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Reference Stability for ODE

1 Introduction

We consider initial value problems for autonomous ODE, and we will study stability for these
problems. The dignified definition of Ljapunow stability has two shortcomings. To overcome
these difficulties we define the notion of reference stability. This notion has especially the
advantage that we can characterize it topologically. We illustrate the procedere by simple
examples.

2 Some simple but instructive examples

We consider the equations ẋ = ±xn, n ≥ 2, x(t0) = x0. But these equations are autonomous
and hence we let t0 = 0.

These equations are of product type:

ẋ = g(t)h(x) = xn (h(x) = ±xn) .

Since h(x) = 0 ⇐⇒ ±xn = 0 ⇐⇒ x = 0 : x ≡ 0 is an equilibrium point of ẋ = ±xn,
x(0) = 0. We will show that the zero solutions of our equations always are unique.

Proposition 2.1 The zero solution of our equations always are unique.

Proof: We have h(x) = ±xn, it is enough to consider h(x) = xn.

Now ∫ 1

y

1

h(s)
ds =

∫ 1

y

s−n ds =

(
1

1− n
s1−n

) ∣∣∣1
y
=

1

1− n

(
1− 1

yn−1

)
=⇒∣∣∣∣limy→0

(
1

1− n

)(
1− 1

yn−1

)∣∣∣∣ = +∞ ,

since n ≥ 2. Thus by a well-known criterion (see [4]) x ≡ 0 is a unique solution.
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(a) ẋ = xn; for x 6= 0, x0 6= 0 we find:∫ x

x0

s−nds =

∫ t

0

1ds = t ,

1

1− n

(
s1−u

∣∣x
x0

)
= t ,

x1−u − x1−u0 = (1− n)t
x1−n = x1−n0 + (1− n)t (2.1)

(b) ẋ = −xn; we get

x1−n = x1−n0 + (1− n)(−t)
x1−n = x1−u0 + (n− 1)t (2.2)

Example 2.2 (a) n = 3: ẋ = x3, x(0) = x0 :

x1−3 = x−2 = x−20 − 2t =
1

x20
− 2t =

1− 2x20t

x20
=⇒ |x| = |x0|√

1− 2x20t
. We know that

x0 6= 0 holds and hence x is defined on
(
−∞, 1

2x20

)
.

We have two cases:

1. x0 > 0, then by continuity and since ẋ = x is autonomous: ∀t ∈
(
−∞, 1

2x20

)
:

x(t) > 0, thus |x| = x =
x0√

1− 2x20t
.

2. x0 < 0, by the same argument: ∀t ∈
(
−∞, 1

1x20

)
:

|x(t)| = −x(t) = −x0√
1− 2x20t

=⇒ x = x(t) =
x0√

1− 2x20t
,

and here x0 < 0 =⇒ x(t) < 0 ∀t.

Remarks 2.3 (a) Result concerning stability: 0 : ∀t ∈ [0,+∞) : 0(t) = 0 is defined on
[0,+∞), but no other solution is defined on this interval.

(b) The sets of possible initial values of this equation are:

(0,+∞), (−∞, 0)

(c)
1

2x20
, x0 6= 0 is a pole:

lim
t→

(
1

2x20

)− x0√
1− 2x20t

=

+∞, x0 > 0

−∞, x0 < 0
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Example 2.4 (b) n = 3, ẋ = −x3, x(0) = x0, x0 6= 0. By (2.2) holds:

x1−n = x1−n0 + (n− 1)t;n = 3 =⇒ x−2 = x−20 + 2t,

x−2 =
1 + 2x20t

x20
=⇒ |x| = |x0|√

1 + 2x20t
,

and ∀x0, x0 6= 0 : ∀t ∈ [0,+∞) : 1 + 2x20t > 0.

As above we get again

x0 > 0 =⇒ x =
x0√

1 + 2x20t
> 0

x0 < 0 =⇒ x =
x0√

1 + 2x20t
< 0

Remarks 2.5 1. Result concerning stability: x ≡ 0 is defined on [0,+∞) and all other
solutions too.

