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Estimates of the Solutions of Two-Scale Difference
Equations

ABSTRACT. The solutions of special classes of two-scale difference equations are estimated

in both directions.
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1 Introduction

A two-scale difference equation is a functional equation of the form

ϕ

(
t

2

)
=

n∑
ν=0

cνϕ(t− ν) (t ∈ R) , (1.1)

where cν are given real constants with c0cn 6= 0 and n ∈ N, cf. [3]. As usual, we only seek

non-trivial solutions of (1.1) which vanish for t ≤ 0. Hence, by restriction to t ≤ 1, equation

(1.1) reduces to

ϕ

(
t

2

)
= aϕ(t) (1.2)

with a = c0. By the further restriction to t ≥ 0 and a > 0, this equation has the general

solution

ϕ(t) = tαP

(
ln t

ln 2

)
(1.3)

where α = − ln a
ln 2

and where P (·) is an arbitrary 1-periodic function. Hence, for a continuous

(real) solution ϕ of (1.1) with ϕ(1) 6= 0 there always exist estimates of the form

λ1ϕ(1)tα ≤ ϕ(t) ≤ λ2ϕ(1)tα (t ∈ [0, 1]) (1.4)
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with λ1 ≤ 1 ≤ λ2 in the case ϕ(1) > 0. The optimal constants are

λ1 = min
P (·)
P (0)

, λ2 = max
P (·)
P (0)

,

however since, usually speaking, the function P is unknown, we are going to determine

estimates for these optimal constants. In order to prove the estimates (1.4) for concrete λ1,

λ2 it suffices to prove them for t ∈
(

1
2
, 1
]

only because, if (1.4) is satisfied for a fixed t then,

in view of the periodicity of P (·), it is automatically satisfied for 2−kt with arbitrary k ∈ N,

cf. (1.3).

In the following we shall determine λ1, λ2 in (1.3) for some classes of equations (1.1) up to

n = 3. The special case

ϕ

(
t

2

)
= aϕ(t) + (1− a)ϕ(t− 1) (1.5)

of (1.1) with n = 1 and a ∈ (0, 1) was already treated in [1] in connection with investigations

concerning the Hölder continuity of ϕ, but here we shall give a new prove which also works

in more complicated cases. In the case (1.5) one of the constants λ1, λ2 in (1.4) is always

equal to 1 but, in general, they are both different from 1.

2 Estimates for de Rham’s function

We begin with the equation (1.5). After the normalization ϕ(1) = 1 it has the continuous

solution ϕ(t) = 0 for t ≤ 0, ϕ(t) = 1 for t ≥ 1 and ϕ(t) = ϕa(t) for t ∈ [0, 1], where ϕa is de

Rham’s function, which is the simultaneous solution of (1.2) and

ϕ

(
t + 1

2

)
= a + (1− a)ϕ(t), (2.1)

both equations for t ∈ [0, 1]. In [1] it was proved:

Proposition 2.1 In the case a ∈
(
0, 1

2

]
de Rham’s function satisfies the estimates

C(a)tα ≤ ϕa(t) ≤ tα (t ∈ [0, 1]) (2.2)

and in the case a ∈
[

1
2
, 1
)

it satisfies

tα ≤ ϕa(t) = C(a)tα (t ∈ [0, 1]) (2.3)

where α = − ln a
ln 2

,

C(a) =
(
1− q

1
1−α

)α−1

(2.4)

and q = 1
a
− 1.
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Proof: The case a = 1
2

is elementary and can be excluded now, since α = C
(

1
2

)
= 1 as

well as ϕ 1
2
(t) = t. We first deal with the case a ∈

(
0, 1

2

)
where α > 1. We assume that

the inequalities (2.2) are satisfied for a fixed t and show that they are also satisfied for t+1
2

instead of t. From (2.1) and (2.2) we obtain

a + (1− a)C(a)tα ≤ ϕa

(
t + 1

2

)
≤ a + (1− a)tα. (2.5)

In view of 1
2α = a we have to show that

aC(a)(t + 1)α ≤ a + (1− a)C(a)tα, a + (1− a)tα ≤ a(t + 1)α

for t ∈ [0, 1], i.e. that

C(a) ≤ 1

(t + 1)α − qtα
5 1 , (2.6)

since (t + 1)α ≥ 1
α
tα > qtα. For this reason we introduce the auxiliary function f(s) =(

s
1
α + 1

)α

− qs with s = tα ∈ [0, 1]. We have f ′′(s) = 1−α
α

(
s

1
α + 1

)α−2

s
1
α
−2 ≤ 0 and

f(0) = f(1) = 1 so that f is concave and the second inequality of (2.6) is proved. The

maximum of f is attained at s0 =
(
q

1
α−1 − 1

)−α

, i.e. the minimum of the quotient in (2.6)

at t0 =
(
q

1
α−1 − 1

)−1

. A short calculation shows that this minimum is equal to (2.4) so that

the first inequality of (2.6) is proved, too.

In the case a ∈
(

1
2
, 1
)

where α ∈ (0, 1), we assume that (2.3) is satisfied for a fixed t, conclude

from (2.1) and (2.3) that

a + (1− a)tα ≤ ϕa

(
t + 1

2

)
≤ a + (1− a)C(a)tα , (2.7)

and have to show that

a(t + 1)α ≤ a + (1− a)tα, a + (1− a)C(a)tα ≤ aC(a)(t + 1)α

for t ∈ [0, 1], i.e.

1 ≤ 1

(t + 1)α − qtα
≤ C(a) . (2.8)

In this case the auxiliary function f is convex in view of α ∈ (0, 1), and the quotient in (2.8)

attains its minimum at the same t0 as before, i.e. also (2.8) is proved.

After these preliminaries we can prove the inequalities (2.2) and (2.3) by means of an in-

ductive process. In the case a ∈
(
0, 1

2

)
we see from (2.6) that C(a) ≤ 1, and in the case

a ∈
(

1
2
, 1
)

we see from (2.8) that 1 ≤ C(a). Hence according to ϕ(1) = 1, the inequalities
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(2.2) and (2.3) are satisfied for t = 1, and in view of α > 0 they are also satisfied for t = 0.

Now, we assume that the inequalities in question are satisfied for t = ν
2k , ν = 0, 1, . . . , 2k

and a fixed k ∈ N0. According to a remark in the introduction, they are also satisfied for

t = ν
2k+1 , ν = 0, 1, . . . , 2k, but in view of (2.5)-(2.8), they are moreover satisfied for t = ν

2k+1 ,

ν = 2k + 1, 2k + 2, . . . , 2k+1. Hence by induction, the inequalities (2.2) and (2.3) are sat-

isfied for all (rational) dyadic points, and by continuity for all points of [0, 1], so that the

proposition is proved. �

Improvement As already mentioned (but not proved) in [1], the constant C(a) in Propo-

sition 2.1 is not optimal for a 6= 1
2
. It can be improved by splitting the interval [0, 1] into

several subintervals. In the simplest case of two subintervals we have to use the equation

(2.1) only for t ∈
[
0, 1

2

]
and additionally the consequence of (2.1)

ϕ

(
t + 3

4

)
= 2a− a2 + (1− a)2ϕ(t)

for t ∈ [0, 1]. In order to prove Ctα ≤ ϕ(t) for a ∈
(
0, 1

2

)
inductively, we now have to fulfil

the former inequality aC(t + 1)α ≤ a + (1 − a)Ctα only for t ∈
[
0, 1

2

]
, and additionally the

inequality

a2C(t + 3)α ≤ 2a− a2 + (1− a)2Ctα

for t ∈ [0, 1]. After determining maximal Cν (ν = 1, 2) with Cν ≤ gν(t) where

g1(t) =
1

(t + 1)α − qtα

(
t ∈
[
0,

1

2

])
,

g2(t) =
2q + 1

(t + 3)α − q2tα
(t ∈ [0, 1]) ,

we have to choose C = min(C1, C2). For t ∈ [0, 1] the minimum of g1 is attained as before

at t0 =
(
q

1
α−1 − 1

)−1

. For a ∈
(

1
4
, 1

2

)
we have t0 ∈

(
1
3
, 1

2

)
, and we get no improvement.

However, for a ∈
(
0, 1

4

)
we have t0 > 1

2
, so that for t ∈

[
0, 1

2

]
the function g1(t) attains its

minimum at t1 = 1
2
, and it follows

C1 =
1

a(3α − q)
.

The function g2 attains its minimum at t2 = 3
(
q

2
α−1 − 1

)−1

and this is equal to

C2 =
2q + 1

3αq2

(
q

2
α−1 − 1

)α−1

.

It turns out that C1 > C2 in the case a < 0.10322, and C1 < C2 in the case a > 0.10322, i.e.

C = C2 in the first and C = C1 in the second case. However, the improvement in comparison

with C(a) is not essential and likewise not optimal.
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Example 2.1 The special case

ϕ

(
t

2

)
= aϕ(t) + ϕ(t− 1) + (1− a)ϕ(t− 2) (2.9)

of (1.1) with n = 2 and a ∈ (0, 1) can be reduced to the foregoing one, since (2.9) has a

continuous solution with

ϕ(t) = ϕa(t), ϕ(t + 1) = ϕ1−a(1− t)

for t ∈ [0, 1] and ϕ(t) = 0 for t /∈ (0, 2), cf. [1] and in particular the relation ϕ1−a(1 − t) =

1− ϕa(t). Hence, besides of the estimates (2.2) resp. (2.3) we get the

Corollary 2.1 In the case a ∈
(
0, 1

2

]
the foregoing solution of (2.9) satisfies the esti-

mates

(1− t)β ≤ ϕ(t + 1) ≤ C(1− a)(1− t)β (t ∈ [0, 1]) , (2.10)

and in the case a ∈
[

1
2
, 1
)

it satisfies

C(1− a)(1− t)β ≤ ϕ(t + 1) ≤ (1− t)β (t ∈ [0, 1]) , (2.11)

where β = − ln(1−a)
ln 2

and C(·) as in (2.4).

Example 2.2 The special case

ϕ

(
t

2

)
= aϕ(t) + aϕ(t− 1) + (1− a)ϕ(t− 2) + (1− a)ϕ(t− 3) (2.12)

of (1.1) with n = 3, a ∈ (0, 1), can also be reduced to Proposition 2.1, since it has a

continuous solution with

ϕ(t) = aϕa(t), ϕ(t + 1) = a + (1− 2a)ϕa(t), ϕ(t + 2) = (1− a)ϕ1−a(1− t)

for t ∈ [0, 1], and ϕ(t) = 0 for t /∈ (0, 3).

Example 2.3 Moreover, the special case

ϕ

(
t

2

)
= aϕ(t) + (1− a)ϕ(t− 1) + aϕ(t− 2) + (1− a)ϕ(t− 3) (2.13)

of (1.1) with n = 3, a ∈ (0, 1), can be reduced to Proposition 2.1, since it has a continuous

solution Φ with the representation

Φ(t) = ϕ(t)− ϕ(t− 2) ,

where ϕ is the solution of (1.5) studied before. This means in particular that

Φ(t) = ϕa(t), Φ(t + 1) = 1, Φ(t + 2) = ϕ1−a(1− t)

for t ∈ [0, 1] and Φ(t) = 0 for t /∈ (0, 3). In the last two cases the corresponding estimates

are obvious in view of Proposition 2.1.
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Example 2.4 Finally, we can estimate the solution

ϕ(t) =

t∫
0

ϕa(t− τ)ϕb(τ)dτ

of the equation

ϕ

(
t

2

)
=

ab

2
ϕ(t) +

(
a + b

2
− ab

)
ϕ(t− 1) +

(1− a)(1− b)

2
ϕ(t− 2) , (2.14)

a, b ∈ (0, 1), by means of Proposition 2.1. Namely, after writing the estimates (2.2) resp.

(2.3) in the form

λ1t
α ≤ ϕa(t) ≤ λ2t

α , λ3t
β ≤ ϕb(t) ≤ λ4t

β

with α as before and β = − ln b
ln 2

, we immediately obtain

λ1λ3
Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
tα+β+1 ≤ ϕ(t) ≤ λ2λ4

Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
tα+β+1

for t ∈ [0, 1]. The method can easily be transferred to more complicated cases, but we do

not deal with that.

3 The four-coefficient equation

Usually, two-scale difference equations (1.1) are considered under the so-called sum rules

Σc2ν = 1, Σc2ν+1 = 1 , (3.1)

cf. [3]. These are satisfied in the cases (2.9) and (2.12), but not in the cases (1.5), (2.13) and

(2.14). The general form of (1.1) with n = 3 and (3.1) is a generalization of (2.12) and reads

ϕ

(
t

2

)
= aϕ(t) + (1− b)ϕ(t− 1) + (1− a)ϕ(t− 2) + bϕ(t− 3) , (3.2)

this equation was well investigated in [2]. We only look for compactly supported solutions,

i.e. for solutions with ϕ(t) = 0 for t /∈ (0, 3), so that it suffices to restrict ourselves to t ∈ [0, 3]

in what follows. We assume that

0 < a , b < 1 . (3.3)

Then there exists a continuous solution with

ϕ(1) = a , ϕ(2) = b , (3.4)

ϕ(t) + ϕ(t + 1) + ϕ(t + 2) = a + b (t ∈ [0, 1]) . (3.5)
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The equations (3.2) and (3.5) imply

ϕ

(
t + 1

2

)
= a(a + b) + (1− a− b)ϕ(t)− aϕ(t + 2) (t ∈ [0, 1]) . (3.6)

We begin with two special cases. In the case b = 1
2
− a and a ∈

(
0, 1

2

)
the solution of (3.2) is

even differentiable, cf. [2], and satisfies the additional relation ϕ(t)−ϕ(t + 2) = a + 1
2
(t− 1)

for t ∈ [0, 1], so that (3.6) with a + b = 1
2

simplifies to

ϕ

(
t + 1

2

)
= a

(
a +

t

2

)
+

(
1

2
− a

)
ϕ(t) (t ∈ [0, 1]) . (3.7)

Proposition 3.1 The solution of (3.2) with b = 1
2
−a, a ∈

(
0, 1

2

)
and ϕ(1) = a satisfies

the estimates (1.4) with α = − ln a
ln 2

and

λ1 = min f(t) , λ2 = max f(t) (t ∈ [0, 1]) (3.8)

where

f(t) =
2a + t

2a(t + 1)α − (1− 2a)tα
. (3.9)

Proof: Following the philosophy of the inductive proof of Proposition 2.1, and using (3.7)

instead of (2.1), we only have to show that

aλ1(t + 1)α ≤ a +
t

2
+

(
1

2
− a

)
λ1t

α ,

a +
t

2
+

(
1

2
− a

)
λ2t

α ≤ aλ2(t + 1)α

for t ∈ [0, 1]. According to 2a(t + 1)α − (1 − 2a)tα > (1 + 2a)tα, the denominator of (3.9)

is positive, so that the inequalities in question are equivalent to λ1 ≤ f(t) ≤ λ2. In view of

(3.8) these inequalities are evident, and the proposition is proved. �

a t1 t2 λ1 λ2

.01 .938013 .153740 .975664 3.359434

.1 .791639 .163395 .972564 1.105538

.2 .672925 .114190 .991617 1.007689

.3 .057474 .568021 .998655 1.006186

.4 .010468 .473003 .999829 1.009885

.45 .000558 .428706 .999997 1.006748

Table 1: Some extremal points tν and the bounds λν = f(tν), ν = 1, 2
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Numerical results are contained in Table 1. The case a = 1
4

with α = 2 is elementary with

f(t) = λ1 = λ2 = 1 and therefore ϕ(t) = 1
4
t2 for t ∈ [0, 1]. Elementary is also the limit case

a = 1
2

with α = 1 and ϕ(t) = 1
2
t, where (3.2) reduces to (2.9) with a = 1

2
.

Second, we consider the symmetric case b = a in (3.2), so that ϕ(t) = ϕ(3 − t), and (3.6)

can be written in the form

ϕ

(
t + 1

2

)
= 2a2 + (1− 2a)ϕ(t)− aϕ(1− t) (t ∈ [0, 1]) . (3.10)

Proposition 3.2 The solution of (3.2) with b = a, a ∈
(
0, 1

2

)
and ϕ(1) = a satisfies

the estimates (1.4) with α = − ln a
ln 2

, λ1 = 1− ε, λ2 = 1 + ε and

ε = max |f(t)| (t ∈ [0, 1]) (3.11)

where

f(t) =
2a + (1− 2a)tα − a(t + 1)α − a(1− t)α

a(t + 1)α − a(1− t)α − (1− 2a)tα
. (3.12)

Proof: Once more, we follow the philosophy of the foregoing proofs, however, since (3.10)

contains a negative coefficient, we have to show that

aλ1(t + 1)α ≤ 2a + (1− 2a)λ1t
α − aλ2(1− t)α ,

2a + (1− 2a)λ2t
α − aλ1(1− t)α ≤ aλ2(t + 1)α .

For t = 0 these inequalities imply that λ1 +λ2 ≤ 2 ≤ λ1 +λ2 must be satisfied, i.e. λ1 = 1−ε

and λ2 = 1 + ε with a nonnegative ε. Hence, the foregoing inequalities turn over into

−εN(t) ≤ 2a + (1− 2a)tα − a(t + 1)α − a(1− t)α ≤ εN(t) (3.13)

with N(t) = a(t + 1)α − a(1− t)α − (1− 2a)tα. Substituting x = 1
t
≥ 1, we obtain

t−αN(t) = a(x + 1)α − a(x− 1)α − (1− 2a) .

According to α > 1 and 2α = 1
a
, the derivative of this function with respect to x reads

aα ((x + 1)α−1 − (x− 1)α−1) > 0, and the initial value for x = 1 is equal to N(1) = 2a.

Hence N(t) ≥ 0 for t ∈ [0, 1], and the inequalities (3.13) are equivalent to −ε ≤ f(t) ≤ ε. In

view of (3.11) these inequalities are evident, and the proposition is proved. �

a t1 f(t1)

.1 .506816 -.030511

.2 .505478 -.013624

a t2 f(t2)

.3 .490557 .012852

.4 .457641 .024888

Table 2: Some extremal points tν and the extrema f(tν), ν = 1, 2



Estimates of the Solutions of Two-Scale Difference Equations 11

Numerical results are contained in Table 2, where f ≤ 0 for 0 < a ≤ 1
4

and f ≥ 0 for

a ∈
[

1
4
, 1

2

)
, so that ε = −fmin in the first and ε = fmax in the second case. Again the cases

a = 1
4

and a = 1
2
, the last as a limit case, are elementary.

For a ∈
(

1
2
, 1
)

the denominator N(t) of (3.12) changes its sign so that the foregoing method

fails. However, the method works again if (3.10) is replaced by

ϕ

(
t + 1

2

)
= 2a2(1− a) + (1− a)ϕ(t) + a(2a− 1)ϕ(|2t− 1|) ,

but we are not concerned with this case.

Finally, we come back to the general four-coefficient equation (3.2), where besides of (1.4)

with ϕ(1) = a we also ask for estimates of the form

bλ3(1− t)β ≤ ϕ(t + 2) ≤ bλ4(1− t)β (t ∈ [0, 1]) (3.14)

with β = − ln b
ln 2

and λ3 ≤ 1 ≤ λ4, cf. (3.4). The following fact can easily be seen: If ϕ(t) is a

solution of (3.2) with (3.4), then ϕ(3−t) satisfies the same equations, only with interchanged

coefficients. In particular, the inequalities (1.4) and (3.14) interchange, if we interchange a

and b, and (3.6) interchanges with

ϕ

(
2 +

t

2

)
= b(a + b) + (1− a− b)ϕ(2 + t)− bϕ(t) (t ∈ [0, 1]) . (3.15)

In the following we use the notations

f(t, a, b) = a + b + (1− a− b)tα − a(t + 1)α − b(1− t)β ,

g(t, a, b) = a(t + 1)α − a(1− t)β − (1− a− b)tα .

