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Two-Scale Difference Equations with a Parameter and
Power Sums related to Digital Sequences

ABSTRACT. This paper is a direct continuation of [19] concerning the representation of
power sums related to digital sequences. Foundation is beside article [19] an existence the-
orem for differentiable solutions of certain two-scale difference equations with a parameter.
By means of such solutions and a method developed in [19] we are able to give an explicit
representation for general sums related to digital sequences. In particular, we give a sum-
mation formula for power sums of the sum of digits and incidentally, we find a new property

of the Bernoulli polynomials.
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1 Introduction

We consider a two-scale difference equation with a parameter z € X C R of the form

¢ .
© (]—), x) = 0 ()t —r x) (t € R) (1.1)

r=

with an integer p > 1 and real or complex coefficients ¢, (z) where co(x)c,—1(z) # 0 and

ZCT(JJ) =1 (x € X). (1.2)

It is known that for such x € X where |c.(z)| < 1 for r =0,1,...,p — 1 the equation (1.1)
has a solution ¢(t, z) satisfying

o(t,z) =0 for ¢ <0, e(t,z) =1 for t>1 (1.3)

which is continuous with respect to t, cf. [18], see also [7], [I1]. We show that if coefficients

¢, (x) are k-times differentiable then the solution (¢, x) is k-times differentiable with respect
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to  (Theorem 2.1, Theorem 2.2). This result is the base for the derivation of a formula for

the sum of certain digital sequences where we use similar methods as in [19].

In particular, we investigate digital exponential sums (Section 3) and the digital power sums
Sk(N) = s(n)" (1.4)

where s(n) denotes the sum of digits of the integer n in the p-adic representation, i.e. if
n =Y nip" then s(n) = > ny. In binary case p = 2 first Trollope |26] in 1968 has given an
explicit expression for the sum S; (V). Delange [5] gave a simple proof and generalized the

result to digits in arbitrary basis p > 1. The well-known Trollope-Delange formula reads
1
S1(N) = §Nlog2 N 4+ NG(logy N) (1.5)

where G(u) is an 1-periodic continuous, nowhere differentiable function which can be ex-
pressed by means of the Takagi function. In 1994 the Trollope-Delange formula (1.5) was
also proved in [6] by use of classical tools from analytic number theory, namely the Mellin-

Perron formulae, see |6, Theorem 3.1, Remark 4.5].

For the basis p = 2 Coquet [3] in 1986 proved that

log, N \ 2
st( ) = < g22 ) +logy N G2,1(10g2 N) —|—G270(10g2 N)

where Ga1(u), Gag(u) are 1-periodic continuous functions and that for arbitrary integer

k > 1 the power sum Si(N) can be represented in the form

%Sk(N) =) (logy N)'Gp4(logy N) (1.6)

1
o -

recurrence relations between the functions Gy ,. In [22], by means of binomial measures a

where Gy o(u) are 1-periodic functions, in particular Gy x(u) = He also found certain

more explicit representation of Gy, was given and their continuity was proved, cf. also [23]
and [15]. In [17] it was proved that the functions Gy, (¢ =0,1,...,k — 1) are nowhere dif-
ferentiable. In 2012 Girgensohn [3] gives a new representation for Sy(/N) by use of functional
equations and generating function techniques. If gx(t) is a sequence of polynomials given by

qo(t) = 1 and the recursion

Qrr1(t) = t(2qx(t) — q(t — 1)) (k>0) (1.7)

then it holds

k
- Z( )N2 qe(logy N) fr—e () (1.8)

=0
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with certain 1-periodic continuous functions fj(z) and z = & (5’\([) where p(N) = 2[le2 N1 g

the largest power of 2 less than or equal to N, cf. |8, Section 5|.

For an arbitrary integer basis p > 1 in 2000 Muramoto et al. [20] have proved by means of

multinomial measures that

Sk(N) = (log, N)'Hy(log, N) (1.9)

1
N

where Hy¢(u) are 1-periodic continuous functions. In case N = p™ it follows that Sk( ™)

can be represented as polynomial

_Sk Zau n (1.10)

with the coefficients ay, = Hge(n) = Hy,(0) since the functions Hy,(u) are 1-periodic.

Certainly, the coefficients a;, and also the polynomial

k

Pe(t) = agyt* (1.11)

=0
depend on p. So equation (1.10) can be written in the form

]%sk(pw — Pu(n). (1.12)

For the basis p = 10 the polynomials Py(n) were computed in [12| for n =1,2,...,8:

9
WW o= gn

81, 33

729 . 891
gy = P9 8
10n 3(10%) gt

6561 , 8019 , 3267 , 3333
—S 107 — 22004 U178 0200 o
10n 4(107) T T T T

50049 . 120285 , 147015 . 29997
_S 10n — 5 4 3 2
10n 5(10%) 2 T T 16 "

531441 . 3247695 . 3969405 1080783 . 329967 ., 15873
_S 107’L — 6 5 4 3 2
10n 5(10%) o T T YT 61 33 T
g — AT82060 ;40020957 ; 83357505 5 56133 , 20787921 09999
10n 7 T 128 128 128 128 64 8

Lo o) 43016721 ¢ 122762871 ;  T0217545 , T628474T ;1372208607

_— = n n n n — n
T 256 64 128 32 256

(GTTTTTATY | 371092563 , 33333333

n n ————-"nN
64 320 80

Figure 1. The first polynomials Py(n) for the basis p = 10
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These results were obtained as follows. If fy(x) is a sequence of functions defined by
folx) = +az+2>+-- +2°)"

and for £ > 1 by
fe(@) = 2 fi_y(2)
then it holds
Sk(10") = fr(n)

cf. |4, Section 3|. So starting with fo(x) the polynomials in Figure 1 were computed by
repeated differentiation, multiplication by z, and finally substitution = = 1, cf. [4, p. 342].
We see in Figure 1 that for odd k& > 1 the linear term of Py(n) vanishes.

