, Tw)d(y, Ty) + aed(y, Ty)d(Tz, Ty) + a7[d(y, Ty)]?
—min{d(z, Tz)d(y, Ty),d(x, Ty)d(y, Tx)} (2.2)
<r-max{d(z,y)d(Tz, Ty),d(x,y)d(y, Ty),d(z, Tx)d(Tz, Ty),d(z, Tz)d(y, Ty),
d(xz, Ty)d(y, Tx), d(y, Tx)d(Tz, Ty), d(y, Tx)d(y, Ty) }

7
for all z,y in X, where > a; <1 and a; is in RT fori=1,2,...,7, then T has a fized point
i=1
and the sequence {T"x},>¢ converges to a fized point of T for x in X.

Proof: Note that (2.2) implies (2.1). Theorem 2.2 follows immediately from Theorem 2.1.

3 On a nonunique fixed point for multivalued maps

We recall that (X, d) is a generalized metric space if X is a set and d : X x X — RT|J{oo}
satisfies all the properties of being a metric for X besides that d may have “infinite values®.
An orbit of F' at the point x in X is a sequence {z, : x, € Fx, 1}, where 2o = z. A
multivalued map F' on X is orbitally upper — semicontinuous if x,, — v € X implies u € Fu,
whenever {z,} is an orbit of F' at each x in X. A space X is F' — orbitally complete if
every orbit of F' at all x in X which is a Cauchy sequence, converges in X. Let A and B be

nonempty subsets of X. Denote

D(A, B) = inf{d(a,b) : a € A,b € B},
CL(X)={A:AC X,Aisclosed},
N(g,A) ={z € X : d(z,a) < € for some a in A}, € >0,

inf{e >0: AC N(g,B) and B C N(g, A)}, if the infimum exists,
H(A,B) =

oo, otherwise.
Ciric [3] introduced the following inequality:

for all =,y in M and some ¢ < 1. Motivated by it, we obtain the following results.
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Theorem 3.1 Let (X,d) be a generalized metric space, F': X — CL(X) be orbitally
upper—semicontinuous. If X is F-orbitally complete and F' satisfies the following condition

min{[H (Fz, Fy))?, d(x,y)H(Fx, Fy),d(x,y)D(y, Fy), D(x, Fx)H(Fx, Fy),
D(x, Fx)D(y, Fy), D(y, Fy)H(Fx, Fy), [D(y, Fy)*}
—min{D(z, Fx)D(y, Fy), D(z, Fy)D(y, Fz)} (3.1)
< r-max{d(z,y)d(Fx, Fy),d(x,y)D(y, Fy), D(x, Fx)D(Fz, Fy),
D(z, Fz)D(y, Fy), D(z, Fy)D(y, Fx), D(y, Fx)H(Fx, Fy), D(y, Fx)D(y, Fy)}

for all x,y in X, where r is in (0,1), then F' has a fixved point.

Proof: Let a > 0 be a real number less than 1/2. We define a single valued map 7' : X — X
by letting T'r = y € Fx that satisfies

d(z,y) <r*D(z, Fz). (3.2)

Set d, = d(xp_1,2,), D, = D(xy,, Fz,) and H, = H(Fx,_1,Fx,) for n > 0. Now let’s
consider the following orbit of F' at z in X : zg = x, 2, = Tx,,_1 for n > 0. We may assume
that =, 1 # x, for any n > 0, otherwise the result is obtained at once. It follows from
x, € Fa,_; that D, < H,, D(z,, Fr,_1) =0 and D,,_; < d,. By (3.1), we have

min{ B2, d,, Hy, d D, D1 Hy, D1 Dy, Do Hy, D2, }
—min{D,,_1D,, D(xy_1, Fx,)D(x,, Fx,_1)}
<r-max{d,D(Fx, 1, Fz,),d,D,, D, 1D(Fz, 1,Fx,), Dy _1D,,
D(xy_1, Fx,)D(xp, Fxy_q), D(2n, Fx, 1)H,, D(x,, Fx, 1)D,}

which implies that

min{D? D, ,D,} = min{D? d,D,, D, 1D,} <r-max{d,D,, D, 1D,} = rd,D,,
min{r=2*D2 r=2D, 1 D,} <r'7%d,D, <r'"?d,d,.,

on using (3.2)
min{diﬂ, dpdpi1y < r'72dpd, g
Note that 0 < r'72¢ < 1. If d,, < d,,1, then
dpdpi1 = min{diﬂ, dpdpy1} <172 dpdyyy < dpdpgy
a contradiction. Therefore d, 1 < d,, and

diﬂ = min{diﬂ, dpdpia} < 71770y
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—a

ie., dyi1 < bd,, where b = 73~ This implies {x,},>1 is a Cauchy sequence. Since X

is F-orbitally complete, there exists some point v in X such that lim, x, = u. Thus the

orbitally upper—semicontinuity of F' implies u € Fu. This completes the proof.

Theorem 3.2 Let (X,d) be a generalized space, F : X — CL(X) be orbitally upper—

semicontinuous. If X is F-orbitally complete and F' satisfies the following condition

a)[H(Fx, Fy)> + ayd(x,y)H(Fz, Fy) + asd(x,y)D(y, Fy) + ayD(x, Fx)H(Fx, Fy)
+asD(x, Fx)D(y, Fy) + asD(y, Fy)H(Fa, Fy) + a7[ D(y, Fy)]*
—min{D(z, Fx)D(y, Fy), D(z, Fy)D(y, Fz)}
< r-max{d(z,y)D(Fz, Fy),d(z,y)D(y, Fy), D(x, Fx)D(Fx, Fy),
D(z, Fx)D(y, Fy), D(z, Fy) D(y, Fz), D(y, Fx)H(Fz, Fy),
D(y, Fx)D(y, F'y)}

7

for all z,y in X, where Y a; < 1 and a; is in RT fori =1,2,...,7, then F has a fized
i=1

point.

Proof: Since (3.3) implies (3.1), Theorem 3.2 follows immediately from Theorem 3.1.
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Stationary points for set-valued mappings on two
metric spaces

ABSTRACT. Stationary point theorems of set-valued mappings in complete and compact
metric spaces are given. The corresponding results of Fisher [1] are generalized on set-valued

mappings.

KEY WORDS AND PHRASES. Set-valued mappings, stationary points, complete metric
spaces, compact metric spaces.

1 Preliminaries

In [1] and [2], Fisher and Popa have proved fixed point theorems for single valued mappings
on two metric spaces. The purpose of this paper is to generalize these results for set-valued
mappings. In this paper we show stationary point results of set-valued mappings in complete
and compact metric spaces.

Let (X,d) and (Y, p) be complete metric spaces and B(X) and B(Y) be two families of all
nonempty bounded subsets of X and Y, respectively. The function §(A, B) with A and B
in B(X) is defined as follows:

d(A, B) = sup{d(a,b) :a € A,b € B}.

Define §(A) = §(A, A). Similarly, the function §'(C, D) with C and D in B(Y) is defined as
follows:

§'(C, D) = sup{p(c,d) : ce C,d € D}.
{A, :n=1,2,...} that is a sequence of sets in B(X) converges to the set A in B(X) if
(i) each point @ in A is the limit of some convergent sequence {a, € A, :n=1,2,...};

(i) for arbitrary e > 0, there exists an integer N such that A, C A. for n > N, where A,

is the union of all open spheres with centers in A and radius .
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Let T be a set-valued mapping of X into B(X), z is a stationary point of T if Tz = {z}. T
is continuous at z in X if whenever {z,} is a sequence of points in X converging to x, the
sequence {T'z,} in B(X) converges to Tx in B(X). If T is continuous at each point x in X,
then T is a continuous mapping of X into B(X).

The following Lemmas 1.1 and 1.2 were proved in [3] and [1], respectively.

Lemma 1.1 If{A,} and {B,} are sequences of bounded subsets of a complete metric

space (X,d) which converge to the bounded subsets A and B respectively, then the sequence
{6(A,, Bn)} converges to §(A, B).

Lemma 1.2 Let {A,} be a sequence of nonempty subsets of X and x be a point of X
such that lim §(A,,z) = 0. Then the sequence {A,} converges to the set {z}.

n—oo

2 Stationary point results

Now we prove the following theorem for set-valued mappings.

Theorem 2.1 Let (X,d) and (Y, p) be complete metric spaces. If T is a continuous
mapping of X into B(Y) and S is a continuous mapping of Y into B(X) satisfying the

inequalities

0(STx, STy) < c-max{d(z,y),d(x, STx),d(y, STy), ' (Tx,Ty)}, (1)
§(TSx', TSy") < c-max{d'(2',y), 8 («', TS"), 5 (y, TSy"),5(Sx’, Sy') } (2)

for all z,y in X and 2,7 in Y, where 0 < ¢ < 1, then ST has a stationary point z in X and
T'S has a stationary point w in Y. Further Tz = {w} and Sw = {z}.

Proof: From (1) and (2), it is easy to see that

5(STA, STB) < c-max{J(A, B), (A, STA),§(B,STB),8(TA,TB)}, (1)
§'(TSA', TSB') < ¢ max{d' (A, B)),§ (A, TSA),§' (B, TSB),5(SA, SB)}  (2)

for all A, B in B(X) and A’, B in B(Y).

Let x be an arbitrary point in X. Define sequences {z,} and {y,} in B(X) and B(Y)
respectively by choose a point z,, in (ST)"x = X,, and choose a point y,, in T(ST)" 'z =Y,
forn=1,2,.... From (1') and (2') we have

§(Xn, Xps1) = 6(ST X1, STX,,)
S C- max{é(Xn,l, Xn)a 5(Xn717 Xn)a 5(Xna Xn+1)7 5/(Yn> Yn+1)}
< c-max{d(X,_1,X,),0 (Yo, Y1)}
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Similarly ¢ (Y, Yni1) < ¢-max{d'(V,_1,Yn),0(Xpn_1, Xpn)}. Put M =
max{d(z, X1),d' (Y1, Y2)}. From the above inequalities, we obtain immediatly

5(Xn7Xn+1> S c" - M: (3>
5 (Y, Yoir) < ¢ M

forn=1,2,.... It follows from (2) that

6<Xn7 Xn+r) S 5<Xn7 Xn+1) + -+ 5(Xn+r717 Xn+7")
< (Cn 4. +Cn+r—1)M

CTL

1—-c

M .

IN

Since ¢ < 1, then §(X,,, X,,4r) — 0asn — 00. So d(zp, Tnir) < 0(Xp, Xpar) — 0asn — oo.
Thus {z,} is a Cauchy sequence. Completeness of X implies that there exists z in X such

that x,, — z as n — oo. Further
0z, Xn) <0(z, ) + 0(xn, Xpn) <O(z,2,) + 0( X0, Xn) < 0(2,2,) + 20(X, Xng1)

which implies that 6(z, X,,) — 0 as n — oo. Similarly, there exists w in Y such that y,, — w

and 0'(w,Y,) — 0 as n — oco. Then
8w, Tz,) < §'(w, TX,) =08 w,Y,1).

By the continuity of 7" and Lemma 1.1, we have §'(w,Tz) — 0 as n — oo. From Lemma 1.2
it follows that Tz = {w}. Further

0(STz,x,) < 6(STz,X,) < ¢-max{d(z,X,_1),0(2,5T2),0(Xn-1,X,),0"(T2,TX,1)}.

Letting n tend to infinity, we have 0(ST'z,z) < ¢- max{d(STz,z),0}, which implies that
STz = {z} = Sw. Similarly, we can show w is a stationary point of 7'S. This completes the

proof of the theorem.

Theorem 2.2 et (X,d) be a complete metric space, S and T be continuous mappings
of X into B(X) and map bounded set into bounded set. If S and T satisfy the inequalities

6(STx, STy) < c¢-max{d(z,y),d(z, STx),d(y, STy),d(x, STy),6(y, STx),6(Tx, Ty)}, (5)
0(T'Sz, TSy) < c-max{d(z,y),d(z, T'Sz),6(y, T'Sy), 6(x, T'Sy), 6(y, TSx),6(Sz, Sy)}  (6)
for all x,y in X, where 0 < ¢ < 1, then ST has a stationary point z and T'S has a stationary

point w. Further Tz = {w} and Sw = {z}. If z = w, then z is the unique common

stationary point of S and T.
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Proof: Let z be an arbitrary point in X, we define a sequence of sets {X,,} by T'(ST)" 'z =
Xon—1, (ST)"x = Xy, for n =1,2,..., and Xy = {z}.

Now suppose that {§(X,,)} is unbounded. Then the real-valued sequence {a, } is unbounded,

where ag,—1 = §(Xon_1, X3), agp, = 0(Xop, Xo) for n = 1,2, ..., and so there exists an integer
k such that
a > 1%max{a(a;,XQ),(;(Xl,Xg)}, (7)
ar > max{a,... ,ag_1}. (8)

Suppose that k is even, put k = 2n. From (7) and (8) we have

c-0(Xop,x) < c-[0(Xar, Xa) + 0(Xa, x)] < 6(Xan, Xa),
c-0(Xoro1, X1) < - [0(Xoro1, X3) + 6(X3, X7)] < 0(Xap, Xo).

That is
(Xon, Xo) > ¢- max{0(Xo, x),0(Xop—1, X1) : 1 <1 <n}. (9)
We prove that the following (10) is true for m > 1:
0(Xop, Xo) < ™ - max{d(Xoy, Xos),0(Xop_1, Xog 1) : 1 <r,s <n,2<7" s <n}. (10)
From (5) we have

5(X2n7 X2> = 6(STX2n,2, STJJ)
S C- max{é(X2n—2a .Z'), 5(X2n—27 X2n)a 5(%, X2)a 5(%, X2n)7
6(Xan—2, Xa),6(Xon—1, X1)} -

It follows from (8) and (9) that 6(Xa,, Xo) < ¢+ d(Xan_2, Xon).
Now suppose that (10) is true for some m. From (5), (6), (8) and (9) we have

8(Xaon, X2) < ™ - max{d(Xa,, Xoy),0(Xop 1, Xogw 1) : 1 <rys<n,2<7r" s <n}
< ™ max{8(Xor—2, Xos—2), 6(Xor—2, Xa), 6(Xos-2, Xa5), 6(Xar_2, Xo,)
0(Xos—a, Xop), 6(Xop—1, Xos1),0(Xop 3, Xog_3),
0(Xap—3, Xop_1),0(Xog—3, Xoy_1) : 1 <15 <n,2 < 7', <n}
< ™ max{0( Xy, Xog), 6(Xow_1, Xog—1) : 1 <1, <n,2 <7, s <n}.
So (10) is true for all m > 1. Letting m tend to infinity, from (8) and (9) we have 0 <

d(Xan, Xo) < 0, which is impossible. Similarly, when £ is odd, 2n — 1, say, we also have
0 < 0(X2n-1,X3) <0, which is also impossible. Hence {§(X,,)} is bounded.
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Let M = sup{6(X,, X;) : r,s = 0,1,2,...} < oo. For arbitrary ¢ > 0, choose a positive
integer N such that ¢ - M < e. Thus for m, n greater than 2N with m and n both even or
both odd, from (5) and (6) we have

(X, X0n) < c-max{0(Xp_2, Xpn—2),0( X2, Xin), 6(Xn_2, X0n), 0(Xpn_2, Xp),
6(Xn—2, Xm), 6(Xim—1, Xn_1)}
< c-max{d(X,, X;),0(X,, Xi),0(Xs, Xg) :m—=2<rr" <mn—2<ss <n}
<N max{§(X,, X,),0(X, Xpv),0(Xs, Xg) :m — 2N < 71,7 <m,
n—2N <s,s <n}

<N M<e.