2. The set of all possible initial values of this equation is (−∞, 0) ∪ (0,+∞).

More precisely we have

1 + 2x20t > 0⇐⇒ − 1

2x20
< t, and − 1

2x20
< 0 .

Remark 2.6 More example of ODE we consider to illustrate definitions or to apply the
results of propositions.

3 Ljapunow – Stability

We consider an autonomous system of ordinary differential equations:

ẋ = f(x), f : G→ Rn , (3.1)

G ⊆ Rn is open and f is continuous. Let t0 ∈ R, 0 ≤ t0 and let x be a solution, x(t0) = x0 ∈
Rn defined (at least) on [t0,+∞).

We want to formulate that x is Ljapunow-stable in a precise way. But this is only possible,
if we use the following definition:

Definition 3.1 x is called Ljapunow-stable (L-stable) iff ∀ε > 0 ∃ δ > 0, δ = δ(ε),
0 < δ ≤ ε : ∀y, where y solves the initial value problem ẏ = f(y), y(t0) = y0 ∈ G (on some
intervall of R):

‖y0 − x0‖ < δ =⇒ (y is defined on [t0,+∞) and ∀t ≥ t0 : ‖y(t)− x(t)‖ < ε).
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Remarks 3.2 1. The very definition of Ljapunow stability is in some sense unclear:
several authors use definition 3.1, see for instance [1], [3], [4].

Other do not mention at all the domain of the (reference) solutions y in definition 3.1,
see for instance [5], [6], [7].

2. Definition 3.1 has two serious shortcomings.

First shortcoming.
The two statements of the conclusion of the implication:

y is defined on [t0,+∞), ∀ t ≥ t0 : ‖y(t)− x(t)‖ < ε are not independent:

by the Ljapunow definition of stability we find a family of implications: ∀ ε > 0 ∃ δ = δ(ε) :

‖y(t0)− x(t0)‖ < δ =⇒ (y exists on [t0,+∞) and ∀ t ≥ t0 : ‖y(t)− x(t)‖ < ε). This family
depends on ε (and the associated δ(ε)). Now we fix ε = ε > 0 and we find δ = δ(ε); indeed
we now have one single implication: ‖y(t0)−x(t0)‖ < δ(ε) =⇒ (y is defined on [t0,+∞) and
∀ t ≥ t0 : ‖y(t)− x(t)‖ < ε), in short: A =⇒ (B ∧ C).

But this implications is equivalent to

¬(B ∧ C) =⇒ ¬A , or
¬B ∨ ¬C =⇒ ¬A .

Now, if ¬B is true, then there exists t1 ∈ (t0,+∞) such that y is not defined in t1 : y(t1)

does not exist.

If ¬C is false, that is C is true, we have:

∀ t ≥ t0 : ‖y(t)− x(t)‖ < ε ,

which means ‖y(t) − x(t)‖ is a (positive) real number and the assertion is: each of these
numbers is smaller than ε.

But here we find an error:
‖y(t1)− x(t1)‖

is no number, but a senseless symbol.

This senseless symbol also can occur if ¬C is true. Then we find t2 ∈ (0,+∞):

‖y(t2)− x(t2)‖ ≥ ε .

and either ‖y(t2)− x(t2)‖ ∈ R or ‖y(t2)− x(t2)‖ is a senseless symbol.

Second shortcoming.
If we have found a set of (explizite) solutions y, then we can often by the Ljapunow definition
of stability easily, without starting to prove that x is stable or unstable, decide that the
solution x is not stable. This we can conclude from the following proposition and its corollary.
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Proposition 3.3 We consider the initial value problem (3.1) and let x : [t0,+∞)→ Rn

be a solution. If y is another solution y : (a, b) → Rn, t0 ∈ (a, b), we denote by D(y) the
domain (a, b) of y. Now we assume that there exists a sequence (yn)n∈N of solutions s. th.
yn(t0)→ x(t0) and ∀n ∈ N : [t0,+∞) * D(yn). Then x is not stable.