In this paper we give a new derivation of (1.9) as application of two-scale difference equations

with a parameter (Theorem 4.3, Corollary 4.4). The main result can be written as

%%Sk )2k = (Z P ) (Z i Fe(L) ) (z € Q) (1.13)

where L = log, N, where P (t) are polynomials (1.11) satisfying (1.12), and where Fy(u) = 1
and Fy(u) are 1-periodic continuous functions with F;(0) = 0 for £ > 1 (Theorem 6.11). In
view of the Cauchy product relation (1.13) means that for £ > 0 we have

o0

k=0

%Sk(N) = zz: (];) Py(L)Fy—o(L).

=0

The polynomials Py (t) are given by their generating function
il 1Y eg (1.14)
J— Z — ya .
k! p(e* —1)

(Proposition 6.2), and the functions Fj(u) are determined by the equation (1.1) with the

coeflicients
6r:r

CT('I) = 1 + ex + e + e(p—l)CC
in the following way: if equation (1.1) with (1.15) has the solution (¢, x) satisfying (1.3)

(r=0,1,...,p—1) (1.15)

and if F'(u,z) denotes the 1-periodic function with respect to u given by

e(p, )
= <
F<u’ I) (]_ +er 4.4 @(p—l)w)u (u - 0)
then
o" 7
Filu) = —
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Moreover, the coefficients ap, = ag¢(p) of Py(t) are polynomials of degree at most k in p

which are given by

(—1)"&! k! S B .
ae(p) = —, > km 1 kn-kn!(p —-1) (1.16)

ki+-+ke=

where kq,...,k; are positive integers and where Bj denotes the Bernoulli numbers. In
particular ayx(p) = (25)* for k > 0, ao(p) =0 for k > 1 and

(=1)"By

oG- (k2 )

aga(p) =

(Proposition 5.4). Hence, for odd & > 1 we have ay1(p) = 0 which is the reason that for

these k the linear term of Py(n) vanishes, cf. Figure 1.

In this paper several times we need the Bernoulli polynomials B,,(¢) which are given by their

generating function
tz

=¥ B”(,t)z" (|2| < 27) (1.17)

er —1 n!

and which have the form

B,(t) = Y (n>Byt”_” (1.18)

14

where B,, = B,,(0) are the Bernoulli numbers. They satisfy the difference equations

Bu(t+1) — B,(t) = nt"™* (1.19)
which imply the sum formula
N—-1
i" = B,(N) (1.20)
=0

with the modified Bernoulli polynomials

1

Bn(t) = n+ 1{Bn+1(t) - Bn—i—l} (1‘21)

of degree n 4+ 1 which have the generating function

S Bl cam, (1.22)

n! er —1

Finally, let us mention a new property of the Bernoulli polynomials. We show that the
polynomial %Bk(p) — (B54)¥ is divisible by p + 1. For more details cf. Remark 5.8.
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2 Functional equations with a parameter

As in the Introduction mentioned we consider the two-scale difference equation (1.1) with a

parameter x € X C R and coeflicients ¢, (x) satisfying co(x)c,—1(x) # 0 and
co(z) 4+ +cpi(z) =1 (x € X). (2.1)
We investigate solutions ¢(t, z) : R x X +— R satisfying the conditions
o(t,xz) =0 for t <O, e(t,x) =1 for t>1 (2.2)

and all z € X. It is easy to see that if (¢, ) is a solution of the following system of equations

t
o(F) —elopt )t (el sex) (2.
with ,
gr(z) =) exlx) (2.4)
k=0
so that go(x) = 0 and g¢,(x) =1 for all x € X then the function
0 for t<0
wo(t,z) =< o(t,r) for 0<t<1 (2.5)
1 for t>1

is a solution of (1.1). We are interested to solutions of (1.1) which are continuous with
respect to t and differentiable with respect to x. The set of all such functions we denote by
D. If ¢(t,x) belongs to D then it follows by differentiation of (1.1) with respect to = that
the partial derivative ¢, (¢, z) = Z(t, z) satisfies

t r!
O (57x> = () pp(t —ryx) + WUy (t, x) (teR,zxeX) (2.6)
r=0
where
p—1
Uy(t,r) =Y d(x)p(t—rx) (teR,z e X) (2.7)
r=0

and by differentiation of (2.3) we get for r € {0,1,...,p — 1} the equations:

O (T ; t,x) = ¢ (2)pL(t, ) + . (t, x) (te[0,1], x € X) (2.8)

where

Ur(t, ) = c.(x)o(t, z) + g, (). (2.9)
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Theorem 2.1 Assume that co(z),c1(x),...,cpo1(x) (x € X) are differentiable functions

with bounded derivatives and that
L :=sup{|co(x)],...,|ep-1(x)] 12 € X} < 1. (2.10)

Then there exists exactly one solution o(t,x) € D of (1.1) satisfying (1.3). Moreover, there
exists the partial derivative p,(x,t) which satisfies (2.8) and which is continuous with respect
to t.

Proof: First we determine the solution ¢(¢,z) for (¢,z) € [0,1] x X. For this we put
L' = sup{|cy(x)],...,|c,_1(x)] : € X} and choose € > 0 so small that K := L +eL' < 1.
Note that D is a Banach space with the norm

ou

ox

lullp = fJullo + &
[e.e]

where ||ul|oo = sup{|u(z,t)| : (z,t) € [0,1] x X}, and that
Q:={ueD: u0,z) =0, u(l,z) =1, Vo € X}

is a closed subset of D. For u € €2 we define an operator T for all z € X by (Tu)(0,z) := 0

and

(Tu)(t, z) = c.(x)u(pt —r,z) + g, (x) for te <£, ! —; 1]

where r = 0,1,...,p — 1 so that in view of u(1,z) =1 for all x € X and (2.4)

70 (50 ) = e0)u(1,2) + 0 = 60) + 3 (0) = 0.

We show that 7" maps €2 into itself. At first we have (T'u)(0,z) = 0 and (T'u)(1,z) = g,(x) =
1 by (2.4) and (2.1). Next, (Tu)(t,z) is continuous with respect to ¢. This is clear at each
point (¢, x) with ¢ € (£, ’";%1) (r=20,...,p—1) and left-hand continuous at ¢t = %. But it
is also right-hand continuous at ¢ = % with r =0,1,...,p— 2 since for 0 < h < 1 we have

(Tw) (#, .1:) = Crr1(z)u(l + h,x) + gri1 ()

which converges to ¢, 41 (2x)u(l, z) + gr41(x) = grya(z) = (Tu)(’“;fl, x) as h — 0.
Moreover, for z € X the partial derivative = Tw exists and is given for (0, z) by 2 (Tw)(0,z) =

: r r+1
0 and for (¢,x) with t € (¢, =22] by

p?