So 6(Xs,) and 6(Xgpy1) — 0 as n — oo. Take a point z, in X, for n > 1. Since
d(zan, Tantap) < 0(Xon, Xontap) — 0 as n — oo, hence {xa,} is a Cauchy sequence. Com-

pleteness of X implies that {xs,} has a limit z in X. Further
(2, Xon) < 0(2, T2n) + (w20, Xon) < (2, 2,) + 0(Xay) -

That is 0(z, X2,) — 0 as n — oo. Similarly {x9,.1} converges to some point w in X and
d(w, Xont11) — 0 as n — oo. Since §(w, T Xs,) = d(w, Xo,11), by the continuity of 7" and
Lemma 1.1, we have 6(w,Tz) — 0 as n — oco. From Lemma 1.2 it follows that Tz = {w}.
Further

3(STz,x9,) < 0(ST2, Xop)
< ¢ -max{d(z, Xon_2),0(2,5Tz2),0(Xon_2, Xon),0(2, Xon),
0(Xop—2,9T2),0(Tz, Xon_1)}
which implies that 6(STz, z) < ¢-max{d(z,57Tz),0} as n — oo. Since ¢ < 1, 6(STz,z) = 0.
Therefore STz = {z} = Sw and T'Sw =Tz = {w}.
Now suppose that z = w and that 2’ is a second common stationary point of S and T'. Using
()
§(z,2") = 8(ST2,ST2") < ¢ -max{d(z,2'),0(z,5Tz),6(z',ST=Z"),0(z',STz),
6(z,8T2"),6(Tz,T=)}
<c-0(z,7).

So z = 2z’ and this completes the proof of the theorem.

Remark 2.1 If we use single valued mappings in place of set-valued mappings in Theorems
2.1 and 2.2, Theorems 2 and 3 of Fisher [I] can be attained.
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Remark 2.2 The following example 2.1 demonstrates that the continuity of S and 7" in

Theorems 2.1 and 2.2 is necessary.

Example 2.1 Let X = {0} U {% in > 1} =Y with the usual metric. Define mappings .5,
T by TO = {1}, T% = {%} forn > 1and S =T. It is easy to prove that all the conditions
of Theorems 2.1 and 2.2 are satisfied except that the mappings S and T" are continuous. But
ST and T'S have no stationary points.

Now we give the following theorem for the compact metric spaces.

Theorem 2.3 Let (X,d) and (Y,p) be compact metric spaces. If T is a continuous
mapping of X into B(Y) and S is a continuous mapping of Y into B(X) satisfying the

following inequaltities
6(STw, STy) < max{d(v,y),d(x, STx),0(y, STy), s (Tx, Ty)}, (11)
§(TSx', TSy") < max{d'(',y),d" (', TSx"),8' (v, TSy'),5(Sx", Sy')} (12)

for all distinct x,y in X and distinct 2’,y" in Y, then ST has a stationary point z and T'S
has a stationary point w. Further Tz = {w} and Sw = {z}.

Proof: Let us suppose that the right-hand sides of inequalities (11) and (12) are positive
for all distinct x,y in X and distinct 2/,9" in Y. Define the real valued function f(x,y) in
X x X as follows:

f(z,y) =0(STz,STy)/ max{d(x,y),d(x,STz),(y, STy), 0" (Tx,Ty)}.

Since S and T are continuous, f is continuous and achieves the maximum value s on the

compact metric space X x X. Inequality (11) implies s < 1, that is
5(STx, STy) < s max{8(z, ), 8(x, STx), 8(y, STy), & (T, Ty)} (13)

for all distinct x,y in X. It is obvious that inequality (13) is also true for x = y. Similarly,
there exists ¢ < 1 such that

8(TSx', TSy') <t-max{d(z',y),d («', TSx"),0' (v, TSy'),5(Sx",Sy’)} (14)
for all z/,3' in Y. So Theorem 2.3 follows immediately from Theorem 2.1.

Now suppose there exist z, 2z’ in X such that
max{0(z,2"),0(z,5Tz),0(z',ST%"),0"(T=,T)} =0

which implies {z} = {2/} = STz and Tz = T2/, a singleton, {w}, say. Therefore we have
STz = Sw = {z}, TSw =Tz = {w}. If there exist w,w" in Y such that

max{d’ (w,w"),d" (w, T'Sw), § (w', TSw"), §(Sw, Sw")} =0,

similarly, we also have STz = Sw = {z}, T'Sw = Tz = {w}. This completes the proof of

the theorem.
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Remark 2.3 Theorem 4 of Fisher [1] is a particular case of our Theorem 2.3 if set-valued

mappings are replaced by single valued mappings in Theorem 2.3.
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1 Introduction and Preliminaries

In 1991, Chang and Shu [1] firstly introduced a quasi-variational inequality in locally convex
Hausdorff linear topological spaces. Recently, Chang et al [1] obtained some existence the-
orems of solutions for the quasi-variational inequality in H-spaces, and Lee et al [3] studied
the vector quasi-variational inequality for vector-valued functions in a real locally convex

Hausdorff linear topological space.

The purpose of this paper is to study the existence problem of solutions of the vector quasi-
variational inequality for vector-valued functions in H-spaces. The results presented in this

paper generalize some important results in [1].

For the convenience we first give some definitions and preliminary results.

Definition 1.1 Let E be a real topological vector space, K a nonempty closed convex
subset of E satisfying

(i) M € K for allz € K and all A > 0,

(ii) z € K, —x € K implies x = 0, where 0 is the zero-element of E.

Then K is said to be a cone. We denote the interior of K by K°. A cone K is said to be a
body cone, if K° # ().
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Lemma 1.1 Let E be a real topological vector space, K C E a body cone. Then
i) K+ K={z+y:zeKye K} =K,
(ii)) A+ K C K° for any A € K°,
(i) K+ K°=K°+ K° = K°.
Proof: The conclusions are obvious.

Definition 1.2 Let (X,{T'4}) be an H-space, E a real topological vector space with a
body cone K C E. A function f : X — FE s said to be H*-convex, if —f : X — E is

H*-concave.

Lemma 1.2 Let f: X — E be an H*-convex function. Then the set My = {x € X :
f(z) ¢ N+ K} is H-convex for any A € E.

Proof: Since —f is H*-concave, it follows from Proposition 10.1.1 in Chang [2] that
{reX: (=N -(-f0) ¢ K} ={veX: f(x) ¢ \+ K} = M,
is H-convex. This completes the proof.

Lemma 1.3 ||, Lemma 2.1] Let X be a compact topological space, (Y,{T'g}) an H-space.
Let G : X — 2Y be a multifunction with nonempty H -convex values and G~ is transfer open-

valued. Then there exists a continuous selection of G, i.e., there exists a continuous function
f:X =Y such that f(x) € G(z) for allz € X.

Lemma 1.4 [i, Theorem 2.5] Let (X,{Ta}) be a compact H-space, T : X — 2% a

multifunction such that

(i) T(x) is a nonempty H-convex set for any x € X,

(i) T7': X — 2% is transfer open-valued.

Then there ezists an T € X such that T € T'(T).

Lemma 1.5 [3, Lemma 1.1] Let E be a real topological vector space with a body cone
K C E, C a nonempty compact subset of E. Then MingC # (0 and WMingC' # 0, where
MingC' is the set of all the vector minimal points of C and WMingC' is the set of all the

weakly vector minimal points of C'.

Lemma 1.6 [3, Lemma 1.2] Let X and Y be two Hausdorff topological spaces, and F :

X — 2Y be a multifunction.
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(i) If F is w.s.c. and compact-valued, then F is closed.
(ii) If Y is compact, and F' is closed, then F' is u.s.c..

(iii) If X is compact, and F is u.s.c. and compact-valued, then F(X) = |J,cx F(X) is

compact.

2 The Main Results

Theorem 2.1 Let (X,{T'4}) be a compact H-space, (Y,{I'z}) be an H-space. Let E be
a real topological vector space with a body cone K C E. Suppose that

i) S : X — 2% is a continuous multifunction with nonempty compact H-convex values

and S7Y(x) is open for any x € X,

(i) T : X — 2Y is a multifunction with nonempty H -convez values and T~ :Y — 2% is

transfer open-valued,
(i) ¢ : X xY x X — E is a conlinuous function satisfying
(a) p(z,y,z) ¢ K° for allz € X and ally € T(x),
(b) the function z — @(x,y, 2) is H*-conver.
Then there ezists T € S(T), § € T(T) such that

o(T,y,x) ¢ —K° for all x € S().

Proof: By Lemma 1.3 and condition (ii), there exists a continuous selection f: X — Y of
the multifunction 7. Next for any A € K°, we define a multifunction Fy : X — 2% by

Fi\(z) ={z € S(z) : p(x, f(x),s) — oz, f(x),2) ¢ =X — K, Vs € S(z)} forallz € X.
(2.1)

Let

P\(z)={z€ X : ¢o(x, f(x),s) — oz, f(z),2) ¢ =A\— K, Vs € S(z)} forall z e X.
(2.2)

Then

Fy\(z) = S(x) ﬂ P\(z) forallze X (2.3)
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Fi'(z) =S7'(2)[|Py'(2) forall z € X. (2.4)

It is obvious that

()

(111)

P\(z) = ﬂ {ze X :p(x, f(x),2) & oz, f(x),s) + A+ K}
seS(x)

={z € X p(x, f(x), S(x) — @lx, f(x),2) [ |- — K =0} (2.5)
O {2z € X : o(x, f(x),S(x)) — p(x, f(x),2) [ |-K> =0}

F\(x) is nonempty for all z € X.

In fact, since S is compact valued and ¢ is continuous, ¢(z, f(z), S(z)) is a compact
subset of E. By Lemma 1.5, WMingo(x, f(x), S(z)) # 0, i.e., there exists a z € S(x),
such that p(z, f(x),s) — o(z, f(z),z) ¢ —K° for each s € S(z) and hence z € F)(x)
by (2.3) and (2.5).
F\(z) is H-convex.

By Lemma 1.2 and condition (iii)(b), the set {z € X : p(z, f(x),2) ¢ ¢(x, f(x),s) +
A+ K} is H-convex, and hence Py(x)is H-convex by (2.5). On the other hand, by
condition (i), S(z) is H-convex. Therefore F)(x) is H-convex by (2.3).

F'(2) is open for each z € X.

By condition (i) and (2.4), it is sufficient to prove that P;'(z) is open. Taking x €
P 1(2), by (2.5), we have

QO(QZ', f(ZU),S(Q?)) - 50(1:7]0('%)’ Z) ﬂ “A-K=90.
Let H.(x) = o(z, f(z),S(z)) — ¢(z, f(z),2). It follows from ¢ is continuous and S

is u.s.c. and compact valued that H, : X — 2% is u.s.c., and hence there exists a
neighborhood N (x) of x such that

Hz(y)ﬂ—)\—K: ) forally € N(x).

This shows that N(z) C Py '(z) and P;'(z) is open.

Combining (I), (IT) and (IIT), by Lemma 1.4, there exists x) € X such that

zy € Fi(zy). (2.6)

For any Ay, Ay € K°, we define \; < A\ if and only if A\; € Ao + K and z), < x,, if and only

if Ay < Ag. Then {z)}rexe C X is a net. Since X is compact, without loss of generality, we

can assume that zy — T € X and so yy = f(x)) — f(T) =7 € T(T).
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On the other hand, from the definition of F\ and (2.6) we have
xx €S(z)) and ) € P\(z)).
Since S is compact-valued and continuous, by Lemma 1.6, the graph of S is closed and so
T CS(T).
For any A € K°, it follows from x) € Py(x,) that
p(xx,yx S(22) — @lar, ya, 2a) [ -A = K =0
and hence
SO(JJA, Yx, 5(1’,\)) - 90(95,\7?/,\,%) ﬂ —A-K°=10.
Taking \g € K°. For any A € K° with A\g < A, we have
M+EK CA+K+K =M+ K°
and so
o(xx, yn, S(x))) — @(Tx, Yn, T2) ﬂ —X—K°=0 forall A\ > ). (2.7)
Now we prove that
(7,5, 57)) - o(@,5,7) [ ~do - K° = 0. (2.8)
Suppose that this is not the case, then there exists T € S(Z) such that
o(T,7,5) — (T,7,7) € —ho — K°. (2.9)

Since S is 1.s.c., there exists a net {s)} such that {s)} — 5 and s) € S(z)) for each A\ € K°.
By the continuity of ¢ and (2.9), for A large enough

P(2x,Yx, $2) — P(Tx, Yn, T2) € —ho — K7
This contradicts (2.7), and (2.8) is proved. Hence

¢<E>yv S(E)) - Qp(fa Y, f) ﬂ ( U (_)‘0 - KO)) = gp(f, g,S(f)) - gp(f, yaf) m —K° = @

Mo EKP©

Therefore,
o(Z,y,x) — o(T,y,7) ¢ —K° forallz € S(T).
By condition (iii)(a), ¢(7,7,T) € —K° and so
o(Z,y,x) ¢ —K° forall z € S(T).

This completes the proof.
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Theorem 2.2 Let (X,{T'4}) be a compact H-space, (Y,{I'z}) be an H-space. Let E be
a real topological vector space with a body cone K C E. Suppose that

(i) T : X — 2Y is a multifunction with nonempty H-convexr values and T~ :Y — 2% is

transfer open-valued,

(i) S: X — 2% is al.s.c. multifunction with nonempty H-convex values and S™' : X — 2%

18 closed-valued,
(iii) ¢: X XY x X — E is a continuous function satisfying

(a) p(z,y,z) ¢ —K° for allz € X and ally € T(x),
(b) for each (x,y) € X xY, the set

{z€ X :p(x,y,2) € WMingp(z,y,S(z))}
15 H-convex,

(iv) for any continuous function f : X — Y, there exists a finite subset A C X such that
foranyx € X

ol f(2), AN S(2)) (| WMingp(z, (z), S(x)) # 0.

