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Applications of the Bartsch-Poppe duality approach

1 Introduction

In the papers [1], [2], [3] by R.Bartsch and H.Poppe a general duality system was defined
and studied:

(X, Y,Xd, Xdd, J :→ Xdd) .

Here X, Y are spaces, Xd is the first dual space of X with respect to Y,Xdd denotes the
second dual space of X w. r. t. Y and J is the canonical map as is known, from classical
examples.

The map J we define by the evaluation map ω: let X, Y be nonempty sets,

ω : X × Y X → Y, ∀(x, h) ∈ X × Y X : ω(x, h) := h(x) .

Hence we find:

∀x ∈ X : Jx = ω(x, ·), ω(x, ·) : Y X → Y : ∀h ∈ Y X : ω(x, ·)(h) = ω(x, h) = h(x) .

In short we call it the B/P duality approach.

In the papers [1], [2], [3] this general duality approach was applied to well known examples
of representation theorems.

Let for instance X be a unital commutative Banachalgebra, or let X be a Boolean ring.

We used suitable spaces Y and defined then the dual spaces Xd and Xdd and proved the
Gelfand and the Stone representation theorem respectively using the general B/P duality
approach.

We also obtained new results. For example, [2], theorem 5.4 shows the embedding of a
vector lattice X into Xdd, in [3], theorem 4.5 one finds the representation of an unital,
noncommutative C∗-algebra.

What is the aim of this paper?
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1. We want to improve the definitions of the first dual space Xd and the second dual
space Xdd of a given space, X as were defined in [1]. For this purpose we will repeat
in short the very basic definitions and some results of the B/P duality approach.

2. We apply the B/P duality approach to get new, well arranged proofs of

(a) the representation of a nonunital commutative C∗-algebra (Gelfand-Naimark the-
orem)

(b) the embedding theorem of Kadison.

2 The duality approach

2.1 Abstract definition

Let X, Y be sets or spaces. Y X means of course the set of all functions from X to Y .

Now we will define an abstract scheme of duality.

Definition 2.1 1. Let be A ⊆ Y X , A ̸= ∅.

We call A to be the first dual space of X with respect to Y .

2. We use here the definition of the map J . Let B ⊆ Y A, B ̸= ∅; let further be: J : X →
Y A, hence as we know:

∀x ∈ X : Jx = ω(x, ·), ω(x, ·) : A → Y : ∀h ∈ A : ω(x, ·)(h) = ω(x, h) = h(x) .

If J(X) ⊆ B, i. e. ∀x ∈ X : ω(x, ·) ∈ B then we call B to be the second (abstract) dual
space of X w. r. t. Y .

Remarks 2.2 (a) If we in definition 2.1 only consider sets X, Y we cannot formulate nice
properties or prove useful theorems concerning the abstract dual spaces A,B. But of
course this is possible for spaces X, Y , where we can use the special properties of these
spaces to give A,B concrete forms.

(b) We will consider spaces with algebraic, order, and topological structures, where topolo-
gies can be derived from metrics, norms or inner products. We also use measurable
spaces.

We put emphasis on spaces with algebraic and topological structures.

2.2 Concrete definition of the first and of the second dual space

2.2.1 The first dual space Xd of a space X with respect to a space Y At first
glance we can say:
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Xd consists of homomorphism from X to Y . But this can only work if we state an assumption.

Basic Assumption 2.3 X and Y belong to the same class of spaces.

We consider three simple examples:

(a) X and Y are vector spaces over R If necessary we add: dimX = dimY .

Then X and Y are in the same class of spaces.

(b) Let be X and Y C∗-algebras over C; X and Y are commutative. If X has no unit
element and Y has an unit then X and Y do not belong to the same class of spaces.

(c) Let X, Y be lattices. Then of course X and Y fullfill (2.3).

In case (a) the first dual space is well known. Let

Y = R, Xd = {h : X → R|h is linear } .

If X is a topological vector space, then we get:

Xd = {h : X → R|h is linear and h is continuous}.

Here we consider a continuous map as a topological homomorphism. In case (b) we cannot
set Y = C since the C∗-algebra C has an unit and, hence Y = C contradicts assumption
(2.3). We will later come back to this example.

In case (c) we at once can write:

Xd = {h : X → Y |h is a lattice-homomorphism}.

Let X, Y be spaces with algebraic or order operations. By the basic assumption (2.3) we
find for each operation in X a corresponding operation in Y .

By A(X, Y ) we denote the set of all such pairs of operation in X and Y respectively.

We assume ∅ ≠ A(X, Y ) and A(X, Y ) is a finite set.

Definition 2.4 (a) H(X, Y ) = {h : X → Y |h is a homomorphism for each pair of
operations from A(X, Y )}

(b) If both spaces X, Y have also a topology then we consider H(X, Y ) ∩ C(X, Y ), where
C(X, Y ) is the space of all continuous functions from X to Y . Xd = H(X, Y ) or
Xd = H(X, Y ) ∩ C(X, Y ) and we also find:

Xd ⊆ H(X, Y ) or Xd ⊆ H(X, Y ) ∩ C(X, Y ) .

If this is possible and useful we provide Xd with a topology η, τp ≤ η where τp denotes
the pointwise topology.
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We call Xd to be the first dual space of X with respect to Y . To define the pointwise
topology τp for Xd we must have a topology for Y . As we soon will see, in some cases we
indeed will use τp. Hence we come to:

Basic Assumption 2.5 Y always has a topology. If for Y no topology is given we will
define: Y is provided with{

the discrete topology, if X has no topology
the trivial topology, if X has a topology

If we want that all h ∈ H(X, Y ) are continuous too and X has no topology we provide
X also with the discrete topology. The elements of Xd are functions or maps. Using the
operations in Y and in X we want to define corresponding operations in Xd too. In most
cases we define these operations pointwise. For instance let be in X and in Y an addition is
defined:

X = (X,+), Y = (Y,+) .