Proof: We assume that x is stable: for ε0 = 1 ∃ δ ∈ R, 0 < δ ≤ 1 : ∀ y : ‖y(t0) − x(t0)‖ <
δ =⇒ y is defined on [t0,+∞) and ∀ t ≥ t0 : ‖y(t)− x(t)‖ < 1; ∃n1 ∈ N : yn1(t0) ∈ Uδ(x(t0))
and hence ‖yn1(t0) − x(t0)‖ < δ. Thus yn1 is defined on [t0,+∞), yielding a constradiction
since [t0,+∞) * D(yn1). Hence x is not stable.

Corollary 3.4 Let S0 be the set of all solutions of ẏ = f(y), y(t0) = y0 ∈ G which are
not defined entirely on (t0,+∞), hence x /∈ S0. Let S0 be infinite and let x(t0) be a cluster
point of {y(t0)|y ∈ S0}.

Then x is not stable.

Example 3.5 We come back to example 2.2:

ẋ = x3, x(0) = x0 ∈ R ;

S0 consists of all nontrivial solutions of the initial value problem and hence {y(0)|y ∈ S0} =
(−∞, 0)∪ (0,+∞). Thus we can apply the corollary and since x(0) = 0 is a cluster point of
{y(0)|y ∈ S0} we find that x is unstable.

But since we have no solution which we can compare with the zero function x on [0,+∞),
the assertion “x is unstable” makes no sence.

4 The Reference-Stability

There exists a consequent and simple way out from the difficulties of the Ljapunow stability
definition: we consider only the set of all solutions of the initial value problem which are
defined (at least) on [t0,+∞).

Definition 4.1 Let x be defined on [t0,+∞) and x is solution of the initial value problem
(3.1)

R = R(x) = {y|y : [t0,+∞)→ Rn, ẏ = f(y), y(t0) = y0 ∈ G and y 6= x} ;

R(x) is called the set of reference solutions of the solution x. Of course, instead of y :

[t0,+∞)→ Rn we can use: [t0,+∞) ⊆ D(y).

Example 4.2 Let be ẏ = f(y) = y, t0 = 0, x : ∀ t ≥ 0 : x(t) = 0, the zero solution:
x(0) = 0. Then R(x) = R(0) = {y = y0e

t|y0 ∈ R\{0}} is the set of reference solutions of
x ≡ 0.
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Example 4.3 We consider example 2.4: ẋ = −x3, x(0) = x0 ∈ R; then for the zero solution
x ≡ 0, x(0) = 0, we find on

[0,+∞) : R(x) = R(0) =

{
x =

x0√
1 + 2x20t

∣∣x0 ∈ R\{0}

}
.

Definition 4.4 We consider the initial value problem (3.1) and the solution
x : [t0,+∞)→ Rn is to be investigated on stability; let R(x) be the set of reference solutions
of x; we assume: R(x) 6= ∅. x is called reference stable , R-stable, iff ∀ ε > 0 ∃ δ = δ(ε),
0 < δ ≤ ε : ∀ y ∈ R(x) :

‖y(t0)− x(t0)‖ < δ =⇒ ∀ t ≥ t0 : ‖y(t)− x(t)‖ < ε .

Remarks 4.5 1. We emphasize insistently what was assumed in the definition: within
reference stability we always assume R(x) 6= ∅. If R(x) = ∅ holds, we simply say that
we have no stability problem. As an example for this situation we look at example 2.2:
ẋ = x3, x(0) = 0: here we have R(x) = R(0) = ∅.