ST 1) = & ulpt = 1,) + ) gmulpt = 1,0) + 41(2).
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Hence, indeed T" maps €2 into §2. For u, uy € €2 it holds

| Tu1 — Tus || < Lilur — us||oo

and 5 p 5
—Tu — =—T < L'luy — usl|loo + L || m=—uy — =—
' oz T ag - = wafloe + Hf)xul Bz 2
Therefore, and in view of K = L + L’ we have
0 0
||TU1 — Tu2||D = HTU1 — TUQHoo + € a—TUI — —TUQ
x Ox ~
< L|juy — uglleo + eL'||us — us||oo + €L 8u — au
< 1= U2|loo 1 2[00 o T o2 N

< K|us — uzllp

By Banach’s fixed point theorem there exists exactly one fixed point, i.e. (1.1) has exactly one
solution ¢(t, ) € D which is defined for (¢,z) € [0,1] x X with ¢(0,z) =0 and ¢(1,z) =1
for all x € X. Hence, if we continue (¢, x) by ¢(t,2) =0 for t <0 and ¢(t,z) =1fort > 1
then we get a solution ¢(¢,z) : R — R x X of (1.1) which is continuous with respect to t.

Next we show that the partial derivative ¢,(t,z) is continuous with respect to t € [0, 1].
Differentiation of (2.3) with respect to x yields that ¢, (¢, z) satisfies the equations (2.8) where
the functions (2.9) are continuous with respect to t. It follows by the result of GIRGENSOHN
[7, Theorem 1] that for each x € X the function ¢,(¢,x) is continuous with respect to
t €10,1].

It remains to show that ¢,(0,z) = ¢,(1,z) = 0 for all z € X. According to (2.8) and (2.9),
both with t = 0, we have

©:(0,2) = co()p2(0, ) + 10 (0, x)
where 1y(0,2) = gj(x) = 0, see (2.4). In view of ¢o(z) # 0 and co(x) # 1, see (2.10), it
follows ¢, (0,2) = 0. Moreover, (2.8) and (2.9) imply forr =p—1and t =1
02(1,7) = 6y ()a(1, ) + 1 (2)

where

bpa(x) = a(@)e(l,2) + g, 1(2)

owing to (2.4) with r = p. But g,(z) = co(x) +--- + ¢p_1(z) = 1 for all x € X accord-
ing to (2.1) so that ¢, 1(z) = g,(z) = 0. It follows ¢,(1,7) = ¢, 1(7)p.(1,7) and hence
(1, 2) = 0 since ¢,_1(z) # 1, see (2.10). O
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Theorem 2.2 Under the suppositions of Theorem 2.1 it holds that if the functions cy(z), . . .,
cp—1(z) are k-times differentiable then the solution ¢(t,z) of (1.1) is also k-times differen-
tiable with respect to x and the k-th partial derivative
ak
Ot,7) = 5olt, ) (211)

is continuous with respect to t. For k > 1 we have ¢¥)(t,x) =0 fort ¢ (0,1) and all v € X,

and

k) (_ J;) pZCT k) t— T, :L’) + \Ifk(t (L’) (t < R,I‘ € X) (212)

r=

where Wi (t,x) is recursively given by (2.7) and

p—1
= Z (2) oVt —r x) + (%\I/kl(t, ). (2.13)
r=0

Proof: The first part is a consequence of Theorem 2.1. Starting with (2.6) equation (2.12)
with (2.13) can be proved by induction. If (2.12) with (2.13) is true for & — 1 then by the

product rule for the differentiation we get

( ) Z () e® (t — 7, z) + X_: c(2)®V(t —r x) + %\Ifkl(t, 7).

r=0

So the proof is complete. O

Next we use so-called Knopp function of the form

H(t) = 3 h(%ﬁ (t € R) (2.14)

j=0

with the generating, 1-periodic function h(t) with ~(0) = 0, cf. [11] or [16]. Obviously, (2.14)

e H (é) _h G)) + %H(t) (t €R) (2.15)

Conversely, if H(.) satisfies (2.15) then H(.) has the form (2.14).

Proposition 2.3 Under the suppositions of Theorem 2.2 it holds that in case ¢,.(0) = % for
r=20,1,...,p— 1 we have for gpg(ck) (t,0) with k > 1 the representation

[e.e]

Z K1) (0<t<1)

=O

where hy is 1-periodic continuous function given by hy(t) = Wg(t,0) for 0 <t < 1.
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Proof: Let f(t) be a function of period 1 given by f(t) = ¢®*(¢,0) for 0 < t < 1. The
relation p®)(t,2) = 0 for k > 1, all t ¢ (0,1) and z € X implies f(0) = f(1) = 1. In view
of ¢,.(0) = }D equation (2.12) for z = 0 and with r + ¢ in place of ¢ yields

f(T—Ft):%f(t)—i—\Ifk(T;t,O) <O§T§p_170§t§1)

p
and f(0) = f(1) = 0 implies ¥;(0,0) = ¥(1,0) = 0, i.e. hk(0) = hi(1) = 0. It follows that

1(t) = Z ) (ER.

So the theorem is proved. 0J

3 Digital exponential sums

For integer N > 1 we investigate the digital exponential sum

S(N,x) := ers(m) (x € R) (3.1)

n=0

where s(n) denotes the sum of digits of the integer n in the p-adic representation of n. For

this we begin with a results of [19] concerning a formula for the sum
N-1
S(N) := C, (3.2)
n=0
where C), is an arbitrary sequence which is given by the p initial values Cy =1, C4,...,Cp_4
such that
C=Co+--+Ch1>0 (3.3)

and which satisfies the recurrence formula
Ckp+r = C}.C, (kEN,TZO,l,...,p—l). (34)

If the conditions (3.3) and (3.4) are fulfilled then the two-scale difference equation

°(5)=2

with C' from (3.3) has in case |C,| < C' a continuous solution ¢ = ¢ satisfying ¢y (t) = 0 for
t <0 and @o(t) =1for t > 1, cf. [19], and it holds

t—r

MH
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Proposition 3.1 ([19]) Forn € N the sum (3.2) can be represented as
S(N) = N*F(log, N)

with o = log, C" and an 1- periodic continuous function F' which is given by

F(u) = (u<0).