}
(3.16)

Proposition 3.3 Under the conditions (3.3) and a + b ≤ 1 the solution of (3.2) with

(3.4) satisfies the estimates

ϕ(t) ≤ aλ2t
α , bλ3(1− t)β ≤ ϕ(t + 2) (t ∈ [0, 1]) (3.17)

with λ2 = 1 + bε, λ3 = 1− aε and ε ≥ 0, so long as both inequalities

f(t, a, b) ≤ bg(t, a, b)ε , −f(t, b, a) ≤ ag(t, b, a)ε (t ∈ [0, 1]) (3.18)

are satisfied. It satisfies the estimates

aλ1t
α ≤ ϕ(t) , ϕ(t + 2) ≤ bλ4(1− t)β (t ∈ [0, 1]) (3.19)

with λ1 = 1− bε, λ4 = 1 + aε and ε ≥ 0, so long as both inequalities

f(t, b, a) ≤ ag(t, b, a)ε , −f(t, a, b) ≤ bg(t, a, b)ε (t ∈ [0, 1]) (3.20)

are satisfied.
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Proof: The inequalities (3.17) are satisfied for t = 0 and t = 1. In order to prove them for

all t ∈ [0, 1], we proceed analogously as before using (3.6) and (3.15), i.e. we have to show

that both inequalities

a + b + (1− a− b)λ2t
α − bλ3(1− t)β ≤ aλ2(t + 1)α

and

bλ3(2− t)β ≤ a + b + (1− a− b)λ3(1− t)β − aλ2t
α

are satisfied. Replacing t by 1− t in the last inequality, it turns over into

bλ3(t + 1)β ≤ a + b + (1− a− b)λ3t
β − aλ2(1− t)α .

For t = 0 we obtain from the first and the last inequality

aλ2 + bλ3 ≤ a + b ≤ aλ2 + bλ3

and therefore aλ2 + bλ3 = a+ b. Choosing λ2 = 1+ bε and λ3 = 1−aε with a non-negative ε

and considering the notations (3.16), we see that the inequalities in question are equivalent

with (3.18). The inequalities (3.20) can be derived analogously or by interchanging a and b.

Hence, the proposition is proved. �

There are two interesting special cases which shall be formulated for the conditions (3.18)

only, but which can also be transferred to the conditions (3.20).

Corollary 3.1 The conditions (3.18) of Proposition 3.3 simplify to

f(t, a, b) ≤ 0 ≤ f(t, b, a) (t ∈ [0, 1]) (3.21)

in the case ε = 0, and to ε = max(ε1, ε2) with

ε1 = max
f(t, a, b)

bg(t, a, b)
(t ∈ [0, 1]) ,

ε2 = max− f(t, b, a)

ag(t, b, a)
(t ∈ [0, 1])

 (3.22)

in the case that the denominators in (3.22) are non-negative.

Example 3.1 As an example to the case ε = 0 we shall show that the conditions (3.21)

with a + b = 1, i.e. the inequalities

1−
(

t + 1

2

)α

−
(

1− t

2

)β

≤ 0 ≤ 1−
(

t + 1

2

)β

−
(

1− t

2

)α

(t ∈ [0, 1]) , (3.23)
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are satisfied in the case a ∈
(
0, 1

2

)
and therefore α > 1, b ∈

(
1
2
, 1
)
, β ∈ (0, 1). (Again, the

case a = 1
2

is elementary). Substituting t + 1 = 2x so that 1− t = 2(1− x), we have to show

that the auxiliary function h(x) = (1− (1− x)β)
1
α − x satisfies h(x) ≥ 0 for x ∈

[
0, 1

2

]
, and

h(x) ≤ 0 for x ∈
[

1
2
, 1
]
. From

h′′(x) =
β

α
(1− (1− x)β)

1
α
−2(1− x)β−2

((
β

α
− 1

)
(1− x)β + 1− β

)
we see that h′′(x) has exactly one zero in (0, 1), and that h′′(x) < 0 before as well as h′′(x) > 0

afterwards. This means that h(x) has exactly one turning point in [0, 1], and h(x) is concave

before as well as convex afterwards. Together with h(0) = h
(

1
2

)
= h(1) = 0 this proves

the assertion, and Corollary 3.1 implies the estimates (3.17) with λ2 = λ3 = 1 in the case

a ∈
(
0, 1

2

)
.

Of course, these estimates are already known from Example 2.3 (where the normalization

ϕ(1) = 1 was used instead of ϕ(1) = a here), but the conditions (3.23) are only sufficient,

and therefore no consequences of the results in Example 2.3.

Moreover, the conditions (3.21) and therefore also the estimates (3.17) with λ2 = λ3 = 1

are satisfied in a subdomain of
[

1
2
, 1
]
×
[

1
2
, 1
]
, which above and at the right is bounded

by a + b = 1, at the left by the curve aα = bβ, and below by the envelope of the curves

f(t, a, b) = 0 with the parameter t ∈ [0, 0.61].

t .6 .55 .5 .45 .4 .3 .2 .1 .05

a .25 .2557 .2839 .3103 .3350 .3583 .4006 .4382 .4714 .4864 .5

b .5 .5015 .5078 .5121 .5148 .5163 .5165 .5138 .5083 .5045 .5

Table 3: Some points of the envelope f(t, a, b) = ft(t, a, b) = 0

0 0.25 0.5
0.5

0.75

1

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

a

b

Figure 1: The level surface ε = 0 Figure 2: Some level lines for ε > 0
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Numerically, this envelope is given by Table 3, where the corner points belong to all param-

eters t, and the complete subdomain is the black domain in Figure 1. The curves in the

subdomain
[
0, 1

2

]
×
[
0, 1

2

]
of the (a, b)-plane, which are shown in Figure 2, are the level lines

of ε from Corollary 3.1 for 1
15

(
1
15

)
1 around the three points with ε = 0 in

(
1
4
, 1

4

)
and

(
1
4
, 1

2

)
,(

1
2
, 1

2

)
, the last two are already known from Figure 1. Both Figures were worked out by K.

Frischmuth [4].

In the case ε > 0 the estimates of the general Proposition 3.3 are worse than those following

from the Propositions 3.1 and 3.2 in the special cases considered there, because there we

have used more informations about the solutions.
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[1] Berg, L., and Krüppel, M. : De Rham’s singular function, two-scale difference equa-

tions and Appell polynomials. Result. Math. 38, 18-47 (2000)

[2] Colella, D., and Heil, C. : The characterization of continuous four-coefficient scaling

functions and wavelets. IEEE Trans. Inf. Theory 38, 876-881 (1992)

[3] Daubechies, I. , and Lagarias, J.C. : Two-scale difference equations II. Local reg-

ularity, infinite products of matrices and fractals. SIAM J. Math. Anal. 23, 1031-1079

(1992)

[4] Frischmuth, K. : Private communication from December 6, 1999.
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Some results on a nonunique fixed point

ABSTRACT. In the present paper, we obtain some nonunique fixed point theorems of

single valued and multivalued maps in metric and generalized metric spaces, one of which

generalizes the corresponding results of [1] and [2].

KEY WORDS AND PHRASES. Nonunique fixed point, T -orbitally continuous, T -orbitally

complete, orbitally upper - semicontinuous.

1 Introduction

In [1], Pachpatte obtained some results on a nonunique fixed point in complete metric spaces

and introduced an inequality as follows:

min{[d(Tx, Ty)]2, d(x, y)d(Tx, Ty), [d(y, Ty)]2} (I)

−min{d(x, Tx)d(y, Ty), d(x, Ty)d(y, Tx)} ≤ rd(x, Tx)d(y, Ty)

for any x, y in X, where r is in (0, 1).

In [2], Liu generalized the above result for single valued maps and introduced the following:

min{[d(Tx, Ty)]2, d(x, y)d(Tx, Ty), d(x, y)d(y, TY ), d(x, Tx)d(Tx, Ty), [d(y, Ty)]2}
−min{d(x, Tx)d(y, Ty), d(x, Ty)d(y, Tx)} ≤ r ·max{d(x, Tx)d(y, Ty), d(x, Ty)d(y, Tx)}

for any x, y in X, where r is in (0, 1).

In the present paper, we obtain some results which generalize Theorem 1 of [1] and Theorem

1 of [2]. Furthermore, we give an example to show that our result indeed generalizes Theorem

1 of [1]. By the way, we show the example in [4] is false.
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2 On a nonunique fixed point for single valued maps

Let (X; d) be a metric space and T be a self map of X. T is called to be orbitally continuous

if limi T
nix = u implies that limi TT nix = Tu for each x in X. A metric space X is T -

orbitally complete if every Cauchy sequence of the form {T nix}i≥1 converges in X for x in

X. Throughout this paper R+ denotes the set of nonnegative real numbers.

Theorem 2.1 Let (X, d) be a T -orbitally complete metric space, T be an orbitally con-

tinuous self map of X. If T satisfies the following condition

min{[d(Tx, Ty)]2, d(x, y)d(Tx, Ty), d(x, y)d(y, Ty), d(x, Tx)d(Tx, Ty),

d(x, Tx)d(y, Ty), d(y, Ty)d(Tx, Ty), [d(y, Ty)]2}
−min{d(x, Tx)d(y, Ty), d(x, Ty)d(y, Tx)}

≤ r ·max{d(x, y)d(Tx, Ty), d(x, y)d(y, Ty), d(x, Tx)d(Tx, Ty), d(x, Tx)d(y, Ty),

d(x, Ty)d(y, Tx), d(y, Tx)d(Tx, Ty), d(y, Tx)d(y, Ty)}

(2.1)

for any x, y in X, where r is in (0, 1), then T has a fixed point and for each x in X the

sequence {T nx}n≥1 converges to a fixed point of T .

Proof: Let x be in X. We define a sequence {xn} by xn+1 = Txn for n ≥ 0, where x0 = x.

If xn = xn+1 for some n ≥ 0, then the assertion follows immediately. Therefore we assume

that xn 6= xn+1 for each n ≥ 0. Put dn = d(xn, xn+1) for n ≥ 0. By (2.1) we obtain

min{d2
n+1, dndn+1, dndn+1, dndn+1, dndn+1, d

2
n+1, d

2
n+1}

−min{dndn+1, d(xn, xn+2)d(xn+1, xn+1)}
≤ r ·max{dndn+1, dndn+1, dndn+1, dndn+1, d(xn, xn+2)d(xn+1, xn+1),

d(xn+1, xn+1)dn+1, d(xn+1, xn+1)dn+1}

i.e.,

d2
n+1 = min{d2

n+1, d2dn+1} ≤ rd2dn+1

which implies that dn+1 ≤ rdn. It is easy to see that {xn}n≥1 is a Cauchy sequence. Since

X is orbitally complete there is some u in X such that u = limn T nx. By the T -orbitally

continuity of T , Tu = limn TT nx = u. This completes the proof.

Remark 2.1 Theorem 2.1 extends Theorem 1 of [1] and Theorem 1 of [2]. The following

example shows that Theorem 2.1 is a proper generalization of Theorem 1 of [1].

Example 2.1 Let X = {0, 1, 2, 3, 4}, d(x, y) = d(y, x) for all x in X and d(x, y) = 0 if and

only if x = y, d(0, 1) = 1, d(0, 2) = 2.5, d(0, 3) = 1, d(0, 4) = 1, d(1, 2) = 1.5, d(1, 3) = 2,
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d(1, 4) = 1, d(2, 3) = 2, d(2, 4) = 1.5, d(3, 4) = 1. Obviously, (X, d) is a complete metric

space. Now let T : X → X, T0 = 1, T1 = 0, T2 = 3, T3 = 2, T4 = 4. It is easy to verify

that the conditions of Theorem 2.1 are satisfied for r = 0.3. But Theorem 1 of [1] is not

applicable, because T doesn’t satisfy (I) for x = 0, y = 2 and all r in (0, 1).

Remark 2.2 In 1990, Ciric [4] gave an example to show that the corresponding results of

Dhage [5], Mishra [6] and Pathak [7] are false. Unfortunately the example is false. In fact,

through strictly examining the proofs of Dhage, Pathak and Mishra’s results we assert that

the results of [5], [6] and [7] are true.

Mishra [6], Daghe [5], Pathak [7] assume that T satisfies respectively the following conditions

(A), (B) and (C):

(A) min{d(Tx, Ty), d(x, Tx), d(y, Ty), d(Tx, T 2x), d(y, T 2x)}
−min{d(x, ty), d(y, Tx), d(x, T 2x), d(Ty, T 2x)} ≤ q d(x, y)

for all x, y in X, where 0 ≤ q < 1;

(B) min{d(Tx, Ty), d(x, Tx), d(y, Ty)}+ a ·min{d(x, Ty), d(y, Tx)} ≤ qd(x, y) + pd(x, Tx)

for all x, y in X, where 0 < p + q < 1, a is a real number;

(C) min{d(Tx, Ty), d(y, Ty)}+a·min{d(x, Ty), d(y, Tx)} ≤ qd(x, y)+pd(x, Tx)+rd(x, Ty)

for all x, y in X, where a, p, q and r are real numbers such that 0 ≤ r < 1, 0 <

p + q + 2r < 1.

The example of Ciric [4] is as follows:

Let M = {0, 1, 3} with the usual metric d(x, y) = |x− y|. Define the mapping T by T0 = 1,

T1 = 3, T3 = 0.

Ciric [4] claimed that T satisfies each of conditions (A), (B) and C. We find that T doesn’t

satisfy any one of (A), (B) and (C), because if T satisfies (A), taking x = 0, y = 1, we have

from (A)

min{d(1, 3), d(0, 1), d(1, 3), d(1, 3)} −min{d(0, 3), d(1, 1), d(0, 3), d(3, 3)} ≤ qd(0, 1)

i.e., 1 ≤ q. This contradicts the condition 0 ≤ q < 1; if T satisfies (B), similarly we have

1 ≤ q + p < 1, which is a contradiction, too; if T satisfies (C), we have 2 ≤ p + q + 3r. Since

0 < p + q + 2r < 1, it follows that 2 ≤ p + q + 3r < r + 1 < 2, which is impossible.
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Theorem 2.2 Let (X, d) be a T -orbitally complete metric space, T be an orbitally con-

tinuous self map of X. If T satisfies the following condition

a1[d(Tx, Ty)]2 + a2d(x, y)d(Tx, Ty) + a3d(x, y)d(y, Ty) + a4d(x, Tx)d(Tx.Ty)

+ a5d(x, Tx)d(y, Ty) + a6d(y, Ty)d(Tx, Ty) + a7[d(y, Ty)]2

−min{d(x, Tx)d(y, Ty), d(x, Ty)d(y, Tx)}
≤ r ·max{d(x, y)d(Tx, Ty), d(x, y)d(y, Ty), d(x, Tx)d(Tx, Ty), d(x, Tx)d(y, Ty),

d(x, Ty)d(y, Tx), d(y, Tx)d(Tx, Ty), d(y, Tx)d(y, Ty)}

(2.2)

for all x, y in X, where
7∑

i=1

ai < 1 and ai is in R+ for i = 1, 2, . . . , 7, then T has a fixed point

and the sequence {T nx}n≥0 converges to a fixed point of T for x in X.

Proof: Note that (2.2) implies (2.1). Theorem 2.2 follows immediately from Theorem 2.1.

3 On a nonunique fixed point for multivalued maps

We recall that (X, d) is a generalized metric space if X is a set and d : X ×X → R+
⋃
{∞}

satisfies all the properties of being a metric for X besides that d may have “infinite values“.

An orbit of F at the point x in X is a sequence {xn : xn ∈ Fxn−1}, where x0 = x. A

multivalued map F on X is orbitally upper – semicontinuous if xn → u ∈ X implies u ∈ Fu,

whenever {xn} is an orbit of F at each x in X. A space X is F – orbitally complete if

every orbit of F at all x in X which is a Cauchy sequence, converges in X. Let A and B be

nonempty subsets of X. Denote

D(A, B) = inf{d(a, b) : a ∈ A, b ∈ B} ,

CL(X) = {A : A ⊂ X, A is closed} ,

N(ε, A) = {x ∈ X : d(x, a) < ε for some a in A}, ε > 0 ,

H(A, B) =

inf{ε > 0 : A ⊆ N(ε, B) and B ⊆ N(ε, A)}, if the infimum exists ,

∞, otherwise.

Ciric [3] introduced the following inequality:

min{H(Fx, Fy), D(x, Fx), D(y, Fy)} −min{D(x, Fy), D(y, Fx)} ≤ qd(x, y)

for all x, y in M and some q < 1. Motivated by it, we obtain the following results.
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Theorem 3.1 Let (X, d) be a generalized metric space, F : X → CL(X) be orbitally

upper–semicontinuous. If X is F -orbitally complete and F satisfies the following condition

min{[H(Fx, Fy)]2, d(x, y)H(Fx, Fy), d(x, y)D(y, Fy), D(x, Fx)H(Fx, Fy),

D(x, Fx)D(y, Fy), D(y, Fy)H(Fx, Fy), [D(y, Fy)]2}
−min{D(x, Fx)D(y, Fy), D(x, Fy)D(y, Fx)}

≤ r ·max{d(x, y)d(Fx, Fy), d(x, y)D(y, Fy), D(x, Fx)D(Fx, Fy),

D(x, Fx)D(y, Fy), D(x, Fy)D(y, Fx), D(y, Fx)H(Fx, Fy), D(y, Fx)D(y, Fy)}

(3.1)

for all x, y in X, where r is in (0, 1), then F has a fixed point.

Proof: Let a > 0 be a real number less than 1/2. We define a single valued map T : X → X

by letting Tx = y ∈ Fx that satisfies

d(x, y) ≤ r−aD(x, Fx) . (3.2)

Set dn = d(xn−1, xn), Dn = D(xn, Fxn) and Hn = H(Fxn−1, Fxn) for n ≥ 0. Now let’s

consider the following orbit of F at x in X : x0 = x, xn = Txn−1 for n ≥ 0. We may assume

that xn−1 6= xn for any n ≥ 0, otherwise the result is obtained at once. It follows from

xn ∈ Fxn−1 that Dn ≤ Hn, D(xn, Fxn−1) = 0 and Dn−1 ≤ dn. By (3.1), we have

min{H2
n, dnHn, dnDn, Dn−1Hn, Dn−1Dn, DnHn, D

2
n, }

−min{Dn−1Dn, D(xn−1, Fxn)D(xn, Fxn−1)}
≤ r ·max{dnD(Fxn−1, Fxn), dnDn, Dn−1D(Fxn−1, Fxn), Dn−1Dn,

D(xn−1, Fxn)D(xn, Fxn−1), D(xn, Fxn−1)Hn, D(xn, Fxn−1)Dn}

which implies that

min{D2
n, Dn−1Dn} = min{D2

n, dnDn, Dn−1Dn} ≤ r ·max{dnDn, Dn−1Dn} = rdnDn ,

min{r−2aD2
n, r

−2aDn−1Dn} ≤ r1−2adnDn ≤ r1−2adndn+1 ,

on using (3.2)

min{d2
n+1, dndn+1} ≤ r1−2adndn+1 .

Note that 0 < r1−2a < 1. If dn < dn+1, then

dndn+1 = min{d2
n+1, dndn+1} ≤ r1−2adndn+1 < dndn+1

a contradiction. Therefore dn+1 < dn and

d2
n+1 = min{d2

n+1, dndn+1} ≤ r1−2ad2
n



20 Z. Liu; H. Wang

i.e., dn+1 ≤ bdn, where b = r
1
2
−a. This implies {xn}n≥1 is a Cauchy sequence. Since X

is F -orbitally complete, there exists some point u in X such that limn xn = u. Thus the

orbitally upper–semicontinuity of F implies u ∈ Fu. This completes the proof.

Theorem 3.2 Let (X, d) be a generalized space, F : X → CL(X) be orbitally upper–

semicontinuous. If X is F -orbitally complete and F satisfies the following condition

a1[H(Fx, Fy)]2 + a2d(x, y)H(Fx, Fy) + a3d(x, y)D(y, Fy) + a4D(x, Fx)H(Fx, Fy)

+ a5D(x, Fx)D(y, Fy) + a6D(y, Fy)H(Fx, Fy) + a7[D(y, Fy)]2

−min{D(x, Fx)D(y, Fy), D(x, Fy)D(y, Fx)}
≤ r ·max{d(x, y)D(Fx, Fy), d(x, y)D(y, Fy), D(x, Fx)D(Fx, Fy),

D(x, Fx)D(y, Fy), D(x, Fy)D(y, Fx), D(y, Fx)H(Fx, Fy),

D(y, Fx)D(y, Fy)}

(3.3)

for all x, y in X, where
7∑

i=1

ai < 1 and ai is in R+ for i = 1, 2, . . . , 7, then F has a fixed

point.

Proof: Since (3.3) implies (3.1), Theorem 3.2 follows immediately from Theorem 3.1.
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Stationary points for set-valued mappings on two
metric spaces

ABSTRACT. Stationary point theorems of set-valued mappings in complete and compact

metric spaces are given. The corresponding results of Fisher [1] are generalized on set-valued

mappings.

KEY WORDS AND PHRASES. Set-valued mappings, stationary points, complete metric

spaces, compact metric spaces.

