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LAURE CARDOULIS

Applications of Carleman inequalities for a two-by-two
parabolic system in an unbounded guide

ABSTRACT. In this article we consider the inverse problem of determining some of the
coefficients of a two-by-two parabolic system defined on an unbounded guide. Using an
adapted Carleman estimate, we establish local stability results for at least two coefficients
of this system in any finite portion of the guide. These estimates are obtained with data of

the solution at a fixed time and boundary measurements for observations.
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1 Introduction

Let w be a bounded connex domain in R*!, n > 2 with C? boundary. Denote Q := R x w,
Q=Qx(0,7) and ¥ =9 x (0,T). We consider the following system

ou— Au+au+bv =g, in Q,
ov—Av+cu+dv=gy in Q,

u=hy and v =hy on X,

u(z,0) = ug(x) and v(x,0) = vo(x) in Q,

(1.1)

where a, b, ¢, d are bounded coefficients defined on €2 such that
a,b,c,d € A(My) == {f € L=(Q), || fllr() < Mo} for some My > 0.

Our inverse problem is to estimate at least two coefficients between a, b, ¢, d from the data
of the solution (u,v) at T/2 and the measurement of (u,v) on a part of the boundary.
We will consider (u,v) (resp. (w,v)) a solution of (1.1) associated with (a, b, ¢, d, ug, vo,
g1, 92, h1, ho) (resp. (a, Z, c, 67, Uo, Vo, g1, ga2, h1, he)) and two positive reals I, L such that
[ < L. Denote

Qp=(—-L,L) xwand = (—1,1) X w.
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The first result of this paper gives a Holder result (3.3) for the coefficients b and ¢ in the

case where @ = a, d = d and is the following (see Theorem 3.1)

=~ ~ ., T -, T
I8 =Bl + lle= Ay < & (=D M + 10 = )

2

+/ (OT)Z(I(?V((‘}’f(u—@))|2+|ay(3tk(v_@))|2) o dt)

where K is a positive constant, k € (0,1), 7, is a part of the boundary (see (2.2)), and
assuming that the hypothesis (3.2) is satisfied.

The second result (3.15) of this paper is also a Holder stability result for the four coefficients
a, b, c,d (see Theorem 3.2)

|a — 5||2L2(Ql) + 16— b||%2(szl) + e - EH%Q(QL) +|d - d||%2(szl)

1 1
~, T -, T
<K <H S0 (= W) 5) sy + 1 D208 = D) 3 g
k=0 k=0

2

S, 2 (10,08~ i) + 13,0k = 8" do dt)

with stronger hypotheses (3.13) and (3.14) than those in Theorem 3.1 (see (3.2)).
The third theorem of this paper gives a Holder stability result (3.34) (see Theorem 3.3) for

the following reaction-diffusion system

Ou—Au+au+bv+ Ay -Vu+ Ay -Vo=g¢; in Q,
v —Av+cu+dv+ Az - Vu+ Ay - Vo =gy in Q,
u=hy and v =hy on X,

u(z,0) = ug(x) and v(x,0) = vo(z) in Q,

(1.2)

where all the coefficients a, b, ¢, d, Ay, Ay, A3, A4 are bounded (a, b, ¢,d € A(My) and Ay, As, As,
Ay € A(My)" N HY(2)™). We obtain a stability result for the coefficients b and Az (assuming
Az has the form A3 = Vg) with the same kind of observations in the right-hand side of
(3.34) as we have obtained in (3.3) or (3.15). Assuming that the Assumptions (3.32) and
(3.33) hold, we get the following result

16— bH%?(QZ) + |45 — A3H%L2(Ql))”

1 1
., T ., T
< K <|| Zatk(u —u)(, 5)”%12(%) + Z@f(u —0)(,, E)H%w(m)

k=0

£
I
o
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Of course each of these above stability results implies an uniqueness result.

Up to our knowledge, there are few results concerning the simultaneous identification of more
than one coefficient in each equation (see for example [1] and also [5] where the authors give
a stability result for the diffusion coefficient a and the potential b of the Schrédinger operator
10,q+aAq+bq). In previous papers, stability results have been obtained for parabolic systems
but, as far as we know, these papers have investigated the case of bounded domains and
have given results with observations on a subdomain of their domain (|1, 7]...). Furthermore,
there is no result for a two-by-two parabolic system with only one observation on a part of
the boundary and without any data of the solution at a fixed time even in a bounded domain.
We will use here the global Carleman estimate (2.5) for one equation given in [3] based on
a classical Carleman estimate given in [12, 13]. Our choice of weight functions is adapted
for this unbounded domain but will give us Holder, and not Lipschitz, estimates of the
coefficients. Recall that the method using Carleman estimates for solving inverse problems
has been initiated by [2]. Our results extend to a system previous results for one equation
defined on an unbounded guide (see [3] for the heat operator O,u — Au + qu and || for the
heat operator O,u — V - (¢Vu) where stability results are given either for the potential ¢ or
for the diffusion coefficient c).

This Paper is organized as follows. In section 2, we specify the weight functions used for
our Carleman estimate (cf (2.1), (2.3)) and due to the particular symmetric form of these
weight functions with respect to x; and ¢ —T'/2 we recall from [3] the inequality (2.4), crucial
for our final estimates (3.3), (3.15) and (3.34). Then in section 3 we state and prove our

stability results, first for the coefficients b, ¢, after for a, b, ¢, d and finally for b, As.

2 Carleman estimate

Denote Qp, = Qp x (0,T) = (=L, L) x w x (0,T), . = (x1,- - ,x,) € R", 2’ = (29, -+ ,2y)
and define the operator
Au = Oyu — Au.