Certainly, Proposition 3.1 is also valid if we consider a sequence C,, = C,(z) depending on a

parameter x provided that the above conditions are fulfilled. In particular, for the sequence
Ch(z) == = (x € R) (3.5)

we have
Clz) = Co(z) + Co(z) + -+ Cpy(x) = 1+ € 4 --- 4 P77 (3.6)
since s(n) =n forn=0,1,...,p—1 and in view of s(kp+7r) = s(k)+s(r) for k =0,1,2,...
and r =0,1,...,p— 1. Hence, we have that
Ckp-i—r(x) _ exs(kp-l-r) _ 6x(s(k)+s(r)) _ C’k(a:)C'r(x),

cf. (3.4). For ¢,(x) = (éf(%) we have

co(x)+e(z)+... +cpr(z) =1

and ¢,(0) =

]lj for r € {0,1,...,p — 1}. By Theorem 2.2 equation (1.1) with the actual
coefficients ¢, (x),

1.e.

o (%x) s Oe St—rz) (tER) (3.7)

with C(z) from (3.6) has a solution ¢g(¢,z) which is continuous with respect to ¢ and

arbitrary often differentiable with respect to z € X.

According to Proposition 3.1 we have

Proposition 3.2 For N € N the sum S(N,z) from (3.1) can be represented as

S(N,z) = N*® Fy(log, N, z) (3.8)

where

a(x) = log, C(r) (3.9)
with C'(z) from(3.6) and an 1-periodic function Fy(u,z) with respect to u which is given by

_ po(p", @)

FO (U, C(])
pa(ac)u

(u <0,z €R) (3.10)
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which is continuous and 1-periodic with respect to w.

By Theorem 2.2 the function Fy(u, ) is arbitrary often differentiable with respect to x and

the k-th partial derivative
k

dak

is 1-periodic with respect to u. So the functions

Fr(u,z) = Fo(u, ) (3.11)

P%(U)Z::E%(U,O) (3.12)
are continuous and 1-periodic.

Proposition 3.3 We have
Fo(u) = 1. (3.13)

Proof: For x = 0 equation (3.7) takes the form

( ) pg;%got—ro (t e R)

with the unique solution ¢(¢,0) =t for 0 <t <1, cf. [18]. Further, owing to (3.9) we get

a(0) = log, C(0) =log,p =1

and hence for © <0

_ $o(p",0) _p" _
l%(U,O)—— —E;zﬁg—'——gz =1 (U,§ O)
The periodicity of Fo(u) implies Fy(u) =1 for all real u. O

4 Power sums of the sum of digits

Now, for integer N > 1 we investigate the power sums of the sum of digits

N—-1
Sk(N) = s(n) (4.1)
n=0
where k£ > 0 is an integer and use that
k N-1
ZoS(Na)| = Y st = S()
=0 n=0 2=0

So according to Proposition 3.2 we have
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Proposition 4.1 For N € N the power sum (4.1) can be represented as

ak
Sp(N) = wN“(’”)Fo(logp N, ) (4.2)

=0
As abbreviation we put

C'(z) e +2e¥ 4 -+ (p— 1)~
C(x) 1+e®+ -+ ez

S =< 44
(0) = 5510 =25 (4.4
For k € Nand ¢ =0,...,k we introduce functions ¢ () as follows:
ar(z) = clx)k for k>0
ckolx) =0 for k>1 : (4.5)
crre(r) = cpea(®)e(x) +cplz) for k>1, 1<0<k

So coo(x) =1 in view of ¢(x) # 0. It is easy to see that for £ > 1 it holds

k(k—1
cpi(x) = c(k_l)(x), Chp—1(T) = %c(x)kﬁd@). (4.6)
Lemma 4.2 For integer k > 0 we have
g k
o N = N0y "y () (log, N (4.7)

=0

Proof: Formula (4.7) is true for & = 0 since cop(z) = 1. In view of a(z) = log, C'(z) we get

d 1 C'(x)
— Ne@) — No=@) 150 N _
dx °8 logp C(x)

@e(z) log, N

i.e. for k =1 formula (4.7) is true, too. Assume (4.7) is true for a fixed k. Then we get

dk+1

dkarl

k k

N = NS 7 ey p(w)e(x) (log, N)H + N*O S 7 () (log, N)'
£=0 =0

k+1

which in view of (4.5) and ¢ x(z)c(x) = c(x)" = cpy1 p41(x) yields the assertion. O
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Theorem 4.3 For integer N > 0 we have

k
Z s(n)kers = Z log, N)'H,(log, N, x) (4.8)
=0

n<N

with a(z) = log, C(z) and

=

—L

Hy(u,z) = (i) Chro(x) F(u, x) (4.9)

K

Il
o

with Fi(u,z) from (3.11).

Proof: We use (3.1) and (3.8) with a = a(r) = log, C(z). By Leibniz’s formula and Lemma
4.2 we have with u = log, N

k k I k—kK
aa NQF()(U .13) = Z<k> a N® 8 — F()(U,QJ)

Replacing k by k — k we get

o Bkl
6mkN Fo(u,z) = NQZ ( )Uzck_&g<l’)Fn(U,(L’)

which in view of (3.1) and (3.8) yields (4.8) with (4.9). O

Corollary 4.4 For the power sum (4.1) we have
1 k
Sk = (log, N)'H(log, N) (4.10)

where Hy(u) = Ho(u,0) from (4.9), i.e

k—¢ k
Hg(u) = (/{) Ck_,£7gF,{(U) (411)
k=0
with
Ckp = ij(()) (4.12)

and Fy(u) from (3.12).
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Lemma 4.5 For integer k > 0 we have

k+1
®)(0) = V"™ B jr 1 4.1
(o) = Dt ey (4.13

with the Bernoulli numbers By 1.