1 Preliminaries

In [1] and [2], Fisher and Popa have proved fixed point theorems for single valued mappings

on two metric spaces. The purpose of this paper is to generalize these results for set-valued

mappings. In this paper we show stationary point results of set-valued mappings in complete

and compact metric spaces.

Let (X, d) and (Y, ρ) be complete metric spaces and B(X) and B(Y ) be two families of all

nonempty bounded subsets of X and Y , respectively. The function δ(A, B) with A and B

in B(X) is defined as follows:

δ(A, B) = sup{d(a, b) : a ∈ A, b ∈ B} .

Define δ(A) = δ(A, A). Similarly, the function δ′(C, D) with C and D in B(Y ) is defined as

follows:

δ′(C, D) = sup{ρ(c, d) : c ∈ C, d ∈ D} .

{An : n = 1, 2, . . . } that is a sequence of sets in B(X) converges to the set A in B(X) if

(i) each point a in A is the limit of some convergent sequence {an ∈ An : n = 1, 2, . . . };

(ii) for arbitrary ε > 0, there exists an integer N such that An ⊂ Aε for n > N , where Aε

is the union of all open spheres with centers in A and radius ε.
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Let T be a set-valued mapping of X into B(X), z is a stationary point of T if Tz = {z}. T

is continuous at x in X if whenever {xn} is a sequence of points in X converging to x, the

sequence {Txn} in B(X) converges to Tx in B(X). If T is continuous at each point x in X,

then T is a continuous mapping of X into B(X).

The following Lemmas 1.1 and 1.2 were proved in [3] and [4], respectively.

Lemma 1.1 If {An} and {Bn} are sequences of bounded subsets of a complete metric

space (X, d) which converge to the bounded subsets A and B respectively, then the sequence

{δ(An, Bn)} converges to δ(A, B).

Lemma 1.2 Let {An} be a sequence of nonempty subsets of X and x be a point of X

such that lim
n→∞

δ(An, x) = 0. Then the sequence {An} converges to the set {x}.

2 Stationary point results

Now we prove the following theorem for set-valued mappings.

Theorem 2.1 Let (X, d) and (Y, ρ) be complete metric spaces. If T is a continuous

mapping of X into B(Y ) and S is a continuous mapping of Y into B(X) satisfying the

inequalities

δ(STx, STy) ≤ c ·max{δ(x, y), δ(x, STx), δ(y, STy), δ′(Tx, Ty)} , (1)

δ′(TSx′, TSy′) ≤ c ·max{δ′(x′, y′), δ′(x′, TSx′), δ′(y′, TSy′), δ(Sx′, Sy′)} (2)

for all x, y in X and x′, y′ in Y , where 0 ≤ c < 1, then ST has a stationary point z in X and

TS has a stationary point w in Y . Further Tz = {w} and Sw = {z}.

Proof: From (1) and (2), it is easy to see that

δ(STA, STB) ≤ c ·max{δ(A, B), δ(A, STA), δ(B, STB), δ′(TA, TB)} , (1′)

δ′(TSA′, TSB′) ≤ c ·max{δ′(A′, B′), δ′(A′, TSA′), δ′(B′, TSB′), δ(SA′, SB′)} (2′)

for all A, B in B(X) and A′, B′ in B(Y ).

Let x be an arbitrary point in X. Define sequences {xn} and {yn} in B(X) and B(Y )

respectively by choose a point xn in (ST )nx = Xn and choose a point yn in T (ST )n−1x = Yn

for n = 1, 2, . . . . From (1′) and (2′) we have

δ(Xn, Xn+1) = δ(STXn−1, STXn)

≤ c ·max{δ(Xn−1, Xn), δ(Xn−1, Xn), δ(Xn, Xn+1), δ
′(Yn, Yn+1)}

≤ c ·max{δ(Xn−1, Xn), δ′(Yn, Yn+1)} .
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Similarly δ′(Yn, Yn+1) ≤ c ·max{δ′(Yn−1, Yn), δ(Xn−1, Xn)}. Put M =

max{δ(x, X1), δ
′(Y1, Y2)}. From the above inequalities, we obtain immediatly

δ(Xn, Xn+1) ≤ cn ·M , (3)

δ′(Yn, Yn+1) ≤ cn ·M (4)

for n = 1, 2, . . . . It follows from (2) that

δ(Xn, Xn+r) ≤ δ(Xn, Xn+1) + · · ·+ δ(Xn+r−1, Xn+r)

≤ (cn + · · ·+ cn+r−1)M

≤ cn

1− c
M .

Since c < 1, then δ(Xn, Xn+r) → 0 as n →∞. So d(xn, xn+r) ≤ δ(Xn, Xn+r) → 0 as n →∞.

Thus {xn} is a Cauchy sequence. Completeness of X implies that there exists z in X such

that xn → z as n →∞. Further

δ(z, Xn) ≤ δ(z, xn) + δ(xn, Xn) ≤ δ(z, xn) + δ(Xn, Xn) ≤ δ(z, xn) + 2δ(Xn, Xn+1)

which implies that δ(z, Xn) → 0 as n →∞. Similarly, there exists w in Y such that yn → w

and δ′(w, Yn) → 0 as n →∞. Then

δ′(w, Txn) ≤ δ′(w, TXn) = δ′(w, Yn+1) .

By the continuity of T and Lemma 1.1, we have δ′(w, Tz) → 0 as n →∞. From Lemma 1.2

it follows that Tz = {w}. Further

δ(STz, xn) ≤ δ(STz,Xn) ≤ c ·max{δ(z, Xn−1), δ(z, STz), δ(Xn−1, Xn), δ′(Tz, TXn−1)} .

Letting n tend to infinity, we have δ(STz, z) ≤ c · max{δ(STz, z), 0}, which implies that

STz = {z} = Sw. Similarly, we can show w is a stationary point of TS. This completes the

proof of the theorem.

Theorem 2.2 Let (X, d) be a complete metric space, S and T be continuous mappings

of X into B(X) and map bounded set into bounded set. If S and T satisfy the inequalities

δ(STx, STy) ≤ c ·max{δ(x, y), δ(x, STx), δ(y, STy), δ(x, STy), δ(y, STx), δ(Tx, Ty)}, (5)

δ(TSx, TSy) ≤ c ·max{δ(x, y), δ(x, TSx), δ(y, TSy), δ(x, TSy), δ(y, TSx), δ(Sx, Sy)} (6)

for all x, y in X, where 0 ≤ c < 1, then ST has a stationary point z and TS has a stationary

point w. Further Tz = {w} and Sw = {z}. If z = w, then z is the unique common

stationary point of S and T .
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Proof: Let x be an arbitrary point in X, we define a sequence of sets {Xn} by T (ST )n−1x =

X2n−1, (ST )nx = X2n for n = 1, 2, . . . , and X0 = {x}.

Now suppose that {δ(Xn)} is unbounded. Then the real-valued sequence {an} is unbounded,

where a2n−1 = δ(X2n−1, X3), a2n = δ(X2n, X2) for n = 1, 2, . . . , and so there exists an integer

k such that

ak >
c

1− c
max{δ(x, X2), δ(X1, X3)} , (7)

ak > max{a1, . . . , ak−1} . (8)

Suppose that k is even, put k = 2n. From (7) and (8) we have

c · δ(X2r, x) ≤ c · [δ(X2r, X2) + δ(X2, x)] < δ(X2n, X2) ,

c · δ(X2r−1, X1) ≤ c · [δ(X2r−1, X3) + δ(X3, X1)] < δ(X2n, X2) .

That is

δ(X2n, X2) > c ·max{δ(X2r, x), δ(X2r−1, X1) : 1 ≤ r ≤ n} . (9)

We prove that the following (10) is true for m ≥ 1:

δ(X2n, X2) ≤ cm ·max{δ(X2r, X2s), δ(X2r′−1, X2s′−1) : 1 ≤ r, s ≤ n, 2 ≤ r′, s′ ≤ n} . (10)

From (5) we have

δ(X2n, X2) = δ(STX2n−2, STx)

≤ c ·max{δ(X2n−2, x), δ(X2n−2, X2n), δ(x, X2), δ(x, X2n),

δ(X2n−2, X2), δ(X2n−1, X1)} .

It follows from (8) and (9) that δ(X2n, X2) ≤ c · δ(X2n−2, X2n).

Now suppose that (10) is true for some m. From (5), (6), (8) and (9) we have

δ(X2n, X2) ≤ cm ·max{δ(X2r, X2s), δ(X2r′−1, X2s′−1) : 1 ≤ r, s ≤ n, 2 ≤ r′, s′ ≤ n}
≤ cm+1 ·max{δ(X2r−2, X2s−2), δ(X2r−2, X2r), δ(X2s−2, X2s), δ(X2r−2, X2s) ,

δ(X2s−2, X2r), δ(X2r−1, X2s−1), δ(X2r′−3, X2s′−3) ,

δ(X2r′−3, X2r′−1), δ(X2s′−3, X2s′−1) : 1 ≤ r, s ≤ n, 2 ≤ r′, s′ ≤ n}
≤ cm+1 ·max{δ(X2r, X2s), δ(X2r′−1, X2s′−1) : 1 ≤ r, s ≤ n, 2 ≤ r′, s′ ≤ n} .

So (10) is true for all m ≥ 1. Letting m tend to infinity, from (8) and (9) we have 0 <

δ(X2n, X2) ≤ 0, which is impossible. Similarly, when k is odd, 2n − 1, say, we also have

0 < δ(X2n−1, X3) ≤ 0, which is also impossible. Hence {δ(Xn)} is bounded.
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Let M = sup{δ(Xr, Xs) : r, s = 0, 1, 2, . . . } < ∞. For arbitrary ε > 0, choose a positive

integer N such that cN ·M < ε. Thus for m,n greater than 2N with m and n both even or

both odd, from (5) and (6) we have

δ(Xm, Xn) ≤ c ·max{δ(Xm−2, Xn−2), δ(Xm−2, Xm), δ(Xn−2, Xn), δ(Xm−2, Xn),

δ(Xn−2, Xm), δ(Xm−1, Xn−1)}
≤ c ·max{δ(Xr, Xs), δ(Xr, Xr′), δ(Xs, Xs′) : m− 2 ≤ r, r′ ≤ m, n− 2 ≤ s, s′ ≤ n}
≤ cN ·max{δ(Xr, Xs), δ(Xr, Xr′), δ(Xs, Xs′) : m− 2N ≤ r, r′ ≤ m,

n− 2N ≤ s, s′ ≤ n}
≤ cN ·M < ε .

So δ(X2n) and δ(X2n+1) → 0 as n → ∞. Take a point xn in Xn for n ≥ 1. Since

d(x2n, x2n+2p) ≤ δ(X2n, X2n+2p) → 0 as n → ∞, hence {x2n} is a Cauchy sequence. Com-

pleteness of X implies that {x2n} has a limit z in X. Further

δ(z, X2n) ≤ δ(z, x2n) + δ(x2n, X2n) ≤ δ(z, x2n) + δ(X2n) .

That is δ(z, X2n) → 0 as n → ∞. Similarly {x2n+1} converges to some point w in X and

δ(w, X2n+1) → 0 as n → ∞. Since δ(w, TX2n) = δ(w,X2n+1), by the continuity of T and

Lemma 1.1, we have δ(w, Tz) → 0 as n → ∞. From Lemma 1.2 it follows that Tz = {w}.
Further

δ(STz, x2n) ≤ δ(STz,X2n)

≤ c ·max{δ(z, X2n−2), δ(z, STz), δ(X2n−2, X2n), δ(z, X2n),

δ(X2n−2, STz), δ(Tz, X2n−1)}

which implies that δ(STz, z) ≤ c ·max{δ(z, STz), 0} as n →∞. Since c < 1, δ(STz, z) = 0.

Therefore STz = {z} = Sw and TSw = Tz = {w}.

Now suppose that z = w and that z′ is a second common stationary point of S and T . Using

(5)

δ(z, z′) = δ(STz, STz′) ≤ c ·max{δ(z, z′), δ(z, STz), δ(z′, STz′), δ(z′, STz),

δ(z, STz′), δ(Tz, Tz′)}
≤ c · δ(z, z′) .

So z = z′ and this completes the proof of the theorem.

Remark 2.1 If we use single valued mappings in place of set-valued mappings in Theorems

2.1 and 2.2, Theorems 2 and 3 of Fisher [1] can be attained.
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Remark 2.2 The following example 2.1 demonstrates that the continuity of S and T in

Theorems 2.1 and 2.2 is necessary.

Example 2.1 Let X = {0} ∪
{

1
n

: n ≥ 1
}

= Y with the usual metric. Define mappings S,

T by T0 = {1}, T 1
n

=
{

1
2n

}
for n ≥ 1 and S = T . It is easy to prove that all the conditions

of Theorems 2.1 and 2.2 are satisfied except that the mappings S and T are continuous. But

ST and TS have no stationary points.

Now we give the following theorem for the compact metric spaces.

Theorem 2.3 Let (X, d) and (Y, ρ) be compact metric spaces. If T is a continuous

mapping of X into B(Y ) and S is a continuous mapping of Y into B(X) satisfying the

following inequaltities

δ(STx, STy) < max{δ(x, y), δ(x, STx), δ(y, STy), δ′(Tx, Ty)} , (11)

δ′(TSx′, TSy′) < max{δ′(x′, y′), δ′(x′, TSx′), δ′(y′, TSy′), δ(Sx′, Sy′)} (12)

for all distinct x, y in X and distinct x′, y′ in Y , then ST has a stationary point z and TS

has a stationary point w. Further Tz = {w} and Sw = {z}.

Proof: Let us suppose that the right-hand sides of inequalities (11) and (12) are positive

for all distinct x, y in X and distinct x′, y′ in Y . Define the real valued function f(x, y) in

X ×X as follows:

f(x, y) = δ(STx, STy)/ max{δ(x, y), δ(x, STx), δ(y, STy), δ′(Tx, Ty)} .

Since S and T are continuous, f is continuous and achieves the maximum value s on the

compact metric space X ×X. Inequality (11) implies s < 1, that is

δ(STx, STy) ≤ s ·max{δ(x, y), δ(x, STx), δ(y, STy), δ′(Tx, Ty)} (13)

for all distinct x, y in X. It is obvious that inequality (13) is also true for x = y. Similarly,

there exists t < 1 such that

δ′(TSx′, TSy′) ≤ t ·max{δ′(x′, y′), δ′(x′, TSx′), δ′(y′, TSy′), δ(Sx′, Sy′)} (14)

for all x′, y′ in Y . So Theorem 2.3 follows immediately from Theorem 2.1.

Now suppose there exist z, z′ in X such that

max{δ(z, z′), δ(z, STz), δ(z′, STz′), δ′(Tz, Tz′)} = 0

which implies {z} = {z′} = STz and Tz = Tz′, a singleton, {w}, say. Therefore we have

STz = Sw = {z}, TSw = Tz = {w}. If there exist w,w′ in Y such that

max{δ′(w, w′), δ′(w, TSw), δ′(w′, TSw′), δ(Sw, Sw′)} = 0 ,

similarly, we also have STz = Sw = {z}, TSw = Tz = {w}. This completes the proof of

the theorem.



Stationary points for set-valued mappings on two metric spaces 29

Remark 2.3 Theorem 4 of Fisher [1] is a particular case of our Theorem 2.3 if set-valued

mappings are replaced by single valued mappings in Theorem 2.3.
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On Vector Quasi-variational Inequality Problems in
H-spaces

ABSTRACT. The purpose of this paper is to study the existence problem of solutions of

the vector quasi-variational inequality for vector-valued functions in H-spaces.

KEY WORDS. H-space [1], H-convex set [1], transfer opened (transfer closed) [1], H∗-

concave vector function [2], (weakly) vector minimal point [3].

1 Introduction and Preliminaries

In 1991, Chang and Shu [4] firstly introduced a quasi-variational inequality in locally convex

Hausdorff linear topological spaces. Recently, Chang et al [1] obtained some existence the-

orems of solutions for the quasi-variational inequality in H-spaces, and Lee et al [3] studied

the vector quasi-variational inequality for vector-valued functions in a real locally convex

Hausdorff linear topological space.

The purpose of this paper is to study the existence problem of solutions of the vector quasi-

variational inequality for vector-valued functions in H-spaces. The results presented in this

paper generalize some important results in [1].

For the convenience we first give some definitions and preliminary results.

Definition 1.1 Let E be a real topological vector space, K a nonempty closed convex

subset of E satisfying

(i) λx ∈ K for all x ∈ K and all λ ≥ 0,

(ii) x ∈ K, −x ∈ K implies x = θ, where θ is the zero-element of E.

Then K is said to be a cone. We denote the interior of K by K◦. A cone K is said to be a

body cone, if K◦ 6= ∅.
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Lemma 1.1 Let E be a real topological vector space, K ⊂ E a body cone. Then

(i) K + K = {x + y : x ∈ K, y ∈ K} = K,

(ii) λ + K ⊂ K◦ for any λ ∈ K◦,

(iii) K + K◦ = K◦ + K◦ = K◦.

Proof: The conclusions are obvious.

Definition 1.2 Let (X, {ΓA}) be an H-space, E a real topological vector space with a

body cone K ⊂ E. A function f : X → E is said to be H∗-convex, if −f : X → E is

H∗-concave.

Lemma 1.2 Let f : X → E be an H∗-convex function. Then the set Mλ = {x ∈ X :

f(x) /∈ λ + K} is H-convex for any λ ∈ E.

Proof: Since −f is H∗-concave, it follows from Proposition 10.1.1 in Chang [2] that

{x ∈ X : (−λ)− (−f(x)) /∈ K} = {x ∈ X : f(x) /∈ λ + K} = Mλ

is H-convex. This completes the proof.

Lemma 1.3 [1, Lemma 2.1] Let X be a compact topological space, (Y, {ΓB}) an H-space.

Let G : X → 2Y be a multifunction with nonempty H-convex values and G−1 is transfer open-

valued. Then there exists a continuous selection of G, i.e., there exists a continuous function

f : X → Y such that f(x) ∈ G(x) for all x ∈ X.

Lemma 1.4 [1, Theorem 2.5] Let (X, {ΓA}) be a compact H-space, T : X → 2X a

multifunction such that

(i) T (x) is a nonempty H-convex set for any x ∈ X,

(ii) T−1 : X → 2X is transfer open-valued.

Then there exists an x ∈ X such that x ∈ T (x).

Lemma 1.5 [3, Lemma 1.1] Let E be a real topological vector space with a body cone

K ⊂ E, C a nonempty compact subset of E. Then MinKC 6= ∅ and WMinKC 6= ∅, where

MinKC is the set of all the vector minimal points of C and WMinKC is the set of all the

weakly vector minimal points of C.

Lemma 1.6 [3, Lemma 1.2] Let X and Y be two Hausdorff topological spaces, and F :

X → 2Y be a multifunction.
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(i) If F is u.s.c. and compact-valued, then F is closed.

(ii) If Y is compact, and F is closed, then F is u.s.c..

(iii) If X is compact, and F is u.s.c. and compact-valued, then F (X) =
⋃

x∈X F (X) is

compact.

2 The Main Results

Theorem 2.1 Let (X, {ΓA}) be a compact H-space, (Y, {ΓB}) be an H-space. Let E be

a real topological vector space with a body cone K ⊂ E. Suppose that

(i) S : X → 2X is a continuous multifunction with nonempty compact H-convex values

and S−1(x) is open for any x ∈ X,

(ii) T : X → 2Y is a multifunction with nonempty H-convex values and T−1 : Y → 2X is

transfer open-valued,

(iii) ϕ : X × Y ×X → E is a continuous function satisfying

(a) ϕ(x, y, x) /∈ K◦ for all x ∈ X and all y ∈ T (x),

(b) the function z 7→ ϕ(x, y, z) is H∗-convex.

Then there exists x ∈ S(x), y ∈ T (x) such that

ϕ(x, y, x) /∈ −K◦ for all x ∈ S(x).

Proof: By Lemma 1.3 and condition (ii), there exists a continuous selection f : X → Y of

the multifunction T . Next for any λ ∈ K◦, we define a multifunction Fλ : X → 2X by

Fλ(x) = {z ∈ S(x) : ϕ(x, f(x), s)− ϕ(x, f(x), z) /∈ −λ−K, ∀s ∈ S(x)} for all x ∈ X.

(2.1)

Let

Pλ(x) = {z ∈ X : ϕ(x, f(x), s)− ϕ(x, f(x), z) /∈ −λ−K, ∀s ∈ S(x)} for all x ∈ X.

