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spectively by using Picard iterative technique under some suitable assumptions. Meanwhile,
we get the iterative approximation solutions of these kind of Cauchy problems. Secondly we
obtain exact expression of piecewise continuous solutions of the linear fractional differential
equations. These results provide new methods to convert an impulsive fractional differential
equation to a fractional integral equation. Thirdly, four classes of boundary value problems
for singular fractional differential equations with impulse effects are proposed. Sufficient
conditions are given for the existence of solutions of these problems. We allow the nonlin-
earity p(t)f(t,x) in fractional differential equations to be singular at ¢ = 0,1. Finally, by
establishing existence results on solvability of two class of impulsive boundary value prob-
lems of fractional differential equations, we make a comparison on impulsive boundary value
problems for two kinds of fractional differential equations, one has a single starting point and
the other one has multiple starting points. In order to avoid misleading the readers, a mis-
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1 Introduction

One knows that the fractional derivatives (Riemann-Liouville fractional derivative, Caputo
fractional derivative and Hadamard fractional derivative and other type see [11]) are actually
nonlocal operators because integrals are nonlocal operators. Moreover, calculating time
fractional derivatives of a function at some time requires all the past history and hence

fractional derivatives can be used for modeling systems with memory.

Fractional order differential equations are generalizations of integer order differential equa-
tions. Using fractional order differential equations can help us to reduce the errors arising
from the neglected parameters in modeling real life phenomena. Fractional differential equa-

tions have many applications see Chapter 10 in |71], books [15, 71, 76].

In recent years, there have been many results obtained on the existence and uniqueness
of solutions of initial value problems or boundary value problems for nonlinear fractional

differential equations, see [17, 19, 55, 65, 69, 70, 72, 83, , 109].

Dynamics of many evolutionary processes from various fields such as population dynamics,
control theory, physics, biology, and medicine undergo abrupt changes at certain moments
of time like earthquake, harvesting, shock, and so forth. These perturbations can be well
approximated as instantaneous change of states or impulses. These processes are modeled
by impulsive differential equations. In 1960, Milman and Myshkis introduced impulsive
differential equations in their paper [63]. Based on their work, several monographs have
been published by many authors like Samoilenko and Perestyuk [77|, Lakshmikantham et al.

[56], Bainov and Simeonov [22, 23], Bainov and Covachev [21], and Benchohra et al. [25].

Fractional differential equation was extended to impulsive fractional differential equations,
since Agarwal and Benchohra published the first paper on the topic [3] in 2008. Since
then many authors |1, 29, 32, 43, A7, A8 5254, 68, 72, 82, 83, | studied the existence
or uniqueness of solutions of impulsive initial or boundary value problems for fractional

differential equations. For examples, impulsive anti-periodic boundary value problems see

[3, 10, 11, 49, 85], impulsive periodic boundary value problems see [18, 81, 93], impulsive
initial value problems see |26, 31, (7, 78|, two-point, three-point or multi-point impulsive
boundary value problems see [9, 36, 84, 92 , |, impulsive boundary value problems

on infinite intervals see [105].

In [33], Feckan and Zhou pointed out that the formula of solutions for impulsive fractional
differential equations in |2, 8, 14, 21] is incorrect and gave their correct formula. In [90, 92],
the authors established a general framework to find the solutions for impulsive fractional
boundary value problems and obtained some sufficient conditions for the existence of the
solutions to a kind of impulsive fractional differential equations respectively. In [38], the

authors illustrated their comprehension for the counterexample in [33] and criticized the
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viewpoint in [33, 90, 92|. Next, in [31], Feckan et al. expounded for the counterexample in

[33] and provided further five explanations in the paper.

In a fractional differential equation, there exist two cases concerning the derivatives: the first
case is D* = Dy, i.e., the fractional derivative has a single start point ¢ = 0. The other case

is D% = D¢, i.e., the fractional derivative has a multiple start points ¢ = ¢;(i € N[0, m]).

There have been many authors concerning the existence and uniqueness of solutions of
boundary value problems of impulsive fractional differential equations with multiple start
points t = t;(i € N[0, m]).

Recently, Wang [30] consider the second case in which D* has multiple start points, i.e.,

D* = D?.. They studied the existence and uniqueness of solutions of the following initial

value proiolem of the impulsive fractional differential equation

CDt+U( ) = f(t,u(t)),t € (ti, tiya], 7 € N[O, pl,
u(j)(O) =u;,j € N[0,n — 1], (1.0.1)
Au(j)(ti)] = ]ji(u(ti))vi € N[l,p],j € [O,TL - 1]7

where a € (n — 1,n) with n being a positive integer, CD% represents the standard Caputo
fractional derivatives of order «, N[a,b] = {a,a + 1,--- ,b} with a,b being integers, 0 =
to <ty < -+ <ty <ty =1 1; € CRR)(i € N[1,p|,j € NO,n —1]), f:[0,T] x
R — R is continuous. Henderson and Ouahab [11]| studied the existence of solutions of the
following initial value problems and periodic boundary value problems of impulsive fractional

differential equations:

CDt+U( ) f(tu(t)),t € (ti, tia], i € N[O, p],
ut)(0) =y, j € N[O, 1],
ul ()] = Li(u(ti). i € N[L,p], j € N[0, 1],
and
CDt+U( ) = [t u(t),t € (ti; tiva], 2 € N[O, p],
90) =96 € N 1)
ul (t;)] = Lis(u(t:)), i € N[1,p], j € N[0, 1],
where a € (1,2], 6> 0,0=1ty <t; <--- <t, <tpe1 =0, f:[0,0] x R—=R, I;; : R — R are

continuous functions. Readers should also refer [39)].

In [104], Zhao and Gong studied existence of positive solutions of the following nonlinear

impulsive fractional differential equation with generalized periodic boundary value conditions

CDLu(t) = f(t,u(®),t € (0, T\ {tr,--- .1},
Au(t;)] = Li(u(t;)), i € N[1,p],
au(0) — fu(l) =0, a/(0) — fu/(1) =0

(1.0.2)
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where ¢ € (1,2), CD; represents the standard Caputo fractional derivatives of order g,
a >8>0 0=1ty <t <--<t, <ty =1 Nab ={aa+1,---,b} with a,b
being integers, I;, J; € C([0,400),[0,+00))(i € N[1,p], f : [0,1] x [0,4+00) — [0,+00) is

continuous.

Wang, Ahmad and Zhang [37]| studied the existence and uniqueness of solutions of the

following periodic boundary value problems for nonlinear impulsive fractional differential

equation
D ult) = [t u(),t € (0, TI\ {tr, -+ 1},
Au(t)] = Lu(t).i € N[Lp], 103)
Au'(t;)] = I7 (u(ti)), 1 € N[1, pl,

u'(0) + (=1)u(T) = bu(T), u(0) + (=1)°u(T) =0,
where o € (1,2), CDtﬁ represents the standard Caputo fractional derivatives of order «,
0 =1,2,N[a,b] = {a, al—l—l, .-+, b} with a, b being integers, 0 = tg < t; < --- <t, <ty =1,
I, Iy € C(R,R)(7 € N[1,p], f:]0,T] x R — R is continuous.