Then there exists T € S(T),y € T(T) such that

o(T,y,x) ¢ —K° for all x € S(T).

Proof: By Lemma 1.3 and condition (i), there exists a continuous selection f : X — Y of
T. Now we define a multifunction F : X — 2% by

F(z)={z¢€ S(x): p(z, f(x),z) € WMingp(z, f(z),S(x))}.

Since f is continuous and S is H-convex-valued, by condition (iii)(b) and (iv), F' is nonempty

H-convex valued.

Now we prove that for each z € X, F~1(z) is closed. Let {4 }aecr C F~!(z) be any net which

converges to z. Then for each a € I, z € F(x,) and so
2 € 8(xa) and  o(za, f(za), 2) € WMingp(za, f(2a), S(xa)) - (2.10)
Since S~!(z) is closed, hence x € S7!(z) and so z € S(z). Suppose that x ¢ F~(z), then

p(z, f(x), 2) ¢ WMingo(z, f(z), S(x))
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and hence there exists an s € S(z) such that

(e, f(x),5) = plz, f(2),2) € —K".

Since S is l.s.c., there exists a net {s,} — s with s, € S(z,) for all & € I. Again, ¢ is

continuous and —K° is open, for « large enough

QD(ZL‘O“ f(l'a), Sa) - (,0(1704, f(l‘a), Z) e —K°.

This contradics (2.10). Hence z € F~!(z) and so F~'(2) is closed for all z € X.

On the other hand, by condition (iv), there exists a finite subset A C X, such that for any
r e X, AN F(x) # () and hence

F'A)=JF'(2)=X.

zEA

From Corollary 3.6.4. in Chang [2], it follows that there exists T € X such that T € F(T),

ie.,
Te€ ST and (7, f(7),7) € WMinge(z, f(T),S(T)) .
Since f is a continuous selection of T', f(Z) € T(Z). Lettingy = f(T), we have § € T'(Z) and
(7,7, 7) € WMingp(7,7, 5(7))
ie.,
o(Z,7,1) — o(T,7,T) ¢ —K° forall x € S(T).
By condition (iii)(a), we have

o(Z,y,x) ¢ —K° forall z € S(T).

This completes the proof.

The authors are grateful to their advisor Prof. Shih-sen Chang for his helpful suggestions.
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On common fixed point theorems for families of map-
pings

ABSTRACT. In this paper we prove some common fixed point theorems for families of
mappings on metric spaces which are generalizations of the results due to Fisher [2, 3, 1],
Kasahara [5], Kim and Leem [0], Kim, Kim, Leem and Ume [7], Ohta and Nikaido [3], Park
and Rhoades [9, 10], Taskovic [12] and others.

KEY WORDS AND PHRASES. Common fixed point, fixed point, family of mappings,

closed mapping, cluster point, metric space, compact metric space.

1 Introduction and preliminaries

Let w, N denote the sets of nonnegative integers and positive integers, respectively. Let f, g, h
and ¢ be self mappings of a metric space (X, d) and Cy ={s:s: X — X and sf = fs}. For
z,y € X and A, B C X, define Of(z) = {f"x : n € w}, Of(z,y) = Op(x) UO;(y), Ofg(x) =
{fig?z :i,j € w}, O (x,y) = Opg(x) UOsy(y), 6(A,B) = sup{d(a,b) : a € A,b € B},
d(A,A) = 6(A) and 0(z, B) = 6({z}, B). It is easy to verify that {f" : n € w} C C}. For
each t € [0,400), [t] denotes the largest integer not exceeding t. Let

O, ={p:p:[0,+00) — [0,+00) is nondecreasing, continuous from the right
and satisfies ¢(t) <t for t > 0},
Dy ={p:p:[0,+00) — [0,+00) is nondecreasing, upper semicontinuous from the
right and satisfies ¢(t) < ¢ for t > 0},
O ={p:p:[0,+00) — [0,+00) is nondecreasing, upper semicontinuous and
satisfies p(t) <t for t > 0}.
Clearly, ® C ®5. Chang [!] and Wong [13] proved that &3 C & and &; = P,. Therefore
Dy = .

The Banach contraction principle has long been one of the most important tools in the

study of nonlinear problems. Motivated by this fact, during the past three decades, there
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has grown an extensive literature devoted to sharper forms of the principle. Recently, Fisher
[2, 3, 1], Kasahara [5], Kim and Leem [0], Kim, Kim, Leem and Ume [7], Otha and Nikaido
[8], Park and Rhoades [9, 10], Taskovic [12] and others have established the existence of fixed

and common fixed points for the following contractive type mappings:

Jr € [0,1) such that for all z,y € X,

d(fz, fy) <rd(Of(z,y))  (Taskovic [12]);
Jk € N and r € [0,1) such that for all z,y € X,

d(fFx, fFy) <ré(Oy(z,y)) (Ohta and Nikaido [3]); (12

Jk € N and r € [0, 1) such that for all z,y € X, (13)
d(f*z, g"y) <r8(0;4(2,y)) (Kim and Leem [0]) ;

Jk € N and r € [0,1) such that for all x,y € X, (1.4)
d((fg)"z.(f9)*y) <16(Osy(x,y))  (Kim and Leem [0]);

dm,n € N and r € [0,1) such that for all z,y € X, (15)
d((fg)"z, (fg)"y) < rd(Of4(x,y)) (Kim, Kim, Leem and Ume [7]);

Jp € ®¢ such that for all x,y € X, (1.6)
d(fz, [%) < $(0(Oy(z, fy)))  (Park and Rhoades 1))

Jp € &, such that for all x,y € X, 7)
d(gz, gy) < ¢(6(Of(z,y)))  (Park and Rhoades [10]);

Jip € @4y such that for all z,y € X, (1.8)
d(fz, fy) < ¢(0(Oy(z,y)))  (Kasahara [0]).

Now we list contractive type conditions to be considered:

Jp € ®,p,q,m,n € w with p+ ¢,m +n € N such that for all z,y € X, (1.9)
A9z, g"y) < P(0(Or (2 )))

dp € &, m € {1,2} such that for all x,y € X, (1.10)
d(fz, f"y) < ¢(6(0s(2,y)));

Ip,q,m,n € w with p+ ¢, m +n € N such that for all x,y € X
with fPgx # f"g"y, d(fPg'z, f"g"y) <6( U hOpg(z.y)); (1.11)

heCNCy
dp,q,m,n € w with p+ ¢, m +n € N such that for all z,y € X ( |
1.12

with fPgz 2 ™"y, d(fPg%z, h"t"y) < 6( U uOe(x), U v0m(y)).

’LLECfg vECht
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It is easy to see that the following diagrams of implications hold:

(1.9) < (1.7) <= (1.8) <= (1.1) = (1.2) = (1.3) = (1.99),
(1.4) = (1.5) = (1.9),
(1.6) = (1.10) = (1.9) = (1.11).

In this paper we establish several fixed and common fixed point theorems involving hypothe-
ses weak enough to include a number of results due to Fisher [2, 3, 1], Kasahara [5], Kim and
Leem [6], Kim, Kim, Leem and Ume [7], Ohta and Nikaido [3|, Park and Rhoades [9, 10],

Taskovic [12] and others as special cases.

The following lemmas were introduced by Kim, Kim, Leem and Ume [7] and Sing and Meade

[11], respectively.

Lemma 1.1 [7]. Let f and g be commuting mappings from a compact metric space
(X,d) into itself. Assume that fg is closed. If A=, cn(f9)" X, then

(i) hAC A for all h € Cy,,
(i) A=fA=gA#0,
(iii) A is a compact subset of X .

Lemma 1.2 [I1]. Let p € . Then

(i) lim ¢"(t) =0 for allt > 0,

n—oo

(ii) t = 0 provided that t < ¢(t) for some t > 0.

2 Main results

Our main results are as follows.

Theorem 2.1 Let f and g be commuting mappings from a metric space (X, d) into itself
such that fg is closed. Suppose that there exists u € X such that the sequence {(fg)'u}ien has
a cluster point w € X for which (1.9) holds for all x,y € Oy 4(u,w), where §(Oy4(u, w)) <

+00. Then w is a common fixed point of f and g and

d((fg)' 1*g"u, w) < plEl(8(0 (w)))

for alli € N and a,b € {0,1}, where k = max{p, q,m,n}.
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Proof: For any i,7,1,s,t € w, it follows from (1.9) that

d(fi+k+jgiJrkJrlu7 fi+k+s 1+k+t )

(1.
(P(é(Ofg(thk p+J i+k— q+l fi+k7m+sgi+kfn+tu)))
< 0(0(Os(fH g™ u, fHog" )
p(0(04((fg)'n))).

9

This implies that

5(01.5((f9)*u)) < 9(6(O14((f)u))) (2.1)
for all 7 € w. We claim that
d((fg)'u, (f9)*u) < lE(5(0;4(u)) (2.2)

for all i,t € N. We can write i = ck + [ uniquely for some ¢, € w with [ < k — 1. Using
(2.1),

d((f9)'u. (f9)"u) < 6(Opy((f9)"u))
P(8(0pg((f9)' DM )

IAN A A

0 (6(0sg((fg)'u)))
©“(6(Oyg(u))) -

That is, (2.2) holds. Lemma 1.2 ensures that {(fg)u};cn is a Cauchy sequence and since it

IN

has a cluster point w € X, so w = lim (fg)‘u. Note that fg is closed. Then

w = lim (fg)'u = lim fg(fg)'v = fgw. (2.3)
For any i, j, s,t € w, by (1.9) and(2.3) we obtain
d(f'g"w, [*g'w) = d(f** g w, g7 Fw)

< Q(6(Opg(fTHFPg/thauy, fohmmghthzny)))

< p(0(0y4(w)))
which implies that

0(Of,g(w)) < p(6(Oy4(w))) .
It follows from Lemma 1.2 that §(O;,(w)) = 0. That is, w = fw = gw.
In view of (2.1) we have

d((f9)'fg"u, (fg) " u) < 6(Opg((f9)'u))

< (0(054(fg) " u))
i (6(054(u))

N

IN
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for all i,t € N and a,b € {0,1}. Letting ¢ tend to infinity we get

A((F9)'f*g"u.w) < (507, (u)))
for all i € N and a,b € {0,1}. This completes the proof.
Remark 2.1 Theorem 2.1 includes Theorems 3 and 4 of Kim and Leem [5], Theorems 1

and 2 of Park and Rhoades [10] as apecial cases.

From Theorem 2.1 we immediately have

Theorem 2.2 Let f and g be commuting mappings from a bounded complete metric
space (X, d) into itself such that fg is closed. Suppose that (1.9) holds. Then f and g have
a unique common fized point w € X and

A((f9)' 19"z, w) < lE)(3(0p(x)))
forallxz € X, 1€ N and a,b € {0,1}, where k = max{p, q, m,n}.

Remark 2.2 Theorem 2.2 includes Theorem 2.1 of Kim, Kim, Leem and Ume [0] as a

special case.

Corollary 2.1 Let f be a closed mapping from a metric space (X, d) into itself. Suppose
that there exists u € X such that the sequence {(fg)'u}ien has a cluster point w € X for
which the following

d(fPx, f"y) < p(6(Of(x,y))) (2.4)

holds for all z,y € Of(u,w), where §(Of(u,w)) < 400, ¢ € ® and p,m € N. Then f has a

fized point w and satisfies

d(f'u,w) < plH(6(0; ()
for alli € N, where k = max{p,m}.

Remark 2.3 In case p(t) = rt and p = m, Corollary 2.1 reduces to a result which extends
Theorem 3 of Ohta and Nikaido [7].

The following result reveals that the condition that 7" be closed is unnecessary if p = 1 and
m € {1,2}.

Theorem 2.3 Let f be a mapping from a metric space (X,d) into itself. Suppose that
there exists u € X such that the sequence {f'u}ien has a cluster point w € X for which
(1.10) holds for all x,y € Of(u,w), where §(Of(u,w)) < +o00. Then w is a fived point of f

and satisfies

d(fiu, w) < @l (5(05(u))) (2.5)
forallie N.
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Proof: It follows from the proof of Theorem 2.1 that

005 (fu)) < p(8(Of(f'u)))

for all 7 € w,

d(fiu, fHtu) < olml(5(05(u)))

Z. Liu

(2.6)

(2.7)

for all 4, € N and w = lim f'u. Letting ¢ tend to infinity in (2.7), we easily conclude that

i—00

(2.5) holds.

For every € > 0 there exists an integer k > 2m such that ¢ > k& — m implies d(f'u,w) < .

For any n,p € N with p > k, by (1.9) we have
d(w, ffw) < d(w, fPu) + d(fPu, ffw)
< e+ (0(0s(f7 u, f17w)))
< e+ p(max{2e,0(0f(w)) +¢})

which implies that

5w, 05(w)) < & + p(max{2e, 5(0; (w)) + ¢}
Thus we have

d(w, Of(w)) < limsup{e + p(max{2¢,0(Of(w)) +¢c})}

e—0

< limsup p(max{2¢,0(Of(w)) +¢})

< @(0(0g(w))) -
That is,
(w, Of(w)) < ¢(0(Of(w))) -

For m =1, by (2.6) and (2.8) we have

(05 (w)) = max{d(w, Os(fw)), (O (fw))} < p(0(Of(w))) -

Lemma 1.2 ensures that §(Of(w)) = 0. Hence w = fw.
For m = 2, by (2.6), (1.10) and(2.8) we get

0(Oy(w)) = max{d(w, Oy (fw)),6(fw, O (f*w)), 5(Os(f*w))}

< max{p(0(Or(w))), sup @ (6(Oy (w, frw)), e(6(0p(w)))}

= ¢(0(0;(w))).

(2.8)

It follows from Lemma 1.2 that 6(Of(w)) = 0. That is, w = fw. This completes the proof.
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Remark 2.4 Theorem 2.3 extends, improves and unifies Theorem 2 of Park and Rhoades
[8] and Theorem 1 of Kasahara [1].

Question 2.1 Does Theorem 2.3 hold for m > 37

Theorem 2.4 Let f and g be commuting mappings from a compact metric space (X, d)
into itself such that fg is closed. If (1.11) holds, then f and g have a unique common fized
point w € X. Moreover, w = hw for all h € Cy N C.