Let I > 0, following [3]| in this section, we consider some positive real L > [ and choose
a € R™\ Q such that if

d(z) = |2’ — d')* — 22 for z € Qp, then d > 01in Q, |Vd| > 01in Q. (2.1)
Moreover define
I'y={xe€dQ, <z—a,v(xr)>>0}and vy, =Ty NN. (2.2)

Here < .,. > denotes the usual inner product in R” and v(z) the outward unit normal vector

to 0, at z. Notice that «, does not contain any cross section of the guide. From |[12| we
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consider weight functions as follows: for ¢ € (0,7, if My > supy,.(t — T/2)* = (T/2)?,

2
Y(x,t) = d(x) — (t — %) + My, and ¢(z,t) = @Y, (2.3)

The constant A > 0 will be set in Proposition 2.2 and is usually used as a large parameter
in Carleman inequalities. Since we will not use it, we will consider A fixed in the article. We

recall from [3] the following result.

Proposition 2.1 There exists T >0, L > 1, a € R2\ Q and € > 0 such that (2.1) holds

and, setting

Ore = (Q x ((0,28) U (T — 26, T))) U (=L, —~L + 28) U (L — 2¢, L)) x w x (0,T)),

we have
d1 < do < d2 (24)
where
. T T
do =inf ¢(., =), dy =sup ¢ and dy = sup ¢(., —).
S 2 OL: QL 2
We will use the following notations: Let v = (v, -+ , ;) be a multi-index with «; € NU{0}.

We set 0% = 97" --- 0%, |a| = aq + - - - + v, and define
H*Y(Qr) = {u € L*(Qr), 070w € L*(Qr), |a] + 20541 < 2}

endowed with its norm

[ullFz g, = Z 1050 ull22(0,)-
|| +2an41<2
We recall here a global Carleman-type estimate proved in [3], based on a classical Carleman
estimate (see Yamamoto |12, Theorem 7.3]).

Proposition 2.2 There exist a value of A\ > 0 and positive constants sy and C =
C(\, s0) such that

1
I(u) :== / (£(|8tu|2 + |Aul?) + s¢ |Vul® + 83¢3|u|2) e*?dx dt

< C||6S¢AUH%Q(QL) + OsPe?h HuH?p,l(QL) + Cs/ or |0,u|?e**?do dt, (2.5)
L %0,

for all s > sy and all u € H>*Y(Qr) satisfying u(.,0) = u(.,T) = 0 in Qp, u = 0 on
0 x (0,T). We denote O,u = v - Vu.
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In fact the above Proposition 2.2 is still valid for a more general function u: we can replace
the condition u = 0 on 9, x (0,T) in Proposition 2.2 by uw =0 on (9Q N 0Q) x (0,T).
Since the method of Carleman estimates requires several time differentiations, we assume
in the following that u,v (resp. @, ) belong to H = H3(0,T, H*())) satisfying the a-priori
bound

llullz < My and |jv||z < My for given My > 0.

From now on, we use the notation w(%

L) =w(., %) for any function w.

3 Inverse problems
3.1 The first result

Consider here (u,v) (resp. (w,v)) a strong solution of (1.1) associated with (a, b, ¢, d, wy,
Vo, g1, o, h1, he) (resp. (a, E, ¢, d, U, Vo, g1, g2, h1, ha)). Assume that all the coefficients
a,b,c, d,E,Ebelong to A(My). From |8, Lemma 4.2|, we derive the following result, also used

in [3]
Lemma 3.1 There exist some positive constants C, s, such that

C
/ 29(3) N2(T/2)dx < Cs/ ¥ 0% 2| dw dt + — e**|0,z|*d dt,
Qr L S JQu

for all s > sy and z € H(0,T; L*(Q1)).
For the sake of completeness, we recall its proof.
Proof. Consider n defined by (3.4) and any w € H'(0,T;L*(2)). Since n(%) = 1 and
n(0) = 0, we have
/2

/QL w(z,T/2)*dx = /QL(n(T/Q)w(x,T/Q)) dx :/ i Or(n™(t)|w(x, t)|*)dt dz

Qr,

T/2 T/2
= 2/ / (x,t)0pw(x, t)dx dt + 2/ / H)om(t)|w(z, t)|*dz dt.
QL QL

As 0 <7 <1, using Young’s inequality, it comes that for any s > 0,

/ w(x, T/2)? dv < C’S/ |w|*dz dt + ¢ |Oyw|*dx dt. (3.1)
Qr L S JQr

Then we can conclude replacing w by ez in (3.1). O
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We can state our first main result for a two-by-to linear system which extend precedent
results for one equation (see [3] and [!]). We do not follow here the proof of |1, Theorem

1.2| and rather use ideas from [3].

Theorem 3.1 Letl>0. Let T >0, L > [ and a € R™\ Q satisfying the conditions of

Proposition 2.1. We make the following assumption
., T - T .
lu(., §)| > R and |v(., §)| > R in Sy, for some R > 0. (3.2)

Then there ezists a sufficiently small number 6y such that if § € (0,d),

T T

1w =D Sz, + 10 = D) o,

T / «(0.7) Z(’au(ﬁf(u — ﬂ))‘Q + ’ay(af(v _ 6))‘2)d0dt <

then the following Holder stability estimate holds
b — bH%g(Ql) +|e — E||%2(Ql) < Ko™ for all 6 € (0,0). (3.3)

Here, K > 0 and x € (0,1) are two constants depending on R, r, L, I, My, My, Ms, T and

a.