In 9, 10, 99, |, authors studied the existence of solutions of the following nonlinear

boundary value problem of fractional impulsive differential equations

CDpa(t) = w(t) f(t,2(t), /(1) ¢ € 0,1\ {tr, -+ .},
Ax(ti)] = Li(x(t:)),7 € N[1, pl, (1.0.4)
Ax'(t )] Ji(a(t:), 7 € N[1, pl,

az(0) £ b2'(0) = g1(x), cx(1) +da'(1) = go(x),

where a € (1,2), CD;?r represents the standard Caputo fractional derivatives of order «,
a,b,c,d > 0 with ac +ad + be # 0, N[m,n| = {m,m+1,--- ;n} with m,n being integers,
0:t0<t1 <"'<tp<tp+1:17 IlaJZ€C<R7R)(Z€N[]—ap]af [Oal]XRQARiS

continuous, w : [0,1] — [0,400) is a continuous function, g1, g, : PC(0,1] — R are two

\_//'\

continuous functions.

In 2015, Zhou, Liu and Zhang [108] studied the existence of solutions of the following non-

linear boundary value problem of fractional impulsive differential equations

DR a(t) = Aw(t) + f(t,x(0), (Kx)(1), (He)(0)),t € (0, \{tr,- - 1},
Ax(t;)] = Ii(x(t:)),i € N[1, pl,

Az'(t;)] = Ji(x(t:)),i € N[L, pl,

azx(0) — bz'(0) = zg, cx(l) + da/'(1) = =y,

(1.0.5)

where o € (1,2), CDZ+ represents the standard Caputo fractional derivatives of order o, a >
0,0>0,¢>0,d>0withd = ac+ad+bc # 0, A > 0, zg,z; € R, N[m,n| = {m,m+1,--- ,n}
with m,n being integers, 0 = t) < t; < --- < t, < tp41 = 1, Il,J € C(R R)(z € N[l ],
f:[0,1] x R® — R is continuous, (Hz)(t) = fol h(t,s)x(s)ds and ( = [1 k( s)ds.
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In [50, 57], authors studied the existence of solutions of the following nonlinear boundary

value problem of fractional impulsive differential equations

CD%"L‘@) f(t CL’( ))7t€ (07 1]\{t17"' 7tp}>

Ax(ti)] = Li(x(t:)),i € N[1, pl,
AL (t;)] = Ji(x(t;)), 7 € N[1, pl,
ax(0) + bz (1) = g1(x), ax’(0) + ba' (1) = go(z),

where a € (1,2), CD% represents the standard Caputo fractional derivatives of order «,
a,b € R with a > b > 0,0=1t <ty <---<t, <ty =1 1;,J; € C(R,R)(i € N[1,p],
f:10,1] x R — R is continuous, g1, ¢g> : PC(0,1] — R are two continuous functions.

In [52], Liu and Li investigated the existence and uniqueness of solutions for the following

nonlinear impulsive fractional differential equations

( “DRu(t) = f(tu(t), ' (t),u" (), ¢ € (b, tisal i € N[0, pl,

u(0) = Mu(T) + & [y a(s,uls),u/(s),u"(s))ds,

u'(0) = M/ (T) + & [ aals, uls), u'(s),u"(s))ds,

u"(0) = Au"(T) + &3 fo q3(s,u(s),u'(s),u"(s))ds, (1.0.6)
Au(ty)] = A;(u(t;)), i € N[1, p],

Au'(t;)] = Bi(u(t;)), 1 € N[1,p],

Au'(t;)] = Ci(u(ts)), i € N[1,p],

\

where o € (2,3), CD;{L represents the standard Caputo fractional derivatives of order a,
Nla,b] = {a,a + 1,---,b} with a,b being integers, 0 =ty < t; < -+ < t, < tp11 =T,
i, & € R(i = 1,2, 3) are constants, A;, B;,C; € C(R,R)(i € N[1,p|, f:[0,7] x R® - R is

continuous.

Recently, in [20], to extend the problem for impulsive differential equation u”(t) — Au(t) =
ft,u(t)),u(0) = w(T) = 0, Ad'(t;) = Li(u(t;)),i = 1,2,--- ,p to impulsive fractional differ-
ential equation, the authors studied the existence and the multiplicity of solutions for the

Dirichlet’s boundary value problem for impulsive fractional order differential equation

{ “Dg (D x(t) + a(t)z(t) = Af(t,x(t), t € [0,T],t # t;,i € N[1,m], (1.0.7)

AYDSHODg x(t;) = pli(x(t;)),i € N[1,m], z(0) = z(T) =0,

where o € (1/2,1], A, p > 0 are constants, N[a, b] =: {a,a+1,--- ,b] witha <b,0 =1, < t; <

s <ty <tmyr1 =T, f:]0,T] x R — R is a continuous function, I; : R — R(: € N[1,m])
are continuous functions, “Dg, (or “D$_) is the standard left (or right) Caputo fractional
derivative of order o, a € C[0, T| and there exist constants a,, ay > 0 such that a; < a(t) < as
for all t € [0,T], Ax|i—y, = tlgﬁ z(t) — thHl z(t) = z(t]) — z(t;) and z(t]), z(t;) represent

i
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the right and left limits of x(t) at t = ¢; respectively, a, b, xy a constant with a +b # 0. One
knows that the boundary condition ax(0) + bx(T") = ¢ becomes x(0) — z(T) = %2 when

a + b =0, that is so called nonhomogeneous periodic type boundary condition.