If now h1, h2 ∈ Xd:

h1 + h2 : ∀x ∈ X : (h1 + h2)(x) := h1(x) + h2(x) ∈ Y .

If for example we have X = Y than we can h1, h2 also compose: h1 ◦ h2.

Definition 2.6 If X, Y are spaces and we have defined Xd then for Xd there exists two
possibilities:

1. X and Xd belong to the same class of spaces

2. X and Xd do not belong to the same class of spaces.

Now let us consider some examples to clear up the situation.

Examples 2.7 1. Let X be a normed vector space over R and let be Y = R.

Xd = {h : X → R |h is linear and his continuous} .

With pointwise defined vector operations and the sup-norm (on bounded sets) Xd is a
normed vector space over R too. Hence X and Xd belong to the same class of spaces.

2. Let X = (X, ∥ · ∥) a R-normed space again, Y = R and Xd = {h : X → R |h is linear
and continuous and ∥h∥ = 1}. But here Xd is no vector space:

we assume that Xd is a vector space, hence

h ∈ Xd ⇒ 2h ∈ Xd ,

but ∥2h∥ = 2∥h∥ = 2 ̸= 1, a contradiction.

Thus X and Xd do not belong to the same class of spaces.
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3. Let X be a vector lattice (a Riesz space), R with natural order also is a vector lattice.
It is known that Xd = {h : X → R| h is linear and order bounded} is a vector lattice
too, showing that X and Xd belong to the same class of spaces.

4. In the paper [2], definition 5.1 we find for a vector lattice

X : Xd = {h : X → R |h is a linear lattice homomorphism} .

the following example 5.3 shows that (in general) Xd is no vector lattice.

Hence X and Xd do not belong to the same class of spaces.

Remarks 2.8 (a) If X and Xd belong to the same class of spaces we can define the
second dual space by: Xdd := (Xd)d. But otherwise we must find a suitable definition
of Xdd.

(b) As special cases of definition (2.4) we get:

X and Y respectively have only:

(b.a) topologies

(b.b) algebraic operations

(b.c) lattice operations

Case (b.a) was treated in our paper [2], concerning (b.b) in [1], 5. Some examples and
applications, [1], page 290 we considered two communicative rings X, Y with units.

(c) Let (X,A, µ) be a measure space, where X is a set, A is a σ-algebra of subsets of X
and µ : A → [0,+∞] is a measure.

Let p ∈ R, 1 ≤ p < ∞, let f : X → R∪ {−∞,∞} be measurable. Then the Lp-norm of f is
given by

∥f∥p =
(∫

X

|f |p
) 1

p

.

f : X → R is called p-integrable or a Lp-function if f is measureable and ∥f∥p < ∞.

Lp(µ) = {f : X → R | f is A-measurable and ∥f∥p < ∞} .

Lp(µ) = (Lp(µ), ∥ · ∥p) is a normed space, even a Banach space. Hence

(Lp(µ))d = {h : Lp(µ) → R |h is linear and continuous}.

Now let be p ∈ R and 1 < p < ∞ and let q be defined by 1
p
+ 1

q
= 1.

There exists a isomorphic and isometric map from Lq(µ) onto (Lp(µ))d.
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This result has the advantage that we can much better work with Lq(µ) than with (Lp(µ))d.
This situation we find by many dual spaces Xd, especially if the space X is a normed space.
This procedure, where the dual space will be replaced by a better space we also will apply to
the two following examples in this paper, where we will use the B/P duality approach. But
here the starting spaces X are not only normed spaces.

Precise definitions and proofs of the above statements about Lp(µ)-spaces one finds in modern
books on measure and integration theory, for instance in [7].

Now we come back to 2.6. Following [1], definition 4.1, page 282 we define:

Definition 2.9 We say that Xd has the defect D,D, if X and Xd do not belong to the
same class of spaces; not the defect D, non D, otherwise.

Now we can define the second dual space.

2.2.2 The second dual space Xdd with respect to a space Y .

Definition 2.10 Let X, Y be spaces in the sense of 2.2, (b). X, Y fulfill basic assump-
tion 2.3. According to basis assumption 2.5 Xd has a topology η with τp ≤ η, since τp is
defined.

Part 1

Xdd =


(
(Xd, η)d, µ

)
if non D(

C((Xd, τp), (Y, σ)), µ
)

if D

where C(·, ·) means the space of continuous maps.

Here we also assume:
τp ≤ µ .

Xdd is called the second dual space of X w. r. t. Y, σ, η, µ.

By [1], lemma 4.1, page 283 and corollary 4.1, page 284 we know that J(X) ⊆ Xdd holds.

Basic Assumption 2.11 X and Xdd are in the same class of spaces.

Part 2

Xdd =

Xdd as defined in part 1, if (2.11) holds

J(X) otherwise

Remark 2.12 The operations in Xdd we define pointwise using the operations in Xd and
in Y . See also [1], page 283.
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3 The Gelfand-Naimark theorem for nonunital commutative
C∗-algebras

At first we will repeat some well-known definitions and results:

Let X be a commutative nonunital C∗-algebra.