Proof: From (4.3) we have by Leibniz’s formula
(*) ~ (9 gt Ly
= c\" — . 4.14
- )ommo () .

In order to compute c¢*)(0) first note that
CHV0) =14+ 2" 4+ (p—1)" = By (p), (4.15)

cf. (1.20). Moreover, in view of

et — 1

er —1

1 ~ D (1
1 er—1 e 1 Bu(p), ., o
. . =3 2 (|x| < ?> ,

C(r) er—1  err—1

C(az):1+efc+...+e(p—1)x:

and

cf. (1.22) with z = px and t = 117, we find

(e) ],

From (4.14), (4.15) and (4.16) we get

W)=Y (5) ot e (3)

n=0 p

= p"B, (1> . (4.16)

In view of the Cauchy product of two power series we see that

D) & Banip) < =P"Ba(y)
> e => — (4.17)
k=0

n=0 ’ n=0

which in view of (1.22) is convergent for |z| < 27”. Moreover, from (1.22) we find

2 Bpulp) , d (e —1 peP(e* — 1) — (eP* — 1)e?
5 et o 4 (221) |
—~ nl dz \ e —1 (er —1)2

pREACH S
nl PR T e Ty

n=0
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and by (4.17) we get

> ((k)(0) p: :
c K pe e
> = (# 0 <2m).
k=0
According to (1.17) we have for z # 0 and |2| < 27
e? 1 =, B, el
er—1 1—e>* _;H(_@
and
pe” <~ PBn n—1
ers —1 _; n! (=p2)"
Hence,
— c(0) —~ (=1)"B
c kE n/ n n—1
Z A Z n (" = 1)z
k=0 n=0
- i (=)' Biiy (P — 1)
|
— (k+1)!
with & =n — 1. This implies (4.13). O
Remark 4.6 Note that in case p = 2 we have c¢(x) = 1fer =1- 1+1<az so that in view of
1 1 x
S0)
I+er 2 ( S
we get ¥ (0) = (71)?:%(2"”rl —1).

5 Specific power sums

We begin with a formula for the digital power sum

Sk(pN) = Y s(n)". (5.1)

n<pN

Proposition 5.1 For the sums (5.1) we have

5:0M) =3 (7 ) Sicdp)siy) 52)

where So(N) = N.
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Proof: Write n = pm +r with 0 <r <p—1and 0 < m < N — 1, we get in view of
s(pm + 1) = s(m) + s(r) that

S st = 303 {s(m) + s(r)*

n<pN r=0 m<N

This yields the assertion. 0

For N = p™ we get from (4.10)

—Sk(p") = Z Q¢ ne (53)

with coefficients ay, depending on p which owing to (4.11) are given by

r e = kz (i) chneFn(0), (5.4)

xk=0

cf. [4]. In particular for n = 1 we have Sy(p) = By (p) with the modified Bernoulli polyno-
mials By(-), cf. (1.21), and (5.3) implies

> ewdlp) = - Bulp) (5.5)
=0

Lemma 5.2 For the coefficients axy = ax¢(p) we have the relation

Xk: (:) W = ki <l;) %Ske(p)ae,ﬁ (5.6)

v=k+1 =k

Proof: We use (5.2) with N = p™. By (5.3) we have

1
] Sk(anrl) = Z ak,g(n + 1)Z
p =0
k 14
g K
=YX (1)
/=0 k=0
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and

Ek: (,{) Sh—r( plnsﬁ(p”> = Ek: (’Z)%sk_ﬁ(p)zawn

k=0

Il
]~
VR
~ O
~_
= | =
?EQ
i:
)

S
(\

B

3

According to (5.2) we get

which yields (5.6). O

We already know from Proposition 3.3 that Fy(u) =1 for u € R.
Proposition 5.3 For the values Fy(0) with k > 1 we have
Fr(0)=0 (k>1). (5.7)

Forallk € Ng and ¢ =0,1,...,k we have ay = cxy. In particular ayy = (pT) for k>0

and aro = 0 for k > 1. The further numbers ay, are uniquely determined by

k—1 k
k\1 v
)= 3 (1) s - Y (7 ot (53)
=t /P v=t+1
Proof: From (5.4) we get ajy, = ¢4, Fo(0) = (1) for k > 0 according to (4.5), (4.4) and
Fy(.) = 1. Formula (5.8) follows from (5.6). If ay o are given for 0 < k' < k, 0 < ¢ <k’ and
for k' =k, ¢ < ¢’ < k then ay, is determined by (5.8).
Next we show that aro = 0 for & > 1. At first we get from (5.3) with (5.4) in case k = 1
that ) .
Esl(pn) = a0+ a,n=ap+ Z351(?)”
since a1 ; = I%Sl (p) and n = 1 implies a; o = 0. Now, equation (5.4) for k = 0 yields

Za,” _ ki (k) ;sk_e(p)am.

=0
Using (5.5) it follows

k-1

1 1 k\ 1

—Sk(p) — aro = —Sk(p) + ( )—Sk—z(p)ae,o
P £ \t)p

p 14
and -
— [(k\ 1
ago = — Z (g) —Skfe(p)az,o-
=1 p

Now, a1y = 0 implies a;o = 0 for k > 1.
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Finally we show that ax, = cxp. Equation (5.4) for £ = 0 yields

g0 = Ek: (2) =0 (0) = co0Fr(0) = Fr(0),

~k=0

i.e. F3(0) =1 and F;(0) = 0 for £ > 1. Now, equation (5.4) yields

e

k
Ukt = (j)ckj,ﬁFj(O) = ¢k Fo(0) = ciy

J=0

and the proposition is proved completely. [l
We already know that ao = 0 for £ > 1 and

- (%)k (k> 0). (5.9)

The first ag ¢ = ay¢(p) are computed by means of (5.8)

_p-1
a1 =

_ p*-1 _ /p—1\2
a21 = 3 A292 = (—2 )

_ _ (=12 (p+D) _ (p=1\3
as; =0 azp = —5 — azz = (%)

4 2 2 3

Y _ (p=1?*(+1) _ (p=1)°(+1) _ (p—1\4
41 = —T35 M2 = "y a3 = g  asa = (5)

_ _ _ (=D2e+HEP*+1) _ 5(@=1)3(+1)? _ 5(=D*(+1) _ (p=1\5
as; =0 a52 = — 18 a53 = — 9 54 = 48 as5 = (T)

Figure 2. The first numbers ay, ¢

In the following we need the

Proposition 5.4 For k > 1 we have

ar1(p) = T(Pk —1) (5.10)

with the Bernoulli numbers By, and

o1 (p) = (];) (p; 1>k_lpg1. (5.11)
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Proof: We use ago(p) = ce(0), cf. Proposition 5.3, and both relations in (4.6), i.e
cri(z) = ¥ V(2) and ¢ -1 (z) = (§)e(x)*2¢(z) with c(z) from (4.3). First we compute
ar1 = ag1(p). Now, ag1(p) = c*~Y(0) so that (5.10) follows from Lemma 4.5.