For impulsive fractional differential equations whose derivatives have single start points ¢t = 0,
there has been few papers published. In [73], authors presented a new method to convert-
ing the impulsive fractional differential equation (with the Caputo fractional derivative) to
an equivalent integral equation and established existence and uniqueness results for some
boundary value problems of impulsive fractional differential equations involving the Caputo
fractional derivatives with single start point. The existence and uniqueness of solutions of

the following initial or boundary value problems were discussed in [73]:
CD0+x( ) f<t7$(t))>t€ (Oa 1]\{t1, 7tp}a

Ax(ty) = Lix(t:)), Ad'(t:) = Ji(z(t:)), © € N[1, pl,
z(0) = o, 2/(0) = 2,

(

“Dfa(t) = f(t,x(t)),t € (0,1 \ {tz, -~ .1},
\ Axt) = Li(x(t), Ax'(t) = Ji(x(t:)), @ € N[1, p],

( () ¢(x) = xo, '(0) = z1,

CDgpa(t) = f(t,z(t),t € (0, 1]\ {tr,-+ ,1,},
Ax(t;) = Liz(t )), i € N[1,p],
ax(0) + bx(l) =

( CD0+I( )= f(t2(t),t € (0,1 \{tx,--- ,tp},
Az(t;) = I;(x(t:), Ax'(t:;) = Ji(x(t:)), @ € N[1,p],
| az(0) — b2'(0) = @0, cx(1) +da'(1) = x4,

and

“Dgra(t) = f(t,2(t),t € 0,1\ {tr, - . tp},

Ax(t;) = Li(z(t;)), Ax'(t;) = Ji(x(t:)), @ € N[1, pl,

[ 2(0) —az(§) = (1) — bx(n) =0,

where o € (1,2], 8 € (0,1], D;, is the Caputo fractional derivative with order * and single
start point t =0, f : [0, 1] xR — R, I;, J; : R — R are continuous functions, a, b, ¢, d, xg, 1 €
R are constants, ¢ : PC(0,1] — R is a functional.

In [104], authors studied the existence of positive solutions of the following nonlinear bound-

ary value problem of fractional impulsive differential equations

CDO+$() f(’x(t )7t€(071]\{t17"'7tp}7
Ax(t;)] = Li(z(t:)), i € N[1, ],
Ax'(t)] = Ji(z(t;)),i € N[1, p],

(
ax(0) — bz(1) =0, az’(0) — bz'(1) =0,
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where o € (1,2), CD8‘+ represents the standard Caputo fractional derivatives of order a,
a>b>0,0=tg <ty <---<t,<tpnn=11,J; € CRR)(ieN[1,p|, f:[0,]] x R—R

1s continuous.

We firstly observed that in the above-mentioned work, the authors all require that the frac-
tional derivatives are the Caputo type derivatives, the nonlinear term f and the impulse
functions are continuous. It is easy to see that these conditions are very strongly restrictive
and difficult to satisfy in applications. To the author’s knowledge, there has been no pa-
per published discussed the existence of solutions of boundary value problems of impulsive
fractional differential equations involving other fractional derivatives such as the Riemann-

Liouville fractional derivatives, Hadamard fractional derivatives.

Secondly, we known (see Theorem 3.1, Theorem 3.6 in [11]) under the assumption f(¢,z) €
L(0,1) for any = € R that = € L(0,,1) satisfies a.e. the equation

D¢ x(t) = f(t,x(t)), ae., t €(0,1),
D 7x(0) = b;, j € N[1, ~[~q]]

if and only if = satisfies

n 5 w1
#(t) = Z,: ra T+ Jy Sl f (s w(s))ds, ae., t € [0,1].
When we consider the following initial value problem

RLDO+x(>:t—é(1—t)—% —: f(t), a.e.,t € (0,1), lim t2a(t) = RLDO+:C<0):0. (IVP)

t—0t

Let

3
t (t—s)2 (t— s? o _9
zo(t) = [, (r(3,)/2) fo r(3/2) s78(1—s)"sds,t € (0,1).

Then

REDE, wo(t) = [yt — )5 2575 (1 — 5)7Rds.

It is easy to check that

[t —s)2ts75(1 —s)7sds < [(t —s)"5s75 = tiB(3/8,7/8),t € [0,1],

7

fot—s)227 s 5(1—s)8ds < (1—1)7% [ 578 = (1 — )" 585 1 € [0,1).
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So lilrar t2ao(t) = RLD2+x0(O) = 0. Further more, we have
t—0

. ~ ~ s (o 371 "
RLDO+x0( )= m {fo (t — 5)273/2 " (F(B)/22) f(u)duds}

)1/2

"
= ﬁ [fot f;(t —8)” 1/2(s ;L/Q) dsf(u )du] by interchanging the integral order

wl/2 " s—u
(1/2 [f (t —u) fo 1/21“(3/2)d f(u)du} by = =w

[fo (t—u)f du] — f(t) by B(1/2,3/2) = (1/2)T'(3/2).
It follows that problem (IVP) has a unique solution xq in C°[0, 1]. However f(t) is not integral

on [0,1] (f & L(0,1)). Hence it is interesting to investigate the existence and uniqueness of
solutions of initial value problems of fractional differential equations under the assumptions

the nonlinearity f(t,z) is not integral for = € R.

In this paper, we firstly establish existence and uniqueness results for initial value problems
of fractional differential equations under the assumption that the nonlinearity f(¢,z) is not
integral for x € R. Then we obtain piecewise continuous solutions of fractional differential
equations. Thirdly, we study the existence of solutions of four classes of impulsive boundary
value problems of singular fractional differential equations. The first one is the impulsive

mixed type integral boundary value problem as follows:
( CDO+:U() p(t)f(t x(t)) t € (ti, tiya], 7 € N[O, m],
lim x(t fo x(s))ds,
t—>
= fo s, ( ))ds, (1.0.8)
\ A$,<tz) = J(tl,I'(tZ)),Z € N[l,m],

where
(a) 1<pB<2, C'Dg+ is the Caputo fractional derivative of order g with starting point 0,

(b) m is a positive integer, 0 =ty < t; <ty < -+ <tp < tmi1 =1, N[a,b] = {a,a+ 1,a +
2,--- ,a+n} with a,b being integers and a < b,

(c) ¢,v:(0,1) — R are measurable functions,

(d) p:(0,1) = R is continuous and there exist numbers k > 1 — § and | € max{—3, -0 —
k,0] such that |p(t)| < t8(1 —¢)! for all ¢ € (0, 1),

(e) f,G,H defined on (0,1] x R are impulsive I-Carathéodory functions, /,.J : {¢; :
i € N[1,m]} x R — R is a Discrete I-Carathéodory functions.
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The second one is the impulsive Dirichlet type integral boundary value problem as follows:

(M%ﬂ)ﬁWWMHGWmMEWWL

tlngl+ 2Py (t) fo z(s))ds,
= [, ¥(s) s,x(s))ds, (1.0.9)
lim (t — t) 2 Pa(t) = I(t;, x(t;)),i € N[1,m],

ARLDO+ x(t;) = J(t;, x(t;)), 1 € N[1, m],

where

(f) 1<p<2, RLD€+ is the Riemann-Liouville fractional derivative of order g with starting
point 0, n,t;, N]a, b] satisfies (b), ¢, : (0,1) — R satisfy (c),

(g) ¢:(0,1) — R is continuous and there exist numbers & > —1 and [ € max{—/, -5 —k, 0]
such that |g(¢)] < t*(1 —t)! for all ¢ € (0, 1),

(h) f,G, H defined on (0,1] x R are impulsive II-Carathéodory functions, I, .J : {t; :
i € N[1,m]} x R — R are Discrete II-Carathéodory functions.