(2.2)

Then

Fλ(x) = S(x)
⋂

Pλ(x) for all x ∈ X (2.3)
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and

F−1
λ (z) = S−1(z)

⋂
P−1

λ (z) for all z ∈ X. (2.4)

It is obvious that

Pλ(x) =
⋂

s∈S(x)

{z ∈ X : ϕ(x, f(x), z) /∈ ϕ(x, f(x), s) + λ + K}

= {z ∈ X : ϕ(x, f(x), S(x))− ϕ(x, f(x), z)
⋂
−λ−K = ∅}

⊃ {z ∈ X : ϕ(x, f(x), S(x))− ϕ(x, f(x), z)
⋂
−K◦ = ∅}.

(2.5)

(I) Fλ(x) is nonempty for all x ∈ X.

In fact, since S is compact valued and ϕ is continuous, ϕ(x, f(x), S(x)) is a compact

subset of E. By Lemma 1.5, WMinKϕ(x, f(x), S(x)) 6= ∅, i.e., there exists a z ∈ S(x),

such that ϕ(x, f(x), s) − ϕ(x, f(x), z) /∈ −K◦ for each s ∈ S(x) and hence z ∈ Fλ(x)

by (2.3) and (2.5).

(II) Fλ(x) is H-convex.

By Lemma 1.2 and condition (iii)(b), the set {z ∈ X : ϕ(x, f(x), z) /∈ ϕ(x, f(x), s) +

λ + K} is H-convex, and hence Pλ(x)is H-convex by (2.5). On the other hand, by

condition (i), S(x) is H-convex. Therefore Fλ(x) is H-convex by (2.3).

(III) F−1
λ (z) is open for each z ∈ X.

By condition (i) and (2.4), it is sufficient to prove that P−1
λ (z) is open. Taking x ∈

P−1
λ (z), by (2.5), we have

ϕ(x, f(x), S(x))− ϕ(x, f(x), z)
⋂
−λ−K = ∅ .

Let Hz(x) = ϕ(x, f(x), S(x)) − ϕ(x, f(x), z). It follows from ϕ is continuous and S

is u.s.c. and compact valued that Hz : X → 2E is u.s.c., and hence there exists a

neighborhood N(x) of x such that

Hz(y)
⋂
−λ−K = ∅ for all y ∈ N(x).

This shows that N(x) ⊂ P−1
λ (z) and P−1

λ (z) is open.

Combining (I), (II) and (III), by Lemma 1.4, there exists xλ ∈ X such that

xλ ∈ Fλ(xλ) . (2.6)

For any λ1, λ2 ∈ K◦, we define λ1 ≺ λ2 if and only if λ1 ∈ λ2 + K and xλ1 ≺ xλ2 if and only

if λ1 ≺ λ2. Then {xλ}λ∈K◦ ⊂ X is a net. Since X is compact, without loss of generality, we

can assume that xλ → x ∈ X and so yλ := f(xλ) → f(x) := y ∈ T (x).
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On the other hand, from the definition of Fλ and (2.6) we have

xλ ∈ S(xλ) and xλ ∈ Pλ(xλ) .

Since S is compact-valued and continuous, by Lemma 1.6, the graph of S is closed and so

x ⊂ S(x).

For any λ ∈ K◦, it follows from xλ ∈ Pλ(xλ) that

ϕ(xλ, yλ, S(xλ))− ϕ(xλ, yλ, xλ)
⋂
−λ−K = ∅

and hence

ϕ(xλ, yλ, S(xλ))− ϕ(xλ, yλ, xλ)
⋂
−λ−K◦ = ∅ .

Taking λ0 ∈ K◦. For any λ ∈ K◦ with λ0 ≺ λ, we have

λ0 + K◦ ⊂ λ + K + K◦ = λ + K◦

and so

ϕ(xλ, yλ, S(xλ))− ϕ(xλ, yλ, xλ)
⋂
−λ0 −K◦ = ∅ for all λ � λ0 . (2.7)

Now we prove that

ϕ(x, y, S(x))− ϕ(x, y, x)
⋂
−λ0 −K◦ = ∅ . (2.8)

Suppose that this is not the case, then there exists x ∈ S(x) such that

ϕ(x, y, s)− ϕ(x, y, x) ∈ −λ0 −K◦ . (2.9)

Since S is l.s.c., there exists a net {sλ} such that {sλ} → s and sλ ∈ S(xλ) for each λ ∈ K◦.

By the continuity of ϕ and (2.9), for λ large enough

ϕ(xλ, yλ, sλ)− ϕ(xλ, yλ, xλ) ∈ −λ0 −K◦ .

This contradicts (2.7), and (2.8) is proved. Hence

ϕ(x, y, S(x))− ϕ(x, y, x)
⋂( ⋃

λ0∈K◦

(−λ0 −K◦)

)
= ϕ(x, y, S(x))− ϕ(x, y, x)

⋂
−K◦ = ∅ .

Therefore,

ϕ(x, y, x)− ϕ(x, y, x) /∈ −K◦ for all x ∈ S(x) .

By condition (iii)(a), ϕ(x, y, x) ∈ −K◦ and so

ϕ(x, y, x) /∈ −K◦ for all x ∈ S(x) .

This completes the proof.
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Theorem 2.2 Let (X, {ΓA}) be a compact H-space, (Y, {ΓB}) be an H-space. Let E be

a real topological vector space with a body cone K ⊂ E. Suppose that

(i) T : X → 2Y is a multifunction with nonempty H-convex values and T−1 : Y → 2X is

transfer open-valued,

(ii) S : X → 2X is a l.s.c. multifunction with nonempty H-convex values and S−1 : X → 2X

is closed-valued,

(iii) ϕ : X × Y ×X → E is a continuous function satisfying

(a) ϕ(x, y, x) /∈ −K◦ for all x ∈ X and all y ∈ T (x),

(b) for each (x, y) ∈ X × Y , the set

{z ∈ X : ϕ(x, y, z) ∈ WMinKϕ(x, y, S(x))}

is H-convex,

(iv) for any continuous function f : X → Y , there exists a finite subset A ⊂ X such that

for any x ∈ X

ϕ(x, f(x), A ∩ S(x))
⋂

WMinKϕ(x, f(x), S(x)) 6= ∅.

Then there exists x ∈ S(x), y ∈ T (x) such that

ϕ(x, y, x) /∈ −K◦ for all x ∈ S(x) .

Proof: By Lemma 1.3 and condition (i), there exists a continuous selection f : X → Y of

T . Now we define a multifunction F : X → 2X by

F (x) = {z ∈ S(x) : ϕ(x, f(x), z) ∈ WMinKϕ(x, f(x), S(x))} .

Since f is continuous and S is H-convex-valued, by condition (iii)(b) and (iv), F is nonempty

H-convex valued.

Now we prove that for each z ∈ X, F−1(z) is closed. Let {xα}α∈I ⊂ F−1(z) be any net which

converges to x. Then for each α ∈ I, z ∈ F (xα) and so

z ∈ S(xα) and ϕ(xα, f(xα), z) ∈ WMinKϕ(xα, f(xα), S(xα)) . (2.10)

Since S−1(z) is closed, hence x ∈ S−1(z) and so z ∈ S(x). Suppose that x /∈ F−1(z), then

ϕ(x, f(x), z) /∈ WMinKϕ(x, f(x), S(x))



On Vector Quasi-variational Inequality Problems in H-spaces 37

and hence there exists an s ∈ S(x) such that

ϕ(x, f(x), s)− ϕ(x, f(x), z) ∈ −K◦ .

Since S is l.s.c., there exists a net {sα} → s with sα ∈ S(xα) for all α ∈ I. Again, ϕ is

continuous and −K◦ is open, for α large enough

ϕ(xα, f(xα), sα)− ϕ(xα, f(xα), z) ∈ −K◦ .

This contradics (2.10). Hence x ∈ F−1(z) and so F−1(z) is closed for all z ∈ X.

On the other hand, by condition (iv), there exists a finite subset A ⊂ X, such that for any

x ∈ X, A ∩ F (x) 6= ∅ and hence

F−1(A) =
⋃
z∈A

F−1(z) = X .

From Corollary 3.6.4. in Chang [2], it follows that there exists x ∈ X such that x ∈ F (x),

i.e.,

x ∈ S(x) and ϕ(x, f(x), x) ∈ WMinKϕ(x, f(x), S(x)) .

Since f is a continuous selection of T , f(x) ∈ T (x). Letting y = f(x), we have y ∈ T (x) and

ϕ(x, y, x) ∈ WMinKϕ(x, y, S(x)) ,

i.e.,

ϕ(x, y, x)− ϕ(x, y, x) /∈ −K◦ for all x ∈ S(x) .

By condition (iii)(a), we have

ϕ(x, y, x) /∈ −K◦ for all x ∈ S(x) .

This completes the proof.

The authors are grateful to their advisor Prof. Shih-sen Chang for his helpful suggestions.
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On common fixed point theorems for families of map-
pings

ABSTRACT. In this paper we prove some common fixed point theorems for families of

mappings on metric spaces which are generalizations of the results due to Fisher [2, 3, 4],

Kasahara [5], Kim and Leem [6], Kim, Kim, Leem and Ume [7], Ohta and Nikaido [8], Park

and Rhoades [9, 10], Taskovic [12] and others.

KEY WORDS AND PHRASES. Common fixed point, fixed point, family of mappings,

closed mapping, cluster point, metric space, compact metric space.

1 Introduction and preliminaries

Let ω,N denote the sets of nonnegative integers and positive integers, respectively. Let f, g, h

and t be self mappings of a metric space (X, d) and Cf = {s : s : X → X and sf = fs}. For

x, y ∈ X and A, B ⊆ X, define Of (x) = {fnx : n ∈ ω}, Of (x, y) = Of (x)∪Of (y), Of,g(x) =

{f igjx : i, j ∈ ω}, Of,g(x, y) = Of,g(x) ∪ Of,g(y), δ(A, B) = sup{d(a, b) : a ∈ A, b ∈ B},
δ(A, A) = δ(A) and δ(x, B) = δ({x}, B). It is easy to verify that {fn : n ∈ ω} ⊆ Cf . For

each t ∈ [0, +∞), [t] denotes the largest integer not exceeding t. Let

Φ1 = {ϕ : ϕ : [0, +∞) → [0, +∞) is nondecreasing, continuous from the right

and satisfies ϕ(t) < t for t > 0},
Φ2 = {ϕ : ϕ : [0, +∞) → [0, +∞) is nondecreasing, upper semicontinuous from the

right and satisfies ϕ(t) < t for t > 0},
Φ = {ϕ : ϕ : [0, +∞) → [0, +∞) is nondecreasing, upper semicontinuous and

satisfies ϕ(t) < t for t > 0}.

Clearly, Φ ⊆ Φ2. Chang [1] and Wong [13] proved that Φ2 ⊆ Φ and Φ1 = Φ2. Therefore

Φ2 = Φ.

The Banach contraction principle has long been one of the most important tools in the

study of nonlinear problems. Motivated by this fact, during the past three decades, there
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has grown an extensive literature devoted to sharper forms of the principle. Recently, Fisher

[2, 3, 4], Kasahara [5], Kim and Leem [6], Kim, Kim, Leem and Ume [7], Otha and Nikaido

[8], Park and Rhoades [9, 10], Taskovic [12] and others have established the existence of fixed

and common fixed points for the following contractive type mappings:

∃r ∈ [0, 1) such that for all x, y ∈ X ,

d(fx, fy) ≤ rδ(Of (x, y)) (Taskovic [12]) ;
(1.1)

∃k ∈ N and r ∈ [0, 1) such that for all x, y ∈ X ,

d(fkx, fky) ≤ rδ(Of (x, y)) (Ohta and Nikaido [8]) ;
(1.2)

∃k ∈ N and r ∈ [0, 1) such that for all x, y ∈ X ,

d(fkx, gky) ≤ rδ(Of,g(x, y)) (Kim and Leem [6]) ;
(1.3)

∃k ∈ N and r ∈ [0, 1) such that for all x, y ∈ X ,

d((fg)kx, (fg)ky) ≤ rδ(Of,g(x, y)) (Kim and Leem [6]) ;
(1.4)

∃m,n ∈ N and r ∈ [0, 1) such that for all x, y ∈ X ,

d((fg)mx, (fg)ny) ≤ rδ(Of,g(x, y)) (Kim, Kim, Leem and Ume [7]) ;
(1.5)

∃ϕ ∈ Φ1 such that for all x, y ∈ X ,

d(fx, f2y) ≤ ϕ(δ(Of (x, fy))) (Park and Rhoades [9]) ;
(1.6)

∃ϕ ∈ Φ1 such that for all x, y ∈ X ,

d(gx, gy) ≤ ϕ(δ(Of (x, y))) (Park and Rhoades [10]) ;
(1.7)

∃ϕ ∈ Φ2 such that for all x, y ∈ X ,

d(fx, fy) ≤ ϕ(δ(Of (x, y))) (Kasahara [5]) .
(1.8)

Now we list contractive type conditions to be considered:

∃ϕ ∈ Φ, p, q,m, n ∈ ω with p + q, m + n ∈ N such that for all x, y ∈ X ,

d(fpgqx, fmgny) ≤ ϕ(δ(Of,g(x, y))) ;
(1.9)

∃ϕ ∈ Φ, m ∈ {1, 2} such that for all x, y ∈ X ,

d(fx, fmy) ≤ ϕ(δ(Of (x, y))) ;
(1.10)

∃p, q, m, n ∈ ω with p + q, m + n ∈ N such that for all x, y ∈ X

with fpgqx 6= fmgny , d(fpgqx, fmgny) < δ(
⋃

h∈Cf∩Cg

hOf,g(x, y)) ;
(1.11)

∃p, q, m, n ∈ ω with p + q, m + n ∈ N such that for all x, y ∈ X

with fpgqx 6= hmtny , d(fpgqx, hmtny) < δ(
⋃

u∈Cfg

uOfg(x),
⋃

v∈Cht

vOht(y)) .
(1.12)
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It is easy to see that the following diagrams of implications hold:

(1.9) ⇐ (1.7) ⇐ (1.8) ⇐ (1.1) ⇒ (1.2) ⇒ (1.3) ⇒ (1.99) ,

(1.4) ⇒ (1.5) ⇒ (1.9) ,

(1.6) ⇒ (1.10) ⇒ (1.9) ⇒ (1.11) .

In this paper we establish several fixed and common fixed point theorems involving hypothe-

ses weak enough to include a number of results due to Fisher [2, 3, 4], Kasahara [5], Kim and

Leem [6], Kim, Kim, Leem and Ume [7], Ohta and Nikaido [8], Park and Rhoades [9, 10],

Taskovic [12] and others as special cases.

The following lemmas were introduced by Kim, Kim, Leem and Ume [7] and Sing and Meade

[11], respectively.

Lemma 1.1 [7]. Let f and g be commuting mappings from a compact metric space

(X, d) into itself. Assume that fg is closed. If A =
⋂

n∈N(fg)nX, then

(i) hA ⊆ A for all h ∈ Cfg,

(ii) A = fA = gA 6= φ,

(iii) A is a compact subset of X.

Lemma 1.2 [11]. Let ϕ ∈ Φ. Then

(i) lim
n→∞

ϕn(t) = 0 for all t > 0,

(ii) t = 0 provided that t ≤ ϕ(t) for some t ≥ 0.

2 Main results

Our main results are as follows.

Theorem 2.1 Let f and g be commuting mappings from a metric space (X, d) into itself

such that fg is closed. Suppose that there exists u ∈ X such that the sequence {(fg)iu}i∈N has

a cluster point w ∈ X for which (1.9) holds for all x, y ∈ Of,g(u, w), where δ(Of,g(u, w)) <

+∞. Then w is a common fixed point of f and g and

d((fg)ifagbu, w) ≤ ϕ[ i
k ](δ(Of,g(u)))

for all i ∈ N and a, b ∈ {0, 1}, where k = max{p, q, m, n}.
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Proof: For any i, j, l, s, t ∈ ω, it follows from (1.9) that

d(f i+k+jgi+k+lu, f i+k+sgi+k+tu) ≤ ϕ(δ(Of,g(f
i+k−p+jgi+k−q+lu, f i+k−m+sgi+k−n+tu)))

≤ ϕ(δ(Of,g(f
i+jgi+lu, f i+sgi+tu)))

≤ ϕ(δ(Of,g((fg)iu))) .

This implies that

δ(Of,g((fg)i+ku)) ≤ ϕ(δ(Of,g((fg)iu))) (2.1)

for all i ∈ ω. We claim that

d((fg)iu, (fg)i+tu) ≤ ϕ[ i
k ](δ(Of,g(u))) (2.2)

for all i, t ∈ N . We can write i = ck + l uniquely for some c, l ∈ ω with l ≤ k − 1. Using

(2.1),

d((fg)iu, (fg)i+tu) ≤ δ(Of,g((fg)ck+lu))

≤ ϕ(δ(Of,g((fg)(c−1)k+lu)))

≤ · · ·
≤ ϕc(δ(Of,g((fg)lu)))

≤ ϕc(δ(Of,g(u))) .

That is, (2.2) holds. Lemma 1.2 ensures that {(fg)iu}i∈N is a Cauchy sequence and since it

has a cluster point w ∈ X, so w = lim
i→∞

(fg)iu. Note that fg is closed. Then

w = lim
i→∞

(fg)iu = lim
i→∞

fg(fg)iu = fgw . (2.3)

For any i, j, s, t ∈ ω, by (1.9) and(2.3) we obtain

d(f igjw, f sgtw) = d(f i+kgj+kw, f s+kgj+kw)

≤ ϕ(δ(Of,g(f
i+k−pgj+k−qw, f s+k−mgt+k−nw)))

≤ ϕ(δ(Of,g(w)))

which implies that

δ(Of,g(w)) ≤ ϕ(δ(Of,g(w))) .

It follows from Lemma 1.2 that δ(Of,g(w)) = 0. That is, w = fw = gw.

In view of (2.1) we have

d((fg)ifagbu, (fg)i+tu) ≤ δ(Of,g((fg)iu))

≤ ϕ(δ(Of,g(fg)i−ku))

≤ ϕ[ i
k ](δ(Of,g(u)))
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for all i, t ∈ N and a, b ∈ {0, 1}. Letting t tend to infinity we get

d((fg)ifagbu, w) ≤ ϕ[ i
k ](δ(Of,g(u)))

for all i ∈ N and a, b ∈ {0, 1}. This completes the proof.

Remark 2.1 Theorem 2.1 includes Theorems 3 and 4 of Kim and Leem [5], Theorems 1

and 2 of Park and Rhoades [10] as apecial cases.

From Theorem 2.1 we immediately have

Theorem 2.2 Let f and g be commuting mappings from a bounded complete metric

space (X, d) into itself such that fg is closed. Suppose that (1.9) holds. Then f and g have

a unique common fixed point w ∈ X and

d((fg)ifagbx, w) ≤ ϕ[ i
k ](δ(Of,g(x)))

for all x ∈ X, i ∈ N and a, b ∈ {0, 1}, where k = max{p, q, m, n}.

Remark 2.2 Theorem 2.2 includes Theorem 2.1 of Kim, Kim, Leem and Ume [6] as a

special case.

Corollary 2.1 Let f be a closed mapping from a metric space (X, d) into itself. Suppose

that there exists u ∈ X such that the sequence {(fg)iu}i∈N has a cluster point w ∈ X for

which the following

d(fpx, fmy) ≤ ϕ(δ(Of (x, y))) (2.4)

holds for all x, y ∈ Of (u, w), where δ(Of (u, w)) < +∞, ϕ ∈ Φ and p, m ∈ N . Then f has a

fixed point w and satisfies

d(f iu, w) ≤ ϕ[ i
k ](δ(Of (u)))

for all i ∈ N , where k = max{p, m}.

Remark 2.3 In case ϕ(t) = rt and p = m, Corollary 2.1 reduces to a result which extends

Theorem 3 of Ohta and Nikaido [7].

The following result reveals that the condition that T be closed is unnecessary if p = 1 and

m ∈ {1, 2}.

Theorem 2.3 Let f be a mapping from a metric space (X, d) into itself. Suppose that

there exists u ∈ X such that the sequence {f iu}i∈N has a cluster point w ∈ X for which

(1.10) holds for all x, y ∈ Of (u, w), where δ(Of (u, w)) < +∞. Then w is a fixed point of f

and satisfies

d(f iu, w) ≤ ϕ[ i
m ](δ(Of (u))) (2.5)

for all i ∈ N .
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Proof: It follows from the proof of Theorem 2.1 that

δ(Of (f
i+mu)) ≤ ϕ(δ(Of (f

iu))) (2.6)

for all i ∈ ω,

d(f iu, f i+tu) ≤ ϕ[ i
m ](δ(Of (u))) (2.7)

for all i, t ∈ N and w = lim
i→∞

f iu. Letting t tend to infinity in (2.7), we easily conclude that

(2.5) holds.