Proof: Let A = (),.y(f9)'X. Lemma 1.1 implies that A = fA = gA # ¢. We assert
that A = {w} for some w € X. Otherwise §(A) > 0. It follows from the compactness of A
that §(A) = d(u,v) for some u,v € A. Obviously there exist z,y € A such that u = fPg%z,
v = f"g"y. By (1.11) and Lemma 1.1 we conclude that

6(A) = d(fPglx, f"g"y)
<6( U hOpy(z,9))

heCynCy

<ié( U h4)

heCrNCy
< 6(A)

which is a contradiction. Thus A is a singleton and A = {w} for some w € X. Therefore

w = fw = gw. That is, w is a common fixed point of f and g.

Now suppose that f and g have a second common fixed point u. Then u = (fg)'u for all
i € N. This implies that v € A = {w}. That is, u = w. This proves the uniqueness of w,
which implies that w = hw for all h € Cy N C,. This completes the proof.

Remark 2.5 Theorem 4 of Fisher [1], Theorem 5 of Fisher [2] and Theorem 2 of Fisher [3]

are special cases of Theorem 2.4.

Theorem 2.5 Let f, g, h and t be self mappings of a compact metric space (X,d) such
that (1.12) holds. If fg, ht are closed and f € Cy, h € Cy, then f,g,h and t have a unique

common fized point w € X. Moreover, w = uw = vw for u € Cty and v € Ch.

Proof: Put A(),_x(fg)'X and B =(,cy(ht)'X. From Lemma 1.1 it follows that
A=fA=gA#¢, B=hB=tB+0¢,

and that A, B are compact. We claim that 6(A, B) = 0. If not, then §(A, B) > 0. By the
compactness of A, B there exist a € A, b € B such that §(A, B) = d(a,b). Since fPg?A = A
and h™t"B = B, we can find v € A and y € B with fP¢%c = a and h"t"y = b. It follows



46 Z. Liu

from (1.12) and Lemma 1.1 that

(A, B) =d(fPq%x, h"t"y)
<0( U uOyy(2), U vOm(y))

UGCfg vECH:
<46( U uA, U vB)
U,GCfg vECH:

— 5(A, B)

which is absurd and hence §(A, B) = 0, which implies that A = B = {w} for some w € X.

It is easy to see that
w= fw=gw = hw =tw =uw = vw

for all u € Cy, and v € Ciy.

If z is another common fixed point of f, g, h and t, then z = fig'z = hit'z for all i € N.
That is, z € A = B = {w}, which proves the uniqueness of w. This completes the proof.

The following examples show that the closedness assumptions in Theorems 2.1, 2.2, 2.4 and

2.5 and Corollary 2.1 are necessary for p+¢q > 2 and m +n > 2.

Example 2.1 Let X = [0, 1] with the usual metric d. Define mappings f,g : X — X by
f0=1, fo = 3z for x € (0,1] and gz = x for v € X. Take ¢ = n = 0 and ¢(t) = 3¢ for
t € [0,+00). It is easy to verify that

A(frr, ™) = 3d( 5, ) < @l5(04(x.9)))

for all z,y € X, where p,m > 2. Thus (1.9) and (2.4) are satisfied. Note that 1 — 0 and
f% = 3% — 0 as n — oo and that 0 # 1 = f0. Hence f and fg are not closed. Thus

the conditions of Theorems 2.1 and 2.2 and Corollary 2.1 are satisfied except the closedness

assumption; f however has no fixed point.

Example 2.2 Let (X,d), f,g9,p,q, m,n be as in Example 2.1. Take h = f and t = g. Then

A(fre, ) = A7, ) < 60y (o)

for all x,y € X with fPx # f™y, where p,m > 2. Thus the conditions of Theorems 2.4 and

2.5 are satisfied except the closedness assumption; f however has no fixed point.
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ZEQING LIU; FENGRONG ZHANG

Characterizations of common fixed points in
2-metric spaces

ABSTRACT. In this paper we obtain a few necessary and sufficient conditions for the

existence of a common fixed point of a pair of mappings in 2-metric spaces. Our results

generalize, improve and unify a number of fixed point theorems given by Cho [1], Constantin
[2], Khan and Fisher [I1], Kubiak [I1], Rhoades [25], Singh, Tiwari and Gupta [31] and
others.

KEY WORDS AND PHRASES. 2-metric spaces, common fixed points, compatible map-
pings.

1 Introduction

Géhler [1] introduced the concept of 2-metric space. A 2-metric space is a set X with a

function d : X x X x X — [0, 00) satisfying the following conditions:

(G1) for two distinct points z,y € X, there exists a point z € X such that d(z,y, z) # 0,
(G2) d(x,y,z) = 0 if at least two of x,y, z are equal,
(G3) d(x,y,z) =d(x, z,y) = d(y, z, x),

(G4) d(z,y,z) < d(x,y,u) + d(z,u, z) + d(u,y, z) for all z,y,z,u € X.

It has been shown by Géhler [1] that a 2-metric d is a continuous function of any one of its
three arguments but it need not be continuous in two arguments. If it is continuous in two
arguments, then it is continuous in all three arguments. A 2-metric d which is continuous in

all of its arguments will be called continuous.

Iséki [7], for the first time, developed a fixed point theorem in 2-metric spaces. Since then
a quite number of authors ([1]-[3], [5]-[36]) have extended and generalized the result of Iséki
and various other results involving contractive and expansive type mappings. Especially,
Murthy, Chang, Cho and Sharma [17] introduced the concepts of compatible mappings and
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compatible mappings of type (A) in 2-metric spaces, derived some relations between these
mappings and proved common fixed point theorems for compatible mappings of type (A) in

2-metric spaces.

On the other hand, Cho [!], Constantin [2], Khan and Fisher [11] and Kubiak [11] established
some necessary and sufficient conditions which guarantee the existence of a common fixed

point for a pair of continuous mappings in 2-metric spaces.

In this paper we establish criteria for the existence of a common fixed point of a pair of
mappings in 2-metric spaces. Our results generalize, improve and unify the corresponding
results of Cho [1], Constantin [2], Khan and Fisher [I1], Kubiak [11], Rhoades [25], Singh,

Tiwari and Gupta [31] and others.

2 Preliminaries

Throughout this paper, N and w denote the sets of positive and nonnegative integers, re-

spectively. Let RT = [0, 00) and
W ={w:w:R" — R is continuous and satisfies 0 < w(t) < t for t > 0}.

We consider the family @ of all continuous functions ¢ : (R*)® — R* with the following

properties:

(i) ¢ is non-decreasing in the 4" and 5% variables,

(i) if u,v € R* with u < max{p(v,v,u,u+ v,0), o(v,u,v,u + v,0), p(v,v,u,0,u +v),
o(v,u,v,0,u+v)}, then u < cv for some ¢ € (0,1),

(iii) if w € R with u < max{¢(u,0,0,u,u), p(0,u,0,u,u),(0,0,u,u,u)}, then u = 0.

Let f be a mapping of a 2-metric space (X, d) into itself and B C X. Define d(z, B,a) =
gngd(x,b,a) forx,a € X and F(f)={t:t= ft € X}.
S

Definition 2.1 A sequence {x,}nen in a 2-metric space (X, d) is said to be convergent
to a point x € X if lim d(z,,x,a) =0 for all a € X. The point x is called the limit of the

sequence {Tp}nen in X.

Definition 2.2 A sequence {x,}nen in a 2-metric space (X,d) is said to be a Cauchy

sequence if lm d(zp,,z,,a) =0 foralla € X.

m,n— o0

Definition 2.3 A 2-metric space (X, d) is said to be complete if every Cauchy sequence

in X 18 convergent.
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Note that, in a 2-metric space (X, d), a convergent sequence need not be a Cauchy sequence,

but every convergent sequence is a Cauchy sequence when the 2-metric d is continuous on

X ([19])-

Definition 2.4 Let f and g be mappings from a 2-metric space (X, d) into itself.
f and g are said to be compatible if

lim d(fgzn,gfxn, a) =0

for all a € X, whenever {x,}nen C X such that lim fz,, = lim gz, =t for somet € X;

n—oo

f and g are said to be compatible of type (A) if
lim d(fgan, ggon, a) = lim d(gfrn, ff1n, a) =0

for all a € X, whenever {x,}neny C X such that lim fzx, = lim gz, =t for somet € X.

n—oo

Definition 2.5 A mapping f from a 2-metric space (X, d) into itself is said to be con-

tinuous at x € X if for every sequence {x}neny C X such that lim d(z,,z,a) = 0 for all

n—oo

a€ X, lim d(fz,, fr,a) =0. f is called continuous on X if it is so at all points of X.

Lemma 2.1 ([17]) Let f and g be compatible mappings from a 2-metric space (X, d)
into itself. If ft = gt for some t € X, then fgt = ggt = gft = f ft.

Lemma 2.2 ([17]) Let f and g be compatible mappings from a 2-metric space (X, d) into

itself. If f is continuous at somet € X and if lim fx, = lim gz, =t, then lim gfx, = ft.

3 Characterizations of common fixed points

Theorem 3.1 Let (X,d) be a complete 2-metric space with d continuous on X and let

h and t be two mappings of X into itself. Then the following conditions are equivalent:

(1) h and t have a common fized point;
(2) there exist r € (0,1), f: X — t(X) and g : X — h(X) such that

(al) the pairs f,h and g,t are compatible,
(a2) one of f,g,h and t is continuous,

(a3) d(fx,gy,a) < r max{d(hz,ty,a),d(hz, fz,a),d(ty, gy, a),
%[d(hl’, gy, a) + d(ty> fxa Cl)]} fOT’ all x,y,ac X;'
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(3) there existw € W, f: X — t(X) and g : X — h(X) satisfying (al), (a2) and (ad):

(ad) d(fz,gy,a) <max{d(hz,ty,a),d(hz, fz,a),d(ty, gy, a),
1

é[d(hxv 9Y, CL) + d(ty7 fl’, CL)]}

— w(max {d(h:v, ty,a),d(hx, fr,a),d(ty, gy, a),

%[d(hgj, qy, a) + d(ty, fx, a)] })

forall x,y,a € X;

(4) there exist p € O, f : X — t(X) and g : X — h(X) satisfying (al), (a2) and (ab):

(ab) d(fz,gy,a) < o(d(hz,ty,a), d(hz, fr,a),d(ty, gy, a),d(hz, gy, a), d(ty, fz,a))
forall z,y,a € X.

Proof: (1) = (2) and (4). Let z be a common fixed point of h and t. Define f : X — t(X)
and g : X — h(X) by fx = gr = z for all z € X. Then (al) and (a2) hold. For each
r € (0,1) and ¢ € ¢, (a3) and (ab) also hold.

(2) = (3). Take w(t) = (1 —r)t. Then w € W and (a3) implies (a4).

(3) = (1). Let zg be an arbitrary point in X. Since f(X) C t(X) and g(X) C h(X), there

exist sequences {xn}nEN and {yn}neN in X SatiSfying Yon = tTopq1 = fom Yon41 = hx2n+2
= gxony1 for n € w. Define d,(a) = d(Yn, Yns1,0a) for a € X and n € w. We claim that for
any 7,7,k € w

Suppose that day,(yont2) > 0. Using (ad), we have

d(fTant2, 9Tan+1, Yo2n) <max {d(hdanio, tTon41, Yon), d(hT2ni2, fTont2, Yon),

d(txont1, 9Ton+1, Yon ),

1

é[d(hxzxw? 9Tan+1,Y2n) + d(tTon i1, [P0, yzn)]}

- w(max {d(h$2n+2, tTont1, Yon), A(h2nya, 242, Yon),

d(tTont1, gTon+1, Yon),

1

§[d(h$2n+27 gTon+1, y2n) + d(m’znﬂ, fronyo, y2n)]})

which implies that

d2n(y2n+2) < maX{07 d2n(y2n+2)7 0, 0} - w(maX{O, d2n<y2n+2)7 0, 0})
= don(Y2n+2) — W(dan(Yon+2)) < don(Y2n+2)
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which is a contradiction. Hence da,(yo,42) = 0. Similarly, we have dag,11(yons3) = 0.
Consequently, d,,(y,12) = 0 for all n € w. Note that

d(ynv Yn+2, G) S dn(ynJrQ) + dn<a) + dn+1 (a)

3.2
= dn(a) + dn+1 (a) . ( )

By (a4) and (3.2) we have

d2n+1(a) = d(fx2n+27 9Toan+1, CZ)

< max {d(hani2, tTan41, a), d( fToni2, honi2, ), d(gToni1, tToni1, @),

[d(honta, 9Tant1, @) + d(tTont, fTonya, )]}

N | =

— w(max {d(hwania, 1241, a), d(fTon42, hTani2, @), d(9Tant1, tTans1, ),
%[d(m‘zmz, 9Ton11, ) + d(toni1, fronia,a)})
= max {don(a), dons1(a), don(a), %[O + d(Yan, Yant2, @)] }

— w(max {dan (@), don1(a), (@), 5[0+ Ay, 2. )] })
2 dau(a) + dyin(a)]}
— w(max {don(a), doni2 (0), 5ldon(a) + s (@)]})

= max {dgn(a), d2n+1(a)} - w(max{dgn(a), d2n+1(a)}) )

:max{dgn a), dany1(a),

Suppose that da,.1(a) > doy(a). Then do,i1(a) < dopy1(a) — w(dapii(a)) < dayii(a), which
is a contradiction. Hence da,+1(a) < dop(a) and so da,i1(a) < dop(a) — w(dep(a)) < dan(a).
Similarly, we have da,(a) < do,—1(a). That is, for alln € N

dpi1(a) < dy(a). (3.3)
Let n,m be in w. If n > m, then 0 = d,,,(Ym) > dn(ym); if n < m, then

n(Ym)

IN

d ( ) + dm*1<yn) + dmfl<yn+1)
dn (Ym—-1) + dn(yn) + dn(Yn+1)
dn(Ym-1) < dp(Ym—2) < -+ < dp(Ynt1) = 0.