Then X1 = X ×C is a commutative C∗-algebra with unit, if we provide X1 with the defined
algebraic operations and the C∗-norm for X1.

The unit for X1 is then (0, 1) ∈ X × C.

The map: x → (x, 0) from X to X1 is a ∗-isomorphic, isometric homomorphism onto X×{0}
with ∥(x, 0)∥ = ∥x∥.

Thus we can identify X with X × {0} ⊆ X1 and by this way X can be considered as a
subspace of X1.

x → (x, 0) is also an uniform bijective map implying that X × {0} is complete since X is
complete hence X × {0} is a closed subspace of X1; this set is even a maximal ideal in X1.

We state:

Proposition 3.1 X×{0} = {(x, 0)|x ∈ X} is a nonunital C∗-subalgebra of X1 = X×C.

3.1 The first dual spaces of X,X1 and the second dual space of X

According to definition 2.4 we can define:

Xd = {h : X → C |h is a *-homomorphism and h is continuous}
= {h : X → C |h is a *-homomorphism} ,

Xd
1 = {g : X1 → C | g is *-homomorphismus} .

If 0 is the zero-homomorphism, by definition 3.2 of [1], page 281, 0 ∈ Xd, but by lemma 4.2
of [1], page 288, 0 /∈ Xd

1 , hence Xd
1\{0} is the new dual space.

For X1 we know the second dual space

Xdd
1 =

(
C((Xd

1\{0}, τp),C), τ∥·∥
)
,

where τp is the pontwise topology and τ∥·∥ = τu is the uniform topology generated by the
sup-norm, [1], [3], and the Gelfand-Naimark theorem for unital algebras. We can use the
sup-norm here because ((Xd

1\{0}), τp) is compact and Hausdorff and thus Xdd consists of
bounded functions:

Xdd
1 =

(
Cb((X

d
1\{0}, τp),C), τu

)
.

Remark 3.2 Concerning the Gelfand-Naimark theorem for unital C∗-algebras look at [8]
and relevant books and papers.
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3.2 Preliminaries

At first we show a result, which is important for our purposes: the dual spaces (Xd, τp) and
(Xd

1\{0}, τp) are homeomorphic. Moreover we consider a simple criterion that a continuous
function already belongs to the space of continuous functions vanishing at infinity.

And we need the Stone-Weierstrass theorem for the case that the basic space is not compact
but only locally compact.

It is nearby that there exists a connection between the first dual space Xd of X and the first
dual space Xd

1 of the unital extension, X1 = X × C, of X.

Indeed:
∀(h, (x, α)) ∈ Xd ×X1 : h̃ : h̃(x, α) = h(x) + α

By the following proposition we show that holds:

∀h ∈ Xd : h̃ ∈ Xd
1 .

This proposition is well known (see for instance [4]). We will not prove the proposition.

Proposition 3.3 1. h̃(0, 1) = 1

2. h̃ is uniquely determined by h

3. h̃ is a ∗-homomorphism and thus h̃ is continuous

4. h̃ is an extension of h

5. If 0 ∈ Xd is the zero-element then 0̃ is not, the zero-element of

Xd
1 : ∀(x, α) ∈ X1 : 0̃(x, α) = 0̂(x) + α = 0 + α = α .

6. If g ∈ Xd
1\{0} then g|(X × {0}) ∈ Xd

Now we can define the map

G : Xd → Xd
1\{0} : ∀h ∈ Xd : G(h) = h̃ .

By proposition 3.3 we know that h̃ ∈ Xd
1\{0}

Theorem 3.4 (a) The map G is bijective

(b) G is neither linear nor multiplicative

(c) G : (Xd, τp) → (Xd
1\{0}, τp) is continuous

(d) G : (Xd, τp) → (Xd
1\{0}, τ) is open
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Proof. (a) G is injective:

∀(h1, h2) ∈ Xd ×Xd, h1 ̸= h2

and we assume

G(h1) = G(h2); h1 ̸= h2 ⇒ ∃x0 ∈ X : h1(x0) ̸= h2(x0), h̃1 = h̃2

h̃1(x0, 0) = h̃2(x0, 0) ⇒ h1(x0) + 0 = h2(x0) + 0

⇒ h1(x0) = h2(x0) ,

a contradiction.

G is surjective too:

∀ f ∈ Xd
1\{0}, f ̸= 0 ,

(a.a) f = 0̃: we know:

0 ∈ Xd and hence G(0) = 0̃ = f ;

(a.b) f ̸= 0̃, by 3.3, 6.:

f |X × {0} ∈ Xd,G(f |X × {0})

= ( ˜f |X × {0}) : ∀(x, α) ∈ X1 : (f |X × {0})(x, α)
= (f |X × {0})(x) + α = f(x, 0) + α = f(x, 0) + 1α

= f(x, 0) + αf(0, 1) = f(x, 0) + f(0, α) = f(x, α) .

Thus G is bijective

(b) Let be f, g ∈ Xd and f + g ∈ Xd, f ̸= 0, g ̸= 0;

G(f + g) = f̃ + g ;

let be (x, α) ∈ X1, α ̸= 0,

(f̃ + g)(x, α) = (f + g)(x) + α = f(x) + g(x) + α

̸= f̃(x, α) + g̃(x, α) = (f(x) + α) + (g(x) + α) .

Analogously one shows that G is not multiplicative too.