2. As usual we still define: x is called to be asymptotically reference stable iff x is reference
stable and ∃ δ > 0 : ∀ y ∈ R(x)

‖y(t0)− x(t0)‖ < δ =⇒ lim
t→+∞

‖y(t)− x(t)‖ = 0

5 Topological characterization of the notion of reference stability

If x0 is an equilibrium point of (3.1), then in [3] is defined: x0 is called stable.iff for each
neighborhood V = V (x0) there exists a neighborhood U = U(x0), U ⊆ V and U ⊆ G such
that: for each solution y of (3.1), y(t0) = y0 : y0 ∈ U =⇒ y is defined on [t0,+∞) and
y([t0,+∞)) ⊆ V .

In [8] the author considers only unique solutions and thus he can assign to each initial
value y(t0) the solution y, y(t0) → y and he assums that all y belong to the Banachspace
Cb([t0,+∞),Rn) of all bounded continuous functions on [t0,+∞) equipped with the sup-
norm. Now he remarks that stability of a solution x is equivalent to the continuity of the
map y(t0) → y at the point x(t0). (See remark on page 137 of [8]). But the author has no
precise domain of his map and the bounded continuous functions are not enough, since one
wants for instance to consider instability too.

Best suited for topological characterization of stability is the notion of reference stability
(see section 4).

Before we study such characterizations we will provide some facts from elementary general
topology.
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For topological spaces the notion of a neighborhood is important. Often a topology on a
set is defined by open sets. But we also can start with neighborhoods. For a proof of the
following propositions see [2], [9].

Proposition 5.1 Let X be a set and for each x ∈ X there exists a nonempty family
B(x) of such subsets of X s. th. B = (B(x))x∈X has the properties:

(a) B ∈ B(x) =⇒ x ∈ B

(b) B1, B2 ∈ B(x)∃B3 ∈ B(x) : B3 ⊆ B1 ∩B2

(c) ∀V ∈ B(x)∃B ∈ B(x)∀ y ∈ B ∃W ∈ B(y) : W ⊆ V

G ⊆ X is called open iff

∀x ∈ G ∃B ∈ B(x) : B ⊆ G .

Then τ = {G ⊆ X|G open} is a topology on X and τ is uniquely determined by the system
B = (B(x))x∈X .

Moreover ∀x ∈ X : B(x) is a base of the τ -neighborhoodsystem U(x).

Hence we say that the base system B generates the topology τ .

Corollary 5.2 Let be τ1, τ2 topologies on X which are generated by the base neighborhood
systems (B1(x))x∈X , (B2(x))x∈X .

If holds: ∀x ∈ X ∀B1 ∈ B1(x)∃B2 ∈ B2(x) : B2 ⊆ B1 then we find: τ1 ⊆ τ2.

Proof: ∀G ∈ τ1, hence G is open w. r. t. τ1 and we want to show that G is τ2-open too:
∀ z ∈ G : G ∈ τ1 =⇒ ∃B1 ∈ B1(z) : z ∈ B1 ⊆ G; by assumption there exists B2 ∈ B2(z)

s. th. B2(z) ⊆ B1(z) =⇒ z ∈ B2 ⊆ G and hence G is open w. r. t, τ2 : G ∈ τ2.

Now we are looking for suitable topologies on C([t0,+∞),Rn); [t0,+∞) (with Euclid-
ian topology) is a locally compact Hausdorff space. Thus the compact-open topology for
C([t0,+∞),Ru) has many open sets. But for applications to characterize stability we need
“uniform topologies”.

Remark 5.3 Algebraic operations in C([t0,+∞),Rn) and in C([t0,+∞),R) we can define
pointwise; we consider these spaces as vector spaces over R.

Definition 5.4 Let M ⊆ C([t0,+∞),R), M 6= 0 and all functions from M are positive:
∀ (α, t) ∈ M × [t0,+∞) : α(t) > 0; now for f ∈ C([t0,+∞),Ru) we define α-neighborhoods
of f : Bα(f) = {g ∈ C([t0,+∞),Ru)|∀ t ∈ [t0,+∞) : ‖g(t)− f(t)‖ < α(t)}.