We emphasize that much work on fractional boundary value problems involves either Rie-
mann-Liouville or Caputo type fractional differential equations see [7—7, 1 1]. Another kind of
fractional derivatives that appears side by side to Riemann-Liouville and Caputo derivatives
in the literature is the fractional derivative due to Hadamard introduced in 1892 [38], which
differs from the preceding ones in the sense that the kernel of the integral (in the definition
of Hadamard derivative) contains logarithmic function of arbitrary exponent. Recent studies

can be seen in |13, 15, 16].

Thirdly we study the following impulsive anti-periodic type integral boundary value problems

of singular fractional differential systems

( AHIDY a(t) = q(t) f ( ( ):t € (fwtm] i € N[0, m],
hm (log )2 Px(t) + fo x(s))ds,
t%ﬁﬂmaﬂR”%w ZRSW@WW& (10.10)
tligl (logt —logt;)> Px(t) = I1(t;, z(t;)),i € N[1,m],
AREDI () = J(t, x(t)), i € N[1,m],

where

(i) 1 < <2 BLE Dlﬁ+ is the Hadamard fractional derivative of order 3 with starting
point 1,
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(j) m is a positive integer, 1 = tg < t; < ty < -+ < bty < tr1 = €, &, : (1,e) > R
are measurable functions, ¢ : (1,e) — R is continuous and satisfies that there exist numbers
k> —1 and | € max{—f,—3 — k, 0] such that |q(t)| < (logt)*(1 —logt)! for all t € (1,¢),
(k) f,G, H defined on (1, €] x R are impulsive III-Carathéodory functions, I, .J : {t; :
i € N[1,m]} x R — R are Discrete III-Carathéodory functions.

Finally we study the following impulsive Sturm-Liouville type integral boundary value prob-

lems of singular fractional differential systems

( CHDI 2(t) = p(t) f(2, x(t)) te (tl,tlﬂ],z e N[0, m],
(1) - (t%> (1) |t 1 fo z(s))ds,
‘I(e) + (t%) CL‘(t ’ t=e fO ))d57 (1'0'11)
fi% z(t) — x(t;) = I(t;, z(t ,)) i € N[ ,m|,
tlu?r (tL) x(t) — (t4) x(t)|t:ti = J(t;,x(t;)),7 € N[1,m],

where

1) 1<p<2 ¢ Df+ is 1the Caputo type Hadamard fractional derivative of order § with
the starting point 1, (t4)" z(t) = ta/(t),

(m) m,t;,N[a,b] satisfy (i), ¢,¢ : (1,e) — R are measurable functions, p : (1,e) — R is
continuous and satisfies p : (1,e) — R is continuous and satisfies that there exist numbers
k>1-—pandl € max{—3, -3 — k,0] such that |p(t)| < (logt)*(1 —logt)! for all t € (1,¢),

(n) f,G, H defined on (1,¢] x R are impulsive IV-Carathéodory functions, I, J : {t;:
i € N[1,m]} x R — R are Discrete IV-Carathéodory functions.

A function z : (0,1] — R is called a solution of BVP (1.0.9) (or BVP (1.0.8)) if z|¢, 4,,1(i =
0,1,7 € N[0, m]) is continuous, the limits below exist tligi(t —:)*"7x(t),i € N[0, m], (or

lini x(t)(i € N[0, m] and z satisfies the equations in (1.0.9)1 (or (1.0.8)).
t—t;
A function z : (1,e] = R is called a solution of BVP (1.0.11) (or BVP (1.0.10)) if 2|, 4,.4]
2-p
(i € N[0,m]) is continuous, the limits below exist lim <log ) x(t),i € N[0, m],
t—t;

t
t
(or lim x(t)(i € N[0, m]) and = satisfies equations in (1.0.11) (or (1.0.10)).

t—tf
To get solutions of a boundary value problem of fractional differential equations, we firstly
define a Banach space X, then we transform the boundary value problem into a integral
equation and define a nonlinear operator 7" on X by using the integral equation obtained,

finally, we prove that T has fixed point in X. The fixed points are just solutions of the
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boundary value problem. Three difficulties occur in known papers: one is how to transform
the boundary value problem into a integral equation; the other one is how to define and
prove a Banach space and the completely continuous property of the nonlinear operator
defined; the third one is to choose a suitable fixed point theorem and impose suitable growth

conditions on functions to get the fixed points of the operator.

To the best of the authors knowledge, no one has studied the existence of strong weak
or weak solutions of BVP (1.0.i) (i = 8,9,10,11). This paper fills this gap. Another
purpose of this paper is to illustrate the similarity and difference of these three kinds of
fractional differential equations. We obtain results on the existence of at least one solution
for BVP (1.0.i) (i = 8,9, 10, 11) respectively. For simplicity we only consider the left-sided
operators here. The right-sided operators can be treated similarly. For clarity and brevity,
we restrict our attention to BVPs with one impulse, the difference between the theory of one

or an arbitrary number of impulses is quite similar.

The remainder of this paper is as follows: in Section 2, we present related definitions. In
Section 3 some preliminary results are given (the first purpose is to establish existence and
uniqueness of continuous solutions of four classes of initial value problems of non-linear
fractional differential equations, the second purpose is to establish explicit expression of
continuous solution of four classes of linear fractional differential equations (see Theorem
3.1.2, Theorem 3.2.2, Theorem 3.3.2 and Theorem 3.4.2 in Subsections 3.1, 3.2, 3.3 and 3.4
respectively). In Section 4, the purpose is to get exact expression of piecewise continuous
solutions of four classes of linear fractional differential equations. In Section 5, we prove
the main results for establishing existence results of solutions of (1.0.i) (1=8,9,10,11). In
Sections 6, by establishing existence results on solvability of two class of impulsive boundary
value problems of fractional differential equations, we make a comparison on two impulsive
boundary value problems in which one has a single starting point and the other one has
multiple starting points. In order to avoid misleading the readers, a mistake in a published

paper is also corrected in this section.

2 Related definitions

For the convenience of the readers, we firstly present the necessary definitions from the

fractional calculus theory. These definitions and results can be found in the literatures
[44, 71, 76].

Let the Gamma function, Beta function and the classical Mittag-Leffler special function be
defined by

INa) = f;oo z*le *dz, B(p,q) = fol 2P N1 —2)T e, Esy(z) =Y r‘(Xa:T);U)
x=0
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respectively for & > 0,p > 0,¢ > 0. We note that Ess(z) > 0 for all x € R and E;4(z) is
strictly increasing in x. Then for x > 0 we have E;,(—z) < E;5,(0) = ﬁ < Es ().

Definition 2.1 [14] Let ¢ € R. The left Riemann-Liouville fractional integral of
order a > 0 of a function g : (c,00) — R is given by

12 g(t) = w5 Jo (t = 5)°g(s)ds,
provided that the right-hand side exists.