Proof. Let x,n be C* cut-off functions defined by x, Vx, Ay € A(Mp),0 < x <1,0<n <1,
X(x)=0ifx € ((—oo, =L+ €) U (L — € +00)) X w),
x(x)=1iftx € (—L+2€¢ L —2€) X w,
n(t) =0ift € (0,8)U (T —&T), n(t) =1if t € x(26,T — 2¢). (3.4)
Denote also
Y=u—1u, Yo=XNY, Y1 = 0o, Y2 = O, 2 =0 — 0, 20 = XNz, 21 = Opz and 23 = ;2.
Note that (yo, 20) satisfies

Do — Ayo + ayo + bzo = p1 = (b — b)xn® + (Im)xy — (Ax)ny — 2Vx - V(i) in Qy,
2o — Dzg + cyo + dzo = p2 1= (¢ — c)xnu + (Om)xz — (Ax)nz — 2Vx - V(nz) in Q,
Yo = 20 = 0 on 09 x (0,7).
(3.5)
and (y1, 21), (Y2, 20) satisfy
1 — Ay + ayy + bz = Oipy in Qy, Oryja — Ays + ays + bze = 02py in Q,

Oyz1 — Azy + cyy +dz = Oipo in @, and Orzg — Nzg + cyp + dzg = 02py in Qp,
y1221:OOHGQLX(O,T) y2222:00n8§2L><(0,T).
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e First step: Applying (3.5) for t = %, if we denote

Jim [ B — R + b~ B da

then we get

T (Z) T
J<CemBR(Z)+C | e (Iatyo( )I* +10i20(5)F) do

Qr

with
Fo(T/2) = 120(T/2) 3200, + 12(T/2) 3 @) + 190(T/2) 20,y + 19T/ 00,
Note that
Fy(T/2) < CF(T/2) with F(T/2) = |y(T/2) 320, + 12(T/2) 320, )-
Moreover, since O0;yo = y1, 0;20 = 21 and 1 < ¢, using Lemma 3.1, we obtain

C
J < CeQSd2F(T/2)+CS/ e (|ly1|*+|21 %) da dt—l——/ 20 (|ya|*+|20|%) d dt. (3.6)

L S JQrL
e Second step: Now we evaluate J with the Carleman inequalities (2.5) for y; and z;, i = 1, 2.
Note that all the terms in [le*® Ay;|[7,,, or [le*?Azil|72,, With derivatives of x or 5 will
be bounded above by Ce?% with C' a positive constant. Therefore, for s sufficiently large,

there exists a positive constant C' such that

I(y:) +1(z) < C / eOx*le = el + b~ bf*) du dt + C / il + [2il") da dt + Ce
QL QL
+C5° e ([[yillFea0u) + 12l ) + CS/ *(|0uyil* +10,2/%) do dt.
v %(0,T)

Since e2¢ < 2?(T/2) we deduce that

I(y;) + 1(z) < C/ 2T\ e — 2 4 |b — b?] da dt + CsPe>h

Qr

L Cs / (10,2 + 9y [2) do dt.
’YLX(O T)

Thus
§ / 20 ([yil? + |af?) dedi < C [ 0T~ T 4 |b— P da
L Qr
+ CsPe? ™ 4 C’s/ e**(|0,yi|* + |0,z %) do dt. (3.7)
’YLX(OvT)
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Therefore, from (3.6) and (3.7), we get for s sufficiently large

C
J < Ce®2F(T/2) + =2 (83628d1 +/Q e259(T/2) [le — ¢ + |b— b| | dx
L

v [ 25¢Z|auyz|2 +10,5) do dt .
LX(OT)

So we have
J < Ce*®G(T/2) + Cse™™ + S—(“; /Q T2 e — P+ b— b dz (3.8)
L
with

G(T/2) = F(T/2) + / Z 10,05y + |9,0F=[?) do dt.
’yLX(OT

e Third and last step: In this step, we come back to the coefficients b — band ¢ — é.
First, from the hypothesis (3.2) we derive from (3.8), for s sufficiently large

/Q 2 T/2\2(|b — b + |¢ — ¢|?) dz < Ce*®2G(T/2) + Cse®®. (3.9)
L

Moreover, since e?*% < ¢2¢(T/2) in () and y = 1 in €, we deduce from (3.9) that
(b= bl|72(0y) + 1€ = cllizgay) < Ce*RG(T/2) + Cse™™,

This last inequality can be rewritten in the following form for s sufficiently large (s > s5)
b= bll320y) + 1€ = cllfagqy < C(eX=RIG(T/2) + se*( D)), (3.10)

Note that if G(T'/2) = 0, since (3.10) holds for any s > s, and d; —dy < 0 we get (3.3). Now
if G(T/2) # 0, we recall from (2.4) that dy — dy < 0 and dy — dy > 0 and optimize (3.10)

with respect to s. Indeed denote
f(s) = 2= D)G(T/2) 4 ¥(d17d0) apd g(s) = 2~ D)G(T /2) + se2s(d1=do),

We have f(s) ~ g(s) at infinity. Moreover the function f has a minimum in

1 dg — dy
S3 = In and f(s3) = K'G(T/2)"
d1—dg
with k = 30 21 and K' = (& = 31)@ “ + ( )d2—d0. Finally the minimum s; is sufficiently
large (s3 > s5) if the following condition G(T/Q) < dg, with §g = (drdocg(;?_s?(dz*dﬂ’ is satisfied.

Then we get our result (3.3) and so we complete the proof of Theorem 3.1. O
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Remark 4 e Note that the hypothesis (3.2) is quite usual (cf |1, 7] for a parabolic system
in a bounded domain) and is removed in [!]| by the control theory and in [7| by conditions
on a,g, ¢, d, ug,vg, hy, ha, g1, g2. In some cases, one can also diagonalise the coupling matrix
of the coefficients (see [0]) then use a parabolic positivity result (see |9, Theorem 13.5]) for
the decoupling system. Of course we could obtain the same result as (3.3) for any coefficient
in each equation of (1.1). But if we want to determine the coefficients b and d for example,
we only have to assume that [0(., £)| > R in €, for some R > 0, instead of (3.2).

e In fact we can obtain in the right-hand side of (3.3) the term f’YLX(O,T) S (10,(0F (u —
@))|2+]0, (0¥ (v—1))|?) do dt instead of Sy xom S2 o (10,(0F (u—1))[>+0, (OF (v—10))|?) do dt
if we slightly modify d; (if we define d; = supg,— @, the inequalities (2.4) still hold and all
the terms inside the integrals on v, with derivafives of n are therefore bounded above by

628d1 ) .