For every ε > 0 there exists an integer k > 2m such that i > k −m implies d(f iu, w) < ε.

For any n, p ∈ N with p > k, by (1.9) we have

d(w, fnw) ≤ d(w, fpu) + d(fpu, fnw)

≤ ε + ϕ(δ(Of (f
p−1u, fn−mw)))

≤ ε + ϕ(max{2ε, δ(Of (w)) + ε})

which implies that

δ(w, Of (w)) ≤ ε + ϕ(max{2ε, δ(Of (w)) + ε}) .

Thus we have

δ(w, Of (w)) ≤ lim sup
ε→0

{ε + ϕ(max{2ε, δ(Of (w)) + ε})}

≤ lim sup
ε→0

ϕ(max{2ε, δ(Of (w)) + ε})

≤ ϕ(δ(Of (w))) .

That is,

δ(w, Of (w)) ≤ ϕ(δ(Of (w))) . (2.8)

For m = 1, by (2.6) and (2.8) we have

δ(Of (w)) = max{δ(w,Of (fw)), δ(Of (fw))} ≤ ϕ(δ(Of (w))) .

Lemma 1.2 ensures that δ(Of (w)) = 0. Hence w = fw.

For m = 2, by (2.6), (1.10) and(2.8) we get

δ(Of (w)) = max{δ(w,Of (fw)), δ(fw, Of (f
2w)), δ(Of (f

2w))}
≤ max{ϕ(δ(Of (w))), sup

t∈ω
ϕ(δ(Of (w, f tw))), ϕ(δ(Of (w)))}

= ϕ(δ(Of (w))) .

It follows from Lemma 1.2 that δ(Of (w)) = 0. That is, w = fw. This completes the proof.
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Remark 2.4 Theorem 2.3 extends, improves and unifies Theorem 2 of Park and Rhoades

[8] and Theorem 1 of Kasahara [4].

Question 2.1 Does Theorem 2.3 hold for m ≥ 3?

Theorem 2.4 Let f and g be commuting mappings from a compact metric space (X, d)

into itself such that fg is closed. If (1.11) holds, then f and g have a unique common fixed

point w ∈ X. Moreover, w = hw for all h ∈ Cf ∩ Cg.

Proof: Let A =
⋂

i∈N(fg)iX. Lemma 1.1 implies that A = fA = gA 6= φ. We assert

that A = {w} for some w ∈ X. Otherwise δ(A) > 0. It follows from the compactness of A

that δ(A) = d(u, v) for some u, v ∈ A. Obviously there exist x, y ∈ A such that u = fpgqx,

v = fmgny. By (1.11) and Lemma 1.1 we conclude that

δ(A) = d(fpgqx, fmgny)

< δ(
⋃

h∈Cf∩Cg

hOf,g(x, y))

≤ δ(
⋃

h∈Cf∩Cg

hA)

≤ δ(A)

which is a contradiction. Thus A is a singleton and A = {w} for some w ∈ X. Therefore

w = fw = gw. That is, w is a common fixed point of f and g.

Now suppose that f and g have a second common fixed point u. Then u = (fg)iu for all

i ∈ N . This implies that u ∈ A = {w}. That is, u = w. This proves the uniqueness of w,

which implies that w = hw for all h ∈ Cf ∩ Cg. This completes the proof.

Remark 2.5 Theorem 4 of Fisher [1], Theorem 5 of Fisher [2] and Theorem 2 of Fisher [3]

are special cases of Theorem 2.4.

Theorem 2.5 Let f, g, h and t be self mappings of a compact metric space (X, d) such

that (1.12) holds. If fg, ht are closed and f ∈ Cg, h ∈ Ct, then f, g, h and t have a unique

common fixed point w ∈ X. Moreover, w = uw = vw for u ∈ Cfg and v ∈ Cht.

Proof: Put A
⋂

i∈N(fg)iX and B =
⋂

i∈N(ht)iX. From Lemma 1.1 it follows that

A = fA = gA 6= φ , B = hB = tB 6= φ ,

and that A, B are compact. We claim that δ(A, B) = 0. If not, then δ(A, B) > 0. By the

compactness of A, B there exist a ∈ A, b ∈ B such that δ(A, B) = d(a, b). Since fpgqA = A

and hmtnB = B, we can find x ∈ A and y ∈ B with fpgqx = a and hmtny = b. It follows
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from (1.12) and Lemma 1.1 that

δ(A, B) = d(fpgqx, hmtny)

< δ(
⋃

u∈Cfg

uOfg(x),
⋃

v∈Cht

vOht(y))

≤ δ(
⋃

u∈Cfg

uA,
⋃

v∈Cht

vB)

= δ(A, B)

which is absurd and hence δ(A, B) = 0, which implies that A = B = {w} for some w ∈ X.

It is easy to see that

w = fw = gw = hw = tw = uw = vw

for all u ∈ Cfg and v ∈ Cht.

If z is another common fixed point of f, g, h and t, then z = f igiz = hitiz for all i ∈ N .

That is, z ∈ A = B = {w}, which proves the uniqueness of w. This completes the proof.

The following examples show that the closedness assumptions in Theorems 2.1, 2.2, 2.4 and

2.5 and Corollary 2.1 are necessary for p + q ≥ 2 and m + n ≥ 2.

Example 2.1 Let X = [0, 1] with the usual metric d. Define mappings f, g : X → X by

f0 = 1, fx = 1
3
x for x ∈ (0, 1] and gx = x for x ∈ X. Take q = n = 0 and ϕ(t) = 1

3
t for

t ∈ [0, +∞). It is easy to verify that

d(fpx, fmy) =
1

3
d(fp−1x, fm−1y) ≤ ϕ(δ(Of (x, y)))

for all x, y ∈ X, where p, m ≥ 2. Thus (1.9) and (2.4) are satisfied. Note that 1
n
→ 0 and

f 1
n

= 1
3n
→ 0 as n → ∞ and that 0 6= 1 = f0. Hence f and fg are not closed. Thus

the conditions of Theorems 2.1 and 2.2 and Corollary 2.1 are satisfied except the closedness

assumption; f however has no fixed point.

Example 2.2 Let (X, d), f, g, p, q,m, n be as in Example 2.1. Take h = f and t = g. Then

d(fpx, fmy) =
1

3
d(fp−1x, fm−1y) < δ(Of (x, y))

for all x, y ∈ X with fpx 6= fmy, where p, m ≥ 2. Thus the conditions of Theorems 2.4 and

2.5 are satisfied except the closedness assumption; f however has no fixed point.
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Characterizations of common fixed points in
2-metric spaces

ABSTRACT. In this paper we obtain a few necessary and sufficient conditions for the

existence of a common fixed point of a pair of mappings in 2-metric spaces. Our results

generalize, improve and unify a number of fixed point theorems given by Cho [1], Constantin

[2], Khan and Fisher [11], Kubiak [14], Rhoades [25], Singh, Tiwari and Gupta [31] and

others.

KEY WORDS AND PHRASES. 2-metric spaces, common fixed points, compatible map-

pings.

1 Introduction

Gähler [4] introduced the concept of 2-metric space. A 2-metric space is a set X with a

function d : X ×X ×X → [0,∞) satisfying the following conditions:

(G1) for two distinct points x, y ∈ X, there exists a point z ∈ X such that d(x, y, z) 6= 0,

(G2) d(x, y, z) = 0 if at least two of x, y, z are equal,

(G3) d(x, y, z) = d(x, z, y) = d(y, z, x),

(G4) d(x, y, z) ≤ d(x, y, u) + d(x, u, z) + d(u, y, z) for all x, y, z, u ∈ X.

It has been shown by Gähler [4] that a 2-metric d is a continuous function of any one of its

three arguments but it need not be continuous in two arguments. If it is continuous in two

arguments, then it is continuous in all three arguments. A 2-metric d which is continuous in

all of its arguments will be called continuous.

Iséki [7], for the first time, developed a fixed point theorem in 2-metric spaces. Since then

a quite number of authors ([1]-[3], [5]-[36]) have extended and generalized the result of Iséki

and various other results involving contractive and expansive type mappings. Especially,

Murthy, Chang, Cho and Sharma [17] introduced the concepts of compatible mappings and
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compatible mappings of type (A) in 2-metric spaces, derived some relations between these

mappings and proved common fixed point theorems for compatible mappings of type (A) in

2-metric spaces.

On the other hand, Cho [1], Constantin [2], Khan and Fisher [11] and Kubiak [14] established

some necessary and sufficient conditions which guarantee the existence of a common fixed

point for a pair of continuous mappings in 2-metric spaces.

In this paper we establish criteria for the existence of a common fixed point of a pair of

mappings in 2-metric spaces. Our results generalize, improve and unify the corresponding

results of Cho [1], Constantin [2], Khan and Fisher [11], Kubiak [14], Rhoades [25], Singh,

Tiwari and Gupta [31] and others.

2 Preliminaries

Throughout this paper, N and ω denote the sets of positive and nonnegative integers, re-

spectively. Let R+ = [0,∞) and

W = {w : w : R+ → R+ is continuous and satisfies 0 < w(t) < t for t > 0} .

We consider the family Φ of all continuous functions ϕ : (R+)5 → R+ with the following

properties:

(i) ϕ is non-decreasing in the 4th and 5th variables,

(ii) if u, v ∈ R+ with u ≤ max{ϕ(v, v, u, u + v, 0), ϕ(v, u, v, u + v, 0), ϕ(v, v, u, 0, u + v),

ϕ(v, u, v, 0, u + v)}, then u ≤ cv for some c ∈ (0, 1),

(iii) if u ∈ R+ with u ≤ max{ϕ(u, 0, 0, u, u), ϕ(0, u, 0, u, u), ϕ(0, 0, u, u, u)}, then u = 0.

Let f be a mapping of a 2-metric space (X, d) into itself and B ⊂ X. Define d(x, B, a) =

inf
b∈B

d(x, b, a) for x, a ∈ X and F (f) = {t : t = ft ∈ X}.

Definition 2.1 A sequence {xn}n∈N in a 2-metric space (X, d) is said to be convergent

to a point x ∈ X if lim
n→∞

d(xn, x, a) = 0 for all a ∈ X. The point x is called the limit of the

sequence {xn}n∈N in X.

Definition 2.2 A sequence {xn}n∈N in a 2-metric space (X, d) is said to be a Cauchy

sequence if lim
m,n→∞

d(xm, xn, a) = 0 for all a ∈ X.

Definition 2.3 A 2-metric space (X, d) is said to be complete if every Cauchy sequence

in X is convergent.
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Note that, in a 2-metric space (X, d), a convergent sequence need not be a Cauchy sequence,

but every convergent sequence is a Cauchy sequence when the 2-metric d is continuous on

X ([19]).

Definition 2.4 Let f and g be mappings from a 2-metric space (X, d) into itself.

f and g are said to be compatible if

lim
n→∞

d(fgxn, gfxn, a) = 0

for all a ∈ X, whenever {xn}n∈N ⊂ X such that lim
n→∞

fxn = lim
n→∞

gxn = t for some t ∈ X;

f and g are said to be compatible of type (A) if

lim
n→∞

d(fgxn, ggxn, a) = lim
n→∞

d(gfxn, ffxn, a) = 0

for all a ∈ X, whenever {xn}n∈N ⊂ X such that lim
n→∞

fxn = lim
n→∞

gxn = t for some t ∈ X.

Definition 2.5 A mapping f from a 2-metric space (X, d) into itself is said to be con-

tinuous at x ∈ X if for every sequence {xn}n∈N ⊂ X such that lim
n→∞

d(xn, x, a) = 0 for all

a ∈ X, lim
n→∞

d(fxn, fx, a) = 0. f is called continuous on X if it is so at all points of X.

Lemma 2.1 ([17]) Let f and g be compatible mappings from a 2-metric space (X, d)

into itself. If ft = gt for some t ∈ X, then fgt = ggt = gft = fft.

Lemma 2.2 ([17]) Let f and g be compatible mappings from a 2-metric space (X, d) into

itself. If f is continuous at some t ∈ X and if lim
n→∞

fxn = lim
n→∞

gxn = t, then lim
n→∞

gfxn = ft.

3 Characterizations of common fixed points

Theorem 3.1 Let (X, d) be a complete 2-metric space with d continuous on X and let

h and t be two mappings of X into itself. Then the following conditions are equivalent:

(1) h and t have a common fixed point;

(2) there exist r ∈ (0, 1), f : X → t(X) and g : X → h(X) such that

(a1) the pairs f, h and g, t are compatible,

(a2) one of f, g, h and t is continuous,

(a3) d(fx, gy, a) ≤ r max{d(hx, ty, a), d(hx, fx, a), d(ty, gy, a),
1
2
[d(hx, gy, a) + d(ty, fx, a)]} for all x, y, a ∈ X;
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(3) there exist w ∈ W, f : X → t(X) and g : X → h(X) satisfying (a1), (a2) and (a4):

(a4) d(fx, gy, a) ≤max
{
d(hx, ty, a), d(hx, fx, a), d(ty, gy, a),

1

2
[d(hx, gy, a) + d(ty, fx, a)]

}
− w

(
max

{
d(hx, ty, a), d(hx, fx, a), d(ty, gy, a),

1

2
[d(hx, gy, a) + d(ty, fx, a)]

})
for all x, y, a ∈ X;

(4) there exist ϕ ∈ Φ, f : X → t(X) and g : X → h(X) satisfying (a1), (a2) and (a5):

(a5) d(fx, gy, a) ≤ ϕ(d(hx, ty, a), d(hx, fx, a), d(ty, gy, a), d(hx, gy, a), d(ty, fx, a))

for all x, y, a ∈ X.

Proof: (1) ⇒ (2) and (4). Let z be a common fixed point of h and t. Define f : X → t(X)

and g : X → h(X) by fx = gx = z for all x ∈ X. Then (a1) and (a2) hold. For each

r ∈ (0, 1) and ϕ ∈ Φ, (a3) and (a5) also hold.

(2) ⇒ (3). Take w(t) = (1− r)t. Then w ∈ W and (a3) implies (a4).

(3) ⇒ (1). Let x0 be an arbitrary point in X. Since f(X) ⊂ t(X) and g(X) ⊂ h(X), there

exist sequences {xn}n∈N and {yn}n∈N in X satisfying y2n = tx2n+1 = fx2n, y2n+1 = hx2n+2

= gx2n+1 for n ∈ ω. Define dn(a) = d(yn, yn+1, a) for a ∈ X and n ∈ ω. We claim that for

any i, j, k ∈ ω

d(yi, yj, yk) = 0 . (3.1)

Suppose that d2n(y2n+2) > 0. Using (a4), we have

d(fx2n+2, gx2n+1, y2n) ≤max
{
d(hx2n+2, tx2n+1, y2n), d(hx2n+2, fx2n+2, y2n),

d(tx2n+1, gx2n+1, y2n),

1

2
[d(hx2x+2, gx2n+1, y2n) + d(tx2n+1, fx2n+2, y2n)]

}
− w

(
max

{
d(hx2n+2, tx2n+1, y2n), d(hx2n+2, fx2n+2, y2n),

d(tx2n+1, gx2n+1, y2n),

1

2
[d(hx2n+2, gx2n+1, y2n) + d(tx2n+1, fx2n+2, y2n)]}

)
which implies that

d2n(y2n+2) ≤ max{0, d2n(y2n+2), 0, 0} − w(max{0, d2n(y2n+2), 0, 0})
= d2n(y2n+2)− w(d2n(y2n+2)) < d2n(y2n+2)
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which is a contradiction. Hence d2n(y2n+2) = 0. Similarly, we have d2n+1(y2n+3) = 0.

Consequently, dn(yn+2) = 0 for all n ∈ ω. Note that

d(yn, yn+2, a) ≤ dn(yn+2) + dn(a) + dn+1(a)

= dn(a) + dn+1(a) .
(3.2)

By (a4) and (3.2) we have

d2n+1(a) = d(fx2n+2, gx2n+1, a)

≤ max
{
d(hx2n+2, tx2n+1, a), d(fx2n+2, hx2n+2, a), d(gx2n+1, tx2n+1, a),

1

2
[d(hx2n+2, gx2n+1, a) + d(tx2n+1, fx2n+2, a)]

}
− w

(
max

{
d(hx2n+2, tx2n+1, a), d(fx2n+2, hx2n+2, a), d(gx2n+1, tx2n+1, a),

1

2
[d(hx2n+2, gx2n+1, a) + d(tx2n+1, fx2n+2, a)]

})
= max

{
d2n(a), d2n+1(a), d2n(a),

1

2
[0 + d(y2n, y2n+2, a)]

}
− w

(
max

{
d2n(a), d2n+1(a), d2n(a),

1

2
[0 + d(y2n, y2n+2, a)]

})
= max

{
d2n(a), d2n+1(a),

1

2
[d2n(a) + d2n+1(a)]

}
− w

(
max

{
d2n(a), d2n+1(a),

1

2
[d2n(a) + d2n+1(a)]

})
= max

{
d2n(a), d2n+1(a)

}
− w

(
max{d2n(a), d2n+1(a)}

)
.

Suppose that d2n+1(a) > d2n(a). Then d2n+1(a) ≤ d2n+1(a)− w(d2n+1(a)) < d2n+1(a), which

is a contradiction. Hence d2n+1(a) ≤ d2n(a) and so d2n+1(a) ≤ d2n(a)− w(d2n(a)) < d2n(a).

Similarly, we have d2n(a) ≤ d2n−1(a). That is, for all n ∈ N

dn+1(a) ≤ dn(a) . (3.3)

Let n, m be in ω. If n ≥ m, then 0 = dm(ym) ≥ dn(ym); if n < m, then

dn(ym) ≤ dn(ym−1) + dm−1(yn) + dm−1(yn+1)

≤ dn(ym−1) + dn(yn) + dn(yn+1)

≤ dn(ym−1) ≤ dn(ym−2) ≤ · · · ≤ dn(yn+1) = 0 .

Thus, for any n, m ∈ ω

dn(ym) = 0 . (3.4)
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For all i, j, k ∈ ω, we may, without loss of generality, assume that i < j. It follows from (3.4)

that

d(yi, yj, yk) ≤ di(yj) + di(yk) + d(yi+1, yj, yk)

= d(yi+1, yj, yk) ≤ d(yi+2, yj, yk) ≤ . . .

≤ d(yj−1, yj, yk) = dj−1(yk) = 0 .

Therefore (3.1) holds.

By virtue of (a4), (3.3) and (3.4) we have

d2n(a) = d(fx2n, gx2n+1, a)

≤ max
{
d(hx2n, tx2n+1, a), d(hx2n, fx2n, a), d(tx2n+1, gx2n+1, a),

1

2
[d(hx2n, gx2n+1, a) + d(tx2n+1, fx2n, a)]

}
− w

(
max

{
d(hx2n, tx2n+1, a), d(hx2n, fx2n, a), d(tx2n+1, gx2n+1, a),

1

2
[d(hx2n, gx2n+1, a) + d(tx2n+1, fx2n, a)]

})
= max

{
d2n−1(a), 0, d2n(a),

1

2
d(y2n−1, y2n+1, a)

}
− w

(
max

{
d2n−1(a), 0, d2n(a),

1

2
d(y2n−1, y2n+1, a)

})
= max

{
d2n−1(a), d2n(a),

1

2
[d2n−1(a) + d2n(a) + d2n+1(y2n−1)]

}
− w

(
max

{
d2n−1(a), d2n(a),

1

2
[d2n−1(a) + d2n(a) + d2n+1(y2n−1)]

})
= max{d2n−1(a), d2n(a)} − w(max{d2n−1(a), d2n(a)})
= d2n−1(a)− w(d2n−1(a)) .

Similarly, we have d2n+1(a) ≤ d2n(a)− w(d2n(a)). It follows that

n∑
i=0

w(di(a)) ≤
n∑

i=0

[di(a)− di+1(a)] = d0(a)− dn+1(a) ≤ d0(a) .