We know that a1 = (g)ck_Q(O)c’(O) where ¢(0) = %(1 +2+ -+ (p—1) = B2 e,

g -1 = (’;)(1%1)’“_20’(0) where ¢/(0) is independent of k. In particular, as; = ¢/(0). From

(5.10) we know that as = % and it follows (5.11). O

Proposition 5.5 For k > 2 and 1 < { < k we have that ag¢(p) are polynomials in p of

degree at most k with ay,(—1) = 0. Moreover,

-1

are(p) = (pT)f g, () (5.12)

where ag¢(p) are polynomials in p of degree at most k — £ which are given by ayx(p) = 1 and

Caigo(p \ 11< >2Bk " )) e (p) — i (£i1> (%)V_Z&k,y(p). (5.13)

n=~0— v=_¢+1

M

Proof: From (5.4) we get apr = cppFo(0) = (52)F for k > 0 and ayo = co0F%(0) = Fi(0)
for k£ > 1. Assume that ap #(p) are given polynomials with degap »(p) < k' if 0 < k' < k,
0</V <K andif k' =k, ¢ < <k. Then ay,(p) is determined by (5.8) and deg ax¢(p) < k.

We show that aj,(—1) = 0 for all £k > 2 and ¢ = 0,...,k — 1. This is true for agg = 0
and a1 according to (5.11) with k£ > 2. Assume that for £ > 2 we have a »(—1) = 0 if
0<KE <k 0</V<kK-—landifk' =k ¢ <¢ <k—1. Then from (5.8) we get in view of
ar_10-1(=1) = (=1 and az1(—1) = (=1)¥, cf. (5.9), that

-1 = (5 ) 0Bt - (5 ey

— (Ef 1) (—1)f {Bk—e+1(—1) - (_1)k—e}
— 0

since B,,(—1) = (—1)"~! which follows from (1.19) with t = —1 and (1.21) where B,, = B,(0).

Next we show (5.12) which is true for all a; and axo, & =0,1,2,... since app = (55~ 1)k and
apo = 0 for £k > 1. Assume (5.12) is true for all ap ¢ with 0 < k' < kand 0 < ¢/ < k' as
well as for aj, s with £ < ¢ < k. Then by division of (5.8) with (23) we get (5.13) which

implies that indeed ay ¢(p) is a polynomial in p and the supposition is proved by induction. [J
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Proposition 5.6 For the power sum (4.1) with N € N and L =log, N we have

%Sk(N) = (%L)k +§ <]%1L)Z§ (i) p—re(p) F(L) (5.14)

where ax(p) are polynomials in p of degree at most k — £, given by arr(p) = 1 and the

recursion (5.13).

p=1
2

%Sk(N) = iL"%(i) <]%1)gdkn,é(p)Fn(L)

Proof: We use Corollary 4.4, Fy(-) = 1 and ¢ = are(p) = (55)" are(p). So we get

=0 k=0
ko k-1 ¢ k—t
_ (p—1 p—1 kN .
— (TL + (TL) > </@) ar—re(p)Fu(L)
=0 k=0
and (5.14) is proved. O

Remark 5.7 In view of (5.11) and (5.12) formula (5.14) yields for arbitrary integer k the

asymptotic relation

1 Cp=1 N\ p—1 N\ [ (K\p+1 -
NSk(N) = (TL) + (TL> ) 6 +kFi(L) ¢ +o(L"7) (5.15)
as N — oco. In case k = 1 we get from (5.14) the formula of Trollope-Delange

%Sl(z\f) _ Z%IL + F(L), (5.16)

in case k = 2

%SQ(N) - <Z%1L)2 + pglL{pz L +2F1(L)} + Fy(L) (5.17)

which for p = 2 is known by Coquet, cf. [3], and in case k = 3

s = (f%%)l(f%%)z{f%%wm}

poty {p+ 1F1(L) + 3F2(L)} + F3(L),

2 3
cf. also [22] for p =2 or |17, Theorem 6.3|. In case k = 4 we get

%sg(zv) _ (EL)4+(Z%1 )3{p+1+4F1<L)}

N (p;lL)Q {1% +2(p+ V)F(L) + 6F2(L)}

p—1 {_7%01 + (p+ 1)Fy(L) —|—4F3(L)} + Fy(L).
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Remark 5.8 In case N = p we have L = 1, and in view of Fy(1) = 1 and Fy(1) = 0 for
k> 0as well as Sp(p) = 1F + 25 + .- 4 (p — 1)* = By(p), cf. (1.20), we get from (5.14) that

iék(p) - (p%l)k + % (p%lyék,dp) (5.18)

=0
cf. also (5.5) and (5.12). Because ay(—1) = 0 for £ < k we have that % By(p) — (ki
divisible by p + 1. Hence —L-By(n+ 1) — (%)% = (15 428 + n*) — (2)F is d1v1s1ble
by n + 2. So, in particular, for £ =1,2,... we have
miicy =0
#1 Zi2 —(2)? = Ln(n+2)

(5 = gntn+2)
LZ@A_ (§)4 - mn(n+2)(33n2+6n—4)
%szﬁ_ (%)5 = 96 (n+2)(13n2+6n—4)

and so on.

6 Power series and generating functions

We start with the power sums Si(p™), cf. (4.1) with N = p".