3.2 The second result

Consider now (u,v) (resp. (u,v)) a strong solution of (1.1) associated with (a, b, ¢, d, uy,
Vo, g1, 92, hl, hz) (resp. (a, b, ¢, d, ug, Vo, g1, g2, h1, h2)). Assume that all the coefficients
a,b,c,d,d,b,¢, d belong to A(My). For our second main result, first we need the following

lemma inspired from Klibanov and Timonov ([11]). Recall that x and 7 are defined by (3.4).

Lemma 3.2 There exists a positive constant C such that

t 2
/ o’ ( £(€) dg) da dt < g <625d1 + / NP f? dx dt)
L T/2 L

for all s >0 and f € L*(0,T, L*(Qr)) N L>(QL).

Proof. By the Cauchy-Schwarz inequality, we have

; 2 t
W 2 25¢< f(z,€) df) dedt < [ ox*nelt— || | fl,)” dg ’ dz dt
T/2 QrL T/2
T/2 T t
<[ [ oeren o[ rwer s
o, Jo T/2
T t
+/ o2 (t — 5) ( f(x,§)2d§> dzdt.
Qp JT/2 T/2
(3.11)
Note that

D(e2%) = —dsA(t — gwe?w.
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For the second integral of the right hand side of (3.11), since n(7") = 0, by integration by

parts we have

/ oxX*nPe??(t — —)( t f(l’,f)2d§) dx dt
Qp, JT/2 T/2

= 2,2 2s¢ 9
a 43)\/ /MX 00 (e™)( T/Qf(x ,§)7dg) du di

t=

1 2.2 2s¢ ' 2 £250) 2?2
=—— x“n e’ flx, &)"d¢ dx—i—— SO £ da dt
4sX Jq, [ (T/2 (z,£)7de) 4s\ Jq, T/2

t=T/2

e2**v’no x,€)%d¢) dx dt
25A/QL/T/2 X nom( T/zf( §)7d§)

e%**\*nod fxg d¢) dx dt + — / / e f? dx dt. (3.12
25}\/ /T/2 X T/2 (@) AsA Ja, Jr)2 (312

The first integral of (3.12) is bounded above by ;eQSdl due to the derivative of . Therefore

t
/ ¢X2 2 25(;5( z> ( f($7€)2d€) dr dt < g <€2Sd1 +/ 25(;5 27,]2]02 dx dt)
Qp JT/2 2 T/2 S I

We obtain a similar result for the first integral of (3.11) and this concludes the proof of

Lemma 3.2.

O

Now we can state our second main result in view to obtain a stability estimate of the four

coefficients of (1.1) with nearly the same observations that we obtained in Theorem 3.1 (see

the right-hand sides of (3.3) and (3.15)).

Theorem 3.2 Letl > 0. Let T >0, L > [ and a € R™\ Q satisfying the conditions of

Proposition 2.1. We make here the following assumptions

[u| > R and |8t(g)| > R in Q for some R > 0,
u

and

7] > R and |3t(g)| > R in Q for some R > 0.
v

Then there ezists a sufficiently small number 6y such that if § € (0,d),

T . T
| Z@f(u —u) (. 5)“%{2(%) + Zatk(v - 0)(, 5)”%{2(%)

k=0 k=0

+/ Z (10, (8 (w — @)[> + |8, (0f (v — 0))|* do dt < 6

(3.13)

(3.14)
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then the following Holder stability estimate holds

Here, K > 0 and k € (0,1) are two constants depending on R, r, L, l, My, My, My, T and

a.

Proof. As in Thereom 3.1 denote y = v — u and z = v — v. Then (y, z) satisfies

Oy — Ay+ay+bz—(a—a)u+( b)v in Q,
8tz—Az+cy—|—dz:(c—c)u—|—(d— d)v in Q,
y=z=0on X.

e First step: Let y; = £ and z; = Z. Then (y1, 21) satisfies

diyn — Ay +ayy +bz = fi+a—a+ (b —b)ZinQ,
O — Az + ey +dn = fo+tc—c+(d—d)2in Q,
yp =21 =0 on X,

with f; := %(—yla{d—l— y1Au+ 2Vy, - Vu) and fo == u( zlﬁtu + 21Au + 2Vz - Va).

Denote now y, = Qyy1, 22 = Oy21, Y3 = ﬁyg and z3 = at(é) 25. Then
Oy — Ays + ays + bze = O f1 + (E b) t(%) in Q,
Oy — Az +cyp +dzy = Oy fo + (d — d)0y(2) in Q,

Yo = 20 = 0 on X,

and ~
Oys — Ays + ays + bzg = f3+b—binQ
Oz — Azg + cys +dzg = fu + d—din Q, (3.16)
ys =23 =0 on X,
with ~ ~ ~
f3:= at(l%) < Y307 ( ) + y3A(at( )) +2Vys - V(at(%)) - atfl)
and ~ ~ ~
fo:= 8,5(1%) (—238 (=) + Z3A(8t( ) +2V2;3 - V(@t(%)) + atf?) :

Finally let y4 = Oyys3, 24 = Oy23, Y5 = xnys and z5 = xnz4. Then

{ Oys — Ays + ays + bzs = xndi f3 + f5 in Qr, (3.17)

Orzs — Azs + cys + dzs = xnOifa + fo in Qr,

with
J5 = (0m)xys — (Ax)nys — 20V x - Viyu
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and
fo = (Om)xza — (Ax)nzs — 2nVx - Vzy.