Definition 2.2 [14] Let ¢ € R. The left Riemann-Liouville fractional derivative of
order a > 0 of a function g : (¢, +00) — R is given by

RLDC+g( ) 1 dm ft 9(s) ds,

T(n—a) di® Jc (t—s)o@—n+1
where a € (n — 1,n), i.e., n = [«], provided that the right-hand side exists.

Definition 2.3 [14] Let ¢ € R. The left Caputo fractional derivative of order o > 0
of a function g : (¢, +00) = R is given by

n

c gt
Dc+g naf(ts"‘""‘l

where a € (n — 1,n), i.e., n = [«a], provided that the right-hand side ezists.

Definition 2.4 [14] Let ¢ > 0. The left Hadamard fractional integral of order o > 0
of a function g : [c,+00) — R is given by

H18g(t) = iy J2 (log 1) g(s) %,

provided that the right-hand side exists.

Definition 2.5 [11] Let ¢ > 0. The left Riemann-Liouville type Hadamard fractional
derivative of order a > 0 of a function g : [c,+00) — R is given by

o n et n—a—1 s
RLHDc+g<t) = F(nl—a) (t%) fc (IOg é) g(s)d?’
where a € (n — 1,n), i.e., n = [«a], provided that the right-hand side ezists.

Definition 2.6 [12] Let ¢ > 0. The left Caputo type Hadamard fractional derivative
of order a > 0 of a function g : [c,+00) = R is given by

D2 g(t) = i J! (log 1) (s48) " g() %,

where a € (n — 1,n), i.e., n = [«], provided that the right-hand side ezists.
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Definition 2.7 We call F: (0,1) x R — R an impulsive I-Carathéodory function
if it satisfies

(i) t — F (t,u) is measurable on (0,1) for any u € R,
(ii) u — F (t,u) are continuous on R for all t € (0, 1),

(iii) for each r > 0 there exists M, > 0 such that
|F (¢, u)| < Myt € (0,1), Jul <.

Definition 2.8 Letn—1<a<nand 0=ty <t; < - <ty < tyy1 = 1. We call

F: Ut tiz1] x R = R an impulsive II-Carathéodory function if it satisfies
i=0

(i) t = F (¢, (t — t;)* ™u) is measurable on (t;,t;11](i € N[0, m]) for any u € R,
(i) u — F (t,(t — t;)* "u) are continuous on R for all t € (t;,t;11](i € N[0, m]),
(iii) for each r > 0 there exists M, > 0 such that
|F (t, (t — ;) "u)| < Myt € (t;, tiva], |u| <, (i € N[0, m]).
Deijlnnition 29 Letn—1<a<nandl =ty <t; < - <ty < tme =ec. We call

F: Ut tiz1] x R = R an impulsive III-Carathéodory function if it satisfies

=0

i)t — F (¢t (logt OHnu 1s measurable on (t;,t;41|(2 € N[0, m]) for any u € R,
t;

(i) w— F (t, <log %)a_n u> are continuous on R for all t € (t;,t;41](i € N[0, m]),
(iii) for each r > 0 there exists M, > 0 such that

‘F (t, (log ff)a_n u)

Definition 2.10 We call F : (1,¢) x R — R an impulsive IV-Carathéodory func-

tion if it satisfies

< Myt € (b tisa], Jul < . (i € N[O, m)).

(i) t — F (t,u) is measurable on (1,¢e) for any u € R,
(ii) u — F (t,u) are continuous on R for allt € (1,e),

(iii) for each r > 0 there exists M, > 0 such that
I (tu) < Myt € (Le),[u] < 7.

Definition 2.11 LetO0=ty<t; < - <ty < tmy = 1. We call
I:{t;: i€ N[l,m|]} x R— R a discrete I-Carathéodory function if it satisfies
(i) w — I (t;,u) (i € N[1,m]) are continuous on R,

(ii) for each r > 0 there exists M, > 0 such that |I (t;,u)| < M,,|u| < r,i € N[1,m)].
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Definition 2.12 Letn—1<a<nand0 =ty <t; < -+ <ty < tm1 = 1. We call
I:{t;:ieN[l,m]} xR — R a discrete II-Carathéodory function if it satisfies

(1) uw— I (t;, (t; —t;1)*%u) (i € N[1,m]) are continuous on R,
(ii) for each r>0 there exists M, >0 such that
|1 (&, (ti — t7770) | < M., Ju| <r,i € N[1,m)].

Definition 2.13 Letn—1<a<nandl =ty <t; < -+ <ty < tmy1 =e. We call
I:{t;:ieN[l,m]} xR — R adiscrete III-Carathéodory function if it satisfies
(i) w — I (t;, (logt; — log tig)" 7 u) (i € N[1,m]) are continuous on R,
(ii) for each r > 0 there exists M, > 0 such that

‘I (tl-, (logt; — logt,-_l)o‘f2 u)‘ < M, |lu| <ri e N[1,m)].
Definition 2.14 Let 1=ty <t; < -+ <ty < tmy1 =e. We call
I:{t;:ieN[l,m]} xR — R a discrete IV-Carathéodory function if it satisfies
(i) v — I (t;,u) (i € N[1,m]) are continuous on R,
(ii) for each r > 0 there exists M, > 0 such that |I (t;,u)] < M, |u] <rie N[1,m].
Definition 2.15 [61]  Let E and F be Banach spaces. A operator T : E — F is

called a completely continuous operator if T is continuous and maps any bounded set into

relatively compact set.

Suppose thatn — 1 < a <n and 0 < a < b are constants. The following Banach spaces are

used:

(i) Cola,b] denote the set of all continuous functions on (a,b] with the limit lim x(t)

t—at
existing, and the norm ||z|| = sup |z(t)|;
te(a,b]
(ii) Ch_qa(a,b] the set of all continuous functions on (a,b] with the limit lim (t — a)™ “x(t)

t—at
existing, the norm ||x||,—o = sup (t —a)"“|x(t)|;
te(a,b]
(iii) LC,_u(a,b] denote the set of all continuous functions on (a,b] with the limit

lim (log £)" " x(t) existing, and the norm ||z|| = sup (log%)" “|z(t)].

t—>a+ te(a,b}
Let m be a positive integer and N[0, m] = {0,1,2,--- ,m}, 0 =tg < t; < <ty < tpr1=1.
The following Banach spaces are also used in this paper:

(iv)

Pmcn,a<0, 1] = {.Z' . (0, 1] — R: xXr (titiv1] € Cn7a<ti,ti+1] 1 c N[O,m] }




18 Y. Liu

with the norm

te(ti,tiH}

2]l = Ml pnon-o = maX{ sup (¢ —1;)" " fz(t)] - i e N[O,m]} :

(v)
PCo(0,1] = {x (0,1 5 R wlge, € Coltis tis] 1 i € N0, m)] }

with the norm

2| = ||z||p.co(0,1) = maX{ sup |z(t)| ;i € N[O,m]} .

te(ti,tzuﬁﬂ

Let m be a positive integer and N[0, m] = {0,1,2,--- m}, 1 =ty <t; < -+ <ty < tpy1 =
e. We also use the Banach spaces

(vi)

Zz

(tistis1] € C(ti, tisa],7 € N0, m],

LPyChro(le =4 z:(1,e] 5 R: there exist the limits
lim (1og i) U 2(t),4 € N[0, m]

t—tt

with the norm

te(ti ,ti+1]

\z|| = l|z||lLpne, . = max{ sup <log f) lz(t)],i € N[O,m]} .