(c) Let (hi) be a net from Xd, h ∈ Xd and hi
τp→ h,

∀(x, α) ∈ X1; hi(x) → h(x) ⇒ hi(x) + α → h(x) + α in C ;⇒ h̃i(x, α) → h̃(x, α) ,

hence G(hi)
τp→ G(h).
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(d) Let be H ⊆ Xd be τp-open, we will show that G(H) is τp-open in

Xd
1\{0} : ∀f ∈ G(H)∃h ∈ H : f = h̃ = G(h) ;

now let be (fi) a net from G(H), fi
τp→ f ;

fi = h̃i, hi ∈ H. ∀× ∈ X : fi(x, 0) → fi(x, 0) ,

hence h̃i(x, 0) → h̃(x, 0) ⇒ hi(x) → h(x), hence hi
τp→ h; but then there exists io:

∀i ≥ io : hi ∈ H ⇒ ∀i ≥ io : fi = G(hi) ∈ G(H) .

Thus G(H) is τp-open in Xd
1\{0}.

Corollary 3.5 The map G is a topological map from (Xd, τp) onto ((Xd
1\{0}), τp).

Remark 3.6 The two dual spaces (Xd, τp) and (Xd
1\{0}, τp) respectively are topologically

equivalent, but (in general) not algebraically. We see here once more that in our duality
approach the essential space is the second dual space Xdd of X and not the first dual space
Xd of X. Of course Xd is necessary to construct Xdd, but in some sense Xd is not so
important.

When does a continuous function already vanish at infinity?

It is not hard to find an answer to this question.

Let X be a locally compact, non-compact Hausdorff space, and let αX = X ∪{∞}, ∞ /∈ X,
be the one-point – compactificativen of X. If f ∈ C(X,K), we define:

f∞ : αX → K :

f∞(x) =

f(x), x ∈ X

0, x = ∞ .

By the definition of a continuous function vanishing at infinity and by the definitions of the
topology for αX we see at once:

Proposition 3.7 (a) f ∈ C0(X,K) ⇔ f∞ is continuous in x = ∞ ⇔

(b) For each net (xi) from αX, ∀i : xi ̸= ∞, xi → ∞ in αX ⇒ f(xi) → 0 in K.

A Stone-Weierstrass theorem

Theorem 3.8 Let X be a locally compact noncompact Hausdorff space. Suppose A is
a closed, selfadjoint subalgebra of C0(X,C). If A separates the points of X and for every
x ∈ X there exists f ∈ A with f(x) ̸= 0 then A = C0(X,C).
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The homorphic image units

Theorem 3.9 Let X, Y be rings and h : X → Y a ring-homomorphism

(a) If h is surjective and e is a (multiplicative) unit in X then h(e) is an unit in Y .

(b) Let h be bijective and let ey be a unit in Y .

Then h−1(ey) is a unit in X.

We do not prove this proposition.

3.3 The second dual space of X

X is our starting space: X is a nonunital C∗-algebra. As in the case of an unital Banachal-
gebra or an unital C∗-algebra here also Xd has by Definition 2.9 the defect D and hence by
definition 2.10 we get:

Xdd =
(
C((Xd, τp),C), µ

)
,

where the topology µ still must be determined. And we have the canonical map

J : X → Xdd .

The constant function
1 : ∀h ∈ Xd : 1(h) = 1

is a multiplicative unit in Xdd . But this means that X and Xdd do not belong to the same
class of spaces. Hence according to definition 2.10 we must look at J(X) ⊆ Xdd and show
that X and J(X) belong to the same class of spaces.

X1 is an unital C∗-algebra and hence (Xd
1\{0}, τp) is compact and Hausdorff yielding by

corollary 3.5 that (Xd, τp) is compact and Hausdorff too. This implies that hold

Xdd =
(
Cb((X

d, τp),C), µ
)

But now we can choose µ = τ∥·∥sup : the uniform topology generated by the sup-norm.

Proposition 3.10

J(X) ⊆
(
Cb((X

d, τp),C), τ∥·∥sup
)

and J : X → J(X)

is an isomorphy and an isometry.

Proof.

J1 : X1 → Xdd
1 , J1(x, α) = ω((x, α), ·) .

J1 : X1 →
(
Cb((X

d
1\{0}, τp),C), τ∥·∥sup

)
= Xdd

1
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is a bijective, isomorphic and isometric map. X × {0} is a C∗-subalgebra of X1.

(J1|(X × {0}))(x, α) = J1(x, 0) = ω((x, 0), ·) = J(x, 0) ∈ J(X) .

Hence J maps X isomorphically and isometrically to J(X) = J(X × {0}).

We consider 0 ∈ Xd; 0 is either a τp-isolated point or a τp-accumulation point (clusterpoint)
of (Xd, τp).

If 0 is isolated then (Xd\{0}, τp) is still a compact Hausdorff space implying that

Xdd =
(
Cb((X

d\{0}, τp),C), τ∥·∥sup

)
.

Since 1 ∈ Xdd, X and Xdd do not belong to the same class of spaces. Hence 0 ∈ Xd must
be a τp accumulation point.

3.4 Proof of the Gelfand-Naimark theorem

Theorem 3.11 1. Xd has enough elements

2. (Xd\{0}, τp) is a Hausdorff, locally compact, noncompact topological space and
(X\{0}) ∪ {0} is the onepoint-compactification of (Xd\{0}, τp)

3. J : X →
(
Cb((X

d\{0}, τp),C, τ∥·∥sup
)

and J(X) =
(
C0((X

d\{0}, τp),C), τ∥·∥sup
)

4. J is an isomorphic and isometric map from X onto C0(X
d\{0}, τp),C)

5. X and J(X) = C0((X
d\{0}, τp),C) belong to the same class of spaces.

Proof. 1. X1 is a commutative, unital C∗-algebra, hence we know that Xd
1\{0} has enough

elements. But by the theorem 3.4 we get for the cardinal numbers:

|Xd| = |Xd
1\{0}| .