VANRRVAN

Thus, for any n,m € w

dn(ym) = 0. (3.4)
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For all i, 7, k € w, we may, without loss of generality, assume that i < j. It follows from (3.4)
that

d(yi, v yr) < diy;) + diyr) + d(Yir1, Y5, Yx)
= d(yi-i-la Yj, yk) S d(yi+27 Yj, yk) S e
< d(Yj-1, Y55 Yx) = dj-1(y) = 0.
Therefore (3.1) holds.
By virtue of (a4), (3.3) and (3.4) we have

dzn(a) = d(fxzm 9Ton+1, G)

< max {d(hxzm txony1, a), d(hx2n, JTon, a), d(t$2n+17 9Ton+1, 0)7

1
_[d(hl'an 9Ton+1, (Z) + d(tx2n+l7 fx2n7 a)]}

2
— w(max {d(haay, txoni1, a), d(han, fTo,, a), d(tzoni1, gTan41, @),
%[d(hxzm 9T2n41, @) + d(txoni1, fTon, a)]})
= max {da,_1(a), 0, da,(a), %d(y%l, Yons1,a) }
— w(max {da_1(a), 0, da,(a), %d(ygn_l, Yons1,a) })

|
)
— (s {dn-1(a), don(@), 51 (8) + don(@) + doss (y2n)]})
= max{dz,—1(a), dz2n(a)} — w(max{da,-1(a), d2n(a)})
= dan-1(a) — w(dzn-1(a)).

= max {dzn-1(a), don (@), 5[don-1(a) + d2n(a) + dops1(y20-1)] }

Similarly, we have da,41(a) < da,(a) — w(da,(a)). It follows that

n

> w(di(a)) < Z[di(a) — di1(a)] = do(a) = dnia1(a) < do(a).

=0

o0
So the series of nonnegative terms . w(d,(a)) is convergent. This means that
n=0

lim w(d,(a)) =0. (3.5)

n—oo

(3.3) ensures that {d,(a)},e, converges to some r > 0. In view of the continuity of w and

(3.5) we have

w(r) = lim w(d,(a)) =0

n—oo



Characterizations of common fixed points in 2-metric spaces 55
which implies that » = 0. Hence

lim d,(a) =0. (3.6)

n—oo

In order to show that {y,}ncw is a Cauchy sequence, by (3.6), it is sufficient to show that
{Yon }new is a Cauchy sequence. Suppose that {ya, fnew is not a Cauchy sequence. Then there
exist € > 0 and a € X such that for each even integer 2k, there are even integers 2m(k) and
2n(k) with 2m(k) > 2n(k) > 2k and d(yamk), Yon(k), @) > €.

For each even integer 2k, let 2m(k) be the least even integer exceeding 2n(k) satisfying the

above inequality, so that

d(y2m(k)—27 Yon(k)s Cl) <e, d<y2m(k)7 Yoan(k), a) > €. (3-7)

For each even integer 2k, by (3.1) and (3.7) we have

£ < d(Yam(k), Yon(k), @)
< d(Yom(k)—2: Yon(k)> @) + A(Yom(k) Yomk)—25 @) + A(Yamk)> Yon(k) Y2m(k)—2)
< e+ d(Yam(k)—2; Yam(k)s Yamk)—1) + A(Y2m(k) -2 Yam(k)—1, @) + A(Y2m(k) -1, Y2m k), @)
=€+ dom)—2(a) + dom@-1(a)

which implies that
hm A(Yom(k)s Yon(k), @) = € . (3.8)

It follows from (3.7) that

0 < d(Yan(k)s Yom(k)» @) — A(Y2n (k) Y2m(k)—2, @)
< d(Yom (k)25 Y2m (k) @)
< domry—2(a) + domy-1(a) .

In view of (3.6) and (3.8) we immediately obtain
,}1_{{)10 d(Yon(k)s Yom(k)—2, @) = €. (3.9)
Note that

| d(Yan(k)s Y2 -1 @) — AY2n(e), Yoy @)| < domy—1(@) + dome)—1(Yoner)) »

dom,
|d(y2n(k)+17 Yom(k), @ ) d(yZn y Yoam(k), @ | dan CL + d2n (k) <y2m( )) )
dop,

IA

| d(Yon(k)+1: Yom@k)—1, @) — A(Yon(kys Yom(r)—1, @) (@) + dan(ry(Yom@e)—-1) -
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It is easy to see that

]}1_{& d(Y2n(k)> Yom(k)—1, ) = kh—{go d(Y2n(k)+1: Yom(k)> @) = ]}LHOlO d(Y2n(k)+1> Yom(k)-1, @) = € .

(3.10)

It follows from (a4) that

d(me(k)7 Yon(k)+1, CL) = d(fl'zm(k), 9T on(k)+1, a)
< max {d(thm(k)a tm2n(k)+17 a)v d(thm(k)a fom(k)7 CL),

d(tZon(k)+1, 9Ton(k)+1, @),

1
5 [d(ham(iy, GZ2n(r)+15 @) + A(ETon(r)+1, fTomw), a)] }

- w(max {d(hxzm(k), LZon(k)+1, Cl)> d(hx2m(k); f:EQm(k)a CL),

d(tT2n(k)+1> 9T2n(k)+1, @),

%[d(hx2m(k:)7 9T2n(k)+1, @) + A(tTon)+1, [Tom), a)] })
= max {d(Yam(r)—1, Y2n(k)s @) damry—1(a), dangry (@),
%[d(y%n(k)la Yon(k)+15 @) + A(Yan(e)s Yomiy, @) }
— w(max {d(Yam()-1, Y2n(k): @), d2m(k)-1(a), dzn(i) (a),
1

§[d(y2m(k)—17 Yon(k)+1: @) + A(Yan(e), Yomrys @)l }) -

Letting k — oo, by (3.10), (3.8), and (3.6) we have
e <max{e,0,0,e} —w(max{e,0,0,e}) = —w(e) < e

which is a contradiction. Therefore {yo, }new is a Cauchy sequence in X.

It follows from completeness of (X, d) that {y,}ne, converges to a point u € X. Now,
suppose that ¢ is continuous. Since g and t are compatible and {gza,41 }new and {txo, 11 new
converge to the point w, by Lemma 2.2 we get that gtxs,.1, tgron1 — tu as n — oco. In

virtue of (a4) we have
d(fona gtx2n+17 &) < max {d(hx%u ttw2n+17 a)> d(hx2n7 fona Cl), d(ttx2n+17 gtm2n+17 a)a
1
§[d(h$2m GtTons1, ) + d(ttzons1, fron, a)]}
- w(max {d<hx2n7 ttx2n+l7 a)u d(hx%u fona CL),
d(ttroni1, glaanyt, a),

1
§[d(h$2m gtToni1,a) + d(ttron 1, fron, a)] }) .
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Letting n — oo, we have

1
d(u,tu,a) < max {d(u, tu,a), d(u, u,a), d(tu, tu, a), §[d(u, tu, a) + d(ttu, u, a)]}
1
— w(max {d(u, tu, a), d(u, u, a), d(tu, tu, a), i[d(u, tu,a) + d(ttu, u,a)] })

= d(u,tu,a) — w(d(u, tu, a))
which implies that w(d(u, tu,a)) < 0. This means that u = tu.
It follows from (a4) that

d(f$2na qgu, CL) S max {d(h:EZna tu? CL), d(thna fona CL), d(tua qu, (I),
1

§[d<hx2n’ qu, (I) —+ d(tu, fona a)]}

— w(max {d(hxgn, tu,a), d(hzay,, fra,, a),d(tu, gu, a),

S0, gu,0) + d(tu, fn,a))}).

As n — oo, we have
1
d(“? gu, CL) < max {d(u7 u, (l), d(u7 U, CL), d(ua gu, (l), §[d(u7 gu, (l) + d(uv U, CL)]}
1

— w(max {d(u, u,a),d(u, u, a),d(u, gu, a), =[d(u, gu, a) + d(u,u, a)] })

2
= d(u, gu, a) — w(d(u,u, a))
which implies that u = gu. It follows from ¢g(X) C h(X) that there exists v € X with
u = gu = hv. From (a4) we get
d(fv,u,a) = d(fv,gu,a)
< max {d(hv, tu, a),d(hv, fv,a),d(tu, gu, a), %[d(hv,gu, a) + d(tu, fo, a)]}
— w(maX {d(hv, tu,a),d(hv, fv,a),d(tu, gu, a),
%[d(hv, gu,a) + d(tu, fv,a)]})
= d(u, fv,a) — w(d(u, fv,a)).
Therefore, u = fv. Lemma 2.1 ensures that fu = fhv = hfv = hu. By (ad) we obtain

again
d(fu, u,a) = d( fv, gu,a)
< max {d(hu, tu, a), d(hu, fu, a), d(tu, gu, a), %[d(hu, gu, @) + d(tu, fu, a)]}
— w(max {d(hu, tu, a), d(hu, fu, a), d(tu, gu, a),
S ld(hu, gu,a) + d(tu, fu,)]})
— d(fu,u,a) — w(d(fu,u, ).
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Hence u = fu. That is, u is a common fixed point of f, g, h and ¢. Similarly, we can complete

the proof when f or g or h is continuous.

(4) = (1). Let {zn}new; {Un}new, dn(a) be as in the proof of (3) = (1). Analogous we

conclude that for all n,m € w
0n(a) < hdp+(a) < -+ < "do(a) (3.11)
and
dn(ym) = 0. (3.12)
For any n,m € w, by (3.11) and (3.12) we have

d(yna Yntm, a) < dn(a) + d(yn+1> Yn+m, a) + dn(yn-i-m)
= dn(a) + d(yn—f—h Yn+m CL) <...

n+m—1 n+m—1 Bn
k
< kgn di(a) < kgn h¥dy(a) < . hdo(a)

which implies that {y,}ne. is a Cauchy sequence. The remainder of the proof follows from
the proof process of (3) = (1).

This completes the proof.

From Theorem 3.1 we immediately have

Theorem 3.2 Let (X,d) be a complete 2-metric space with d continuous on X and let
h and t be two mappings of X into itself. Then (1) is equivalent to each of the following
conditions:

(5) there exist r € (0,1), f: X — t(X) N h(X) such that

(a6) the pairs f,h and f,t are compatible,

(a7) one of f,t and h is continuous,

(a8) d(fz, fy,a) < rmax {d(ha:,ty,a),d(hx,fx,a),d(ty, fy,a),
sld(ha, fy,a) +d(ty, fr,a)]}
forall x,y,a € X;

(6) there exist w € W, f : X — t(X) Nh(X) satisfying (a6), (a7) and (a9):
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(a9) d(fz, fy,a) < max{d(hx,ty,a),d(hx, fx,a),d(ty, fy,a),
Sldlha, fy.a) + dlty, fo,a)]}
— w(max {d(ha:, ty,a),d(hx, fr,a),d(ty, fy,a),

%[d(h{]j’ fy, CL) + d@y; fll?, a)]})

forall z,y,a € X;
(7) there exist o € O, f : X — t(X) NA(X) satisfying (a6), (a7) and (al0):

(al0) d(fx, fy,a) < w(d(hz,ty,a),d(hx, fr,a),d(ty, fy,a),d(hz, fy,a),d(ty, fr,a))
forall x,y,a € X.

Remark 3.1 Theorems 3.1 and 3.2 are still true even though the condition of the compati-
bility is replaced by the compatibility of type (A).

Remark 3.2 Theorems 3.1 and 3.2 generalize, improve and unify Theorem 4.8 of Cho [1],
the Theorem of Constantin [2], Theorem 2 of Khan and Fisher [11], Theorem 1 of Kubiak
[11], Theorem 4 of Rhoades [21], Theorem 1 of Singh, Tiwari and Gupta [30].

Theorem 3.3 Let f be a mapping of a complete 2-metric space (X, d) into itself satis-
fying
1
(al1) d(fz, fy,a) < max{d(z,y,a), 5[d(z, fz,a) + d(y, [y, a)],
1
[d(l’? fy7 CL) + d(y7 fl', CL)], E[d(ya fyu CL) + d(y7 f.l’, CL)],

1
2
Sldly, fy, @)+ d(z. fy.0)]}

forall x,y,a € X.

Then the following conditions are equivalent:

(8) F(f) is nonempty and for each x € X, the sequence of iterates { f"x}ne, converges to
some point in F(f);

(9) there exists a closed subset G of X such that

(312) d(f.ﬁl?,p, (I) < d(.’L’,p, a) fOT x,a € X7 D€ G:
(al3) liminfd(f"z,G,a) =0 fora € X.

n—oo
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Proof: (8) = (9). Take G = F(f) and z € X. Then {f"x},en converges to some point
w € G. It follows that

liminf d(f"z, G, a) = liminf{ imgv d(f"z,p,a)} <liminfd(f"z,w,a)
pEe

n—oo n—oo n—oo

= lim d(f"z,w,a) =0

n—oo

which implies that liminf d(f", G,a) = 0 for a € X.

n—oo

Let x,a € X and p € G. In view of (all) we have

d(fx,p,a) =d(fz, fp,a)

< max {d(x,p,a), 3d(z, fr,a), 3 [d(x, p.) +d(p, fr )],
1 (3.13)

%d(p, fx7a>’ §d(flf,p, a)}

= max {d(z,p, a), %(1‘, fx,a), =[d(z,p,a) + d(p, fz,a)]} .

| —

Using (3.13) we obtain

d(frp.2) < max {0,0, 5dlp, f.)} = 5dlfv.p.2)

which implies that d(fz,p,z) = 0. Hence

d(z, fr,a) <d(z, fz,p) + d(z,p,a) + d(p, fr,a) (3.14)
=d(x,p,a) +d(p, fz,a).
It follows from (3.13) and (3.14) that
d(fz,p,a) < max {d(a:,p, a), %[d(aj,p, a) +d(p, fx, a)]}
which implies that
d(fx,p,a) <d(x,p,a). (3.15)

Assume that {y,}neny C G and y, — y € X as n — oo. It follows from (3.15) that

d(fy,y,a) < d(fy,y,yn) + d(fY; Yn,a) + d(Yn, v, a) < 2d(Yn, y, a) .

Letting n — oo, we easily conclude that d(fy,y,a) = 0 for all @ € X. Therefore y = fy € G.
That is, GG is a closed.

(9) = (8). Let 29 and a be in X and z,, = f"xq for all n € N. It follows from (al2) that

(0, G.0) = inf {d(wn,p, )} < inf {dlwn1,,0)} = dlwn-1,Ga).
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That is, {d(x,, G, a)}nen is non-increasing. Thus (al3) implies that lim d(z,,G,a) =

n—oo

liminf d(z,,G,a) = 0. Therefore, for any € > 0, there exists ng(a) € N such that for

n—oo

all n > ng(a)
1
d(z,,G,a) < 5 (3.16)
Now, suppose that n > m > ng(a) and p € G. By (al2) we have for £ > ngy(a)
d(xp, T, p) = d(frn_1,p,2m) < d(Tp_1,D,Tm) < -+ < d(Tpm, D, ) =0 (3.17)
and
d($k,p, CL) = d(ka—17p7 CL) < d<xk—17p7 CL) < < d(xno(a)vpa CL) : (318>
In virtue of (3.17) and (3.18) we get

d(xn7 L, CL) < d<xn7 xmap) + d(xnnpu CL) + d(p’ Ly CL)
< Qd(xno(a)ypu CL)

which implies that
d(Tn, Ty, @) < 2d(Tng(a), G, @) .
By (3.16) and the above inequality we have for n > m > ny(a)
d(xp, T, a) < €.