(vii)
LP,Cy(1,e] = {x c(Le]l > R x|, € Colti, tipa], 1 € N[0, m] }

with the norm

tG(ti,tH_l}

lzl| = [lzllLpne = maX{ sup [z(t)],7 € N[O,m]} :

3 Some preliminary results

Lakshmikantham et al. [58-01] investigated the basic theory of initial value problems for
fractional differential equations involving Riemann-Liouville differential operators of order
q € (0,1). The existence and uniqueness of solutions of the following initial value problems
of fractional differential equations were discussed under the assumption that f € C.,[0, 1].
We will establish existence and uniqueness results for these problems under more weaker
assumptions see (A1)-(A4).
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Suppose n —1 < o < n and n; € R (j € N[0,n — 1]). We will consider the following four

classes of Cauchy problems for non-linear fractional differential equations:

CD(Hx( ) 1(t>F1(t,[L‘(t>), te (07 1)7 (3 0 1)
lim 20)() =y, j € NO,n — 1], 0.
t—0+
RL D 2(t) = pa(t) Fy(t, 2(0)), £ € (0,1),
n—o,. Mn
tl_l}(%_ t F(a—n+1) ’ (302)
RL — . i _
tglgi D0+ x(t) =1n;,7 € N[1,n —1],
RLE Do 2 (t) pg(t)Fg(t,x(t)), te(le),
hm (logt)" “z(t) = W, (3.0.3)
lim R DOT(1) = .5 € N1 — 1],
t—1+
{ DG x(t) = pat) Fa(t, z(t)), t € (L,e), (3.04)
thr1n+ L t)—n],]EN[O n—1].
where (t%)j (t) = t—x(t for j = 2,3,---, pi(i = 1,2,3,4) satisfy assumption (A7)

below, F;(i = 1,2,3,4) is i-Carathéodory function (; = I, II,III,IV and satisfies the
following assumption (Hi) (i = 1,2,3,4).

(A1) there exists constants k > —a+n — 1, 1 <0 with | > max {—a, —a — k} such that
Ip1(1)] < tF(1 —¢t)! for all t € (0,1).

(A2) there exists constants k > —1, 1 < 0 with [ > max{—a, —n — k} such that |p,(t)| <
t*(1 —t)! for all t € (0,1).

(A3) there exists constants k > —1, I < 0 with [ > max{—«, —n — k} such that |ps(t)| <
(logt)k(1 — logt)! for all t € (1,e).

(A4) there exists constants k > —a+n — 1, 1 <0 with > max {—a, —a — k} such that
Ipa(t)| < (logt)*(1 —logt)! for all t € (1,¢).

(H1) there exists a constant L; > 0 such that |F\(t,z1) — Fi(t,z2)| < Li|zy — xo| for all
t € [0,1]] and z1, 25 € R.

(H2) there exists a constant Lo > 0 such that |Fy(t, t* "xy) — Fo(t,t* "x9)| < Lo|zy — x4
for all t € (0,1] and 1,22 € R.

(H3) there exists a constant Ly > 0 such that |F5(t, (logt)* "x1) — F3(t, (logt)* "ay)| <
Ls|zy — xo| for all t € (1,¢] and 21,29 € R.

(H4) there exists a constant L4 > 0 such that |Fy(t,z1) — Fy(t,z2)| < Lys|zq — xo| for all
t e (1,e] and x1,z9 € R.
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3.1 Existence and uniqueness of solutions of (3.0.1)

Choose Picard function sequence as

6i(t) = do(t) + fy LEE—pi(s)Fi(s, ¢i-1(s))ds, t €0,1],i = 1,2,

Lemma 3.1.1 Suppose that (A1), (H1) hold. Then ¢; € C|0,1].

Proof: One sees ¢ € C[0, 1]. Since F} is a I-Carathéodory function, we know

My = sup [Fi(t,¢o(1))| < sup  [Fi(t,2)| < +oo.
te(0,1) t€(0,1),]z|<l|¢ol|

We have by using (A1)

t —s a—1
</, %sk(l — s)lds M,

Sy G py(5) Fi (s, go(s)) ds

t_s)od»lfl

t
< Mo fo ( T'(a)

1_w)o¢+171

shds = Myto+h+t fol ( s wkdw

_ MOtO“JF’““W —0ast— 0",

implies ¢ is continuous on [0,1]. So ¢; € C|0, 1]. By mathematical induction method, we
can prove that ¢; € C[0, 1]. O

Lemma 3.1.2 Suppose that (A1), (H1) hold. Then {¢;} is convergent uniformly on
[0, 1].

Proof: Since F} is a I-Carathéodory function, we know

My = sup |Fy(t, x)|] < +oo.
t€(0,1),[z[<[|¢oll

Then we have for ¢ € [0, 1] that

t (t—s)o—1 a B(a+1,k+1
Jo EE—p1(s)Fi(s, do(s))ds| < Mpeth+Blauldl),

’¢1(75) - ¢o<t)’ =
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So (H1) implies that

|02(t) — & (8)] =

Jo B pi () Fi(s, 61(s5)) — Fi(s, éo(s))]ds

< fy Y55 (1 — 5) La|én(s) — do(s)|ds

04 1 o
< MyLy fo r S sH(1 — S)ZSO‘MHB(%O’?UCZS
< ML, fo s)ati—1 a+2k+lds%

o 20+2k+21 B(a+1,k+1) B(a+l,a+2k+1+1)
= MyLqt ey ()

Now suppose that

R et o .
05(8) = 91 (1)] < MLy pertsieeit T Blottuiatfihsiiel

i=0
We get

—1

T P1($)[F1(s85(5)) — Fi(s, 65-1(s))]ds

[9j41(t) — ¢;(t)] =

< fy SRS SM (1= 8) Ly [y (s) — 6y (s)| ds

—1
< MOLJ t(t— S(L) k(l _ S)lsjaJrijrjl ]H a+l1,za+r(zz)1)k1+zl1+1)ds
1=0

Jj=1 o .
j (t—s)xti-1 jat(j4+1)k+ijl B(a+l1,ia+(i+1)ki+il1+1)
< MyL? fo —r( s ds 'Ho T
1=

) ) ) . Jj—1 ) . )
_ MOlet(j+1)a+(j+1)k+(j+1)lB(a+l,Joz+(J+1)k+ﬂ+1) I B(atl jot(i+1)k+il+1)

M) P2 e

— ML {0 Det GOk ﬁo B(a+ll,’iaii:((;;1)k+il+l).