Proposition 6.1 Forn € N we have
1 . (e =1\
ZHSk(p )2 = (ez_1> (z € C). (6.1)
k=0

Proof: We prove (6.1) by induction on n. In case n = 1 we use (1.20) and (1.22) so that

e’ —1
Zklsk Zlek T e 1

where we have convergence for all z € C in view of
ePr _

er —1

Assume (6.1) is true for a certain n > 0. Then we have in view of Proposition 5.1 with

:1_{_62_|_.___‘_6(p—1)2.

N = p" and the Cauchy product of two power series
= 1 )y 1 2 o= 1 3 e —1\"er* — 1
—Sk(p" = — S (p"” —S, =

pz n+1
_ (e 1) ' O
er —1
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Now we consider the polynomials

P(t) == ar(p)t’ (6.2)

=0

with the coefficients ax¢(p) given by (5.8). We remember that in particular, ayx = (5+)

and that #Sk (p") = Pr(n), cf. (5.3). According to Figure 2 the first polynomials P () read:

By

—
~

N—
I
—_

p(t) = Bt

2_ —
Py(t) = R+ ()%

Py(t) = (p*l)Z(p+1)t2+(pT)3t3
Py(t) = _plgolt_i_ (p—1)* épH) 24+ (1)*1)Z(p+1)t3+ (”7)41?4
Pi(t) = _ (=12 (p4§1)(p2+1)t2+ 5(p— 1)96(p+1) 3 4 sl lis(p+1)t4+ (pT>5t5

Figure 3. The first polynomials Py (t)

Proposition 6.2 The polynomials (6.2) have the generating function

ilp Wt = (=L t (z €C) (6.3)
kT T\ pler — 1) '
k=0
and starting with Py(t) = 1 they satisfy the recursions
" k-1

Pt =132 (7 ) Pt (6.4)

where B
ara(p) = —— (' = 1)

with the Bernoulli numbers By, cf. (5.10).

Proof: According to ;—nSk(p”) = Py(n), cf. (5.3), and (6.1) we have for n € N

=1 o on= 11 won [ =1\
Zk—P (n)z :ZE—nSk(p )2t = (p—)> (z€C) (6.5)

(e —1

so that (6.3) is true for t = n € N. We show that for all t € C

(]ﬁ) =Y LawF (e (6.6)
k=0
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where Q(t) are polynomials with respect to ¢ of degree k. For fix p and t we put

1= (o) = ) (67)
with
o)=L g gy eg
ples—=1) p

and we have Q(t) = f¥(2)|.—0, in particular Qo(t) = f(0) = 1. Formula (6.7) yields

log f(z) = tlogg(z). Hence f'(z2) = tf(z)‘;l((j)) and by the product rule of Leibniz we get

FD) () = ti (’;) FED(2) (M )w)'

= 9(2)

Note that & = ¢(z) with ¢(z) from (4.3) and by Lemma 4.5 we have
9(2)

q'(2) © _(_1)”13”1 41
(55 T Y
so that
(K ()" Beyr, o4
Qr+1(t) Zt; <€)Qk—e(t)?1e(l?z+ —1). (6.8)

It follows by induction on k that Q(t) are polynomials with respect to t of degree k. We
know that Qo(t) = 1 and owing to (6.8) we get Q1(t) = tQo(t)Bi(p — 1) = t(—=1)(p — 1).
Assume that Q. (t) with fixed £ > 1 is a polynomial of degree k then (6.8) implies that Qx4
is a polynomial of degree k + 1. Finally, Qx(t) = Py (t) for all ¢ since Qr(n) = Py(n) for all
integer n > 1 according to (6.5) and (6.6). We get (6.4) from (6.8) if we replace @ by P as
well as £+ 1 by k and ¢+ 1 by /. O

Remark 6.3 1. A consequence of (6.3) is the following additions theorem

k

A+ =3 () PP (6.9

=0
2. Formula (6.3) with n = 1 yields in view of (1.21) the values for Py (1), namely

P.(1) = %Bk(p) (k=0,1,2,...). (6.10)

For the values Py(—1) we have

Py(—1) = p** By, (}9) (k=0,1,2,...) (6.11)
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which follows from

err —1 \ ! er®?) _ 1 > Bk(l) > pkHBk(l)
(o) A e B

=p
z z |
(e —1 (erz — 1) pre k! pr

and (6.3) with n = —1. We remember that we have by (5.3)

Py(n) = ESk(p") (n=0,1,2,...), (6.12)

in particular, Py(n) = 0 and Py (1) = %Sk(p) = 1B(p), cf. (5.5).

1
p

Proposition 6.4 In case p = 2 the polynomials Py (t) satisfy the recursion
1
Py(t) =1 and  Pi(t) =t <Pk(t) - §Pk(t - 1)) for k>0.

Proof: From (6.3) with p = 2 we get

Note that
Zpk-i-l(t)zk -y Pet) o _ Bit) 4
k! (k—1)! dz k!
k=0 k=1 k=0
and .
d (e +1) e” +1\" .
— =t —e
dz 2 2
Further,
ipk(t)—%Pk(t—l)k e +1\" 1 /e+1\""
AR - =
k! 2 2 2
k=0
e+1\""1 |
= —e
2 2
Compare of coefficients implies assertion. 0

Remark 6.5 By equating coefficients of ¢ in relation (6.4) we find a new recursion for the

polynomials ag ¢(p), namely

are(p) = _Z (? : i) ak—j,é—l(p>aj,1<p)a (6.13)

=1

cf. (5.8).
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Now for integer ¢ > 0 we introduce the generating functions of ay, = ay¢(p) by

Z kL e (6.14)

Note that Go(z) = 1 since app = 1 and ao = 0 for £ > 1 and that for £ > 1

i a’k"ﬁ‘lﬁ 1 (615)
k:O
since agy = 0, i.e. G4¢(0) = 0. In particular
= (-1)FB
=3 U P (6.16)
k=1 '
with the Bernoulli numbers By, cf. (5.10).
Proposition 6.6 For ¢ > 1 we have
1
Gy(2) = EGl(z)e (6.17)

with G1(z) from (6.16).