Which properties M must have such that B = (Bα(f))(α,f)∈M×C([t0,+∞),Rn) is a base neigh-
borhood system (see proposition 5.1).
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Proposition 5.5 We assume that holds:

(1) α ∈M =⇒ 1
2
α ∈M

(2) α, β ∈M =⇒ min{α, β} ∈M .

Then B is a base neighborhood system.

Proof: At first we remark that 1
2
α, min{α, β} are positive continuous functions. We will

show that B fulfills the base neighborhood systems axioms (a), (b), (c) of proposition 5.1.

(a) ∀ (α, f) : f ∈ Bα(f), since ∀ t ∈ [t0,+∞) :

‖(f(t)− f(t)‖ = 0 < α(t)

(b) ∀ f ∈ C([t0,+∞),Rn)

∀α1, α2 ∈M : let β = min{α1, α2}, then Bβ(f) ⊆ Bα1(f) ∩Bα2(f), since

∀ t ≥ t0 : min{α1(t), α2(t)} ≤ α1(t), min{α1(t), α2(t)} ≤ α2(t)

(c) ∀Bα(f) ∈ (Bβ(f))β∈M : α ∈ M =⇒ 1
2
α ∈ M =⇒ Bα

2
(f) ∈ (Bβ(f))β∈M ; ∀ g ∈ Bα

2
(f) :

we will show that Bα
2
(g) ⊆ Bα

2
(f) holds: ∀ (h, t) ∈ Bα

2
(g)× [t0,+∞):

‖h(t)− f(t)‖ = ‖h(t)− g(t) + g(t)− f(t)‖ ≤ ‖h(t)− g(t)‖+ ‖g(t)− f(t)‖

<
1

2
α(t) +

1

2
α(t) = α(t) ,

hence h ∈ Bα(f).

Remark 5.6 IfM fulfills (1), (2) then the α-base neighborhood system generates an unique
topology τ = τM for C([t0,+∞),Ru).

Lemma 5.7 M1,M2 ⊆ C([0,+∞),R),M1,M2 generate the topologies τ1, τ2 respectively.
Then holds:

M1 ⊆M2 =⇒ τ1 ⊆ τ2

Proof: We show that the identity map id: (C([t,+∞),Ru), τ2) → (C([t0,+∞),Ru), τ1) is
continuous: let G ∈ τ1 be open =⇒ id−1(G) = G; G ∈ τ1 =⇒ ∀h ∈ G ∃α ∈ M1 : B(h) =

{g ∈ C([t0,+∞),Rn)|∀ t ≥ t0 : ‖g(t) − h(t)‖ < α(t)} ⊆ G. But α ∈ M1 =⇒ α ∈ M2 and
hence G ∈ τ2.

Definition 5.8 Now we consider examples of the generating set M ⊆ C([t0,+∞),R)
and the corresponding topologies:
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1. By ε we mean now the constant function:

ε : ∀ t ∈ [t0,+∞) : ε(t) = ε, Mε = {ε|ε > 0}

Of course:

ε > 0 =⇒ 1

2
ε > 0; ε1, ε2 ∈Mε =⇒ min{ε1, ε2} ∈Mε

As is well known, B = (Bε(f))(ε,f)∈Mε×C([t0,+∞),Rn) generates the uniform topology τu
on C([t0,+∞),Rn)

2. We consider a subset of Mε : ∀n ∈ N, n ≥ 1 : εn = 1
n
: the constant functions now have

the value 1
n
; M( 1

n)
=
{

1
n

∣∣n ∈ N, n ≥ 1
}
. M( 1

n)
generates a topology:

1

n
∈M( 1

n)
=⇒ 1

2

1

n
=

1

2n
∈M( 1

n)
, min

{
1

n
,
1

m

}
∈M( 1

n)
. (5.1)

3. Mc, the symbol c, means: converging to zero; Mc = {α ∈ M | limt→+∞ α(t) = 0}. We
denote the topology generated by Mc on C([t0,+∞),Rn) by τpc: positive – converging
topology. Clearly:

α ∈Mc =⇒
1

2
α ∈Mc, α1, α2 ∈Mc =⇒ ∀ t ≥ t0 : 0 <min{α1(t), α2(t)} ≤ α1(t)

(and ≤ α2(t))

and thus lim
t→+∞

min{α1(t), α2(t)} = 0 showing min{α1, α2} ∈Mc.