2. 0 ∈ Xd is a τp-accumulation point and hence it is well-known that 2. holds, since
(Xd, τp) is compact and Hausdorff.

3. At first we show that

J(X) ⊆ C0((X
d\{0}, τp),C) :

J(X) = {ω(x, ·)|x ∈ X} ,
ω(x, ·) : Xd → C : ∀h ∈ Xd : ω(x, ·)(h) = ω(x, h) = h(x) .

We consider ω(x, ·) for some x ∈ X; the zerohomomorphism fromXd is the point at
infinity of (Xd\{0}, τp). Let (hi) be an arbitrary net from Xd\{0} and hi

τp→ 0, then

hi(x) 7→ 0(x) = 0 ∈ C ⇒ ω(xi, ·)(hi) → 0
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showing by proposition 3.7 that

ω(x, ·) = Jx ∈ C0((X
d\{0}, τp),C)

holds.

If we can show that the assumptions of the Stone-Weierstrass theorem 3.8 are fullfilled
for J(X) then

J(X) =
(
C0((X

d\{0}, τp),C), τ∥·∥sup

)
.

Now, by proposition 3.10 J is an isometry from X into C0((X
d\{0}, τp),C) and thus

J(X) is closed in (
C0((X

d\{0}, τp),C), τ∥·∥sup

)
Corollary 3.7 of [3] shows that J(X) is selfadjoined too. J is injective and hence by
[1], proposition 4.5, page 290, J(X) separates the points of Xd\{0}; now finally:

∀h ∈ Xd\{0} ⇒ h ̸= 0 ⇒ ∃x ∈ X : h(x) ̸= 0 ∈ C ;

then x ̸= 0 holds too; now, ω(x, ·) ∈ J(X) and ω(x, ·)(h) = h(x) ̸= 0. Thus the
assumptions of the Stone-Weierstrass theorem are fulfilled.

4. This follows from 3. and from proposition 3.10.

5. X and
(
C0((X

d\{0}, τp),C), τ∥·∥sup

)
are commutative, nonunital C∗-algebras and hence

both spaces belong to the same class of spaces.

Corollary 3.12 Equivalent are:

(1) X has the unit e

(2) 0 ∈ Xd is an isolated point of (Xd, τp)

(3) (Xd, τp) is compact (and Hausdorff)

Proof. (1) ⇒ (2): this assertion follows from [1], lemma 4.3, page 389

(2) ⇒ (3): Since 0 is an isolated point then (Xd\{0})∪{0} cannot be the one-point compact-
ification of (Xd\{0}, τp) and thus (Xd\{0}, τp) is compact implying that (Xd, τp) is compact.

(3) ⇒ (1): We have
Xdd =

(
Cb((X

d, τp),C), τ∥·∥sup

)
because (Xd, τp) is compact and Hausdorff.

Hence the constant function 1 is unit in Xdd implying by proposition 3.10 that e := J−1(1)

is unit in X.
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4 The embedding theorem of Kadison

4.1 The spaces Xsa and S(X)

Let X be an unital C∗-algebra. By Xsa we denote the set of all selfadjoined elements of X
and by S(X) we mean the set of states of X.

Xsa ⊆ X is a real vector space and (Xsa, ∥ · ∥) is real Banach subspace of X. The unit e ∈ X

belongs to Xsa : e
∗ = e. For instance:

x ∈ X ⇒ x∗ ∈ X ⇒ x∗x ∈ X ,

but x∗x ∈ Xsa too: (x∗x)∗ = x∗x∗∗ = x∗x.

If X is commutative then of course Xsa is closed under multiplication.

4.2 The first and the second dual space of Xsa

According to our duality theory we define now the first dual space of Xsa.

e is the multiplicative unit in X and e ∈ Xsa. Hence we define:

Definition 4.1 (Xsa)
d = {h : Xsa → R|h is linear, continuous and h(e) = 1}

Remark 4.2 1. (Xsa)
d is not identical with the the Banachspace – dual

X ′
sa = {h : Xsa → R |h is linear and continuous} .

2. For (Xsa)
d does not hold:

h1, h2 ∈ (Xsa)
d ⇒ h1 + h2 ∈ (Xsa)

d : if h1 + h2 ∈ (Xsa)
d then (h1 + h2)(e) = 1 ,

but otherwise:
(h1 + h2)(e) = h1(e) + h2(e) = 2 ,

a contradiction.

Hence (Xsa)
d is no vectorspace.

From remark 4.2, 2. we get: (Xsa)
d has the defect D according to 2.9. Hence by 2.10 the

second dual space of Xsa reads:

Remark 4.3
(Xsa)

dd =
(
C((Xsa)

d, τp), (R, τ|·|), µ
)
,

where are: τ|·| the Euclidian topology and µ a topology for the space of continuous functions.
µ still must be specified.
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Remark 4.4 We don’t know the properties of ((Xsa)
d, τp), especially we don’t know wether

or not, ((Xd
sa), τp) is compact Hausdorff or not. But in exchange we find a Hausdorff and

compact space as the next proposition will show.

Proposition 4.5 The topological spaces (Xd
sa, τp) and (S(X), τp) are homeomorphic.

For the proof we need a result, which we provide by the following proposition.

