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Sign of the solution to a non-cooperative system

ABSTRACT. Combining the results of a recent paper by Fleckinger-Hernández-deThélin
[14] for a non cooperative 2×2 system with the method of PhD Thesis of M.H. Lécureux we
compute the sign of the solutions of a n × n non-cooperative systems when the parameter
varies near the lowest principal eigenvalue of the system.
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1 Introduction

Many results have been obtained since decades on Maximum Principle and Antimaximum
principle for second order elliptic partial differential equations involving e.g. Laplacian, p-
Laplacian, Schrödinger operator, . . . or weighted equations. Then most of these results have
been extended to systems.

The maximum principle (studied since centuries) has many applications in various domains
as physic, chemistry, biology, . . . . Usually it shows that for positive data the solutions are
positive (positivity is preserved). It is generally valid for a parameter below the “principal”
eigenvalue (the smallest one). The Antimaximum principle, introduced in 1979 by Clément
and Peletier ([8]), shows that, for one equation, as this parameter goes through this principal
eigenvalue, the sign are reversed; this holds only for a small interval. The original proof relies
on a decomposition into the groundstate (principal eigenfunction of the operator) and its
orthogonal. It is the same idea which has been used in [14] (combined with a bootstrap
method) to derive a precise estimate for the validity interval of the Antimaximum principle
for one equation. By use of this result, Fleckinger-Hernández-deThélin ([14]) deduce results
on the sign of solution for some 2 × 2 non-cooperative systems. Indeed many papers have
appeared for cooperative systems involving various elliptic operators: ([1], [2], [4], [9], [10],
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[11], [12], [13], . . . ). Concerning non cooperative systems the literature is more restricted
([7], [14], . . . ).

In this paper we extend the results obtained in [14], valid for 2× 2 non-cooperative systems
involving Dirichlet Laplacian, to n×n ones. Recall that a system is said to be “cooperative”
if all the terms outside the diagonal of the associated square matrix are positive.

For this aim we combine the precise estimate for the validity interval of the antimaximum
principle obtained in [14] with the method used in [15], [1] for systems.

In Section 2 we are concerned with one equation. We first recall the precise estimate for
the validity interval for the antimaximum principle ([14]); then we give some related results
used in the study of systems.

In Section 3 we first state our main results for a n× n system (eventually non-cooperative)
and then we prove them.

Finally, in Section 4, we compare our results with the ones of [14]. Our method, which uses
the matricial calculus and in particular Jordan decomposition, allows us to have a more
general point of view, even for a 2× 2 system.

2 Results for one equation:

In [14], the authors consider a non-cooperative 2 × 2 system with constant coefficients.
Before studying the system they consider one equation and establish a precise estimate of
the validity interval for the antimaximum principle. We recall this result that we use later.

2.1 A precise Antimaximum for the equation [14]

Let Ω be a smooth bounded domain in IRN . Consider the following Dirichlet boundary value
problem

−∆z = σz + h in Ω , z = 0 on ∂Ω, (2.1)

where σ is a real parameter.

The associated eigenvalue problem is

−∆φ = λφ in Ω , φ = 0 on ∂Ω. (2.2)

As usual, denote by 0 < λ1 < λ2 ≤ . . . the eigenvalues of the Dirichlet Laplacian defined on
Ω and by φk a set of orthonormal associated eigenfunctions, with φ1 > 0.

Hypothesis 1 Assume h ∈ Lq, q > N if N ≥ 2 and q = 2 if N = 1.
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Hypothesis 2 Assume h1 :=
∫
hφ1 > 0.

Writing
h = h1φ1 + h⊥ (2.3)

where
∫

Ω
h⊥φ1 = 0 one has:

Lemma 2.1 [14] We assume λ1 < σ ≤ Λ < λ2 and h ∈ Lq, q > N ≥ 2. We suppose that
there exists a constant C1 depending only on Ω, q, and Λ such that z satisfying (2.1) is such
that

‖z‖L2 ≤ C1‖h‖L2 . (2.4)

Then there exist constants C2 and C3, depending only on Ω, q and Λ such that

‖z‖C1 ≤ C2‖h‖Lq and ‖z‖Lq ≤ C3‖h‖Lq . (2.5)

Remark 2.1 The same result holds for Λ < σ < λ1 where Λ is any given constant < λ1,
with the same proof.

Remark 2.2 Inequality (2.4) cannot hold, for all λ1 < σ ≤ Λ, unless h is orthogonal to φ1.