4. Ma = {α ∈ C([t0,+∞),R)|∀ t ≥ t0 : α(t) > 0}; thus a means “all”. Of course:

α ∈Ma =⇒
1

2
α ∈Ma, α1, α2 ∈Ma =⇒ min{α1, α2} ∈Ma .

The topology generated by Ma we denote by τm, since this topology was used by Marston
Morse; τm first was defined by E.Hewitt, it is also called Whitney – or fine topology.

As we have hoped, we can show: τu = τ( 1
n)
.

Proposition 5.9 On C([t0,+∞),Rn) holds τu = τ( 1
n)
.

Proof: M( 1
n)
⊆Mε =⇒ τ( 1

n)
⊆ τu by lemma 5.7. By corollary 5.2 we find τu ⊆ τ( 1

n)
.

Corollary 5.10 (C([t0,+∞),Ru)τu) is a topological A1-space. Hence we can use se-
quences instead of nets or filter.

Proposition 5.11 Moreover we have: τu ≤ τpc.
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Proof: ∀ (f, ε) ∈ C([t0,+∞),Rn)× (0,+∞) : Bε(f) ∈ τu; let h = ε
2
e−t, t ∈ [t0,+∞); since

0 ≤ t0 we get for 0 ≤ t0 ≤ t : e−t ≤ 1 =⇒ ε
2
e−t ≤ ε

2
< ε, thus showing that Bh(f) ⊆ Bε(f)

holds and Bh(f) ∈ τpc. Hence by corollary 5.2 τu ⊆ τpc.

Corollary 5.12 For our topologies τu, τpc, τm holds:

τu ≤ τpc ≤ τm

Now we come to the main point of this section: stability as continuity.

As already remarked the basic idea of stability is nothing else then the continuity of a natural
map into the space of continuous functions. Using reference stability we can define this map
in a clear and exact way:

We consider the initial value problem (3.1). Let x be a solution which is defined on [t0,+∞)

and R(x) be the set of reference solutions of x (definition 4.1).

Let R̃(x) = R(x) ∪ {x} and we assume that all solution of R̃(x) are unique; moreover Vt0
(V means “value”)= {y(t0)|y ∈ R̃(x)}, Vt0 ⊆ G ⊆ Rn and for Vt0 we consider the Euclidian
topology of Rn, which can be generated by an arbitrary compatible norm of Rn. Then the
map F is well defined:

F : Vt0 → C([t0,+∞),Rn) : ∀ y(t0) ∈ Vt0 : F (y(t0)) = y

C([t0,+∞),Rn) we provide with the uniform topology τu.

Remark 5.13 Since of course some y ∈ R̃(x) may be unbounded we use C([t0,+∞),Rn)

and not the space Cb([t0,+∞),Rn) of bounded continuous maps.

Now using the generation of τu by base ε-neighborhoods (see 5.8, 1.) and the characterization
of the continuity of a map by (base) neighbourhoods it is not hard to prove the assertion of
the following theorem:

Theorem 5.14 Equivalent are:

(1) x is reference stable

(2) the map F : Vt0 → (C([t0,+∞),Rn), τu) is continuous in x(t0).

Application of theorem 5.14 to concrete examples. We consider again Example 2.4: ẋ = −x3,
t0 = 0, x(0) = x0; on [0,+∞) are defined:

the zero solution 0 and the set of reference solutions

R(0) =

{
x =

x0√
1 + 2x20t

∣∣x0 ∈ R\{0}

}
, hence R̃(0) =

{
x =

x0√
1 + 2x20t

∣∣x0 ∈ R

}
;
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for x0 = 0 we obtain the zero function:

0√
1
= 0 , Vt0 = V0 =

{
x(0) = x0|x0 ∈ R̃(0)

}
= R .