For the C∗-algebra C we easily can prove the characterization of the convergence of a sequence
(zn), ∀n ∈ N : zn ∈ C, z ∈ C: let be ∀n ∈ N : zn = xn + iyn, z = x+ iy.

Then holds:
zn → z ⇔ xn → x and yn → y .

Somewhat more difficult to prove is the corresponding characterization in an arbitrary C∗-
algebra.

Proposition 4.6 Let X an unital C∗-algebra, Xsa denotes the set of all selfadjoint
elements of X. Let (xn) be a sequence in X, x ∈ X. Convergence means norm-convergence.
We write:

xn = an + ibn, x = a+ ib ; ∀n : an, bn ∈ Xsa, a, b ∈ Xsa .

Then holds: Equivalent are:

(1) xn → x

(2) an → a and bn → b

Proof. (2) → (1):

∥xn − x∥ = ∥(an − a) + i(bn − b)∥
≤ ∥an − a∥+ |i|∥bn − b∥
= ∥an − a∥+ ∥bn − b∥ → 0 ,

hence ∥xn − x∥ → 0 too.

(1) → (2):
∀n : an − a, bn − b ∈ Xsa ;

but then
(an − a)2, (bn − b)2 ∈ Xsa and (an − a)2, (bn − b)2

are positive.

Now, for instance
(bn − b)2 ≤ (an − a)2 + (bn − b)2 ,
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since [
(an − a)2 + (bn − b)2

]
− (bn − b)2 = (an − a)2 ≥ 0 .

But

0 ≤ (bn − b)2 ≤ (an − a)2 + (bn − b)2 ⇒ ∥(bn − b)2∥ ≤ ∥(an − a)2 + (bn − b)2∥ .

Otherwise: xn − x = (an − a) + i(bn − b) yielding

∥xn − x∥2 = ∥[(an − a) + i(bn − b)]∗[(an − a) + i(bn − b)]∥
= ∥[(an − a)− i(bn − b)][(an − a) + i(bn − b)]∥
= ∥(an − a)2 + (bn − b)2∥

Hence we get:

∥(bn − b)2∥ ≤ ∥xn − x∥2 ;

bn − b ∈ Xsa and hence bn − b is normal ∀n, which gives us:

∥(bn − b)2∥ = ∥(bn − b∥2 ;

thus

∥bn − b∥2 ≤ ∥xn − x∥2 ⇒ ∥bn − b∥ ≤ ∥xn − x∥ and ∥xn − x∥ → 0 ⇒ ∥bn − b∥ → 0 .

By this way we show

∥an − a∥ → 0

too.

Thus (1) ⇒ (2) is proved too.

Proof of proposition 4.5

We define a map φ:

φ : S(X) → (Xsa)
d : ∀h ∈ S(X) : φ(h) = h|Xsa

Lemma 4.7 φ is an injective and surjective map from S(X) to (Xsa)
d.

Proof of the lemma.

At first we show:

φ(S(X)) ⊆ (Xsa)
d : ∀h ∈ S(X) :
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1. φ(h) = h|Xsa is linear:

∀x1, x2 ∈ Xsa; ∀α1, α2 ∈ R ⇒ α1x1 + α2x2 ∈ Xsa ,

but this linear combination is also an element of X, hence

h(α1x1 + α2x2) = α1h(x1) + α2h(x2) ,

yielding:
(h|Xsa)(α1x1 + α2x2) = α1(h|Xsa)(x1) + α2(h|Xsa)(x2)

2. h continuous ⇒ φ(h) = h|Xsa is continuous

3. h ∈ S(X) ⇒ h(e) = 1;

e ∈ Xsa : 1 = h(e) = (h|Xsa)(e) ⇒ φ(h)(e) = (h|Xsa)(e) = 1 .

By 1, 2 and 3 we get:
h|Xsa ∈ (Xsa)

d ,

hence φ(S(X)) ⊆ (Xsa)
d.

4. φ is injective:

∀f, g ∈ S(X): let be
φ(f) = f |Xsa = g|Xsa = φ(g)

We want to show: ∀x ∈ X : f(x) = g(x), hence f = g:

(a) x ∈ Xsa : f(x) = (f |Xsa)(x) = (g|Xsa)(x) = g(x)

(b) x ∈ X\Xsa : x = x1 + ix2, x1, x2 ∈ Xsa; f, g are linear on X:

f(x) = f(x1) + if(x2), g(x) = g(x1) + ig(x2) ,

but:
x1, x2 ∈ Xsa ⇒ f(x1) = g(x1), f(x2) = g(x2)

showing f(x) = g(x) and hence, finally f = g.

5. We show that φ is surjective too.

∀h ∈ (Xsa)
d: we define the function h̃:

∀x ∈ X : x = x1 + ix2, x1, x2 ∈ xsa ;

h̃ : X → C : h̃(x) = h(x1) + ih(x2)

Lemma 4.8 h̃ ∈ S(X) and φ(h̃) = h̃|Xsa = h
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Proof. (a) h̃ is linear.

We know that h is linear.
∀x, y ∈ X, ∀α, β ∈ C :

We can write:

x = x1 + ix2, y = y1 + iy2

α = α1 + iα2, β = β1 + iβ2

Now we can compute αx+ βy in X:

αx+ βy = (α1 + iα2)(x1 + ix2) + (β1 + iβ2)(y1 + iy2)

= α1x1 + iα2x1 + iα1x2 − α2x2 + β1y1 + iβ2y1 + iβ1y2 − β2y2

= α1x1 − α2x2 + β1y1 − β2y2 + i(α2x1 + α1x2 + β2y1 + β1y2) .