Theorem 1 [14]: Assume Hypotheses 1 and 2; fix Λ such that λ1 < σ ≤ Λ < λ2. There
exists a constant K depending only on Ω, Λ and q such that, for λ1 < σ < λ1 + δ(h) with

δ(h) =
Kh1

‖h⊥‖Lq

, (2.6)

the solution z to (2.1) satisfies the antimaximum principle, that is

z < 0 in Ω; ∂z/∂ν > 0 on ∂Ω, (2.7)

where ∂/∂ν denotes the outward normal derivative.

2.2 Other remarks for one equation

Consider again Equation (2.1). For σ 6= λk, z solution to (2.1) is

z = z1φ1 + z⊥ =
h1

λ1 − σ
φ1 + z⊥, (2.8)

with z⊥ satisfying
−∆z⊥ = σz⊥ + h⊥ in Ω ; z⊥ = 0 on ∂Ω. (2.9)

In the next section, our proofs will use the following result.
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Lemma 2.2 We assume Hypothesis 1 and σ < λ1. Then z⊥ (and its first derivatives) is
bounded: There exits a positive constant C0, independent of σ such that

‖z⊥‖C1 ≤ C0‖h‖Lq . (2.10)

Moreover, if σ < Λ < λ1, where Λ is some given constant < λ1, z is bounded and there exits
a positive constant C ′0, independent of σ such that

‖z‖C1 ≤ C ′0‖h‖Lq . (2.11)

Proof: This is a simple consequence of the variational characterization of λ2:

λ2

∫
Ω

|z⊥|2 ≤
∫

Ω

|∇z⊥|2 = σ

∫
Ω

|z⊥|2 +

∫
Ω

z⊥h⊥ ≤ λ1

∫
Ω

|z⊥|2 +

∫
Ω

z⊥h⊥.

By Cauchy-Schwarz we deduce

‖z⊥‖L2 ≤ 1

λ2 − λ1

‖h⊥‖L2 . (2.12)

This does not depend on σ < λ1.

Then one can deduce (2.10), that is z⊥ (and its derivatives) is bounded. This can be found
e.g. in [6] (for σ < λ1 and λ1−σ small enough) or it can be derived exactly as in [14] (where
the case σ > λ1 and σ − λ1 small enough is considered).

Finally we write z = z1φ1 + z⊥ and deduce (2.11).

Remark 2.3 Note that in (2.8), since h1 > 0, h1

λ1−σ → +∞ as σ → λ1, σ < λ1.

3 Results for a n× n system:

We consider now a n×n (eventually non-cooperative) system defined on Ω a smooth bounded
domain in IRN :

−∆U = AU + µU + F in Ω , U = 0 on ∂Ω, (S)

where F is a column vector with components fi, 1 ≤ i ≤ n. Matrix A is not necessarily
cooperative, that means that its terms outside the diagonal are not necessarily positive. First
we introduce some notations concerning matrices. Then, with these notations we can state
our results and prove them.
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3.1 The matrix of the system and and the eigenvalues

Hypothesis 3 A is a n × n matrix which has constant coefficients and has only real
eigenvalues. Moreover, the largest one which is denoted by ξ1 is positive and algebrically and
geometrically simple. The associated eigenvectors X1 has only non zero components.

Of course some of the other eigenvalues can be equal. Therefore we write them in decreasing
order

ξ1 > ξ2 ≥ . . . ≥ ξn. (3.13)

The eigenvalues of A = (aij)1≤i,j≤n, denoted , ξ1, ξ2,. . . , ξn , are the roots of the associated
characteristic polynomial

pA(ξ) = det(ξIn − A) =
∏

(ξ − ξk), (3.14)

where In is the n× n identity matrix.

Remark 3.1 By above, ξ > ξ1 ⇒ pA(ξ) > 0.

Denote by X1 . . . Xn the eigenvectors associated respectively to eigenvalue ξ1, . . . , ξn.

Jordan decomposition Matrix A can be expressed as A = PJP−1, where P = (pij)

is the change of basis matrix of A and J is the Jordan canonical form (lower triangular
matrix) associated with A. The diagonal entries of J are the ordered eigenvalues of A and
pA(ξ) = pJ(ξ).

Notation : In the following, set

U = PŨ ⇔ Ũ = P−1U, F = PF̃ ⇔ F̃ = P−1F. (3.15)

Here Ũ and F̃ are column vectors with components ũi and f̃i.

Eigenvalues of the system: µ is an eigenvalue of the system if there exists a non zero
solution U to

−∆U = AU + µU in Ω , U = 0 on ∂Ω. (S0)

We also say that µ is a “principal eigenvalue” of System (S) if it is an eigenvalue with com-
ponents of the associated eigenvector which do not change sign. (Note that the components
do not change sign but are not necessarily positive as claimed in [14]).