From the mathematical induction method, we get for every i = 1,2, --- that

bisn (t) — i ()] < MOLzl—lt(z+1)a+(z+1)k+(z+1)l 11 B(a+l,Jav;((JC:g1)k+Jl+1)
§=0

. il ) ) )
< MOL'Llfl HO B(a+l,ga+r((351)k+gz+1)’t € [0,1].
‘]:

21
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Consider

—+o00 +oo i—1
_ i—1 B(a+l,ja+(j+1)k+jl+1)
Z Ui = Z Moy Ly H T(a) .
i=1 i=1 j=0

One sees for sufficiently large n that

% _ LlB(a+l7(i+1)0£"4(_0(j)+1)k+(i+1)l) - I, fol(l . x)a+lf1x(i+1)a+(i+1)k+(i+1)ldx

< I f06(1 — )l (FDat DR+l g 4 [, f(Sl(l — )1z with 6 € (0,1)

< Ll fO - a+l 1d$5 (i+1)at+(i+1)k+(i+1) + aLJiléoc-H

Ly §(i+1)a+(i+1)k+(i+1)1 Ly atl
— a+l5 + a+l5

For any € > 0, it is easy to see that there exists 6 € (0,1) such that (f—iléa” < §. For this
8, there exists an integer N > 0 sufficiently large such that £LgGHDatCHDEHEDE < £ for all

i>N.So0< =2 <g5+g5=cforalli>N. It follows that lim =* =0. ThenZulls

i—+oo 7 i=1

convergent. Hence

Go(t) + [P1(t) — do(t)] + [@2(t) — 1 ()] + -+ + [ds(t) — @i (t)] + -+, £ €0, 1]

is uniformly convergent. Then {¢;(¢)} is convergent uniformly on [0, 1]. O

Lemma 3.1.3 Suppose that (A1), (H1) hold. Then ¢(t) = lim ¢;(t) defined on [0, 1]

i—-+00
is a unique continuous solution of the integral equation

(t) = z; T+ ﬁfot(t —8)2 pi(s)Fi(s,2(s))ds, t € [0,1). (3.1.1)

Proof: By ¢(t) = ‘lir+n ¢;(t) and the uniformly convergence, we see ¢(t) is continuous on
1—r+00

[0,1]. From

)ozfl

Jo 2= () Fi(s, ¢i(s))ds — [y 5

p1(s)Fi(s, ¢;(s))dsds

< Lullgi — o5l fy kst (1 — 5)'ds

o B(a+l,k+1
< Ll — o5t %

< Lyl — ¢yl P 5 0 as i, j — oo,
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we have
n—1
)= lim ¢i(t) = i [P () Fi(s, g (9))d
B(t) = lim ou(t) = lim | 3% 50+ fy S pa () Fils, 6ima (5))ds
n-1_ . t (1—s)a—1
= T %+ lim S n ()Rl oma(s)ds
n—1

Then ¢ is a continuous solution of (3.1.1) defined on [0, 1].

23

Suppose that 1 defined on [0, 1] is also a solution of (3.1.1). Since F} is a I-Carathéodory

function, we know

My = sup |Fi(t,x)] < +o0.
te(0,1),JzI<|l¥
Then
W(t) = "J 9+ [y Sy (s) Fi (s, v(s))ds, ¢ € (0, 1],

We need to prove that (b(t) = ¢(t) on [0, 1]. One sees that

[¥(t) = do(t)] =

I(a)

I'(@)

Furthermore, we have

[Y(t) = ¢ ()] =

Jo i ()[Fi (5, 4(s) — Fi(s, do(s))]ds

120+ 2k42 B(atlk+1) B(atl,at+2k+i+1)

By mathematical induction method, we have

|¢(t> _ ( )‘ < M Lz tza+zk+zl ﬁ (a+l,ja+( (]O-Sl)k—i-jl—i—l)

7

H oz-l—lja—i—((jo—sl)k—i—]l-i-l) te [O, 1].

Similarly we have

i 17 Blotljot(i+Dk+jitl) _
ml—lg-loo MOL ]1;[0 [(a) =0.

ft (t78)0—1p1<S)F1(87 w( ))dS < M t0l+k+l B(a+l k+1) )

Then Aliin ¢;(t) = ¥ (t) uniformly on [0,1]. Then ¢(t) = 1(t). Then (3.1.1) has a unique
1—+00

solution ¢. The proof is completed.

]
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Theorem 3.1.1 Suppose that (A1), (H1) hold. Then z is a solution of IVP (3.0.1) if

and only if x is a solution of the integral equation (3.1.1).

Proof: Suppose that x is a solution of IVP (3.0.1). Then lirgl+ z(t) = no and ||z|| = r < +o0.
t—

Since F is a I-Carathéodory function, we know

M,= sup |Fi(t,z)| < 4oc.
te(0,1),|z|<r

From (A1), we have for t € [0,1)

t g)a—n
)t (9)Fi(s, x(s))ds

< M, ft U= gk(] — 5)lds

I'(a— n+1)

(t=s)"" ck atk—nt1 1 (Q-w)otin g
=M OFa S ds = My (1 - t)'t fo Tlanry) W dw

+k—n+1B(a—n+1,k+1)
— M,(1 — t)lgorknt1 Blaznili))

Sot — fo Ftas;:)pl( s)F1(s,z(s))ds is continuous on [0,1) by k > —a+n — 1,1 < 0 with
[ > max {—a, —a — k}. It follows that

lim ft U= ($)Fy (s, z(s))ds = 0. (3.1.2)

L0+ 0 I'(a—n+1) pl
From “Dg,z(t) = pi(t)Fi(t, z(t)), ae., ¢t € (0,1), we have

Jy S () Fa(s, () ds = I pa () (8, 2(8)) = 1, D (1)

— fot (t Fi:) ! (F =) fo s—w) %z (w)dw) ds interchange the order of integrals
= Fare e fo f )2~ (s — w)" tdsaz™ (w)dw use =2 = u

t n a o I'(a)'(n—a
:W(n—a)fo(t lfo - ' tduz™ (w)dw by B(a,n—a):%

= oD [t —w)" o (w)dw

= ﬁ [(t = u)”_lx(”_l)(wﬂg +(n—1) fg(t - u)”_2x(”_1)(w)dw]
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It follows that x satisfies z(t) = n] Lt + fo
J
x € C[0,1] is a solution of (3.1.1).