Of course the solutions of R(0) are unique solutions and by proposition 2.1 x ≡ 0 is unique.
Thus all elements of R̃(0) are unique solutions and we can apply theorem 5.14:

Now we show the continuity of the map F : we can use convergence too and especially we
can use sequences here:

let (xn0 ) be a sequence from V0 s. th. (xu0)→ 0(0) = 0. We will show:

F (xn0 ) = (x(t; 0, x0))n → F (0(0)) = 0 uniformly on [0,+∞) :

∀ t ≥ 0, x0 6= 0, 1 ≤ 1 + 2x20t =⇒ 1 ≤
√
1 + 2x20t =⇒ 0 <

1√
1 + 2x20t

≤ 1

=⇒ 0 <
|x0|√
1 + 2x20t

≤ |x0| .

Hence |F (xn0 )− 0| = |F (xu0)| ≤ |xn0 |, but xu0 → 0 =⇒ |xu0 | → 0 =⇒ F (xu0)→ 0 uniformly on
[0,+∞), since |xu0 | does not depend on t.

Thus from theorem 5.14 follows that the zero solution 0 is reference stable.

Remarks 5.15 1. Using the continuity – arguments we were able to avoid any epsilon-
tics.

2. Let δ = 1 : ∀x0 ∈ R, x0 6= 0, |x0 − 0(0)| = |x0| < 1 we get

lim
t→+∞

|x(t)| = lim
t→+∞

|x0|√
1 + 2x20t

= 0 ,

hence the zero solution 0 is even asymptotically reference stable.

Example 5.16 We consider the equation ẋ = x2, x(0) = x0.

For x0 6= 0 by (2.1) we find for the solutions:

x1−n = x1−n0 + (1− n)t

and
n = 2 =⇒ x−1 = x−10 − t =⇒ x =

1

x−10 − t
=

x0
1− x0t

; x0 6= 0 :

Since we look for solutions which are defined at least on [0,+∞), we find here:

1

x0
/∈ (0,+∞)⇐⇒ x0 < 0⇐⇒ [0,+∞) ⊆

(
1

x0
,+∞

)
⇐⇒ [0,+∞) ⊆ D(x(t; 0, x0))
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and equivalently:

1

x0
∈ (0,+∞)⇐⇒ x0 > 0⇐⇒ [0,+∞) * D(x(t; 0, x0)) .

Now we study the stability of the zero solution x ≡ 0 on [0,+∞).

{x0
∣∣[0,+∞) * D(x(t; 0, x0)) = {x0|x0 > 0} = (0,+∞)}. But 0 = 0(0) is clusterpoint of

(0,+∞) yielding by corollary 3.4 that x ≡ 0 is unstable in the sense of Ljapunow.

Since we know that only for x(0) = x0 < 0 holds: [0,+∞) ⊆ D(x(t; 0, x0)) we get as set of
all reference solution of x ≡ 0:

R(0) =

{
x =

x0
1− x0t

∣∣x0 < 0

}
=⇒ R̃(0) =

{
x =

x0
1− x0t

∣∣x0 ≤ 0

}
;

V0 =
{
x(0)

∣∣x ∈ R̃(0)} = (−∞, 0] .

We show that x ≡ 0 is reference stable: By the same arguments as above we find too: all
elements of R̃(0) are unique solutions.

Now:

x0 < 0 =⇒ −x0 > 0 =⇒ −tx0 ≥ 0, since t ≥ 0;

− tx0 ≥ 0 =⇒ 1− tx0 ≥ 1 =⇒ 1

1− x0t
≤ 1 =⇒ |x0|

1− x0t
≤ |x0| ;

now let (xn0 ) be a sequence from V0\{0}, xn0 = (x(t; 0, x0))n;

|F (xn0 )− 0(0)| = |F (xn0 )| =
∣∣∣∣ xn0
1− xn0 t

∣∣∣∣ ≤ |xn0 | ;
(xn0 )→ 0 =⇒ |xn0 | → 0 =⇒ F (xn0 )→ 0 = 0(0) = F (0) : (F (xn0 ))n

converges uniformly on [0,+∞) to F (0), yielding that F is continuous in 0(0) = 0. Hence
by theorem 5.14 0 = x ≡ 0 is reference stable.