Hence {x,}nen is a Cauchy sequence in X and has a limit w € X since (X, d) is complete.

Letting £ — oo in (3.18), we have
d(w,p,a) < d(Tny(a); D @)
which implies that
dlw,G,a) = [1)2(2 d(w,p,a) < d(Tny@), G, a) . (3.19)

In view of (3.16) and (3.19) we obtain that d(w, G, a) < e, which implies that d(w,G,a) =0
for all @ € X. Since G is closed, so w € G. It follows from (al2) that d(fw,w,a) <
d(w,w,a) =0 for all @ € X. This means that w = fw € F(f) # ¢.

This completes the proof.



62 Z. Liu; F. Zhang
References
[1] Cho, Y.J. : Fized points for compatible mappings of type (A). Math. Japon. 38,

[12]

[13]

497-508 (1993)

Constantin, A. : Common fized points of weakly commuting mappings in 2-metric
spaces. Math. Japon. 36, 507-514 (1991)

Dubey, R.P. : Some fized point theorems on expansion mappings in 2-metric spaces.
Pure Appl. Math. Sci. 32, 33-37 (1990)

Gahler, S. : 2-metrische Rdume und ihre topologische Struktur. Math. Nachr. 26,
115-148 (1963)

Imdad, M., Khan, M.S., and Khan, M.D. : A common fixed point theorem in
2-metric spaces. Math. Japon. 36, 907-914 (1991)

Iséki, K. : A property of orbitally continuous mappings on 2-metric spaces. Math.
Seminar Notes, Kobe Univ. 3, 131-132 (1975)

Iséki, K. : Fized point theorems in 2-metric spaces. Math. Seminar Notes, Kobe Univ.
3, 133-136 (1975)

Iséki, K., Sharma, P.L., and Sharma, B. K. : Contraction type mappings on 2-
metric spaces. Math. Japon. 21, 67-70 (1976)

Khan, M. S. : Convergence of sequences of fixed points in 2-metric spaces. Indian J.
Pure Appl. Math. 10, 1062-1067 (1979)

Khan, M. S. : On fized point theorems in 2-metric spaces. Publ. Inst. Math. (Beograd)
(N.S.) 41, 107-112 (1980)

Khan, M. S., and Fisher, B. : Some fized point theorems for commuting mappings.
Math. Nachr. 106, 323-326 (1982)

Khan, M. S., and Swaleh, M. : Results concerning fized points in 2-metric spaces.
Math. Japon. 29, 519-525 (1984)

Khan, M. S., Imdad, M., and Swaleh, M. : Asymptotically reqular maps and
sequences in 2-metric spaces. Indian J. Math. 27, 81-88 (1985)

Kubiak, T. : Common fized points of pairwise commuting mappings. Math. Nachr.
118, 123-127 (1984)



Characterizations of common fixed points in 2-metric spaces 63

[15]

[16]

[17]

[27]

[28]

Lal, S.N., and Singh, A.K. : An analogue of Banach’s contraction principle for
2-metric spaces. Bull. Austral. Math. Soc. 18, 137-143 (1978)

Lal, S.N., and Singh, A. K. : Invariant points of generalized nonexpansive mappings
in 2-metric spaces. Indian J. Math. 20, 71-76 (1978)

Murthy, P.P., Chang, S.S., Cho, Y.J., and Sharma, B. K. : Compatible map-
pings of type (A) and common fized point theorems. Kyungpook Math. J. 32, 203-216
(1992)

Naidu, S. V. R. : Fized point theorems for self-maps on a 2-metric space. Pure Appl.
Math. Sci. 35, 73-77 (1995)

Naidu, S. V. R., and Prasad, J. R. : Fized point theorems in 2-metric spaces. Indian
J. Pure Appl. Math. 17, 974-993 (1986)

Park, S., and Rhoades, B. E. : Some general fized point theorems. Acta Sci. Math.
(Szeged) 42, 299-304 (1980)

Parsi, V., and Singh, B. : Fized points of a pair of mappings in 2-metric spaces. J.
Indian Acad. Math. 13, 23-26 (1991)

Pathak, H. K., Chang, S.S., and Cho, Y.J. : Fized point theorems for compatible
mappings of type (P). Indian J. Math. 36, 151-166 (1994)

Pathak, M. K., and Maity, A. R. : Fized point theorems in 2-metric spaces. J. Indian
Acad. Math. 12, 17-24 (1990)

Ram, B. : Ezistence of fized points in 2-metric spaces. Ph. D. Thesis, Garhwal Univ.,
Springar 1982

Rhoades, B. E. : Contraction type mappings on a 2-metric space. Math. Nachr. 91,
151-154 (1979)

Sessa, S., and Fisher, B. : Some remarks on a fixed point theorem of T. Kubiak.
Publ. Math. Debrecen 37, 41-45 (1990)

Sharma, A.K. : On fized points in 2-metric spaces. Math. Seminar Notes, Kobe
Univ. 6, 467-473 (1978)

Sharma, A.K. : A study of fixed points of mappings in metric and 2-metric spaces.
Math. Seminar Notes, Kobe Univ. 7, 291-292 (1979)



64

[29]

[30]

[31]

[32]

[34]

[35]

[36]

Z. Liu; F. Zhang

Sharma, A. K. : A generalization of Banach contraction principle in 2-metric spaces.
Math. Seminar Notes, Kobe Univ. 7, 293-294 (1979)

Sharma, A.K. : A note on fized points in 2-metric spaces. Indian J. Pure Appl.
Math. 11, 1580-1583 (1980)

Sharma, B. K., and Sahu, N. K. : Asymptotic reqularity and fixed points. Pure Appl.
Math. Sci. 33, 109-112 (1991)

Singh, S.L. : Some contraction type principles on 2-metric spaces and applications.
Math. Seminar Notes, Kobe Univ. 7, 1-11 (1979)

Singh, S.L. : A fized point theorem in 2-metric spaces. Math. Ed. (Siwan) 14, 53-54
(1980)

Singh, S. L., Tiwari, B. M. L., and Gupta, C.K. : Common fixed points of com-
muting mappings in 2-metric spaces and applications. Math. Nachr. 95, 293-297 (1980)

Singh, S. L., and Ram, B. : A note on the convergence of sequence of mappings and
their common fized points in a 2-metric space. Math. Seminar Notes, Univ. Kobe 9,
181-185 (1981)

Singh, S. L., and Meade, B. A. : On common fixed points in 2-metric spaces. Indian
J. Phy. Nat. Sci. 2(13), 32-35 (1982)

received: December 9, 1998

Authors:

Zeqing Liu; Fengrong Zhang

Department of Mathematics

Liaoning Normal University
Dalian, Liaoning, 116029
People’s Republic of China



Rostock. Math. Kolloq. 55, 65-72 (2001) Subject Classification (AMS)
54H25

GUO-JING JIANG

Common Fixed Points in Compact Metric Spaces

ABSTRACT. Common fixed point theorems for contractive type mappings of compact
metric spaces are given. Our works generalize known results of Edelstein, Fisher, Leader,

Jungck and Liu.
KEY WORDS AND PHRASES. Contractive type mappings, common fixed points, compact

metric spaces.

1 Introduction

Throughout this paper, we assume that (X, d) is a compact metric space and that f, g, a and
b are self mappings of (X,d). N and w denote the sets of positive integers and nonnegative
integers, respectively. For z,y € X, define O(z, f) = {f"z|n € w} and O(x,y, f,g9) =
O(z, f)UO(y, flUO(z,9) UO(y,g). Put 6(A) = sup{d(a,b)|a,b € A} for A C X. Define
Cr={h|h:X - X and hf = fh}, Hy ={h|h: X — X and h(),cn ["X CNen [ "X}
Clearly Hy O C; D {f"|n € w}.

In 1962, Edelstein [1] proved the following

Theorem E Let f satisfy d(fz, fy) < d(x,y) for all distinct x,y € X. Then f has a

unique fized point.

Fisher [2, 3, 1, 5], Leader [0], Jungck [7] and Liu [%] et al. gave a number of generalizations

of Theorem E, some of which deal with contractive type mappings as follows:
1 1
1) d(f, fy) < max{d(z,y), ;[d(z, fz) +d(y, fy)], 5 ld(z, fy) + d(y, f2)l}
for all distinct z,y € X (Fisher [2]).
2) There exist p,q € N such that

d(frx, fhy) < max{d(f™z, f"y),d(f"z, f'x),d(f"y, f1y) |0 < m,i <p,0<n,j < q}
(D)
for all z,y € X for which the right-hand side of (I) is positive (Fisher [3]).
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3) There exist p,q,7,s € w, p+¢q>1,r+ s > 1 such that

d(f*g'z, f*g%y) < max{d(f'g’z, f'g"y), d(f'gz, f"g"x),d(f'g"y, *9"y)]

II
0<i,m<p0<jn<gqg0<tu<r0<kv<s} w
for all z,y € X for which the right-hand side of (II) is positive (Fisher [1]).
4) d(fz,gy) < max{d(ax,by),d(ax, fr),d(by, gy), d(az, gy), d(by, fr)} (1)

for all z,y € X for which the right-hand side of (III) is positive (Fisher [5]).

5) There exists p € N such that

d(fPz, fPy) < 6(O(z, f) U O(y, f))

for all distinct z,y € X (Leader [0]).

6) d(fx, fy) <o( U h{x,y})

hGCgf

for all z,y € X with fx # gy (Jungck [7]).

7) d(fx,gy) <d( U h{z,y})

hEHgf

for all x,y € X with fz # gy (Liu [8]).

The main purpose of this paper is to investigate the existence of common fixed points of self
mappings f, g of (X, d) satisfying the following contractive type conditions:

8) There exist p,q,7,s €w, p+q > 1, r+ s > 1, such that

d(f"g"x, fg%y) <o U hO(z,y.9'f7, f"g™))

i,J;m,n€w,h€Hy¢

for all x,y € X with fPgiz # f"g°y.
9) There exist p,q € w, p+ q > 1, such that

d(fPg%z, fPg%y) < &( U hO(z,y,9' 7, f"g™)) (IV)

i,j,m,n€w,h€Hy ¢

for all distinct =,y € X.

In Section 2, we prove some contractive type conditions are equivalent and establish several
common fixed point theorems which extend and unify some known results in [1]-[3]. In

Section 3, we give five examples to show that our results are more general than the results

i [1]-[5].
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2 Common fixed points
We first define contractive type conditions as follows:

2)" There exist p,q € N such that (I) holds for all z,y € X with fPz # fiy.

3)" There exist p,q,7,s € w, p+q > 1, 7+ s > 1, such that (II) holds for all x,y € X with
frgtx # [ g%y
4)" (I1I) holds for all z,y € X with fz # gy.

9)" There exist p,q € w, p+q > 1, such that (IV) holds for all z,y € X with fPg%z # fPg%y.

We now prove the following

Lemma 1 Conditions 2) and 2)' are equivalent.

Proof: Let R(z,y) and L(x,y) denote the right-hand and left-hand sides of 2) respectively.
Assume that 2) holds. For z,y € X, if L(z,y) > 0, then R(z,y) > 0. By assumption it
follows that (I) holds for z,y € X with L(z,y) > 0. This proves that 2) implies 2)'.

Conversely, for x,y € X, if R(z,y) > 0, we consider two cases:
(i) L(z,y) = 0. Clearly L(x,y) =0 < R(x,y).

(ii) L(x,y) > 0. Since 2)" holds, L(z,y) < R(x,y). It follows that 2)" implies 2).

Similarly we have
Lemma 2 Conditions 3) and 3)' are equivalent.
Lemma 3 Conditions 4) and 4)' are equivalent.

Lemma 4 Conditions 9) and 9)' are equivalent.

The following lemma was given in [0, 7].

Lemma 5 Let f be continuous and B = (. /"X . Then B is compact, B = fB # 0
and 0(f"X) — 6(B) as n — oo. Further hB C B for h € Cy.

Our main results are as follows:

Theorem 1 Let gf be continuous and f (), cn(9)"X = N,en(9f)"X. If f and g satisfy
8), then f and g have a unique common fized point u and (gf)"x converges to u uniformly
on X. Further, u= hu for h € Hy;.



68 G.-J. Jiang

Proof: Let B = (), .y(9f)"X. It follows from Lemma 5 that B is a nonempty compact
subset of X and gfB = B. Consequently ¢B = ¢gfB = B since fB = B. Suppose
that 0(B) > 0. By the compactness of B, there exist u,v € X such that 6(B) = d(u,v).
Since fB = gB = B, there exist x,y € B such that v = fPglx, v = f"¢°y. Obviously
Ui jmmewnen,, 1Oy, 9'f7, f"g™) C B. Using 8) we get

0(B) =d(f"g9", f"g°y)
<6( U hO,y.df, f"g™)

i,j,m,n€w,h€Hy¢
< 4(B)
which is impossible and hence §(B) = 0; i.e., B is a singleton, say, B = {u} for some u € X.
It follows from fB = gB = B that fu = gu = u; i.e., f and g have a common fixed point u.

Suppose that f and g have a second common fixed point v. Then fv = gv =v = (gf)™v €
(gf)"X for n € N. This means that v € [,y (9f)"X = B = {u}. Therefore f and g have
a unique common fixed point u. Note that hB C B for h € H,y. Consequently v = hu for
h e Hgf.

By Lemma 5, we have for x € X and n € N

d((gf)"z,u) <0((gf)"X) — 6(B) =0 asn — oo,
i.e., (¢f)"x converges to u uniformly on X. This completes the proof.
From Theorem 1 we get immediately

Corollary 1 [5, Theorem 1]. Let gf be continuous and f(,cn(9)"X = N,en(9)"X.

If f and g satisfy 7), then the conclusion of Theorem 1 remains unchanged.

Proof: Incase p=s=1, ¢q=1r =0, Corollary 1 follows from Theorem 1.

As a consequence of Corollary 1 we have

Corollary 2 [7, Theorem 4.2]. Let gf be continuous and f and g commute. If f and g
satisfy 6), then f and g have a unique common fized point w. Further, u = hu for h € Cy;.