So the series of nonnegative terms
∞∑

n=0

w(dn(a)) is convergent. This means that

lim
n→∞

w(dn(a)) = 0 . (3.5)

(3.3) ensures that {dn(a)}n∈ω converges to some r ≥ 0. In view of the continuity of w and

(3.5) we have

w(r) = lim
n→∞

w(dn(a)) = 0
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which implies that r = 0. Hence

lim
n→∞

dn(a) = 0 . (3.6)

In order to show that {yn}n∈ω is a Cauchy sequence, by (3.6), it is sufficient to show that

{y2n}n∈ω is a Cauchy sequence. Suppose that {y2n}n∈ω is not a Cauchy sequence. Then there

exist ε > 0 and a ∈ X such that for each even integer 2k, there are even integers 2m(k) and

2n(k) with 2m(k) > 2n(k) > 2k and d(y2m(k), y2n(k), a) ≥ ε.

For each even integer 2k, let 2m(k) be the least even integer exceeding 2n(k) satisfying the

above inequality, so that

d(y2m(k)−2, y2n(k), a) ≤ ε , d(y2m(k), y2n(k), a) > ε . (3.7)

For each even integer 2k, by (3.1) and (3.7) we have

ε < d(y2m(k), y2n(k), a)

≤ d(y2m(k)−2, y2n(k), a) + d(y2m(k), y2m(k)−2, a) + d(y2m(k), y2n(k), y2m(k)−2)

≤ ε + d(y2m(k)−2, y2m(k), y2m(k)−1) + d(y2m(k)−2, y2m(k)−1, a) + d(y2m(k)−1, y2m(k), a)

= ε + d2m(k)−2(a) + d2m(k)−1(a)

which implies that

lim
k→∞

d(y2m(k), y2n(k), a) = ε . (3.8)

It follows from (3.7) that

0 < d(y2n(k), y2m(k), a)− d(y2n(k), y2m(k)−2, a)

≤ d(y2m(k)−2, y2m(k), a)

≤ d2m(k)−2(a) + d2m(k)−1(a) .

In view of (3.6) and (3.8) we immediately obtain

lim
k→∞

d(y2n(k), y2m(k)−2, a) = ε . (3.9)

Note that ∣∣d(y2n(k), y2m(k)−1, a)− d(y2n(k), y2m(k), a)
∣∣ ≤ d2m(k)−1(a) + d2m(k)−1(y2n(k)) ,∣∣d(y2n(k)+1, y2m(k), a)− d(y2n(k), y2m(k), a)
∣∣ ≤ d2n(k)(a) + d2n(k)(y2m(k)) ,∣∣d(y2n(k)+1, y2m(k)−1, a)− d(y2n(k), y2m(k)−1, a)
∣∣ ≤ d2n(k)(a) + d2n(k)(y2m(k)−1) .
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It is easy to see that

lim
k→∞

d(y2n(k), y2m(k)−1, a) = lim
k→∞

d(y2n(k)+1, y2m(k), a) = lim
k→∞

d(y2n(k)+1, y2m(k)−1, a) = ε .

(3.10)

It follows from (a4) that

d(y2m(k), y2n(k)+1, a) = d(fx2m(k), gx2n(k)+1, a)

≤ max
{
d(hx2m(k), tx2n(k)+1, a), d(hx2m(k), fx2m(k), a),

d(tx2n(k)+1, gx2n(k)+1, a),

1

2
[d(hx2m(k), gx2n(k)+1, a) + d(tx2n(k)+1, fx2m(k), a)]

}
− w

(
max

{
d(hx2m(k), tx2n(k)+1, a), d(hx2m(k), fx2m(k), a),

d(tx2n(k)+1, gx2n(k)+1, a),

1

2
[d(hx2m(k), gx2n(k)+1, a) + d(tx2n(k)+1, fx2m(k), a)]

})
= max

{
d(y2m(k)−1, y2n(k), a), d2m(k)−1(a), d2n(k)(a),

1

2
[d(y2m(k)−1, y2n(k)+1, a) + d(y2n(k), y2m(k), a)]

}
− w

(
max

{
d(y2m(k)−1, y2n(k), a), d2m(k)−1(a), d2n(k)(a),

1

2
[d(y2m(k)−1, y2n(k)+1, a) + d(y2n(k), y2m(k), a)]

})
.

Letting k →∞, by (3.10), (3.8), and (3.6) we have

ε ≤ max{ε, 0, 0, ε} − w(max{ε, 0, 0, ε}) = ε− w(ε) < ε

which is a contradiction. Therefore {y2n}n∈ω is a Cauchy sequence in X.

It follows from completeness of (X, d) that {yn}n∈ω converges to a point u ∈ X. Now,

suppose that t is continuous. Since g and t are compatible and {gx2n+1}n∈ω and {tx2n+1}n∈ω

converge to the point u, by Lemma 2.2 we get that gtx2n+1, tgx2n+1 → tu as n → ∞. In

virtue of (a4) we have

d(fx2n, gtx2n+1, a) ≤ max
{
d(hx2n, ttx2n+1, a), d(hx2n, fx2n, a), d(ttx2n+1, gtx2n+1, a),

1

2
[d(hx2n, gtx2n+1, a) + d(ttx2n+1, fx2n, a)]

}
− w

(
max

{
d(hx2n, ttx2n+1, a), d(hx2n, fx2n, a),

d(ttx2n+1, gtx2n+1, a),

1

2
[d(hx2n, gtx2n+1, a) + d(ttx2n+1, fx2n, a)]

})
.
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Letting n →∞, we have

d(u, tu, a) ≤ max
{
d(u, tu, a), d(u, u, a), d(tu, tu, a),

1

2
[d(u, tu, a) + d(ttu, u, a)]

}
− w

(
max

{
d(u, tu, a), d(u, u, a), d(tu, tu, a),

1

2
[d(u, tu, a) + d(ttu, u, a)]

})
= d(u, tu, a)− w(d(u, tu, a))

which implies that w(d(u, tu, a)) ≤ 0. This means that u = tu.

It follows from (a4) that

d(fx2n, gu, a) ≤ max
{
d(hx2n, tu, a), d(hx2n, fx2n, a), d(tu, gu, a),

1

2
[d(hx2n, gu, a) + d(tu, fx2n, a)]

}
− w

(
max

{
d(hx2n, tu, a), d(hx2n, fx2n, a), d(tu, gu, a),

1

2
[d(hx2n, gu, a) + d(tu, fx2n, a)]

})
.

As n →∞, we have

d(u, gu, a) ≤ max
{
d(u, u, a), d(u, u, a), d(u, gu, a),

1

2
[d(u, gu, a) + d(u, u, a)]

}
− w

(
max

{
d(u, u, a), d(u, u, a), d(u, gu, a),

1

2
[d(u, gu, a) + d(u, u, a)]

})
= d(u, gu, a)− w(d(u, u, a))

which implies that u = gu. It follows from g(X) ⊂ h(X) that there exists v ∈ X with

u = gu = hv. From (a4) we get

d(fv, u, a) = d(fv, gu, a)

≤ max
{
d(hv, tu, a), d(hv, fv, a), d(tu, gu, a),

1

2
[d(hv, gu, a) + d(tu, fv, a)]

}
− w

(
max

{
d(hv, tu, a), d(hv, fv, a), d(tu, gu, a),

1

2
[d(hv, gu, a) + d(tu, fv, a)]

})
= d(u, fv, a)− w(d(u, fv, a)) .

Therefore, u = fv. Lemma 2.1 ensures that fu = fhv = hfv = hu. By (a4) we obtain

again

d(fu, u, a) = d(fv, gu, a)

≤ max
{
d(hu, tu, a), d(hu, fu, a), d(tu, gu, a),

1

2
[d(hu, gu, a) + d(tu, fu, a)]

}
− w

(
max

{
d(hu, tu, a), d(hu, fu, a), d(tu, gu, a),

1

2
[d(hu, gu, a) + d(tu, fu, a)]

})
= d(fu, u, a)− w(d(fu, u, a)) .
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Hence u = fu. That is, u is a common fixed point of f, g, h and t. Similarly, we can complete

the proof when f or g or h is continuous.

(4) ⇒ (1). Let {xn}n∈ω, {yn}n∈ω, dn(a) be as in the proof of (3) ⇒ (1). Analogous we

conclude that for all n, m ∈ ω

dn(a) ≤ hdn−1(a) ≤ · · · ≤ hnd0(a) (3.11)

and

dn(ym) = 0 . (3.12)

For any n, m ∈ ω, by (3.11) and (3.12) we have

d(yn, yn+m, a) ≤ dn(a) + d(yn+1, yn+m, a) + dn(yn+m)

= dn(a) + d(yn+1, yn+m, a) ≤ . . .

≤
n+m−1∑

k=n

dk(a) ≤
n+m−1∑

k=n

hkd0(a) ≤ hn

1− h
d0(a)

which implies that {yn}n∈ω is a Cauchy sequence. The remainder of the proof follows from

the proof process of (3) ⇒ (1).

This completes the proof.

From Theorem 3.1 we immediately have

Theorem 3.2 Let (X, d) be a complete 2-metric space with d continuous on X and let

h and t be two mappings of X into itself. Then (1) is equivalent to each of the following

conditions:

(5) there exist r ∈ (0, 1), f : X → t(X) ∩ h(X) such that

(a6) the pairs f, h and f, t are compatible,

(a7) one of f, t and h is continuous,

(a8) d(fx, fy, a) ≤ r max
{
d(hx, ty, a), d(hx, fx, a), d(ty, fy, a),
1
2
[d(hx, fy, a) + d(ty, fx, a)]

}
for all x, y, a ∈ X;

(6) there exist w ∈ W, f : X → t(X) ∩ h(X) satisfying (a6), (a7) and (a9):
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(a9) d(fx, fy, a) ≤ max
{
d(hx, ty, a), d(hx, fx, a), d(ty, fy, a),

1

2
[d(hx, fy, a) + d(ty, fx, a)]

}
− w

(
max

{
d(hx, ty, a), d(hx, fx, a), d(ty, fy, a),

1

2
[d(hx, fy, a) + d(ty, fx, a)]

})
for all x, y, a ∈ X;

(7) there exist ϕ ∈ Φ, f : X → t(X) ∩ h(X) satisfying (a6), (a7) and (a10):

(a10) d(fx, fy, a) ≤ ϕ(d(hx, ty, a), d(hx, fx, a), d(ty, fy, a), d(hx, fy, a), d(ty, fx, a))

for all x, y, a ∈ X.

Remark 3.1 Theorems 3.1 and 3.2 are still true even though the condition of the compati-

bility is replaced by the compatibility of type (A).

Remark 3.2 Theorems 3.1 and 3.2 generalize, improve and unify Theorem 4.8 of Cho [1],

the Theorem of Constantin [2], Theorem 2 of Khan and Fisher [11], Theorem 1 of Kubiak

[14], Theorem 4 of Rhoades [24], Theorem 1 of Singh, Tiwari and Gupta [30].

Theorem 3.3 Let f be a mapping of a complete 2-metric space (X, d) into itself satis-

fying

(a11) d(fx, fy, a) ≤ max
{
d(x, y, a),

1

2
[d(x, fx, a) + d(y, fy, a)],

1

2
[d(x, fy, a) + d(y, fx, a)],

1

2
[d(y, fy, a) + d(y, fx, a)],

1

2
[d(y, fy, a) + d(x, fy, a)]

}
for all x, y, a ∈ X.

Then the following conditions are equivalent:

(8) F (f) is nonempty and for each x ∈ X, the sequence of iterates {fnx}n∈ω converges to

some point in F (f);

(9) there exists a closed subset G of X such that

(a12) d(fx, p, a) ≤ d(x, p, a) for x, a ∈ X, p ∈ G,

(a13) lim inf
n→∞

d(fnx, G, a) = 0 for a ∈ X.
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Proof: (8) ⇒ (9). Take G = F (f) and x ∈ X. Then {fnx}n∈N converges to some point

w ∈ G. It follows that

lim inf
n→∞

d(fnx, G, a) = lim inf
n→∞

{
inf
p∈G

d(fnx, p, a)
}
≤ lim inf

n→∞
d(fnx, w, a)

= lim
n→∞

d(fnx, w, a) = 0

which implies that lim inf
n→∞

d(fn, G, a) = 0 for a ∈ X.

Let x, a ∈ X and p ∈ G. In view of (a11) we have

d(fx, p, a) = d(fx, fp, a)

≤ max
{
d(x, p, a),

1

2
d(x, fx, a),

1

2
[d(x, p, a) + d(p, fx, a)],

1

2
d(p, fx, a),

1

2
d(x, p, a)

}
= max

{
d(x, p, a),

1

2
(x, fx, a),

1

2
[d(x, p, a) + d(p, fx, a)]

}
.

(3.13)

Using (3.13) we obtain

d(fx, p, x) ≤ max
{
0, 0,

1

2
d(p, fx, x)

}
=

1

2
d(fx, p, x)

which implies that d(fx, p, x) = 0. Hence

d(x, fx, a) ≤ d(x, fx, p) + d(x, p, a) + d(p, fx, a)

= d(x, p, a) + d(p, fx, a) .
(3.14)

It follows from (3.13) and (3.14) that

d(fx, p, a) ≤ max
{
d(x, p, a),

1

2
[d(x, p, a) + d(p, fx, a)]

}
which implies that

d(fx, p, a) ≤ d(x, p, a) . (3.15)

Assume that {yn}n∈N ⊂ G and yn → y ∈ X as n →∞. It follows from (3.15) that

d(fy, y, a) ≤ d(fy, y, yn) + d(fy, yn, a) + d(yn, y, a) ≤ 2d(yn, y, a) .

Letting n →∞, we easily conclude that d(fy, y, a) = 0 for all a ∈ X. Therefore y = fy ∈ G.

That is, G is a closed.

(9) ⇒ (8). Let x0 and a be in X and xn = fnx0 for all n ∈ N . It follows from (a12) that

d(xn, G, a) = inf
p∈G

{
d(xn, p, a)

}
≤ inf

p∈G

{
d(xn−1, p, a)

}
= d(xn−1, G, a) .
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That is, {d(xn, G, a)}n∈N is non-increasing. Thus (a13) implies that lim
n→∞

d(xn, G, a) =

lim inf
n→∞

d(xn, G, a) = 0. Therefore, for any ε > 0, there exists n0(a) ∈ N such that for

all n ≥ n0(a)

d(xn, G, a) <
1

2
ε . (3.16)

Now, suppose that n > m ≥ n0(a) and p ∈ G. By (a12) we have for k ≥ n0(a)

d(xn, xm, p) = d(fxn−1, p, xm) ≤ d(xn−1, p, xm) ≤ · · · ≤ d(xm, p, xm) = 0 (3.17)

and

d(xk, p, a) = d(fxk−1, p, a) ≤ d(xk−1, p, a) ≤ · · · ≤ d(xn0(a), p, a) . (3.18)

In virtue of (3.17) and (3.18) we get

d(xn, xm, a) ≤ d(xn, xm, p) + d(xn, p, a) + d(p, xm, a)

≤ 2d(xn0(a), p, a)

which implies that

d(xn, xm, a) ≤ 2d(xn0(a), G, a) .

By (3.16) and the above inequality we have for n > m ≥ n0(a)

d(xn, xm, a) < ε .

Hence {xn}n∈N is a Cauchy sequence in X and has a limit w ∈ X since (X, d) is complete.

Letting k →∞ in (3.18), we have

d(w, p, a) ≤ d(xn0(a), p, a)

which implies that

d(w,G, a) = inf
p∈G

d(w, p, a) ≤ d(xn0(a), G, a) . (3.19)

In view of (3.16) and (3.19) we obtain that d(w, G, a) < ε, which implies that d(w,G, a) = 0

for all a ∈ X. Since G is closed, so w ∈ G. It follows from (a12) that d(fw, w, a) ≤
d(w,w, a) = 0 for all a ∈ X. This means that w = fw ∈ F (f) 6= φ.

This completes the proof.
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Guo-Jing Jiang

Common Fixed Points in Compact Metric Spaces

ABSTRACT. Common fixed point theorems for contractive type mappings of compact

metric spaces are given. Our works generalize known results of Edelstein, Fisher, Leader,

Jungck and Liu.

KEY WORDS AND PHRASES. Contractive type mappings, common fixed points, compact

metric spaces.

1 Introduction

Throughout this paper, we assume that (X, d) is a compact metric space and that f, g, a and

b are self mappings of (X, d). N and ω denote the sets of positive integers and nonnegative

integers, respectively. For x, y ∈ X, define O(x, f) = {fnx |n ∈ ω} and O(x, y, f, g) =

O(x, f) ∪ O(y, f) ∪ O(x, g) ∪ O(y, g). Put δ(A) = sup{d(a, b) | a, b ∈ A} for A ⊆ X. Define

Cf = {h |h : X → X and hf = fh}, Hf = {h |h : X → X and h
⋂

n∈N fnX ⊆
⋂

n∈N fnX}.
Clearly Hf ⊇ Cf ⊇ {fn |n ∈ ω}.

In 1962, Edelstein [1] proved the following

Theorem E Let f satisfy d(fx, fy) < d(x, y) for all distinct x, y ∈ X. Then f has a

unique fixed point.

Fisher [2, 3, 4, 5], Leader [6], Jungck [7] and Liu [8] et al. gave a number of generalizations

of Theorem E, some of which deal with contractive type mappings as follows:

1) d(fx, fy) < max{d(x, y),
1

2
[d(x, fx) + d(y, fy)],

1

2
[d(x, fy) + d(y, fx)]}

for all distinct x, y ∈ X (Fisher [2]).

2) There exist p, q ∈ N such that

d(fpx, f qy) < max{d(fmx, fny), d(fmx, f ix), d(fny, f jy) | 0 ≤ m, i ≤ p, 0 ≤ n, j ≤ q}
(I)

for all x, y ∈ X for which the right-hand side of (I) is positive (Fisher [3]).
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3) There exist p, q, r, s ∈ ω, p + q ≥ 1, r + s ≥ 1 such that

d(fpgqx, f rgsy) < max{d(f igjx, f tgky), d(f igjx, fmgnx), d(f tgky, fugvy) |
0 ≤ i, m ≤ p, 0 ≤ j, n ≤ q, 0 ≤ t, u ≤ r, 0 ≤ k, v ≤ s}

(II)

for all x, y ∈ X for which the right-hand side of (II) is positive (Fisher [4]).

4) d(fx, gy) < max{d(ax, by), d(ax, fx), d(by, gy), d(ax, gy), d(by, fx)} (III)

for all x, y ∈ X for which the right-hand side of (III) is positive (Fisher [5]).

5) There exists p ∈ N such that

d(fpx, fpy) < δ(O(x, f) ∪O(y, f))

for all distinct x, y ∈ X (Leader [6]).

6) d(fx, fy) < δ(
⋃

h∈Cgf

h{x, y})

for all x, y ∈ X with fx 6= gy (Jungck [7]).

7) d(fx, gy) < δ(
⋃

h∈Hgf

h{x, y})

for all x, y ∈ X with fx 6= gy (Liu [8]).

The main purpose of this paper is to investigate the existence of common fixed points of self

mappings f, g of (X, d) satisfying the following contractive type conditions:

8) There exist p, q, r, s ∈ ω, p + q ≥ 1, r + s ≥ 1, such that

d(fpgqx, f rgsy) < δ(
⋃

i,j,m,n∈ω,h∈Hgf

hO(x, y, gif j, fngm))

for all x, y ∈ X with fpgqx 6= f rgsy.

9) There exist p, q ∈ ω, p + q ≥ 1, such that

d(fpgqx, fpgqy) < δ(
⋃

i,j,m,n∈ω,h∈Hgf

hO(x, y, gif j, fngm)) (IV)

for all distinct x, y ∈ X.

In Section 2, we prove some contractive type conditions are equivalent and establish several

common fixed point theorems which extend and unify some known results in [1]-[8]. In

Section 3, we give five examples to show that our results are more general than the results

in [1]-[8].
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2 Common fixed points

We first define contractive type conditions as follows:

2)′ There exist p, q ∈ N such that (I) holds for all x, y ∈ X with fpx 6= f qy.

3)′ There exist p, q, r, s ∈ ω, p+ q ≥ 1, r + s ≥ 1, such that (II) holds for all x, y ∈ X with

fpgqx 6= f rgsy.

4)′ (III) holds for all x, y ∈ X with fx 6= gy.

9)′ There exist p, q ∈ ω, p+q ≥ 1, such that (IV) holds for all x, y ∈ X with fpgqx 6= fpgqy.

We now prove the following

Lemma 1 Conditions 2) and 2)′ are equivalent.

Proof: Let R(x, y) and L(x, y) denote the right-hand and left-hand sides of 2) respectively.

Assume that 2) holds. For x, y ∈ X, if L(x, y) > 0, then R(x, y) > 0. By assumption it

follows that (I) holds for x, y ∈ X with L(x, y) > 0. This proves that 2) implies 2)′.