∀x0 < 0 : |x0| < 1 =⇒ lim
t→+∞

|x(t; 0, x0)| = lim
t→+∞

|x0|
1− x0t

= 0 ,

meaning that 0 is asymptotically reference stable.

We need a simple lemma.

Lemma 5.17 Let be (hn) a sequence from C([0,+∞),Rn) and let h ∈ ([0,+∞),Rn) be
bounded: ∀ t ∈ [0,+∞) ‖h(t)‖ ≤ a, a ∈ R, a > 0. If (hn) converges uniformly to h on
[0,+∞) then almost all members of the sequence (hn) are bounded too.
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Proof: hn
τu−→ h =⇒ ∃n1 ∈ N : ∀ (t, n) ∈ [0,+∞) × {n ∈ N|n ≥ n1}: ‖hn(t) − h(t)‖ < 1;

now

‖hn(t)‖ − ‖h(t)‖ ≤ ‖hn(t)− h(t)‖ =⇒ ‖hn(t)‖ ≤ ‖hn(t)− h(t)‖+ ‖h(t)‖ < 1 + a ,

hence hn is bounded ∀n ≥ n1.

We will apply this lemma and consider example 4.2: ẋ = x, x(0) = x0; x ≡ 0 on [0,+∞) is
solution: 0(0) = 0.

R(0) = {x0et|x0 ∈ R\{0}} =⇒ R̃(0) = {x0et|x0 ∈ R}, V0 = {x(0) = x0|x ∈ R̃(0)} .

x ≡ 0 is not reference stable.

Proof: We consider the sequence (xn0 ) =
(
1
n

)
from V0; 1

n
→ 0 but all F

(
1
n

)
= x

(
t; 0, 1

n

)
=

1
n
et are unbounded and hence by the lemma 5.17 F

(
1
n

)
does not converges uniformly to 0.

Thus by theorem 5.14 x ≡ 0 is not reference stable.

We still consider the positive – converging topology τpc.

Proposition 5.18 Under the assumptions of theorem 5.14 holds:

If the solution x is τpc-stable then x is asymptotically reference stable.

Proof: We consider the map

F : Vt0 → C([t0,+∞),Rn), x(t0) ∈ Vt0 =⇒ F (x(t0) = x ∈ C([t0,+∞),Rn)

and x is τpc-stable means that

F : Vt0 → (C([t0,+∞),Rn), τpc)

is continuous in x(t0); 5.11 shows that τu ⊆ τpc, yielding that F : Vt0 → (C([t0,+∞),Rn), τu)

is continuous in x(t0) too. Hence by theorem 5.14 x is R-stable.

Let α ∈Mc: ∀ t ∈ [t0,+∞): α(t) > 0 and limt→∞ α(t) = 0. By the τpc-continuity of F in x(t0)
we find δ > 0, δ = δ(α) : ∀ y(t0) ∈ Uδ(x(t0))∩ Vt0 =⇒ F (y(t0)) = y ∈ Uα(x(t0)) =⇒ ∀ t ≥ t0:

‖y(t)− x(t)‖ < α(t), α(t)→ 0 =⇒ ‖y(t)− x(t)‖ → 0

for t→ +∞, showing that x is asymptotically R-stable, since we finally have: ∀ y ∈ R(x):

‖y(t0)− x(t0)‖ < δ =⇒ ‖y(t)− x(t)‖ → 0 for t→ +∞.

Remark 5.19 If we want to define the basics of reference stability by means of topologies
for the function space C([0,+∞),Rn), then we can proceed:

1. reference stability by the uniform topology τu

2. asymptotic reference stability by τpc.
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