Remark 1 Example 1 reveals that Theorem 1 is indeed a proper extension of Theorem 1
of Liu [3] and Theorem 4.2 of Jungck [7].
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Corollary 3 Let gf be continuous and f(,cn(9/)"X = Noen(9f)"X. If f and g
satisfy

10) d(frg'e. f1g°y) <0( U Olw.y.g'f7, f"g™))

forall x,y € X with fPglx # f"g°y, where p,q,r,s > 0 are fixed integers with p+q > 1,
r+s>1,

then f and g have a unique common fized point.

Proof: Since 10) implies 8), Corollary 3 follows from Theorem 1.

Corollary 4 Let gf be continuous and f(,cn(9/)"X = Noen(9f)"X. If f and g
satisfy 3), then f and g have a unique common fized point w. Further, if ¢ = 0 or s = 0,
then u 1is the unique fixed point of f and if p =0 or r =0, then u is the unique fized point

of g.

Proof: Note that 3)" implies 10). It follows from Lemma 2 and Corollary 3 that f and g
have a unique common fixed point u. Suppose that ¢ = 0 and that v is a second distinct

fixed point of f. From 3) we have
0 < d(v,u) = d(f*v, ["g°u) < d(v,u)

giving a contradiction. This proves the uniqueness of w.

Similarly, we can prove that u is the unique fixed point of f if s = 0, and that u is the unique

fixed point of g if p =0 or r = 0.

Remark 2 Theorem 5 of Fisher [1] is a special case of Corollary 4. Example 2 proves that

Corollary 4 is a substantial generalization of the result of Fisher.

Theorem 2 Let fg be continuous and g (", cn(f9)"X = N,en(f9)"X. If f and g satisfy
1) d(fPg'z, frgy) <o U hO(z,y.9'f, f"g™))
i,j,m,n€w,h€Hy,
forall x,y € X with fPglx # f"g°y, where p,q,r,s > 0 are fived integers and p+q > 1,

r+s>1,

then f and g have a unique common fized point u and (fg)"x converges to u uniformly on
X. Further, w = hu for h € Hy,.
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The proof of this theorem goes in a similar fashion as that of Theorem 1, so we omit the

proof.

Corollary 5 Let fg be continuous, g(,en(f9)"X = N,en(f9)"X and a,b € Hy,. If
fyg,a and b satisfy 4), then f,g,a and b have a unique common fized point u. Further, u is

the unique common fized point of f and a and of g and b.

Proof: By Lemma 3 we conclude easily that 4) is a particular case of 11). It follows from
Theorem 2 that f,g,a and b have a unique common fixed point u. Suppose that f and a

have a second distinct common fixed point v. Using 4)
0 < d(v,u) =d(fv,gu) < d(v,u)

which is a contradiction. This proves the uniqueness of u. Similarly we can prove that wu is

the unique common fixed point of g and b.

Remark 3 By setting g =identity mapping in Theorem 2, we get an improved version of

Theorem 4 of Fisher [3]. Example 3 demonstrates that Theorem 2 extends properly Theorem
4 of Fisher [3]. Example 4 reveals that Corollary 5 is indeed a generalization of Theorem 2
of Fisher [5].

From Theorem 1 and Lemma 4 we have

Theorem 3 Let gf be continuous and f Mnen (9)" X = Npen(9f)"X. If f and g satisfy

9), then the conclusion of Theorem 1 remains unchanged.

Remark 4 Theorem E, Theorems 7, 8, 9 and 10 of Fisher [2] and Corollaries 2 and 3 of
Leader [0] are particular cases of Theorem 3. Example 5 proves that Theorem 3 extends

properly the results of Edelstein, Fisher and Leader.

3 Examples

Example 1 Let X = {1,2,3,4} with the usual metric, f1 = f4 =1, f2 = g2 = g4 = 2,
f3=¢93=4and gl =3. Take p=r =s =2, g = 1. It is easy to check that the conditions
of Theorem 1 are satisfied. But Theorem 1 of Liu [8] and Theorem 4.2 of Jungck [7] are not
applicable since 6) and 7) do not hold for x =1 and y = 3.

Example 2 Let X = [0,1] with the usual metric, fx = x/3 for z € X, g1 = 0 and

gr = x/2 for x € [0,1). Clearly (), cn(9f)"X = ,en[0,1/6"] = {0}. Set p = s = 1,
g = r = 0. It is simple to verify that the assumptions of Corollary 4 are satisfied. But
Theorem 5 of Fisher [1] is not applicable since fgl =0 #1/6 = gf1.
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Example 3 Let X and f be as in Example 1. For any p,q € N, f does not satisfy 2) since
d(fP1, f12) = 1 = max{d(f™1, f"2),d(f™1, f'1),d(f"2, f72) |0 <m,i <p,0 < n,j < ¢}

and hence Theorem 4 of Fisher [3] is not applicable. Define a self mapping g of (X, d) by
gl =3, 92 =g4=2and g3 =4. Takep=1r = s =2, g = 1. It is easily seen that the
hypotheses of Theorem 2 are valid.

Example 4 Let X = [0,1] with the usual metric, f1 = 0, fz = 2%/2 for x € [0,1),
gr = x/3, ar = bx = x for v € [0,1]. Then ,cn(f9)"X =, en[0,1/18% 7] = {0}. Tt
is easy to check that the conditions of Corollary 5 are satisfied. Theorem 2 of Fisher [7]
however is not applicable since fgl = 1/18 #0 = gf1.

Example 5 Let X = {1,2 3,7} with the usual metric, f1 =1, f2= f7=2and f3="71.
Then Theorem E, Theorems 7, 8, 9 and 10 of Fisher [2] and Corollaries 2 and 3 of Leader
[6] are not applicable since 5) does not hold for every p € N and z = 1, y = 2. Define a self
mapping g of X by g1 = g2 = g3 =2 and g7 = 1. Choose p = ¢ = 1. It is easy to show that
the conditions of Theorem 3 are satisfied.
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A. BEcHAH

Nontrivial Positive Solutions for Systems with the
p-Laplacian in IR" Involving Critical Exponents

ABSTRACT. In this paper we give some results for the existence of positive solutions of
p-Laplacian systems in IRY involving critical exponents. These solutions can be obtained
by variational methods, more precisely by the mountain pass lemma and the concentration

compactness lemma.

1 Introduction

In this paper we are interested in the existence of nontrivial positive solutions for Systems
of ¢ and p Laplacian involving critical exponents in IRY. Our study follows several works for
the case of a simple equation which take their origin in the paper of Brézis and Nirenberg

[2] concerning a semilinear equation of the following form

—Au=uv""14+ X inQcRY,

(EC)
u=0 on 0},

where () is a smooth bounded domain and 2* is the Sobolev exponent. We recall that for
1§p<+oo,p*:NN—f;.

They give existence of positive solutions when N > 3 and A € (0, \;), where \; is the first
eigenvalue for the Laplacian operator.

Recently, several authors were interested by this type of problems in the case of the p-
Laplacian (i.e. Ayu = div(|[Vu[P~2Vu)). See [10], [7], [0], [3] and the references therein.

For 1 < p < N, Drabeck and Huang in [(] consider the equation
(ECT) — Apu = Ag()|ulPPu+ f(x)|ulf P, xe RY.
They introduce \; > 0, principal eigenvalue for the problem
—Apu = Ag(x)|uff?u e RY,
/ g(x)|u|Pdxz > 0,
RN



74 A. Bechah

and they prove that Equation (EC1) admits at least one weak positive solution if A € (0, \y).

This solution lies in D*?(IRY), i.e. the closure of C3°(IRY) with respect to the norm
HUHDLP(BN) = HVUHLP(BN)'

In this paper we extend the results above ([0], [2]) to the system

(—Aju = a(@)[ul” "2u + Ab(@)|ul* ulv]*,

— A = c(x) o] 20 4+ Ab(@) [u|* o]y in RY,

lim u(z)= lim wv(z) =0,
|z[—+o00 |z[—+o00

\u>0,v>0,

with

1

a—+1 +1

A
p q

p>1, ¢g>1, max{p,q} <N, «a>0, [>0. (1.2)

, a+[B+2<N, (1.1)

We prove the existence of a positive solution for any A € (0, A;). Here A; is the principal

eigenvalue associated to the problem

(A yu = Ab(a)|ul*ulv] 7,

—Av = Mbo()[u|*T o]ty in RY,

(VP)
u>0,v>0,
lim wu(z)= lim w(z)=0.
\ [2] =00 2| =00

J. Fleckinger, R.F. Manasevich, N.M. Stavrakakis and F.de Thélin [7] prove that under hy-
potheses (1.1), (1.2) and

(H1) bis a C®(IR"Y) function with v € (0,1) which belongs to Lati (RN) N L>®(RY),

there exists a positive eigenvalue denoted by A;.

Results concerning the subcritical case have been obtained independently by [I] and [I1].
But, from our knowledge, there are no results concerning the critical case for systems in R".
In the case of a bounded domain and p = ¢ see [1].

Now we come back to the critical system (SC'). Here we shall prove the existence of positive

solutions by a variational method, more precisely by the Montain Pass Theorem [3]. One of
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the difficulties in the critical case is that the Palais Smale conditions will be satisfied only

for ¢ > 0 satisfying

. [a+1 e ﬁ+1
e < min { 2T ol ooy o S el e |-

We recall that (u,v) € DYP(IRY) x DYI(IRY) is a weak solution if it satisfies (SC') in weak

sense. And the Sobolev constant S, is given by

S, = inf {M u € Wl”’(]RN)\{O}} :

Now, we introduce the hypotheses below what we need in our proofs:

(H2) a and c are nonnegative functions in L*°(IRY).
(H3) There exist R > 0 and by > 0 such that

b(ZL‘) > bo >0 in Bg.

Ot 1e3 T B4+1 ST
(H4) If —— N HaHLOO(]RN) < T el () We assume
. (N—p)(a+1) . P
p p—1
e a(r) = a(0) + O(|z|*) near 0,
4 — N -
where k; > pl and 0 = N — p(a—i—l)—l— 2p(a+1),
¢ a(0) = ||af|p(pv) and a(x) > O in Byg.
O{‘l— 1 N p—N ﬁ_|_ q—N
If p || ||L°°(RN) = N q || HLoo BN) we assume
JHN B+ pg

q q—1
o c(x) = ¢(0) + O(|z|**) near 0,

N —
where ko > qul andyzN——q(ﬁ+1)+ q(ﬂ+1),
- q
o c(0) = ||| ooy and c(z) > 0 in Byp.
N Nop
S p
Example: If a(z) = a(0) on Bg, a(0) > —lle Hoo and
ﬁ +1 Sy
PP . N
N—p> T then the hypothesis (H4) is satisfied.
«

Theorem 1.1 If the hypotheses (H1) - (H4), (1.1) and (1.2) are satisfied, then System
(SC) admits a weak solution (u,v) # (0,0).

Remark 1.2 In fact, we prove that v # 0 and v # 0 (see Corollary 3.1).
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2 Preliminaries

Lemma 2.1 Assume that hypotheses (H1), (1.1) and (1.2) are satisfied; then for all
A € (0,)), there exists ag > 0 (depending of \) such that ¥(u,v) € D"*(IRY) x D*(IR"N)

we have

a+l a+1y,,18+1
[y + o Ny =% [ W@l ol s
> ag (||u||pl,,,(RN> - Hvupl,q(m) .
[ |
Now, we introduce the functional
a+1 a+1 .
) =l gy + T oy — o [ ata)fu o
k (2.4)

iy

Classical arguments show that Jy is well defined.

A/ ()|l o]+
RN

In the following lemma we recall Lions’s concentration-compactness Lemma.

Lemma 2.2 [], [9], [3].

Let {un}, converge weakly to u in D'P(IRY) PV and {|Vu,|P}, converge

weakly to the nonnegative measure v, u on IRY respectively. Then

1. v= |u|p* +Zyj5zj with v > 0 \V/j S J,
jed
2. 1> [VulP +) by, with py; >0 Vi€ J,
jeJ
p

3. Spuf <uw;, Vjel,

where x; € IRY 6, is the Dirac measure, J is a countable set and S, is the Sobolev constant.

Proposition 2.3 Let {u,}, converge weakly to uy in D'P(IRY). Then for all h €
L>®(IRY), there exists a subsequence of {u,}, denoted again by {uy}, such that for all ¢ €
Coo(RY)

/ h]un]p*zun¢dx—>/ h\u0|p*’2u0¢dx,
RN RN

and

/ h|un|p_2un¢dx—>/ h|uo [P~ *ugpda.
RN RN
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See [6] for the proof of Proposition 2.3.

Proposition 2.4 Let {(u,,v,)}n be a bounded sequence converging weakly to (u,v) in
DY (IRN) x DM(IRY) and satisfying

In(tn, vn) — C, (2.5)
and

I (U, vy) — 0. (2.6)
Then there ezists a subsequence still denoted by {(un, v,)}n such that

|Vu,|P~2Vu, — |VulP2Vu weakly in (Lp(]RN))/, (2.7)

V0,972V, — |Vo|"2Vo  weakly in (LI(RM))". (2.8)

Proof: It is clear from Sobolev embedding that {(u,, v,)}, converges strongly in L (IR™)x
Lq

loc

(IRY) and so there exists a subsequence still denoted by {(u,,v,)}, such that
(U, vy) — (u,v) a.e. in RN,

Observe, that all hypotheses of Lemma 2.2 are satisfied, and thus, there exist two countable
sets J and J such that (uy,), and (v,), satisfy the properties 1, 2 and 3 (Lemma 2.2) in .J
and J respectively.

First, we show that J and J are finite.

From (2.4) we have

T, 0)(w,2) = (@ + 1) /

RN

—(a+1) /]RN a(x)|ulP” Puwdz — (54 1) /]RN c(x)|v|? vzda (2.9)

— )\/ [(e+ 1)b(z)|u|* tuw|v|™ + (B 4+ D)b(x)[u]** o]~ vz] da,
RN

|VulP2Vu.Vwdr + (8 + 1) / (V|9 2V0.Vzdr
N

R

for all (u,v), (w,z) € D"P(IRYN) x D™(IRY).
Now, for x; € {z;, i € J} we introduce a function ¢; € C°(IR") satisfying ¢; = 1 in
B(zj,€), ¢; =0 in RY/B(x;,2¢) and |Vg,| < °
€
Substituting w = ¢;u,, z =0 in (2.9) and using (2.6) we obtain
lim |Vt [P~ 20, (Vu,. Vo, )dx

n—-4o00 RN

= lim {/ a(:v)|un|p*gbjdx+)\/ b(z) [t |*TH 0, [P g da —/ |Vun|p¢jdx} :
n—oo RN BN BN
(2.10)
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Classical arguments (see [1]) show that

lim b(m)|un|°‘+1|vn|ﬁ+1¢jdx:/ b(z)|u|*T ||t g,da. (2.11)
RN

n—-+o0o RN

And from Lemma 2.2, (2.11) and (2.10), we obtain

lim |Vt |P 1, (Vu,. Vo) dx
n—+oo [N (212)
= [ a@osdvn [ bl ol ode — [ 6idu
RY RN RY
From [6] we have
lim / VP2t (Vi Vb )| — 0, (2.13)
n—+oo [pN
as € — 0.
Letting € go to 0 in (2.12) and using (2.13), we obtain
a(;)v; = py- (2.14)
We deduce from this last equality
a(z;) >0 VjeJ (2.15)
S, n
vy > (—2%, (2.16)
T a(xy)
J is finite. (2.17)

Indeed, if J is infinite we deduce from (2.16) and Lemma 2.2 that [ |u, [P dz — +o00; a
contradiction.
Now, we let J = {1,....,m} and Q. = {z € R" : dist(v;,z) > €, ¥Vj = 1,...,m}.