Then φjXk is an eigenvector associated to eigenvalue

µjk = λj − ξk. (3.16)
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3.2 Results for |µ− µ11| → 0

We study here the sign of the component of U as µ→ µ11 = λ1 − ξ1.

For this purpose we use the methods in [15] or [1] combined with [14]. Note that by (3.13),
µ11 < µ1k = λ1 − ξk, for all 2 ≤ k ≤ n.

Hypothesis 4 F is with components fi ∈ Lq, q > N > 2, q = 2 if N = 1, 1 ≤ i ≤ n;
moreover we assume that the first component f̃1 of F̃ = P−1F is ≥ 0, 6≡ 0.

Theorem 2 Assume Hypothesis 3 and 4. Assume also µ < µ11 . Then, there exists δ > 0

independant of µ, such that for µ11− δ < µ < µ11, the components ui of the solution U have
the sign of pi1 and the outside normal derivatives ∂ui

∂ν
have the sign of −pi1.

Theorem 3 Assume Hypothesis 3 and 4 are satisfied; then, there exists δ > 0 independant
of µ such that for µ11 < µ < µ11 + δ the components ui of the solution U have the sign of
−pi1 and their outgoing normal derivatives have opposite sign.

Remark 3.2 The results of Theorems 2 and 3 are still valid if we assume only
∫

Ω
f̃1φ1 > 0

instead of f̃1 ≥ 0 6≡ 0.

3.3 Proofs

We start with the proof of Theorem 2 where µ < µ11; assume Hypotheses 3 and 4.

3.3.1 Step 1: An equivalent system

We follow [15] or [1]. As above set U = PŨ and F = PF̃ .

Starting from
−∆U = AU + µU + F,

multiplying by P−1, we obtain

−∆Ũ = JŨ + µŨ + F̃ .

Note that everywhere we have the homogeneous Dirichlet boundary conditions, but we do
not write them for simplicity.

The Jordan matrix J has p Jordan blocks Ji (1 ≤ i ≤ p ≤ n) which are ki × ki matrices of
the form

Ji =


ξi 0 · · · 0

1 ξi 0 · · ·
. . . . . . ...
0 · · · 1 ξi 0

0 · · · 1 ξi

 .
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By Hypothesis 3, the first block is 1× 1 : J1 = (ξ1). Hence we obtain the first equation

−∆ũ1 = ξ1ũ1 + µũ1 + f̃1. (3.17)

Since f̃1 ≥ 0, 6≡ 0, ξ1 +µ < λ1 and by Hypothesis 4, f̃1 ∈ L2, we have the maximum principle
and

ũ1 > 0 on Ω.
ũ1

∂ν
|∂Ω < 0. (3.18)

Then we consider the second Jordan blocks J2 which is a k2 × k2 matrix with first line

ξ2, 0, 0, . . .

The first equation of this second block is

−∆ũ2 = ξ2ũ2 + µũ2 + f̃2.

Since µ < µ11 = λ1− ξ1 < λ1− ξ2 ≤ λ1− ξk, k ≥ 2. Hence, by Lemma 2.2, ũ2 stays bounded
as µ→ µ11. and this holds for all the ũk, k > 1. By induction ũk is bounded for all k.

3.3.2 Step 2: End of the proof of Theorem 2

Now we go back to the functions ui: U = PŨ = (ui) implies that for each ui, 1 ≤ i ≤ n, we
have

ui = pi1ũ1 +
n∑
j=2

pijũj. (3.19)

The last term in (3.19) stays bounded according to Lemma 2.2; indeed
∑n

j=2 pijũj is bounded
by a constant which does not depend on µ.

By Remark 2.3, ũ1 → +∞ as µ → λ1 − ξ1. Hence, each ui has the same sign than pi1 (the
first coefficient of the i − th line in matrix P which is also the i-th coefficient of the first
eigenvector X1) for λ1 − ξ1 − µ > 0 small enough. Analogously, ∂ui

∂ν
behaves as pi1 ∂ũi∂ν

which
has the sign of −pi1.

It is noticeable that only ũ1 plays a role!!

3.4 Proof of Theorem 3 (µ > µ11)

Now µ11 < µ < µ11 + ε where ε ≤ min{ξ1 − ξ2, λ2 − λ1} and fi ∈ Lq, q > N . We proceed as
above but deduce immediately that for µ−µ11 small enough (µ−µ11 < δ1 := δ(f̃1) <

Kf̃11
‖f⊥1 ‖Lq

)
defined in [14], Theorem 1), ũ1 < 0 by the antimaximum principle. From now on choose

µ− µ11 < δ, with δ < min{ε, δ1}. (3.20)
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For the other equations, by Lemma 2.1, ũk > 0 is bounded as above.