Conversely, for x, y ∈ X, if R(x, y) > 0, we consider two cases:

(i) L(x, y) = 0. Clearly L(x, y) = 0 < R(x, y).

(ii) L(x, y) > 0. Since 2)′ holds, L(x, y) < R(x, y). It follows that 2)′ implies 2).

Similarly we have

Lemma 2 Conditions 3) and 3)′ are equivalent.

Lemma 3 Conditions 4) and 4)′ are equivalent.

Lemma 4 Conditions 9) and 9)′ are equivalent.

The following lemma was given in [6, 7].

Lemma 5 Let f be continuous and B =
⋂

n∈N fnX. Then B is compact, B = fB 6= ∅
and δ(fnX) → δ(B) as n →∞. Further hB ⊆ B for h ∈ Cf .

Our main results are as follows:

Theorem 1 Let gf be continuous and f
⋂

n∈N(gf)nX =
⋂

n∈N(gf)nX. If f and g satisfy

8), then f and g have a unique common fixed point u and (gf)nx converges to u uniformly

on X. Further, u = hu for h ∈ Hgf .



68 G.-J. Jiang

Proof: Let B =
⋂

n∈N(gf)nX. It follows from Lemma 5 that B is a nonempty compact

subset of X and gfB = B. Consequently gB = gfB = B since fB = B. Suppose

that δ(B) > 0. By the compactness of B, there exist u, v ∈ X such that δ(B) = d(u, v).

Since fB = gB = B, there exist x, y ∈ B such that u = fpgqx, v = f rgsy. Obviously⋃
i,j,m,n∈ω,h∈Hgf

hO(x, y, gif j, fngm) ⊆ B. Using 8) we get

δ(B) = d(fpgqx, f rgsy)

< δ(
⋃

i,j,m,n∈ω,h∈Hgf

hO(x, y, gif j, fngm))

≤ δ(B)

which is impossible and hence δ(B) = 0; i.e., B is a singleton, say, B = {u} for some u ∈ X.

It follows from fB = gB = B that fu = gu = u; i.e., f and g have a common fixed point u.

Suppose that f and g have a second common fixed point v. Then fv = gv = v = (gf)nv ∈
(gf)nX for n ∈ N . This means that v ∈

⋂
n∈N(gf)nX = B = {u}. Therefore f and g have

a unique common fixed point u. Note that hB ⊆ B for h ∈ Hgf . Consequently u = hu for

h ∈ Hgf .

By Lemma 5, we have for x ∈ X and n ∈ N

d((gf)nx, u) ≤ δ((gf)nX) → δ(B) = 0 as n →∞ ,

i.e., (gf)nx converges to u uniformly on X. This completes the proof.

From Theorem 1 we get immediately

Corollary 1 [8, Theorem 1]. Let gf be continuous and f
⋂

n∈N(gf)nX =
⋂

n∈N(gf)nX.

If f and g satisfy 7), then the conclusion of Theorem 1 remains unchanged.

Proof: In case p = s = 1, q = r = 0, Corollary 1 follows from Theorem 1.

As a consequence of Corollary 1 we have

Corollary 2 [7, Theorem 4.2]. Let gf be continuous and f and g commute. If f and g

satisfy 6), then f and g have a unique common fixed point u. Further, u = hu for h ∈ Cgf .

Remark 1 Example 1 reveals that Theorem 1 is indeed a proper extension of Theorem 1

of Liu [8] and Theorem 4.2 of Jungck [7].
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Corollary 3 Let gf be continuous and f
⋂

n∈N(gf)nX =
⋂

n∈N(gf)nX. If f and g

satisfy

10) d(fpgqx, f rgsy) < δ(
⋃

i,j,m,n∈ω

O(x, y, gif j, fngm))

for all x, y ∈ X with fpgqx 6= f rgsy, where p, q, r, s ≥ 0 are fixed integers with p+q ≥ 1,

r + s ≥ 1,

then f and g have a unique common fixed point.

Proof: Since 10) implies 8), Corollary 3 follows from Theorem 1.

Corollary 4 Let gf be continuous and f
⋂

n∈N(gf)nX =
⋂

n∈N(gf)nX. If f and g

satisfy 3), then f and g have a unique common fixed point u. Further, if q = 0 or s = 0,

then u is the unique fixed point of f and if p = 0 or r = 0, then u is the unique fixed point

of g.

Proof: Note that 3)′ implies 10). It follows from Lemma 2 and Corollary 3 that f and g

have a unique common fixed point u. Suppose that q = 0 and that v is a second distinct

fixed point of f . From 3) we have

0 < d(v, u) = d(fpv, f rgsu) < d(v, u)

giving a contradiction. This proves the uniqueness of u.

Similarly, we can prove that u is the unique fixed point of f if s = 0, and that u is the unique

fixed point of g if p = 0 or r = 0.

Remark 2 Theorem 5 of Fisher [4] is a special case of Corollary 4. Example 2 proves that

Corollary 4 is a substantial generalization of the result of Fisher.

Theorem 2 Let fg be continuous and g
⋂

n∈N(fg)nX =
⋂

n∈N(fg)nX. If f and g satisfy

11) d(fpgqx, f rgsy) < δ(
⋃

i,j,m,n∈ω,h∈Hfg

hO(x, y, gif j, fngm))

for all x, y ∈ X with fpgqx 6= f rgsy, where p, q, r, s ≥ 0 are fixed integers and p+q ≥ 1,

r + s ≥ 1,

then f and g have a unique common fixed point u and (fg)nx converges to u uniformly on

X. Further, u = hu for h ∈ Hfg.
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The proof of this theorem goes in a similar fashion as that of Theorem 1, so we omit the

proof.

Corollary 5 Let fg be continuous, g
⋂

n∈N(fg)nX =
⋂

n∈N(fg)nX and a, b ∈ Hfg. If

f, g, a and b satisfy 4), then f, g, a and b have a unique common fixed point u. Further, u is

the unique common fixed point of f and a and of g and b.

Proof: By Lemma 3 we conclude easily that 4) is a particular case of 11). It follows from

Theorem 2 that f, g, a and b have a unique common fixed point u. Suppose that f and a

have a second distinct common fixed point v. Using 4)

0 < d(v, u) = d(fv, gu) < d(v, u)

which is a contradiction. This proves the uniqueness of u. Similarly we can prove that u is

the unique common fixed point of g and b.

Remark 3 By setting g = identity mapping in Theorem 2, we get an improved version of

Theorem 4 of Fisher [3]. Example 3 demonstrates that Theorem 2 extends properly Theorem

4 of Fisher [3]. Example 4 reveals that Corollary 5 is indeed a generalization of Theorem 2

of Fisher [5].

From Theorem 1 and Lemma 4 we have

Theorem 3 Let gf be continuous and f
⋂

n∈N(gf)nX =
⋂

n∈N(gf)nX. If f and g satisfy

9), then the conclusion of Theorem 1 remains unchanged.

Remark 4 Theorem E, Theorems 7, 8, 9 and 10 of Fisher [2] and Corollaries 2 and 3 of

Leader [6] are particular cases of Theorem 3. Example 5 proves that Theorem 3 extends

properly the results of Edelstein, Fisher and Leader.

3 Examples

Example 1 Let X = {1, 2, 3, 4} with the usual metric, f1 = f4 = 1, f2 = g2 = g4 = 2,

f3 = g3 = 4 and g1 = 3. Take p = r = s = 2, q = 1. It is easy to check that the conditions

of Theorem 1 are satisfied. But Theorem 1 of Liu [8] and Theorem 4.2 of Jungck [7] are not

applicable since 6) and 7) do not hold for x = 1 and y = 3.

Example 2 Let X = [0, 1] with the usual metric, fx = x/3 for x ∈ X, g1 = 0 and

gx = x/2 for x ∈ [0, 1). Clearly
⋂

n∈N(gf)nX =
⋂

n∈N [0, 1/6n] = {0}. Set p = s = 1,

q = r = 0. It is simple to verify that the assumptions of Corollary 4 are satisfied. But

Theorem 5 of Fisher [4] is not applicable since fg1 = 0 6= 1/6 = gf1.
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Example 3 Let X and f be as in Example 1. For any p, q ∈ N , f does not satisfy 2) since

d(fp1, f q2) = 1 = max{d(fm1, fn2), d(fm1, f i1), d(fn2, f j2) | 0 ≤ m, i ≤ p, 0 ≤ n, j ≤ q}

and hence Theorem 4 of Fisher [3] is not applicable. Define a self mapping g of (X, d) by

g1 = 3, g2 = g4 = 2 and g3 = 4. Take p = r = s = 2, g = 1. It is easily seen that the

hypotheses of Theorem 2 are valid.

Example 4 Let X = [0, 1] with the usual metric, f1 = 0, fx = x2/2 for x ∈ [0, 1),

gx = x/3, ax = bx = x for x ∈ [0, 1]. Then
⋂

n∈N(fg)nX =
⋂

n∈N [0, 1/182n−1] = {0}. It

is easy to check that the conditions of Corollary 5 are satisfied. Theorem 2 of Fisher [5]

however is not applicable since fg1 = 1/18 6= 0 = gf1.

Example 5 Let X = {1, 2, 3, 7} with the usual metric, f1 = 1, f2 = f7 = 2 and f3 = 7.

Then Theorem E, Theorems 7, 8, 9 and 10 of Fisher [2] and Corollaries 2 and 3 of Leader

[6] are not applicable since 5) does not hold for every p ∈ N and x = 1, y = 2. Define a self

mapping g of X by g1 = g2 = g3 = 2 and g7 = 1. Choose p = q = 1. It is easy to show that

the conditions of Theorem 3 are satisfied.
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A. Bechah

Nontrivial Positive Solutions for Systems with the
p-Laplacian in IRN Involving Critical Exponents

ABSTRACT. In this paper we give some results for the existence of positive solutions of

p-Laplacian systems in IRN involving critical exponents. These solutions can be obtained

by variational methods, more precisely by the mountain pass lemma and the concentration

compactness lemma.

1 Introduction

In this paper we are interested in the existence of nontrivial positive solutions for Systems

of q and p Laplacian involving critical exponents in IRN . Our study follows several works for

the case of a simple equation which take their origin in the paper of Brézis and Nirenberg

[2] concerning a semilinear equation of the following form

(EC)

−∆u = u2∗−1 + λu in Ω ⊂ IRN ,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain and 2∗ is the Sobolev exponent. We recall that for

1 ≤ p < +∞, p∗ = Np
N−p

.

They give existence of positive solutions when N ≥ 3 and λ ∈ (0, λ1), where λ1 is the first

eigenvalue for the Laplacian operator.

Recently, several authors were interested by this type of problems in the case of the p-

Laplacian (i.e. ∆pu = div(|∇u|p−2∇u)). See [10], [5], [6], [8] and the references therein.

For 1 < p < N , Drabeck and Huang in [6] consider the equation

(EC1) −∆pu = λg(x)|u|p−2u + f(x)|u|p∗−2u, x ∈ IRN .

They introduce λ1 > 0, principal eigenvalue for the problem
−∆pu = λg(x)|u|p−2u x ∈ IRN ,∫

IRN

g(x)|u|pdx > 0,
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and they prove that Equation (EC1) admits at least one weak positive solution if λ ∈ (0, λ1).

This solution lies in D1,p(IRN), i.e. the closure of C∞0 (IRN) with respect to the norm

‖u‖D1,p(IRN ) = ‖∇u‖Lp(IRN ).

In this paper we extend the results above ([6], [2]) to the system

(SC)



−∆pu = a(x)|u|p∗−2u + λb(x)|u|α−1u|v|β+1,

−∆qv = c(x)|v|q∗−2v + λb(x)|u|α+1|v|β−1v in IRN ,

lim
|x|→+∞

u(x) = lim
|x|→+∞

v(x) = 0,

u > 0, v > 0,

with

α + 1

p
+

β + 1

q
= 1, α + β + 2 < N, (1.1)

p > 1, q > 1, max{p, q} < N, α ≥ 0, β ≥ 0. (1.2)

We prove the existence of a positive solution for any λ ∈ (0, λ1). Here λ1 is the principal

eigenvalue associated to the problem

(V P )



−∆pu = λb(x)|u|α−1u|v|β+1,

−∆qv = λb(x)|u|α+1|v|β−1v in IRN ,

u > 0, v > 0,

lim
|x|→+∞

u(x) = lim
|x|→+∞

v(x) = 0.

J. Fleckinger, R.F. Manàsevich, N.M. Stavrakakis and F. de Thélin [7] prove that under hy-

potheses (1.1), (1.2) and

(H1) b is a C0,γ(IRN) function with γ ∈ (0, 1) which belongs to L
N

α+β+2 (IRN) ∩ L∞(IRN),

there exists a positive eigenvalue denoted by λ1.

Results concerning the subcritical case have been obtained independently by [1] and [11].

But, from our knowledge, there are no results concerning the critical case for systems in IRN .

In the case of a bounded domain and p = q see [4].

Now we come back to the critical system (SC). Here we shall prove the existence of positive

solutions by a variational method, more precisely by the Montain Pass Theorem [3]. One of
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the difficulties in the critical case is that the Palais Smale conditions will be satisfied only

for c > 0 satisfying

c < min

{
α + 1

N
S

N
p

p ‖a‖
p−N

p

L∞(IRN )
,
β + 1

N
S

N
q

q ‖c‖
q−N

q

L∞(IRN )

}
.

We recall that (u, v) ∈ D1,p(IRN)×D1,q(IRN) is a weak solution if it satisfies (SC) in weak

sense. And the Sobolev constant Sp is given by

Sp = inf

{
‖∇u‖p

Lp(IRN )

‖u‖p

Lp∗ (IRN )

u ∈ W 1,p(IRN)\{0}

}
.

Now, we introduce the hypotheses below what we need in our proofs:

(H2) a and c are nonnegative functions in L∞(IRN).

(H3) There exist R > 0 and b0 > 0 such that

b(x) ≥ b0 > 0 in BR.

(H4) If
α + 1

N
S

N
p

p ‖a‖
p−N

p

L∞(IRN )
≤ β + 1

N
S

N
q

q ‖c‖
q−N

q

L∞(IRN )
we assume

• (N − p)(α + 1)

p
>

pq

p− 1
,

• a(x) = a(0) + O(|x|k1) near 0,

where k1 >
δp

p− 1
and δ = N − N − p

p
(α + 1) +

N − p

p2
(α + 1),

• a(0) = ‖a‖L∞(IRN ) and a(x) > 0 in B2R.

If
α + 1

N
S

N
p

p ‖a‖
p−N

p

L∞(IRN )
≥ β + 1

N
S

N
q

q ‖c‖
q−N

q

L∞(IRN )
we assume

• (N − q)(β + 1)

q
>

pq

q − 1
,

• c(x) = c(0) + O(|x|k2) near 0,

where k2 >
γq

q − 1
and γ = N − N − q

q
(β + 1) +

N − q

q2
(β + 1),

• c(0) = ‖c‖L∞(IRN ) and c(x) > 0 in B2R.

Example: If a(x) = a(0) on BR, a(0) >

α + 1

β + 1

S
N
p

p

S
N
q

q

‖c‖
N−q

q
∞


p

N−p

and

N − p >
pp′q

α + 1
, then the hypothesis (H4) is satisfied.

Theorem 1.1 If the hypotheses (H1) - (H4), (1.1) and (1.2) are satisfied, then System

(SC) admits a weak solution (u, v) 6= (0, 0).

Remark 1.2 In fact, we prove that u 6= 0 and v 6= 0 (see Corollary 3.1).
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2 Preliminaries

Lemma 2.1 Assume that hypotheses (H1), (1.1) and (1.2) are satisfied; then for all

λ ∈ (0, λ1), there exists α0 > 0 (depending of λ) such that ∀(u, v) ∈ D1,p(IRN) × D1,q(IRN)

we have

α + 1

p
‖u‖p

D1,p(IRN )
+

β + 1

q
‖v‖q

D1,q(IRN )
− λ

∫
IRN

b(x)|u|α+1|v|β+1dx

≥ α0

(
‖u‖p

D1,p(IRN )
+ ‖v‖q

D1,q(IRN )

)
.

(2.3)

�

Now, we introduce the functional

Jλ(u, v) =
α + 1

p
‖u‖p

D1,p(IRN )
+

β + 1

q
‖v‖q

D1,q(IRN )
− α + 1

p∗

∫
IRN

a(x)|u|p∗dx

− β + 1

q∗

∫
IRN

c(x)|v|q∗dx− λ

∫
IRN

b(x)|u|α+1|v|β+1dx.

(2.4)

Classical arguments show that Jλ is well defined.

In the following lemma we recall Lions’s concentration-compactness Lemma.

Lemma 2.2 [6], [9], [8].

Let {un}n converge weakly to u in D1,p(IRN) such that {|un|p
∗}n and {|∇un|p}n converge

weakly to the nonnegative measure ν, µ on IRN respectively. Then

1. ν = |u|p∗ +
∑
j∈J

νjδxj
with νj > 0 ∀j ∈ J ,

2. µ ≥ |∇u|p +
∑
j∈J

µjδxj
with µj > 0 ∀j ∈ J,

3. Spν
p

p∗
j ≤ µj, ∀j ∈ J ,

where xj ∈ IRN , δx is the Dirac measure, J is a countable set and Sp is the Sobolev constant.

Proposition 2.3 Let {un}n converge weakly to u0 in D1,p(IRN). Then for all h ∈
L∞(IRN), there exists a subsequence of {un}n denoted again by {un}n such that for all φ ∈
C∞0 (IRN) ∫

IRN

h|un|p
∗−2unφdx →

∫
IRN

h|u0|p
∗−2u0φdx,

and ∫
IRN

h|un|p−2unφdx →
∫

IRN

h|u0|p−2u0φdx.
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See [6] for the proof of Proposition 2.3.

Proposition 2.4 Let {(un, vn)}n be a bounded sequence converging weakly to (u, v) in

D1,p(IRN)×D1,q(IRN) and satisfying

Jλ(un, vn) → C, (2.5)

and

J ′λ(un, vn) → 0. (2.6)

Then there exists a subsequence still denoted by {(un, vn)}n such that

|∇un|p−2∇un → |∇u|p−2∇u weakly in
(
Lp(IRN)

)′
, (2.7)

|∇vn|q−2∇vn → |∇v|q−2∇v weakly in
(
Lq(IRN)

)′
. (2.8)

Proof: It is clear from Sobolev embedding that {(un, vn)}n converges strongly in Lp
loc(IR

N)×
Lq

loc(IR
N) and so there exists a subsequence still denoted by {(un, vn)}n such that

(un, vn) → (u, v) a.e. in IRN .

Observe, that all hypotheses of Lemma 2.2 are satisfied, and thus, there exist two countable

sets J and J̄ such that (un)n and (vn)n satisfy the properties 1, 2 and 3 (Lemma 2.2) in J

and J̄ respectively.

First, we show that J and J̄ are finite.

From (2.4) we have

J ′λ(u, v)(w, z) = (α + 1)

∫
IRN

|∇u|p−2∇u.∇wdx + (β + 1)

∫
IRN

|∇v|q−2∇v.∇zdx

− (α + 1)

∫
IRN

a(x)|u|p∗−2uwdx− (β + 1)

∫
IRN

c(x)|v|q∗−2vzdx

− λ

∫
IRN

[
(α + 1)b(x)|u|α−1uw|v|β+1 + (β + 1)b(x)|u|α+1|v|β−1vz

]
dx,

(2.9)

for all (u, v), (w, z) ∈ D1,p(IRN)×D1,q(IRN).

Now, for xj ∈ {xi, i ∈ J} we introduce a function φj ∈ C∞0 (IRN) satisfying φj ≡ 1 in

B(xj, ε), φj ≡ 0 in IRN/B(xj, 2ε) and |∇φj| ≤
c

ε
.

Substituting w = φjun, z ≡ 0 in (2.9) and using (2.6) we obtain

lim
n→+∞

∫
IRN

|∇un|p−2un(∇un.∇φj)dx

= lim
n→∞

[∫
IRN

a(x)|un|p
∗
φjdx + λ

∫
IRN

b(x)|un|α+1|vn|β+1φjdx−
∫

IRN

|∇un|pφjdx

]
.

(2.10)
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Classical arguments (see [1]) show that

lim
n→+∞

∫
IRN

b(x)|un|α+1|vn|β+1φjdx =

∫
IRN

b(x)|u|α+1|v|β+1φjdx. (2.11)

And from Lemma 2.2, (2.11) and (2.10), we obtain

lim
n→+∞

∫
IRN

|∇un|p−2un(∇un.∇φj)dx

=

∫
IRN

a(x)φjdν + λ

∫
IRN

b(x)|u|α+1|v|β+1φjdx−
∫

IRN

φjdµ.