Then follows:

h̃(αx+ βy) = h(α1x1 − α2x2 + β1y1 − β2y2) + ih(α2x1 + α1x2 + β2y1 + β1y2)

= α1h(x1)− α2h(x2) + β1h(y1)− β2h(y)

+ iα2h(x1) + iα1h(x2) + iβ2h(y1) + iβ1h(y2)

= (α1 + iα2)h(x1) + (iα1 + i2α2)h(x2) + . . .

= (α1 + iα2)h(x1) + i(α1 + iα2)h(x2) + . . .

= (α1 + iα2)(h(x1) + ih(x2) + . . .

= αh̃(x) + . . . ;

hence h is linear:
h̃(αx+ βy) = αh̃(x) + βh̃(y) ,

(b) h̃ is continuous on X: let be (xn) a sequence from X, x ∈ X and ∥xn − x∥ → 0 for
n → +∞; let further be:

∀n : xn = x1
n + ix2

n, x = x1 + ix2

we want to show:
h̃(xn) → h̃(x) :

by proposition 4.5 we get: xn → x ⇔ x1
n → x1 and x2

n → x2 yielding:

h̃(xn) = h(x1
n) + ih(x2

n) → h(x1) + ih(x2) = h̃(x) ,

since h is continuous on (Xsa, ∥ · ∥).
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(c) h̃|Xsa = h : ∀x ∈ Xsa : x = x+ i · 0, hence:

(h̃|Xsa)(x+ i · 0) = h̃(x+ i · 0) = h(x) + ih(0) = h(x) ,

since 0 ∈ Xsa and h is linear yields: h(0) = 0

(d) h̃(e) = 1: e ∈ Xsa ⇒ h̃(e) = (h̃|Xsa)(e) = h(e) = 1 by (c).

By a well-known theorem of the C∗-algebra-theory follows by (a), (b) and (d) that h̃

is positive, yielding by another theorem:

∥h̃∥ = h̃(e) ,

and hence we have ∥h̃∥ = 1 too.

Thus we have shown:
h̃ ∈ S(X) and φ(h̃) = h .

Hence indeed we got: φ : S(X) → (Xsa)
d is injective and surjective.

Lemma 4.9 φ : (S(X), τp) → ((Xsa)
d, τp) is continuous.

Proof. Let be (hi) a net from S(X), h ∈ S(X) and hi
τp→ h; we want to show that φ(hi)

τp→
φ(h) holds: ∀x ∈ Xsa, then x ∈ X too and thus hi(x) → h(x) in R. Now,

φ(hi)(x) = (hi|Xsa)(x) → (h|Xsa)(x) ,

since x ∈ Xsa. Hence
φ(hi)

τp→ φ(h) in (Xsa)
d .

Finally we must still show:

Lemma 4.10 φ : (S(X), τp) → ((Xsa)
d, τp) is open:

Proof. Let G ⊆ S(X) be τp-open, we show: φ(G) is τp-open in (Xsa)
d: let be h ∈ φ(G) and

(hk) a net from (Xsa)
d such that hk

τp→ h.

φ is bijective, hence there exists g ∈ G,

∀k : gk ∈ S(X) : φ(g) = h = g|Xsa, ∀k : φ(gk) = gk|Xsa = hk .

Now we want to show:
gk

τp→ g in S(X) :

(a) ∀x ∈ Xsa : g(x) = (g|Xsa)(x) = φ(g)(x) = h(x); ∀k : gk(x) = hk(x). Hence
hk(x) → h(x) meaning that holds:

gk(x)
τp→ g on Xsa .
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(b) ∀x ∈ X\Xsa : x = x1 + ix2, x1, x2 ∈ Xsa; by (a) we get:

gk(x1) = hk(x1) → h(x1) = g(x1) ,

gk(x2) = hk(x2) → h(x : 2) = g(x2)

⇒ gk(x1) + igk(x2) → g(x1) + ig(x2) .

Now g ∈ S(X) and ∀k : gk ∈ S(X) showing that these functions are linear:

x = x1 + ix2 ⇒ g(x) = g(x1) + ig(x2),

∀k : gk(x) = gk(x1) + igk(x2)

But then follows:

gk(x) → g(x) on X\Xsa, and thus from (a), (b) we get:

gk(x) → g(x), ∀x ∈ X, gk
τp→ g .

Since g ∈ G and G is τp-open there exists ko:

∀k ≥ ko : gk ∈ G showing that holds:

∀k ≥ ko : φ(gk) = hk ∈ φ(G) ,

hence φ(G) is τ -open in (Xsa)
d.

Final proof of proposition 4.5. By lemma 4.7, 4.8, 4.9 and 4.10

φ : (S(X), τp) → ((Xsa)
d, τp)

is bijective, continuous and open yielding that φ is a topological map onto (Xsa)
d and thus

(S(X), τp) and ((Xsa)
d, τp) are homeomorphic.

Corollary 4.11 The first dual space of Xsa is a Hausdorff and compact topological space
w. r. t. the pointwise topology τp.

Proof. We know that the state space (S(X), τp) is a compact and Hausdorff space.

We come now back to the second dual space 4.3 of Xsa:

(Xsa)
dd =

(
C(((Xsa)

d, τp), (R, τ|·|)), µ
)

=
(
Cb(((Xsa)

d, τp), (R, τ|·|)), µ
)

=
(
Cb((S(X), τp), (R, τ|·|)), µ

)
,

where Cb(·, ·) of course means the space of bounded and continuous real functions.

Then for µ we can choose the sup-norm and hence the uniform topology.