We consider now U . We notice that F = PF̃ which can also be written fi =
∑n

k=1 pikf̃k

implies f⊥i =
∑n

k=1 pikf̃
⊥
k . With the same argument as above, the components ui of the

solution U have the sign of −pi1 for µ − µ11 sufficiently small (µ − µ11 < δ). The normal
derivatives of the ui are of opposite sign.

4 Annex: The 2× 2 non-cooperative system

We apply now our results to the 2 × 2 system, considered in [14]. Consider the 2 × 2

non-cooperative system depending on a real parameter µ

−∆U = AU + µU + F in Ω , U = 0 on ∂Ω, (S)

which can also be written as

−∆u = au + bv + µu + f in Ω, (S1)

−∆v = cu + dv + µv + g in Ω, (S2)

u = v = 0 on ∂Ω. (S3)

Hypothesis 5 Assume b > 0 , c < 0, and D := (a− d)2 + 4bc > 0.

Here System (S) has (at least) two principal eigenvalues µ−1 and µ+
1 where

µ−1 := λ1 − ξ1 < µ+
1 := λ1 − ξ2, (4.21)

where ξ1 and ξ2. are the eigenvalues of Matrix A and we choose ξ1 > ξ2.

The main theorems in [14] are:

Theorem 4 ([14]) Assume Hypothesis 5, µ−1 < µ < µ+
1 and d < a. Assume also

f ≥ 0, g ≥ 0, f, g 6≡ 0, f, g ∈ Lq, q > N if N ≥ 2 ; q = 2 if N = 1.

Then there exists δ > 0, independent of µ, such that µ < µ−1 + δ implies

u < 0, v > 0 in Ω;
∂u

∂ν
> 0,

∂v

∂ν
< 0 on ∂Ω.

Theorem 5 ([14]) Assume Hypothesis 5, µ−1 < µ < µ+
1 and a < d. Assume also

f ≤ 0, g ≥ 0, f, g 6≡ 0 , f, g ∈ Lq, q > N if N ≥ 2 ; q = 2 if N = 1.

Then there exists δ > 0, independent of µ, such that i µ < µ−1 + δ implies

u < 0, v < 0 in Ω;
∂u

∂ν
> 0,

∂v

∂ν
> 0 on ∂Ω.
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Theorem 6 ([14]) Assume Hypothesis 5 and a < d. Assume also that the parameter µ
satisfies: µ < µ−1 , and

f ≥ 0, g ≥ 0, f, g 6≡ 0, f, g ∈ L2.

Assume also t∗g − f ≥ 0, t∗g − f 6≡ 0 with

t∗ =
d− a+

√
D

−2c
.

Then
u > 0, v > 0 in Ω;

∂u

∂ν
< 0,

∂v

∂ν
< 0 on ∂Ω.

The matrix A is

A =

(
a b

c d

)
,

with eigenvalues ξ2 = a+d−
√
D

2
< ξ1 = a+d+

√
D

2
whereD = (a−d)2+4bc > 0. The eigenvectors

are

Xk =

(
b

ξk − a

)
, P =

(
b b

ξ1 − a ξ2 − a

)
.

Note that the characteristic polynomial is P(s) = (a− s)(d− s)− bc. Since P(a) = P(d) =

−bc > 0, a and d are outside [ξ2, ξ1].

For d > a both pi1 > 0 and for d < a p11 > 0, p21 < 0.

P−1 =
1

b(ξ1 − ξ2)

(
a− ξ2 b

ξ1 − a −b

)
.

f̃1 =
1

b(ξ1 − ξ2)
[(a− ξ2)f + bg]. (4.22)

In Theorem 2 of [14] d < a, f, g ≥ 0 so that f̃1 > 0 and u has the sign of −p11 = −b < 0; v
has the sign of −p21 = a− ξ1 > 0.

In Theorem 3 of [14] d > a, f ≤ 0 and g ≥ 0 implies f̃1 > 0. So that u has the sign of
−p11 = −b < 0; v has the sign of −p12 = a− ξ2 < 0.

Finally the hypothesis f̃1 ≥ 0 is sufficient for having the sign of the solutions and the
maximum principle holds (all ui > 0) iff pi1 > 0.

Our results can conclude for other cases; e.g, as in Theorem 2, d < a, f ≥ 0, but now g < 0

with f̃1 = 1
b(ξ1−ξ2)

[(a− ξ2)f + bg] > 0.

Analogously, in Theorem 4, f, g ≥ 0 and f̃1 > 0 implies for having u, v > 0 that necessarily
ξ2 − a > 0 so that a < d. But again we can conclude for the sign in other cases (e.g. a > d)
if only f̃1 > 0, ( which is precisely the added condition in Theorem 4).
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