(2.12)

From [6] we have ∣∣∣∣ lim
n→+∞

∫
IRN

|∇un|p−2un(∇un.∇φj)dx

∣∣∣∣→ 0, (2.13)

as ε → 0.

Letting ε go to 0 in (2.12) and using (2.13), we obtain

a(xj)νj = µj. (2.14)

We deduce from this last equality

a(xj) > 0 ∀j ∈ J, (2.15)

νj ≥ (
Sp

a(xj)
)

N
p , (2.16)

J is finite. (2.17)

Indeed, if J is infinite we deduce from (2.16) and Lemma 2.2 that
∫

IRN |un|p
∗
dx → +∞; a

contradiction.

Now, we let J = {1, ...,m} and Ωε0 = {x ∈ IRN : dist(xj, x) > ε0, ∀j = 1, ...,m}.
Arguing as in [8] we prove that (see the details in [1])∫

Ωε0

(|∇un|p−2∇un − |∇u|p−2∇u)(∇un −∇u)dx → 0 ∀ε0 > 0. (2.18)

Classical arguments show that

∂un

∂xi

→ ∂u

∂xi

a.e. in Ωε0 1 ≤ i ≤ N.

Since ε0 is arbitrary, we conclude by a diagonal process that there exists a subsequence

denoted again by (un) such that

∂un

∂xi

→ ∂u

∂xi

a.e. in IRN 1 ≤ i ≤ N.
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Since {|∇un|p−2∂un

∂xi

} is bounded in (Lp(IRN))′, we conclude that

|∇un|p−2∂un

∂xi

→ |∇u|p−2 ∂u

∂xi

weakly in (Lp(IRN))′, 1 ≤ i ≤ N.

Hence (2.7).

Similarly we obtain (2.8). �

In the following lemma we prove Palais Smale conditions.

Lemma 2.5 Suppose that the hypotheses (H1), (H2), (1.1), (1.2) hold and λ ∈ (0, λ1).

We define

S0 = min

{
α + 1

N
S

N
p

p ‖a‖
p−N

p

L∞(IRN )
,
β + 1

N
S

N
q

q ‖c‖
q−N

q

L∞(IRN )

}
. (2.19)

Then the function Jλ satisfies the Palais Smale conditions at C for all C < S0.

Proof: Let {(un, vn)}n ⊂ D1,p(IRN) × D1,q(IRN) be so that (2.5) and (2.6) are satisfied.

First, we will prove that {(un, vn)}n is bounded.

Suppose the contrary, so ‖(un, vn)‖D1,p(IRN )×D1,q(IRN ) → +∞.

We deduce from (2.4) and (2.9)

Jλ(un, vn)− J ′λ(un, vn)(
un

p
,
vn

q
)

=
α + 1

N

∫
IRN

a(x)|un|p
∗
dx +

β + 1

N

∫
IRN

c(x)|vn|q
∗
dx

= C + o(1)‖(un, vn)‖D1,p(IRN )×D1,q(IRN ).

(2.20)

Thus

α + 1

p
‖un‖p

D1,p(IRN )
+

β + 1

q
‖vn‖q

D1,q(IRN )
− λ

∫
IRN

b(x)|un|α+1|vn|β+1dx ≤ c‖(un, vn)‖,

(2.21)

and with Lemma 2.1, it follows

α0(‖un‖p

D1,p(IRN )
+ ‖vn‖q

D1,q(IRN )
) ≤ c‖(un, vn)‖D1,p(IRN )×D1,q(IRN ), (2.22)

which implies that {(un, vn)}n is a bounded sequence.

Now, we prove that we can extract a converging subsequence.
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It is clear that there exists a subsequence denoted again by {(un, vn)}n which converges

weakly to (u, v) in D1,p(IRN)×D1,q(IRN), and satisfies

|un|p
∗ → ν, |∇un|p → µ,

|vn|q
∗ → ν̄, |∇vn|q → µ̄,

weakly.

From Propositions 2.3, 2.4 we have

J ′λ(u, v) = 0. (2.23)

It is easy to show that the hypotheses of Lemma 2.2 are satisfied and from the proof of

Proposition 2.4 that

a(xj)νj = µj ∀j ∈ J, b(xj)ν̄j = µ̄j ∀j ∈ J̄ , (2.24)

and

νj ≥ [
Sp

a(xj)
]

N
p ∀j ∈ J, ν̄j ≥ [

Sq

c(xj)
]

N
q ∀j ∈ J̄ . (2.25)

J and J̄ are finit sets.

We will prove that J and J̄ are empty sets.

Suppose that J ∪ J̄ 6= ∅.
Since {(un, vn)}n converges weakly to (u, v) and∫

IRN

b(x)|un|α+1|vn|β+1dx →
∫

IRN

b(x)|u|α+1|v|β+1dx,

we deduce that for any σ > 0 and n sufficiently large

C + σ > Jλ(un, vn)− J ′λ(un, vn)(
un

p∗
,
vn

q∗
)

=
α + 1

N
‖un‖p

D1,p(IRN )
+

β + 1

N
‖vn‖q

D1,q(IRN )

− λ(
α + β + 2

N
)

∫
IRN

b(x)|un|α+1|vn|β+1dx.

(2.26)

Taking n → +∞, we obtain

C + σ ≥ α + 1

N
‖u‖p

D1,p(IRN )
+

β + 1

N
‖v‖q

D1,q(IRN )

− λ(
α + β + 2

N
)

∫
IRN

b(x)|u|α+1|v|β+1dx

+
α + 1

N

∑
j∈J

µj +
β + 1

N

∑
j∈J̄

µ̄j.

(2.27)
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Taking into account (2.23), (2.24) and (2.25) we obtain

C + σ ≥ α + 1

N

∫
IRN

a(x)|u|p∗dx +
β + 1

N

∫
IRN

c(x)|v|q∗dx

+
α + 1

N

∑
j∈J

a(xj)νj +
β + 1

N

∑
j∈J̄

c(xj)ν̄j

>
α + 1

N

∫
IRN

a(x)|u|p∗dx +
β + 1

N

∫
IRN

c(x)|v|q∗dx

+ min

{
α + 1

N
S

N
p

p ‖a‖
p−N

p

L∞(IRN )
,
β + 1

N
S

N
q

q ‖c‖
q−N

q

L∞(IRN )

}
.

Since C < S0 and σ is arbitrary this implies

α + 1

N

∫
IRN

a(x)|u|p∗dx +
β + 1

N

∫
IRN

c(x)|v|q∗dx < 0, (2.28)

which contradicts (H2).

Therefore J and J̄ are empty, hence∫
IRN

|un|p
∗
dx →

∫
IRN

|u|p∗dx and

∫
IRN

|vn|q
∗
dx →

∫
IRN

|v|q∗dx.

With the weak convergence of {(un, vn)}n to (u, v) in D1,p(IRN)×D1,q(IRN), we have

(un, vn) → (u, v) strongly in Lp∗(IRN)× Lq∗(IRN). (2.29)

�

Lemma 2.6 Suppose that the hypotheses (H1), (H2), (1.1) and (1.2) are satisfied, then

there exist two constants δ > 0, ρ > 0 such that

Jλ(u, v) ≥ ρ, for all ‖(u, v)‖D1,p(IRN )×D1,q(IRN ) = δ and λ ∈ (0, λ1). (2.30)

Proof: We deduce from (2.3) and the Sobolev inequality that

Jλ(u, v) ≥ α0(‖u‖p

D1,p(IRN )
+ ‖v‖q

D1,q(IRN )
)− c‖u‖p∗

D1,p(IRN )
− c‖v‖q∗

D1,q(IRN )
.

So, for δ sufficiently small we have

Jλ(u, v) ≥ ρ.

�

Let R > ε > 0, 0 < r ≤ R and φr be a nonnegative function in C∞0 (IRN) satisfying 0 ≤ φr ≤ 1,

φr ≡ 1 in B(0, r) and φ ≡ 0 in IRN/B(0, 2r).

We define

uε(x) =
φR(x)

(ε + |x|
p

p−1 )
N−p

p

, wε(x) =
uε

‖uε‖Lp∗ (IRN )

, zε(x) = φε(x).
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Lemma 2.7 We have

1) ‖uε‖p

Lp∗ (IRN )
= cε

p−N
p + O(1).

For ε sufficiently small

2)
1

‖uε‖p∗

Lp∗ (IRN )

∫
IRN

a(0)− a(x)

(ε + |x|
p

p−1 )
N−p

p

dx = O(εk1( p−1
p

)).

3)

∫
IRN

wε(x)α+1φε(x)β+1dx ≥ cεδ,

where δ = N − (N−p
p

)(α + 1) + (N−p
p2 )(α + 1).

Proof: For the proof of 1) and 2) see [2].

3) We have∫
IRN

uα+1
ε φβ+1

ε dx ≥
∫

Bε

uα+1
ε dx =

∫ ε

0

sN−1(
ε + s

p
p−1

) (N−p)(α+1)
p

ds

= ε( p−1
p

)(N)−(N−p
p

)(α+1)

∫ ε
1
p

0

rN−1(
1 + r

p
p−1

) (N−p)(α+1)
p

dr

≥ cε( p−1
p

)(N)−(N−p
p

)(α+1)

∫ ε
1
p

0

rN−1dr

≥ cεN−(N−p
p

)(α+1).

(2.31)

On the other hand, for ε sufficiently small

1

‖uε‖α+1
Lp∗ (IRN )

≥ cε
(N−p

p2 )(α+1)
. (2.32)

Therefore ∫
IRN

wα+1
ε φβ+1

ε dx ≥ cε
N−(N−p

p
)(α+1)+(N−p

p2 )(α+1)
. (2.33)

Lemma 2.8 Suppose that the hypotheses (H1) - (H4), (1.1) and (1.2) are satisfied, then

there exist ε > 0 and t1 > 0 such that for all λ ∈ (0, λ1) Jλ(t
1
p

1 wε, t
1
q

1 φε) < 0 and

0 < sup
t>0

Jλ(t
1
p wε, t

1
q φε) <

α + 1

N
S

N
p

p ‖a‖
p−N

p
∞ . (2.34)
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Proof: We have

Jλ(t
1
p wε, t

1
q φε)

= t

(
α + 1

p
‖wε‖p

D1,p(IRN )
+

β + 1

q
‖φε‖q

D1,q(IRN )
− λ

∫
IRN

b(x)|wε|α+1|φε|β+1dx

)
− α + 1

p∗
tτ
∫

IRN

a(x)|wε|q
∗
dx− β + 1

q∗
tτ̄
∫

IRN

c(x)|φε|p
∗
dx.

(2.35)

Since t → −Jλ(t
1
p wε, t

1
q φε) is a convex differentiable function it admits a minimum at tε ∈

[0, +∞) satisfying

dJλ

dt
(t

1
p
ε wε, t

1
q
ε φε) = 0.

Therefore

α + 1

p
tτ−1
ε

∫
IRN

a(x)|wε|p
∗
dx +

β + 1

q
tτ̄−1
ε

∫
IRN

c(x)|φε|q
∗
dx

≤ α + 1

p
‖wε‖p

Lp∗ (IRN )
+

β + 1

q
‖φε‖q

Lq∗ (IRN )
− λ

∫
IRN

b(x)|wε|α+1|φε|β+1dx.

(2.36)

First, we show that tε is bounded from above and below.

• Indeed, it follows from (2.36), (H1), (H2) and (H4)

α + 1

p
tτ−1
ε a(0)

∫
IRN

|wε|p
∗
dx− α + 1

p
tτ−1
ε

∫
IRN

(a(0)− a(x))|wε|p
∗
dx

≤ α + 1

p
‖wε‖p

D1,p(IRN )
+

β + 1

q
‖φε‖q

D1,q(IRN )
.

From 2) in Lemma 2.7, the fact that ‖wε‖D1,p(IRN ) = Sp, and
∫

IRN |wε|p
∗

= 1, we have

α + 1

p
[a(0)−O(εk1( p−1

p
))]tτ−1

ε ≤ α + 1

p
Sp +

β + 1

q
‖φε‖q

D1,q(IRN )
.

By taking ε small enough such that O(εk1( p−1
p

)) ≤ a(0)

2
and remarking that

‖φε‖q

D1,q(IRN )
≤ cεN−q we obtain

α + 1

2p
a(0)tτ−1

ε ≤ α + 1

p
Sp + c. (2.37)

This proves that tε is bounded from above.

• On the other hand, observe that

Jλ(t
1
p wε, t

1
q φε) ≥ α0t

(
‖wε‖p

D1,p(IRN )
+ ‖φε‖q

D1,q(IRN )

)
− α + 1

p∗
tτ
∫

IRN

a(x)|wε|p
∗
dx− β + 1

q∗
tτ̄
∫

IRN

c(x)|φε|q
∗
dx

≥ α0tSp
p −

α + 1

p∗
‖a‖L∞(IRN )t

τ − β + 1

q∗
‖c‖L∞(IRN )t

τ̄ = Θ(t).

(2.38)
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It is clear that
dJλ

dt
(0) ≥ Θ′(0) = α0Sp

p = k > 0,

and by continuity there exists η > 0 such that J ′λ(t
1
p wε, t

1
q φε) ≥ Θ′(t) > k

2
for any |t| < η.

Hence tε ≥ η.

On the other hand, we deduce from (2.38) that for ε > 0 sufficiently small Jλ(t
1
p wε, t

1
q φε) > 0

which implies that Jλ(t
1
p
ε wε, t

1
q
ε φε) > 0. Now, we write Jλ(t

1
p
ε wε, t

1
q
ε φε) as below

Jλ(t
1
p
ε wε, t

1
q
ε φε) = sup

t≥0
Jλ(t

1
p wε, t

1
q φε) = Eε − Fε,

where

Eε = tε
α + 1

p
‖wε‖p

D1,p(IRN )
− α + 1

p
a(0)tτε

∫
IRN

wp∗

ε dx

+ tε
β + 1

q
‖φε‖q

D1,p(IRN )
− β + 1

q∗
tτ̄ε

∫
IRN

c(x)φq∗

ε dx,

Fε = λtε

∫
IRN

b(x)|wε|α+1|φε|β+1dx− α + 1

p∗
tτε

∫
IRN

(a(0)− a(x))wp∗

ε dx.

We consider the function

m(t) = Mt− L

τ
tτ ,

m attains its maximum at t1 =

(
M

L

)N−p
p

. Since tε is bounded from above, since ‖φε‖q

D1,q(IRN )

= O(εN−q) and c is nonnegative, we deduce that

Eε ≤
α + 1

p

(
‖wε‖N

D1,p(IRN )

a(0)
N−p

p

− 1

τ

‖wε‖N
D1,p(IRN )

a(0)
N−p

p

)
+ O(εN−q)

=
α + 1

N
‖a‖

p−N
p

∞ S
N
p + O(εN−q).

(2.39)

(Remark that ‖wε‖N
D1,p(IRN )

= S
N
p

p .)

Since tε is bounded from below and above, it follows from Lemma 2.7 that

λtε

∫
IRN

b(x)|wε|α+1|φε|β+1 ≥ λtε

∫
IRN

b0|wε|α+1|φε|β+1dx

≥ cεδ.

and

α + 1

p
tτε

∫
IRN

(a(0)− a(x))wp∗

ε dx = O(εk1( p−1
p

)) (2.40)



Nontrivial Positive Solutions for Systems with the p-Laplacian . . . 85

Observing that δ < k1(
p−1

p
), this implies

Fε ≥ cεδ.

Therefore

Jλ(t
1
p
ε wε, t

1
p
ε φε) ≤

α + 1

N
S

N
p ‖a‖

p−N
p

L∞(IRN )
− cεδ + O(εN−q).

On the other hand, it follows from (H4) that δ < N − q. Thus, we obtain

Jλ(t
1
p
ε wε, t

1
p
ε φε) ≤

α + 1

N
S

N
p ‖a‖

p−N
p

L∞(IRN )
− cεδ,

hence (2.34).

By taking t sufficiently large in (2.35), we have Jλ(t
1
p wε, t

1
q φε) < 0, and thus there exists a

t1 such that Jλ(t
1
p

1 wε, t
1
q

1 φε) < 0, which concludes the proof of Lemma 2.8.

�

3 Proof of Theorem 1.1

We let X = D1,p(IRN)×D1,q(IRN), u0 = (t
1
p

1 wε, t
1
q

1 zε) and C = inf
h∈Γ

sup
t∈[0,1]

J(h(t)), where

Γ = {h ∈ C([0, 1], X) : h(0) = 0, h(1) = u0}.

It is clear from Lemma 2.8 that C <
α + 1

N
S

N
p

p ‖a‖
p−N

p
∞ , furthermore (H4) and Lemma 2.5

imply that Jλ satisfies Palais Smale conditions at C. Thus, by Lemmas 2.8, 2.6 and the

Mountain Pass Lemma we deduce that (SC) admits a solution (u, v) 6= (0, 0). Moreover this

solution is nonnegative because Jλ(h(t)) = Jλ(|h(t)|).

�

Corollary 3.1 The solution (u, v) obtained in Theorem 1.1 satisfies u 6= 0 and v 6= 0.

Proof: It is clear from Theorem 1.1 that there exist other solutions than (0, 0). Suppose

(for example) that u 6= 0 and v = 0. In this case System (SC) is reduced to the simple

equation

−∆pu = a(x)|u|p∗−2u. (3.41)

Multiplying equation (3.41) by u, and integrating over IRN , we have

‖u‖p

D1,p(IRN )
=

∫
IRN

a(x)|u|p∗dx ≤ ‖a‖L∞(IRN )

∫
IRN

|u|p∗dx. (3.42)
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From the definition of Sp

S
p∗
p

p

∫
IRN

|u|p∗dx ≤ ‖u‖p∗

D1,p(IRN )
. (3.43)

Combining (3.42) and (3.43), we have

‖u‖p

D1,p(IRN )
≤ ‖a‖L∞(IRN )

∫
IRN

|u|p∗dx ≤ S
− p∗

p
p ‖a‖L∞(IRN )‖u‖

p∗

D1,p(IRN )
. (3.44)

Therefore

‖u‖p

D1,p(IRN )
≥ ‖a‖

p−N
p

L∞(IRN )
S

N
p

p . (3.45)

Using (3.42), we have

Jλ(u, 0) =
α + 1

p
‖u‖p

D1,p(IRN )
− α + 1

p∗

∫
IRN

a(x)|u|p∗dx =
α + 1

N
‖u‖p

D1,p(IRN )
. (3.46)

So, we deduce from (3.45) and (3.46) that

Jλ(u, 0) ≥ α + 1

N
‖a‖

p−N
p

L∞(IRN )
S

N
p

p . (3.47)

But from Theorem 1.1 C = Jλ(u, 0) <
α + 1

N
‖a‖

p−N
p

L∞(IRN )
S

N
p

p , which contradicts (3.47).

�

Corollary 3.2 Suppose that the functions a, b, c are in L∞(IRN), q ≥ p and (1.1), (1.2)

are satisfied. Then for each solution (u, v) ∈ D1,p(IRN) × D1,q(IRN) we have the following

assertions:

• lim
|x|→+∞

u(x) = lim
|x|→+∞

v(x) = 0.

• Let x ∈ IRN and R > 0 be such that

max (‖a‖∞, ‖c‖∞, ‖b‖∞) max
{

2pSpτ
p−1, 22q−pSq|B1|

q−p
N Rq−pτ q−1

}
×

×
(
‖u‖p(τ−1)

Lp∗ (B2R(x))
+ ‖v‖q(τ−1)

Lqτ (B2R(x))

)
< 1.

(3.48)

Then each solution (u, v) of (SC) belongs to D1,p(IRN)×D1,q(IRN) ∩
(
C1,α(BR

2
(x)
)2

.

The proof of this corollary is a consequence of Theorem 4.2.1 in [1] and Tolksdorfs Theorem

[12].

�
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Corollary 3.3 Under the hypotheses of Corollary 3.2 the solution (u, v) of (SC) is pos-

itive.

Observe that (3.48) is satisfied for all x ∈ IRN and R sufficiently small. So by applying the

strong Maximum Principle of Vazquez [13] in the ball BR
2
(x), we deduce that u(x) and v(x)

are positive; since x is arbitrary this implies that u and v are positive everywhere on IRN .
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Todestages. S. 193-204, Leipzig 1957

Die Angaben erfolgen in Originalsprache; bei kyrillischen Buchstaben sollte die (bi-
bliothekarische) Transliteration verwendet werden.
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