Due to the truncation functions, we can apply the Carleman estimates for y5 and z; and

now we estimate I(ys) + I(z5) with (2.5). We have

I(ys) + 1(z5) < C’/ e*?((Ays)? + (Azs)?)dadt 4+ Cs3e*
- (3.18)
+ C’s/ e**®(|10,ys)* + |0, 25|*)dodt.
'yL><(0 T)

As in Thereom 3.1, all the terms in [, €*?((Ays)? + (Az)?) da dt with derivatives of 7 or
x will be bounded above by Ce?% . So since ¢ > 1

/ P (Ays)’ + (Az5)) du dt < C | (2 + 22) d dt + Ce>h
v QL

+c/ €203 202(10, fo 2 + 0, ful?) d dt

< C’/ e (y2 + 2)dxdt + Ce* B +C | ¢e*?x 27722 Y2+ |Vyl? 4 22 + | V| dadt.
QL QL

=1
(3.19)
Since xnys = ys and xnz4 = z5, (3.19) implies

/ e®?((Ays)? + (Az5)?) do dt < C’/ X (y2 + 22 4 |Vys|? + |Vas|?) do dt 4 Ce*™
QL QL

C [ g™y 27722 (W7 + [Vyil® + 27 + [Vzl) de dt. (3.20)
QL

i=1

From (3.18)-(3.20), we get for s sufficiently large

I(ys) + I(z5) < Cs3e®h 4 C pe*? QZ Y2 + |Vyi|> + 22 + |Vz]?) do dt

QL i=1
L+ Cs / ¢29(10,y5[2 + D5 ]?) dor . (3.21)
’YLX(O T)
Using now Lemma 3.2 we have
t 2
o> Xy} dr dt = ¢628¢ Ay’ ( / Oy (§)dE +y (T/ 2)) dz dt
L T/2

C C
< ;e%dl + g/ eX*nPys dx dt + C oe* O’y (T/2)* dx dt
L L
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2sdy , C 2542, 2 2 254 2, 2 2
e +; oe* '\ n7y; dx dt + C oe=*x 0"y (T/2)* dx dt

QL QL

. 2
< ezsd1+§ Pe2y 2P ( Oyys(€)de + y3(T/2)) dz dt+C | ¢e®**\*nPy (T /2)dx dt
T/2 QL

< ge%dl +S—C; (ezsdl + [ o™Xy} da dt) +C [ 0e® PP (i (T/2) +ys(T/2)?) da di
QL QL
C C
< ;eQSdl + ;/ e*Py2 dx dt + CeQ“”dQ/Q (y1(T/2)* + y2(T/2)?) da. (3.22)
L L

Doing the same for fQL o>\ *n?y? dx dt, fQL o> \*n?2? dx dt, fQL de®x 2| Vy;|? dx dt
and
Jo, 9¢¥X*n?|Vzi|? dz dt, for i = 1,2,3 we get from (3.21)-(3.22) and for s sufficienlty large

I(ys) + 1(z5) < Cs3e®h 4 Cs/ 625¢(|8yy5]2 + \8,,25]2) do dt

vL % (0,T")

+ ot [ S (T2 + (T2 + V(T2 + [Va(T/2)P) e (3:23)

QL =1

Note that (3.23) can be rewritten on the following form

2
I(ys) +1(z5) < Cs’e™ @ + 08625d2/ > (8.0fy* +10,0f %) do dt

YL X (OvT) k=0

1
(e : N @Fy(T/2)? + 0F=(T/2)? + |V Ofy(T/2)]? + [VOF=(T/2)|%) da
L k=0

and so
I(ys) + I(z5) < Cs*e®® 4 Cse* 2 [ (T/2) (3.24)

with
2 1
1 (T/2) =/ > 0.0y +10,0F21%) do dt+Y_(10fy(T/2) 50 HIOF 2(T/2) I qy)-
1x(0.T) k=g k=0
e Second step: Now we evaluate (3.16) at T7'/2. We have

/ eI\ ([b— b + |d — d|?) dw < C/ > 2 (1003 (T/2)* + |0ez3(T/2) ) dax
Qr

Qr
+ Ce* 2y (T/2)

with
2

E(T/2) =) (lv(T/2) 20, + 12(T/2) | Fr20,))-

=1
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So, since n(7/2) = 1,

/ 250(T/2)3 2 (|b—b>+|d—d|?) dx < C' [ 2T/ (|ys(T/2)[*+|25(T/2)[?) dw+Ce*% Fy(T/2).
QL QL

(3.25)
Now let ¥; = e*?y5 and 1)y = €°¢25. Calculate J; = fQ T/2 1 (t)Yn(t) dx dt and
= [, Jy" 0aa(t)ta(t) de dt. Since n(0) = 0, we get
1 1
- % 6(T/2)? ds — - / 29Ty (T/2)? dz and Jo = 5 / 212 (T /2)* da
QL QL QL

Therefore (3.25) becomes

/ 256(T/2) (| b|2—|—|d d?) dz < Ce**2Fy(T/2)
Qr,

T/2 4 T/2 4
+ C/ / =0 (t) sy (t) dx dt + C’/ / —O0pa(t)siha(t) dx dt. (3.26)
Qp JO S Qr J0 S
Using Young inequality, we deduce from (3.26)

C

/ TN — b + |d = df?) do < —(I(ys) + 1(z9)) + Ce=“Fy(T/2).  (3.27)
Qr

From (3.24) and (3.27) we get
/Q 2 T/2\2(|h — b)? + |d — d?) do < Cs*¢®% + Ce®2(F(T/2) + F3(T/2)).  (3.28)
L
Proceeding as in Theorem 3.1, we obtain from (3.28)
/Q (Ib—b]* + |d — df*) dz < Cs?e( D) 4 Ce2(®=d) fy(T/2) (3.29)
!
with