Proof: Let be £ > 1. Relation (6.13) with k + 1 instead of k and ¢ + 1 instead of ¢ can be

written as

k—0+1 1
Ak4+1,041 = E (._1)ak+1—j,€ay‘,1
=1 ™

k
k
= g i Ak—i 0Ai41,1

i=0
with ¢ = j — 1 where we have used that ay_,, = 0 for ¢ > k — ¢ + 1 in view of a,,,, = 0 for

m < n. So we have after multiplication with z*

k
ak+1£+1 Lk Z Af— zﬁ k- iai+1,lzi
7!

=0

and summation over k yields in view of the Cauchy product and the relations

[e%¢) 0 !
Q41,041 | Q41,0401 k41 !
Z o C (Z (k;+1)!z ) en(?)

k=0

and
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that
Gia(2) = Ge(2)Gi(2)
which is also valid for ¢ = 0 since Gy(z) = 1.

Now we can prove (6.17) by induction on ¢. Obviously, it is true for £ = 1. Assume that it

is true for an integer £ > 1. Then we get

(2) = Gu2)Gi(2)

1
= EGl(z)eGﬁ(Z)
_ 1 d e+1
SN 7
So Geyi(z) = ﬁGl(z) + ¢ where ¢ = 0 in view of G1(0) = 0 and G11(0) = 0. O

Proposition 6.7 The polynomials ay ¢(p) have the explicit representation

¢
(—1)%k! 3 k! B, . 4,

ki+etke=k
where kq, ..., ky are positive integers and where By, are the Bernoulli numbers. Moreover,
1 _ (=1
Q.0 <]—9) = pk (Zk’g(p). (619)

Proof: By Proposition 6.6 we have in view of (6.14) and (6.16)

= anlp) o1 (= (-1'B e

Are\P) r - k, & k
k=0 =

Applying the multimonial theorem (cf. H.Hall [10], Combinatorical theory Wiley (1986))
we get for the right-hand side of (6.20) with positive integers k;

14

1 k! (=1)* B, , 4, k4K
a2 Tl ! (H Rl Pz

’ k‘l—l-...-i-k'[:k n=1

which in view of (—1)% ... (=1)k = (=1)* if ky + --- + k, = k is equal to

) J4
| k! By
- -1 k n kn 1 k
17 ZZ( o Tl k! <n1 i )) :

k= ki1+-+ke=k

Now comparing coefficients of 2* in (6.20) yields (6.18).
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From (6.18) with ]l) instead of p we get in view of

the relation (6.19). O

Remark 6.8 Let Ay, be the main coefficient of the polynomial a(p), that means
ake(p) = Agep® + o(p*) (k — 00). (6.21)

Then from (6.18) we see that
Ak,ﬂ = (—l)gaM(O)
and (5.5) implies in view of (1.21) and (1.18) that

k 1
Y A= (6.22)
— k+1
and that i
By,
0) = 6.23
;ak,e( )= (6.23)

with the Bernoulli numbers By, see Figure 2.

We know already from Proposition 5.5 that for £k > 2 and 1 < ¢ < k the polynomials a ¢(p)
are divisible by p 4 1.

Proposition 6.9 For integer ¢ > 1 and r > 1 the polynomial asior¢(p) is divisible by
(p+1)%, see Figure 2.

Proof: We write short ay  for aj ¢(p) and use induction on ¢. The assertion is true for £ =1
since ag,y+11(p) = 0 according to (5.10) and Ba,1 = 0. Assume that for a fixed ¢ > 1 the
polynomials a4, ¢(p) for all » > 1 are divisible by (p+1)%. By (6.13) with £+ 1+ 2r instead
of k and ¢ + 1 instead of ¢ we get for arbitrary integer r > 1

2r41 0+ or
ae+1+2r,e+1(p) = Z ( _ 1>Gé+1+2rj,€(p)@j,1(29)
j=1

{4+ 2r 4+ 2r
= Qp4or¢011 + 1 Apyor—10G21 + -+ oy Qg eQ2r+1,1-
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By induction assumption the first product agys.a;; is divisible by (p + 1)?. The last
product ageasr111 = 0 since ag,411 = 0 for r > 1. Moreover, all another products

Ary2r—14021, - - -, Qg1 0021 are also divisible by (p+ 1)? since each of the both factors (poly-

nomials) is divisible by p + 1 according to Proposition 5.5. Consequently, asi142-0+1(p) is

divisible by (p 4+ 1)? and the assertion is proved by induction. U

Remark 6.10 Comparison with recursion (1.7) and formula (1.8) yields qx(t) = 2% Py (t)
for the polynomials ¢x(t) introduced in [5].

Theorem 6.11 For N € N and L =log, N we have

> %%SAN )2t = (Z %Pk(L)zk) (Z %Fk@)zk) (z €C) (6.24)

k=0

Z %Fk(L)zk = (Z %%Sk(N)Zk) <Z %Pk(—L)Zk) (2 € C). (6.25)

Proof: For the power sum (4.1) we have by Corollary 4.4 in view of ¢,y = are(p), cf.
Proposition 5.3, that

%Sk(N) = Xk:LZ 0<k)ak_ﬁ,eFm(L)

Hence,

In view of the Cauchy product of two power series we get (6.24) with the polynomials (6.2).
If we replace t by —t in (6.24) and in (6.2) we see that (6.24) implies (6.25). O

Remark 6.12 1. For N € N and L = log, N we have by Theorem 6.11

k
%Sk(N) = Z (l;) Pr(L)Fr—o(L) (6.26)

=0
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and
=£i< ) Sk. o(N). (6.27)

For the case p = 2 one can find in [3] a similarly representation of Si(NN) by means of

generating functions.

2. Up to now we only know about the 1-periodic functions Fy(u) with & > 1 that F}(0) = 0.
By means of (6.27) we are able to compute the values Fj(u) for u = log, N if N < p since

for these N the sums Sy_,(/N) are the usual power sums
nk_g = Bk_g(N)

cf. (1.20). According to (6.27) we get for u = uy := log, N with N < p that
. )L
— By o(N 6.28
V=3 () Py B, (6.28)

where B, (-) are the generalized Bernoulli polynomials, cf. (1.21).
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