Arguing as in [8] we prove that (see the details in [1])

/ (|Vun P 2Vu, — |VulP2Vu)(Vu, — Vu)dz — 0 Vey > 0. (2.18)
Q€O

Classical arguments show that

ou,, ou

N

a.e.in ey, 1<1<N.

Since ¢ is arbitrary, we conclude by a diagonal process that there exists a subsequence

denoted again by (u,) such that

ou,, ou

ae.in RN 1<i<N.
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Since {|Vu,|"~? Our (LP(IRN)), we conclude that

al‘i
Vu \VQ@U" — \Vu\pﬂ% weakly in (LP(RY)), 1<i<N.
" ow; ox; ’ =" =
Hence (2.7).
Similarly we obtain (2.8). |

In the following lemma we prove Palais Smale conditions.

Lemma 2.5 Suppose that the hypotheses (H1), (H2), (1.1), (1.2) hold and X € (0, ).
We define

87 lallZ gy oS
L (RN’

Sy = min{ S lle ||Loo ) } . (2.19)

Then the function Jy satisfies the Palais Smale conditions at C' for all C < Sy.

Proof: Let {(un,vn)}, C DY(IRY) x D“(IRY) be so that (2.5) and (2.6) are satisfied.
First, we will prove that {(u,, v,)}, is bounded.

Suppose the contrary, so [[(un, vn)l|preryyxprary) — +00.

We deduce from (2.4) and (2.9)

Up Un

Ia (U, Uy Iy (Up, Up)(—, —
A ) — JA( )(p q)
_a+l g+1

p*

= O+ o(Dl(un, vn)llpromyyxpramy)-

c(x)|va|? dx (2.20)
RN

Thus

a+1

H n”pl p(lRN H nH’Dl 9W(RN) )\/JRN b(x)‘u”‘aﬂyvnyﬁﬂdx < CH(“m“n)H»

(2.21)

and with Lemma 2.1, it follows

Q0 ([ltnlpp gy + 10nlpragvy) < ell(Wn, va)llprory)xpragryy, (2.22)

which implies that {(u,, v,)}, is a bounded sequence.

Now, we prove that we can extract a converging subsequence.
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It is clear that there exists a subsequence denoted again by {(un,v,)}, which converges
weakly to (u,v) in D'P(IRY) x DY(IRY), and satisfies

" = v, Vo —

*

v, — 7, |an‘q_>ﬂ>

weakly.

From Propositions 2.3, 2.4 we have
Ji(u,v) = 0. (2.23)

It is easy to show that the hypotheses of Lemma 2.2 are satisfied and from the proof of
Proposition 2.4 that

alzy)v; =p; Vjed,  ba)m=p; Vi€, (2.24)
and
S, .~ S, N _
= =] i 7 > [——=]7 Vje. 2.2
vj > [a(xj)] Vi€ J, vj > [c(xj)] VjeJ (2.25)

J and J are finit sets.
We will prove that J and J are empty sets.
Suppose that J U J # 0.

Since {(un, vy)}n converges weakly to (u,v) and

/ ( )lu ’a+1|v |ﬂ+1dx—>/ ‘u|a+1’U|,8+1dl,
RN

we deduce that for any o > 0 and n sufficiently large

C+ o> Jy(up,vy) — J/\(un,vn)(u:, U:)
pq
a+1 ﬁ+1
H n”’Dlp ” n”qu RN (226)

2
ey / ol
N RN

Taking n — +o00, we obtain

ﬁ+ 1
C+o > “ ||Dlp(1RN) ” Hqu RN)
Oé+ﬂ+2 at+1],.18+1
A [ b<x>ru| ol da (2.97)
a+1 6+1
+ N M + — N :uj‘

JjeJ jeJ
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Taking into account (2.23), (2.24) and (2.25) we obtain

a+1 g+1
>
C+o> N /IRNa(x) N o

1 1
+ Sl + ﬁ% S )7,

c(x)|v|? dx

jed jeJ
&;1 ]RN ax)|ul?P” ﬁ;l ]RN c(x)|v|? dz
min { LS Nl s S Tl e -
Since C' < 8y and o is arbitrary this implies
a;l . a(x) prl / z)|v|? dx < 0, (2.28)

which contradicts (H2).

Therefore J and J are empty, hence

/ ]un]p*dxa/ lu[P"dz  and / |Un]q*dx—>/ |7 dux.
RY RN RN RN

With the weak convergence of {(ty,,v,)}n to (u,v) in D'P(IRY) x DY(IRY), we have
(U, V) — (u,v) strongly in L (IRY) x LT (IRY). (2.29)

Lemma 2.6 Suppose that the hypotheses (H1), (H2), (1.1) and (1.2) are satisfied, then
there exist two constants 6 > 0, p > 0 such that

Ja(u,v) > p, for all [|(u, )|l promyyxpramyy =6 and A€ (0,A1). (2.30)

Proof: We deduce from (2.3) and the Sobolev inequality that

Ia(u,0) = ao(([ullp vy + 10117 cllullf, —clllly,

DLq(RN)) DLP(RY) DLa(RN)

So, for ¢ sufficiently small we have
J)\(U, ?)) > p-
|

Let R > ¢ > 0,0 <r < Rand ¢, be anonnegative function in CSO(ZRN) satisfying 0 < ¢, < 1,
¢, =11in B(0,7) and ¢ = 0 in IRY/B(0,2r).
We define

¢r(z)

ue(r) = > N-p> we(z) =
(e + ol D)5

Ue

ze(7) = ¢c().

||u6||LP*(lRN) 7
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Lemma 2.7 We have

1) ”ueuip*(RN) =ce v +O< ).

For e sufficiently small

o

||u€||Lp*(]RN) €—|—|J}|P 1) P

9 [ a6, (o) e = o
RN
where 6 = N — (%)(a +1)+ (N;?;p

a4+ 1).

Proof: For the proof of 1) and 2) see [2].
3) We have

€ SN—l
wt e de > | utldr = e ds
N (V—p)(at1)
R f 0 P P

()

g .
_EhHW / d
=€ N—parn 4
1 + re- 1 > (2.31)
l
epP
> e () @t ) / N1
S o N2ty

On the other hand, for € sufficiently small

15 e (2.32)
Hué, Lr* (RN)
Therefore
N—
/ wt ¢ e > o £ eADHER) et D), (2.33)
RN

Lemma 2.8 Suppose that the hypotheses (H1) - (H4), (1.1) and (1.2) are satisfied, then
1 1
there exist € > 0 and t; > 0 such that for all A € (0, A1) J\(t{we, t{de) <0 and

a+1 p p=N
Sy llalls” - (2.34)

0< sup J)\(t%wm téqbe)
>0 N
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Proof: We have
1 1
J,\(ﬁwe,ﬁgb )

a+1 o
= (Sl gy + 0y = [ B (335
BN
1 . 1 - .
s tT/ a(2)w, —ﬁ%tf/ o).
p RN q RN

1 1
Since t — —Jy\(trwe, ta¢) is a convex differentiable function it admits a minimum at ¢, €

[0, +00) satisfying

dJ)
te €9 ts e) —
(12w 126.) =
Therefore
1 * 1 3 *
e / @l o+ 2 [ o ds
P RN q RN (2.36)
a+1 ﬁ +1 a1 4 |B+1 .
< [well},- N0l Lo vy = A [ (@) [we| " e d
RN
First, we show that t. is bounded from above and below.
e Indeed, it follows from (2.36), (H1), (H2) and (H4)
1 . 1 «
&tz_la(O)/ |we|P dx — &t:_l/ (a(0) — a(x))|w|P dx
D RN p RN
a+1 ﬁ +1
< [wel 1 ooy + H¢H91QBN
From 2) in Lemma 2.7, the fact that ||w6||D1,p(IRN) = Sp, and [pn |we?" = 1, we have
a+1 ) . a+1 ﬁ +1
[a(0) — O(M Tt < Sp + 1 Pellpr.ammy-
p p
p=1 0
By taking e small enough such that O(ekl(T)) < @ and remarking that
H(}SEH%M(RN) < ¢V 71 we obtain
a+1
0 2.37
S a(O) (237)
This proves that t. is bounded from above.
e On the other hand, observe that
1 1
It5we,1500) > agh ([0 vy + 10 e e, )
a+1 / . 6+1 . / .
— t" a(z)|w. -t ()| e
Ul ()] el ()] (2.38)

+1 . B+1
el poe ()" —

> aptS,) — ||C||L°°(RN)t7_— = O(1).
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It is clear that
dJy

dt
and by continuity there exists n > 0 such that Jg(t%we, t%gzﬁe) > ©/(t) > & for any [t| <.

—=(0) > ©'(0) = aSh = k > 0,

Hence t. > n.
On the other hand, we deduce from (2.38) that for e > 0 sufﬁ(nently small J ,\(tpwg, tq¢€)

which implies that J,\(zf6 We, tE ®¢) > 0. Now, we write J,\(t6 We, te ®c) as below

1 1
TA(tPwe, t8 b)) = sup Jy(trw,, t1¢.) = B, — F,,

>0

where

a+1 a+1 .
E. =t-——I|w? —a(O)t:/ w? dx
P p RN

DLP(IRN)
B+1 . .
||¢€||’D1p IRN - * te C(x>¢g dl’,
q RN

+1,

o=t [ @l o e - e [ (@(0) - ae)a do.
RN p RN
We consider the function
L
m(t) = Mt — =t
T

N—p

M )
m attains its maximum at ¢; = (f) . Since t, is bounded from above, since HqﬁquDLq(RN)

= O(eV79) and c is nonnegative, we deduce that

P N-p

N—p
p a(U) z T a(O) z (2.39)
a —|— 1, =X
= lalo 87 +O(N9).
N
(Remark that ||w€\|g1’p(]RN) =5

Since t, is bounded from below and above, it follows from Lemma 2.7 that

M. / b(x)we|“TH o[ > M, / bo|we| "t |pe| T da
RN RN
> ce’.

and
a—+1
p

7 /,RN (a(0) = a(w))w?" dz = O('7) (2.40)
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Observing that § < kl(pT) this implies
F, > el

Therefore ) X N 1 -
1 1 «
IA(tE we, 1 pe) < Sr Ha’HLoo (RN) —ce’ + O(EN_q)'

On the other hand, it follows from (H4) that 6 < N — ¢. Thus, we obtain

1 1 a+1 N p—N
JA(t5w67t£¢e> < N HaHLoo (RN)

— cé,

hence (2.34).
By taking ¢ sufficiently large in (2.35), we have J,\(t%we, t%qbe) < 0, and thus there exists a
1 1

t; such that J ,\(tl5 we, t{¢.) < 0, which concludes the proof of Lemma 2.8.

3 Proof of Theorem 1.1

We let X = DVP(RY) x DY(RYN), ug = (tPwe, t{ z) and C = inf sup J(h(t)), where

hel’ 1efo,1]
I'={heC(0,1],X): h(0)=0, A(1) =up}.

p—N
It is clear from Lemma 2.8 that C' < %S " lallos , furthermore (H4) and Lemma 2.5
imply that J, satisfies Palais Smale conditions at C. Thus, by Lemmas 2.8, 2.6 and the
Mountain Pass Lemma we deduce that (SC') admits a solution (u,v) # (0,0). Moreover this

solution is nonnegative because Jy(h(t)) = Jy(|h(t)]).

Corollary 3.1 The solution (u,v) obtained in Theorem 1.1 satisfies u # 0 and v # 0.

Proof: It is clear from Theorem 1.1 that there exist other solutions than (0,0). Suppose
(for example) that v # 0 and v = 0. In this case System (SC) is reduced to the simple

equation

—Apu = a(z)|ul’ u. (3.41)

Multiplying equation (3.41) by u, and integrating over IR", we have

[A— / a(a@)ul”" dx < ||af po vy / [ul”" dz. (3.42)
RN RN
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From the definition of S,

Sy’ /]RN lul?"dx < [l vy (3.43)

Combining (3.42) and (3.43), we have

sy < el [ T allm g [l gy (340
Therefore
-N N
HUHDlp RN) > ”aHLoo(RN)Sp (345)
Using (3.42), we have
a+1 a+1 . a+1
2,0 = L, - ?/Na(x) = gy (346)
So, we deduce from (3.45) and (3.46) that
a+1 p=N N
Ja(u,0) > N ||a||L:;(IRN)Spp . (3.47)
o + 1, =5 % : .
But from Theorem 1.1 C' = Jy(u,0) < ——||a HLoo (RN Sy, which contradicts (3.47).

Corollary 3.2 Suppose that the functions a,b,c are in L®(IRY), ¢ > p and (1.1), (1.2)
are satisfied. Then for each solution (u,v) € D'P(IRN) x DM (IRY) we have the following
assertions:

e lim wu(z)= lim wv(x)=0.
|| =00 || —+o00

o Let x € IRY and R > 0 be such that

max (||a|sos ||¢]| 0, ||b||oo)max{2p8 TP=1 9217rS .| B1 | N RIPrI- 1} X

) (3.48)

p\T—

X (Il ey + IO ) < 1
2

Then each solution (u,v) of (SC) belongs to D (IRY) x DY(IR™) N (Cl’a(Bg (93)) .

The proof of this corollary is a consequence of Theorem 4.2.1 in [1] and Tolksdorfs Theorem

[12].
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Corollary 3.3 Under the hypotheses of Corollary 3.2 the solution (u,v) of (SC) is pos-
wive.

Observe that (3.48) is satisfied for all 2 € IR" and R sufficiently small. So by applying the
strong Maximum Principle of Vazquez [13] in the ball B 5 (x), we deduce that u(x) and v(z)

are positive; since x is arbitrary this implies that u and v are positive everywhere on R”.
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