1
k=0 ~

L X OT)k 0

Notice that in the first and second steps of this proof, we have only used the hypothesis
(3.13).
e Third step: Finally using the hypothesis (3.14), we can proceed exactly as before and

obtain

/Q (|ad — a> + & = ¢?) do < Cs?e?s =) 4 Ce2slda—do) py(T/2), (3.30)
1

From (3.29)-(3.30) we end the proof of Thereom 3.2. O
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Remark 5 e First note that our stability results (3.3) and (3.15) are obtained on ; for
the left-hand term while the observation data G(7T'/2) and F3(7/2) are required on €, for
the right-hand term of (3.3), (3.15).

e Second we have used Lemma 3.2 instead of Lemma 3.1 in the proof of Theorem 3.2 in
order to avoid a third derivative with respect to t in the observation terms. Indeed, if we
no longer used Lemma 3.2 in the proof of Theorem 3.2, we could use a modified version of
Lemma 3.1: applying (3.1) with w = e*?ynz, we could obtain the following inequality

/ e29(3)y 212(T/2))? dx < Cs/ X202\ *n?|2|* dx dt—i—%e%dl—l—g/ e*x*n?0,2|* dx dt,

Qr

QL L

for all z € H(0,T; L*(2z)).
Moreover, if we did so, since we had to give up the end of the first step of the proof of
Theorem 3.2, we'd rather follow the ideas of the proof of Theorem 3.1. Therefore, when in
the second step we evaluated (3.16) for t = T'/2, with the above inequality we would have
to estimate [, €***T72\2dyys(T/2)]* dx and [, e*?T/2x?|0,25(T/2)|* dz; thus we could
obtain [, 625¢X ?|0yal* do dt and [, e***x*n |8 24)? dz dt in the right-hand side of the es-
timates. Then we would have to apply the Carleman estimates for xnys, xnz4, X10Ya, X10;24
and so we would obtain a third derivative in time for the observation terms.
e Third the assumptions (3.13) and (3.14) are equivalent to |u| > R, [v] > R and
| det ((: gﬂ;)) | > R with R a positive constant. For example, if n = 2 and w = (r,r2)

¢
with r; > 0, let a(x1) be a positive and bounded function in C?(R) such that min,, g a(x;) >
2r2. Then u(z,t) = a(z,)t + x5 and v(x,t) = txy + 1 are solutions of the system (1.1) with
=92 = 0, ) = lmanin o)  adnzan? Gy o o ) — Zosin)
and satisfy the conditions (3.13)-(3.14).
e Finally note that the above results remain valid for the system (1.2) when all the coefficients
a,b,c,d, Ay, As, A3, Ay are bounded (a,b,c,d € A(My) and Ay, Ay, Az, Ay € (A(Mp))"). We

obtain a stability result of at least two coefficients between a, b, ¢,d with the same obser-

vations in the right-hand sides of (3.3) or (3.15). In the next section we study the inverse
problem of determining at least one of the coefficient Ay, As, Az, Ay, for example Az if we

assume that this coefficient has the form A3 = Vg.

3.3 The third result

Consider now (u,v) (resp. (u,v)) a strong solution of (1.2) associated with (a, b, ¢, d, Aj,
Ay, Az, Ay, ug, vo, g1, g2, h1, ho) (resp. (a, 75, c, d, Ay, As, Z;, Ay, U, Vo, g1, Go, hi,
hy)). Assume that all the coefficients a, b, ¢, d belong to A(My), Ay, As, As, As, A, belong to
(A(Mp))" N (H'(Q))" and that there exist functions g, g such that

Ay =Vg, Ay =Vgin Q. (3.31)
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The Assumption (3.31) implies conditions on As, Z;: if 'Az = (¢cy,- -+, ¢,), it means that for
alld,j =1,---,n, Opc; = Op;c;, in other words rot(A3) = 0 if n = 3.
Now following an idea developed in [10] for Lamé system in bounded domains, also used for

example in [1], we obtain the following result
Lemma 3.3 Assume that the following assumption
|Vd-Vu(T/2)| > R in Qy for some R >0 (3.32)

holds. Consider the first order partial differential operator Pf =N f-Nu(T/2). Then there

exist positive constants sy > 0 and C' > 0 such that for all s > sy,

52/ e25(]§(T/2)|f|2 dr < C/ 625¢(T/2)|Pf|2 dl’,
Qr, Qr
for all f € Hy(Qy).

Proof. The proof follows [1]. Let f € H}(2). Denote w = e**T/? f and Qu =
es#T/2) P(e=s¢T/2)y). So we get Qu = Pw — swV¢(T/2) - Vu(T/2). Therefore we have

/Q Qul? dz > & /Q WVH(T/2) - VE(T/2)2 dr — 2s / (Pw)w(VS(T/2) - VI(T/2)) do

Qr,

/Q Qul* da > sW/ w?(p(T/2))|Vd - Vu(T/2)|* dx

Qr,

—2s) /Q (Vw - V(T /2))we(T/2)(Vd - Va(T/2)) dz.

[ jQuitda = [ wio(r/va- Va/)P da

Qr

—sx [ o(T/2)(Vd - Va(T/2))(V(w?) - Va(T/2)) da.

Qr
Thus integrating by parts

/Q |Quw|* dx > 52)\2/9 w?(¢(T/2))?|Vd - Vu(T/2)|* dx

—i—s)\/Q w3V - (p(T/2)(Vd-Vu(T/2))Vu(T/2)) dx
and

/ I PP de = / Qu|* dx > 32)\2/ eI f2(o(T/2))°|Vd - Va(T/2)|* da
Qp, Qr, QL

+5A / 2002 £27 . (¢(T/2)(Vd - VU(T/2))Vu(T/2)) dz.
Qr,

And we can conclude for s sufficiently large. m
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The strong positivity assumption (3.32) is frequently involved in inverse problems and is
removed in [1] for one equation by the construction of an adapted control. Now we state the
third result.