We state now:
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1. (Xsa, ∥ · ∥) (and S(X), ∥ · ∥) and (R, | · |) both are real Banach spaces.

Xsa and R both have a multiplicative unit. Hence both spaces belong to the same class
of spaces.

2. (Xsa, ∥ · ∥) and ((Xsa)
dd, ∥ · ∥sup) are real Banach spaces; both have a multiplicative

unit. Xsa, (Xsa)
dd belong to the same class of spaces.

We still need a lemma.

Lemma 4.12
∀x ∈ Xsa : ∥x∥ ∈ σ(x) .

Proof. 1. 0 ∈ Xsa, but 0−1 does not exist and hence ∥0∥ = 0 ∈ σ(0).

2. x ∈ Xsa and x ̸= 0; x ∈ Xsa ⇒ σ(x) ⊆ R and x is normal and thus:

r(x) = s = sup
{
|x|

∣∣λ ∈ R and λ ∈ σ(x)
}
= ∥x∥ .

∥x∥ > 0 ⇒ ∃ sequence (λn) : ∀n : λn ∈ (σ(x), ∥x∥) such that λn → s.

σ(x) is Hausdorff and compact and thus σ(x) is sequentially compact and Hausdorff
too since (X, ∥ · ∥) is a metric space. Thus we find a subsequence (λnk

) of (λn) and
λ ∈ σ(x), λ > 0 : λnk

→ λ, but also λnk
→ s = ∥x∥, implying λ = ∥x∥ ∈ σ(x).

4.3 Proof of the Kadison embedding theorem

Theorem 4.13 Let X be an unital C∗-algebra. Then holds:

1. J : (Xsa, ∥ · ∥) → ((Xsa)
dd, ∥ · ∥sup) =

(
Cb((Xsa)

d, τp), (R, τ|·|), τ∥·∥sup
)

is an isometric
and isomorphic map onto (Xsa)

dd

2. J(Xsa) separates the points of (Xsa)
d

3. J(Xsa) is a closed subspace of (Xsa)
dd

Proof. By corollary 4.1 of [1], p. 284 we get: J(Xsa) ⊆ (Xsa)
dd. Now

(Xsa)
d ⊆ X ′

sa = {h : Xsa → R| his linear and h is continuous}
∀h ∈ Xd

sa ∃g ∈ S(X) : φ(g) = g|Xsa = h ;

hence

∥h∥ = ∥g|Xsa∥ = sup{|g(x)|
∣∣x ∈ xsa and

∥x∥ ≤ 1} ≤ sup{|g(x)|
∣∣ x ∈ X and ∥x∥ ≤ 1} = ∥g∥ = 1
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and thus ∥h∥ ≤ 1.

But then we can apply proposition 4.3, p. 287 of [1]. At first we get:

∀x ∈ Xsa : ∥J(x)∥sup ≤ ∥x∥ .

Moreover we have:

∀x ∈ Xsa, x ̸= 0, by lemma 4.12 we know: either ∥x∥ ∈ σ(x) or −∥x∥ ∈ σ(x). Let us
consider −∥x∥: there exists h ∈ S(X) : h(x) = −∥x∥; but x ∈ Xsa =⇒ h(x) = h

∣∣Xsa(x)

showing that h|Xsa ∈ Xd
sa and h|Xsa(x) = −∥x∥, implying |h|Xsa(x)| = |−∥x∥| = ∥x∥ and

hence ∥x∥ ≤ |h|Xsa|. Of course this last result we get also if ∥x∥ ∈ σ(x). This implies by
the above mentioned proposition that holds ∥x∥ ≤ ∥J(x)∥sup. Hence we have:

∀x ∈ Xsa : ∥J(x)∥sup = ∥x∥ ,

yielding that J : Xsa → J(Xsa) is an isometric map.

Now J is then an injective map onto J(Xsa) and thus the homomorphy theorem 4.4, p. 284
of [1] shows that J is an isomorphic map for real Banach spaces too, meaning that point 1.
of our theorem is proved, but only for J : Xsa → J(Xsa).

Proposition 4.3 of [1] shows also 2.. J(Xsa) separates the points of (Xsa)
d.

Since J is an isometric map J is an uniform isomorphy too, yielding that J(Xsa) is a complete
subspace of (Xdd

sa , ∥ · ∥) since Xsa is complete.

Thus we proved 3.:

J(Xsa) is a closed subspace of (Xsa)
dd.

Concluding we find:

e ∈ Xsa ⇒ ω(e, ·) ∈ (Xsa)
dd, but: ∀h ∈ (Xsa)

d : ω(e, ·)(h) = h(e) = 1 ,

showing that the constant function ω(e, ·) ≡ 1 belongs to J(Xsa).

But this result together with assertions 2., 3. shows that J(Xsa) = (Xsa)
dd by the theorem

of Stone-Weierstrass.

Now our proof is complete.

Concluding remarks We consider our basic assumptions 2.3, 2.5 and 2.11:

(1) X and Y belong to the same class of spaces

(2) Y always has a topology

(3) X and Xdd are in the same class of spaces
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As we have shown in our text the general procedure runs as follows:

We start with the space X and want to define the second dual space of X and to embedd X

into Xdd using the canonical map J . To do so we must choose a suitable space Y such that
(1) is fulfilled. Then we can define the first dual space Xd of X with respect to Y , where (2)
holds. According to the properties of Xd we are able to define the second dual space Xdd of
X w. r. t. Y such that (3) is fulfilled and J : X → Xdd embedds X into or onto Xdd.
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