Theorem 3.3 Let! > 0. Let T > 0, L > [ and a € R" \ Q satisfying the conditions
of Proposition 2.1. Assume that Assumptions (3.31) and (3.32) hold. We also make the

following hypothesis
A
|U(" E
If g =g and A3 = :4\; on 0 N Oy, then there exists a sufficiently small number dy such
that if 0 € (0,50),

)| > R in Qp for some R > 0. (3.33)

1 1
., T -, T
132 0k =) ) sy + 1 05 = D) 5) B
k=0

k;f

+ > (10,(0F (u — @) + [0, (0f (v — D)) |* do dt < 6

=0
YL X (OvT)

then the following Holder stability estimate holds
Hb — b”%z(Ql) + HAg — A3H?L2(QZ))TL S Ko~ fOT' all § € (0, (50) (334)

Here, K > 0 and k € (0,1) are two constants depending on R, r, L, I, My, My, My, T and

a.

Proof. As in Theorem 3.1 denote
Yy=u—1u, Yo = XY, Y1 = OYo, Yo = O, 2 =0V — 0, zg = XNz, 21 = Opzg and 2o = Oy21.
Then (yo, zo) satisfies

Owyo — Ayo + ayo + bzo + A1 - Vyo + Ay - Vzo = & in @y,
Orzg — Dzg + cyo + dzo + Az - Vyo + Ay - Vo = & in Q, (3.35)
Yo =20 =0 on 9, x (0,7)

with
& = xn(b— b7 + (9m)xy — (Ax)ny — 2Vx - V(ny) + nyAs - Vx + 124y - Vy
and
& = xn(As — As) - Vi + (Om)xz — (AX)nz — 2Vx - V(nz) + nyAs - Vyx +nzAs - V.
Then

§o =V (x(9—9))-Vu—n(g—9)Vx-Vu+(9m)xz—(Ax)nz—2Vx-V(n2)+nyAs-Vx+nzAs-VX.
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e First step: We evaluate (3.35) for ¢ = £ and we get

Ouyo(T/2) — Ayo(T/2) 4 ayo(T'/2) + bzo(T/2) + Ay - Viyo(T'/2) + Ay - V2o(T'/2)

X(b—b)T(T/2) — (Ax)y(T/2) — 2Vx - Vy(T/2) + y(T/2)Ar - Vx + 2(T/2) A - Vx (3.36)
and

=P(x(g—9) — (- 9)Vx-VuT/2) — (Ax)2(T/2) — 2Vx - V2(T/2) + y(T/2)As - Vx
+2(T/2)As - Vyx
(3.37)

with P the operator defined in Lemma 3.3. From (3.36) we have

/ 29\ 2|b — B[ (5 Dpar<c €2S¢%|aty0( )I” do
o Q1
+Ce* (||l20(T/2)ll ) + 190(T/2) 20,y + 19T/ 0, + 112(T/2) [ Z2(0,))-
So
/ =D\ b — b2i( )I2 dr < Ce®2 Ry (T/2)+O/ ¢ Dy (5 )| dz
Qr

Qr,
with
F(T/2) = |y(T/2) Iz, + 12(T/2) 30y

Then, applying Lemma 3.1 we get

[ st ar < o R @)+ 05 [ g d
+— [ 0%yl du dt.
S JQr

Moreover using Lemma 3.3 for (3.37) we have

# [ Rt de < C [ PP - ) da
Qr QL

< Ce*sh +C/ 29(3) \8tz0( )| da

Qr,
+Ce (|l20(T/2) 0, + 190(T/2) Wi 0,y + (/22 + 12(T/2) (0,

Applying again Lemma 3.1 we get

52/ 0T\ (G — g)de < Ce® D 4 Ce® 2 Fy(T/2) + Cs/ ¢ | 21| dx dt
Qr

L
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C
+ = | e*9¢3| 2| dxdt (3.39)
S Jor

with
F(T/2) = y(T/2) 7@, + 12(T/2) 520,

From (3.38)-(3.39) we obtain
25¢(L) 2b_52~z 2 4 256(T/2),2(7 _ )2 d
AN ()P da+ [ TG — g)? da
QL QL

< Sty o2 gy (7/9) 4 Cs / e2s¢¢3(|y1|2+|zl|2>dxdt+§ / 98 |yl + |2 devdt
QL

(3.40)
with
F3(T/2) = ly(T/2) 720, + 112(T/2) | 720,)-
Using now Assumption (3.33), we get from (3.40) and for s sufficiently large
~ _ C
/ 22\ 2(b—b)2 + (§— g)%) da < — 0 4 O Fy(T/2)
Qr S
256 43 (1, |2 2 c 256 43(1, |2 2
+Cs | e*¢°(|y1|* + |=1|7) do dt + A & (|ya]” + |22]°) dx dt. (3.41)
L QL

e Second step: As in Theorem 3.1, now we use the Carleman inequalities (2.5) for y; and z;,
i =1,2. Recall that ¢ < ¢(T'/2) so we get for s sufficiently large

I(y:) + I(z) < 0/ TV (x (G — 9)))* + x3[b — b]?) dx + CsPe®h
Qr,

+Cs/ > (|0, yi|* + 0,2 ]%) do dt.
’YLX((]:T)

Thus

83/ 2 (|yil® + |z%) dw dtSC/ TP (Y (x(@ — 9)* + X6 — b*) da
L Q

L

+ Csde®d 4 C’s/ e*?(|0,ui|* + |0,2:%) do dt. (3.42)

YL X (07T)

Therefore, from (3.41) and (3.42), we get for s sufficiently large

/ 625¢(%)X2((b —5)2 + (g —g)?) dzx < C’eQSdQFg(T/Z) + Cge*h
Qr,

C _ - C 2
¢ / T/ (17 (G g))P + b —B2) da+ & 0 S (10, + |8, 2[2) do di.
QL =1

§ S YL X (OvT)
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Thus we have for s sufficiently large

z 7 -~ S sai O S -~
/Q (b +(g—g)%) do < Ce® = Fy(T/2)+Cse> +§/Q T2\ (x(9—9))| dw
’ ’ (3.43)
with )
Fy(T/2) = F5(T/2) + > (0.0fyl* +10,0F =) do dt.

'VLX(O7T) k=0
e Third step: We apply the same ideas for V(x(g — ¢)). For any integer 1 < i < n, taking

the space derivative with respect to z; in (3.37), we obtain
0404,20(T/2) — A0y, 20(T/2) + Oy, (cyo(T/2) + dzo(T/2) + A3 - Vyo(T/2) + Ay - V2o(T'/2))
= P(0,(x(9 = 9))) + V(X(g — 9)) - V(0,u(T/2)) — 05,((9 — 9)Vx - Vu(T/2))
— 0y, ((AX)2(T/2) =2V x - V2(T/2) + y(T/2)As - Vx + 2(T/2) Ay - V). (3.44)

We can apply again Lemma 3.3: there exists a positive constant C' such that for s sufficiently

large,

[, (G- g de < C [ PO, (4G - 9)) de
O Q

L

Thus, using (3.44) we obtain

s* / (0, (x(§ —9)))° da < Ce®F5(T/2) + Ce®h +C / P2, 20 (T/2)? da
Qr, Q

L

c / 9T/ |Y (g — TP de
Qr

with F5(T/2) = [|2(T/2) |30, + 19(T/2)|1 %2, So using Lemma 3.1 we get

E / 2T/, (((F-g)))? de < C By(T/2) 40> 4O / T/ |Y (y(g—)2| da
QL Q

L

+ C’s/ (0, 21)? d dt + ¢ e*?(0y,2)? du dt. (3.45)
L S JQr

Moreover by the Carleman inequality (2.5), we have for j = 1,2,

5/ e*0(22 + |V2[?) do dt < C/ e Az;? da dt + Cs*e® M| 7210,
L

L

+C’s/ 10, 2;]%€*? do dt.
YL X (OvT)
Thus

s/ 625¢(z]2+\sz]2)da:dt < C/ 623¢(y?+\Vyj]2+z?+]sz|2) dazdt—l—/ >V (x(G—9)) > dx dt
L QL L
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+ Cs3e?h Cs/ 0, 2;%e*? do dt. (3.46)

YL X (07T)

By the same way we obtain

(Y5 +|Vy; P +27+|Vz]?) do dt+/ 22 (x(b—b))? dx dt
QL

L

s/ > (i +|Vy;|*) do dt < C/
QL Q

+ Csde?d 4 CS/ 10,y,|%e**¢ do dt. (3.47)

'7L><(07T)
From (3.46) and (3.47) we deduce

s /Q €202 442+ [V 4|V ) dadt < C /Q 20 (2 4 |V 222+ |V 23 2) ot + O
L L

+C [ VG- gD+ D) dedir Cs [ 0P+ o) do de.
QL L%(0,T)
(3.48)
Since ¢ < ¢(T/2), (3.48) implies for s sufficiently large

s/ 625(15(,2]2 + y? + |sz|2 + |Vyj|2) dr dt < Cg3e?h
Qr

40 [ TG )P+ (-0 do+Cs [ (D + o) do
Qr, ol

LX (09T)

and so

2 2
s/ 625¢Z(]sz\2 + | Vy;|?) do dt < s/ 628¢Z(Z]2- +y; + |V + [Vy ) do dt
L

j=1 L j=1

< 08362Sd1 + OS/

2

e (10uz* + 10vy;]?) do dt

L x(0,T) j=1

e / T (19 (T — g2 + (v — B)?) da. (3.49)
Qr

Using inequalities (3.45) for 1 <7 <n and (3.49), we get

2 / T\ ((G—g))P do < O Fy(T/2)+C / TV (x (g =) 2|+ I (b=B) ] de
Q5 Q

L

+C s34 4 C’s/

YL X (OvT)

2

e (10uz]* + 10,y;1%) do dt.
j=1

Therefore for s sufficienlty large

2 / PTG (y(F — )| da < O F5(T)2) + C / 25T/ (y (b~ B))? da
QL 0

L



70 L. Cardoulis

+ OsPe®h 4 C’s/

YL X (OvT)

2
e (10u2* + 10uy,1?) do dt. (3.50)
j=1
e Fourth step: Now we gather (3.43) and (3.50) and we get for s sufficiently large
| PP + - g+ V(G - 9)P) do < CEER(T/2) + s, (351)
Qr

with Fs(T/2) = Fy(T/2) + F5(T/2). Moreover, since e?*% < e2*¢(7/2) in ); and x = 1 in €,
we deduce that

16— bl172(0 + 17 — gll3r 0y < C* BT F(T/2) 4 se (A=),
This concludes the proof of Theorem 3.3. n

Remark 6 In Theorem 3.3 we have presented the case of determining the coefficients
b and As. Of course we could obtain similar results for at least two coefficients between
a,b,c,d, Ay, Ay, As, Ay. If we want to determine A; and Az, we only have to assume that
Assumption (3.32) holds intead of (3.32)-(3.33). If we want to estimate the coefficients A,
and Aj, we still have to assume the hypothesis (3.32) satisfied but in this case, we should

also assume that the following hypothesis
|Vd-Vo(T/2)] > R in Q, for some R > 0

holds. Note also that the last item of Remark 4 still holds for (3.34). To conclude, if we
would like to determine more than two coefficients, we could procede with the same method

used in Theorem 3.2.
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