1(s)Fi(s,z(s))ds,t € [0,1). Then

On the other hand, if z is a solution of (3.1.1). Then
V) = Z Tt ™+ ma Jo (= 97 T ms) (s, a(s))ds, t € [0,1).

Together Lemma 3.1.1-Lemma 3.1.3 and (3.1.2), we have x € C]0,1] and lim 2U(t) =
t—0

nj(j € N[0,n — 1]). Furthermore, we have

“Dga(t) = migy Jo (t = 9)" el (s)ds

1
I'(n—a)

(n)
= oy fo (t — s)n—ot (z 773] —|—f0 (Sw—pl( )Fl(w,a:(w))dw> ds

s (s—w (n)
= iy Syt = sy (fy Sy (w) By (w, a(w)dw ) ds

= ﬁ f(f(t - S)N_a_lm (fOS(S —w)* "py(w) Fy (w, x(w))dw)/ ds

= r(aflnﬂ) F(n+117a) [fot(t =) (Jo (s —w)*"pr(w) Fy (w, x(w))dw)/ ds},

n—o S a—n t
= F(ozfln+1) F(n+11704) |:(t - S) fO (5 o UJ) P1 (w)Fl(w7 .QZ(ZU))dU)}O

= @) folt = )" fi (s = )y (w) Fy(w, 2(w)) duds|

T(a 1n+1) n—a) [fo (t—s)" " lfo (5 —w)* 7"pl(w)F1(w,x(w))dwds]/ by (3.1.2)

/
= Faon ) T 1n+1) [fo f ) (s — w)* dspy (w) Fy (w, x(w))dw]
by changlng the order of mtegrals

1 n—oa— a—n ! S—w
= ma e o Jo (1= 0 e dups (w) Fy(w,w(w)dw] by 322 = u

[fopl VFy(w, x(w ))dw]/ by Bn—a,a—n+1)=Tn—a)l'(a—n+1)

= p1(t)F1(t, z(t)),a.e.,t € (0,1).
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So z € C[0,1] is a solution of IVP (3.1.1). The proof is completed. O

Theorem 3.1.2 Suppose that (A1), (H1) hold. Then
(i) IVP (3.0.1) has a unique solution.

(ii) Suppose that there exists constants k > —a+n —1, 1 <0 with | > max{—«, —a — k},
M > 0 such that |F(t)] < MtE(1 —t)! for all t € (0,1). Then the following special problem

“Dex(t) = +F(t), ae., t €(0,1), (3.1.3)
lim zU)(t) =n;,7 € N[0,n — 1] o
t—0t+
has a unique solution
n—1 ) 1
2(t) = 20 Bl 4 [ 5= F(s)ds, t € (0,1]. (3.1.4)
‘]:

Proof: (i) From Lemmas 3.1.1-Lemma 3.1.3, Theorem 3.1.1 implies that IVP (3.0.1) has

a unique solution.

(ii) From the assumption and (i), we know that (3.1.3) has a unique solution. It is easy to
see that

n—1

x(t) = > %tj + fot (t_lfgj)_ F(s)ds

J=0

by replacing p () Fi(t, z(t)) with F'(¢). Then z is a unique solution of (3.1.3). The proof is
completed. n

3.2 Existence and uniqueness of solutions of (3.0.2)

Choose Picard function sequence as

n

oi(t) )+ ft (= S)a 1 2(8)Fa(s, ¢i1(s))ds, t € (0,1],i=1,2,---.

Lemma 3.2.1 Suppose that (A2), (H2) hold. Then ¢; € C,,_,[0,1].

Proof: It is easy to see that ¢y € C,_4[0,1]. Since F; is a II-Carathéodory function,

we know

My = sup |Fa(t, ¢o(t))] = sup |Fa(t, t* ™" *go(t))| < sup |Fo(t, t*"z)| < +oo.
t€(0,1] t€(0,1] t€(0,1];|z|<ll¢oll
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We have by k > —1, 1 <0 with [ > max{—a, —n — k}

tn—Oé

Jy FEpa(s)Pats, d(5))ds|

< oo [P R (1 — 5) Mods + Myt [y C2lsh(1 — )

< Myt™™ aftwskds

_ n+k+1 Blatlk+1)

Then t — "~ fo F(a 2(S>F2<S, ®o(s))ds is continuous on [0, 1]. We see ¢1 € C,,—,[0, 1].
By mathematical induction method, we can prove that ¢; € C,,_,[0, 1]. n

Lemma 3.2.2 Suppose that (A2), (H2) hold. Then {t — t"“¢;(t)} is convergent
uniformly on [0, 1].

Proof: Since F; is a II-Carathéodory function, we know

My = sup |Fy(t,00(t))] = sup |Fa(t, t* " %¢o(t))| < sup |Fy(t, t*"x)| < +o0.
t€(0,1] t€(0,1] te(0,1],[|<[I¢ol|

We have for ¢ € [0, 1] similarly to Lemma 3.2.1 that

ft (t—s)>—1 (8)F2(87¢0( ))ds < Mt”””‘lw.

tn_a’¢1( ) ¢0< )’ ( ) I'(a)

So
a—1

S pa () [Fals, 61(5)) = Fals, do(s))]ds

" pa(t) — d1(t)] =

< tne [T k(1 — )Ly g1 (s) — ¢o(s)lds

a 1

) s*(1 = 5)ls* " [s" 1 (s) — ¢o(s)]]ds

<Ltnaf0

a+l—1
< M()Lgtn Otfo %Sksa n n+k+lB(a-i-(l(1];+1)ds

= MyL, ta+n+2k+2[f —a;llwa+2k+ld B(a—i—(l(l];-t,-l)

_ a+n+2k+21 Blatl,a+2k+i+1) B(atl,k+1)
= MyLot o) o)
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Furthermore

" ps(t) — da(t)] =

S SRR o (5) [Fa(s, da(s)) — Fals, 1(s))]ds

< e o st (1 = ) Lalda(s)) — 6 (s)|ds

2 n—o (=91 kta—ntatni2k+20 Blatlat+2k+l+1) B(atlk+1)
< MoLst fo I‘(a) S T(a) T'(a) d

S

243n43k+30 1 Q—w)2T 1 on13kiol 7 Blatlnt2k+i+1) Blatlk+1)
< MoLst fo T(a) W dw T(a) T(a)

M L2 2a+n+3k+31 Blat+l,2a+3k+214+1) B(at+l,a+2k+14+1) B(atl,k+1)
= t
I(a) o) I'(a)

Similarly by the mathematical induction method, we get for every ¢ = 1,2,--- that

@i (t) — dia(t)]

< M()LZ lt(l 1)a+n+zk+llB(a+l a+k: n+1) H B(a+l,(j—1)a+jk+(j—1)I+1)
()

i—1
i—1B(a+la+k—n+1 B(a+l,(j—1)a+jk+(7—1)l+1
< ML} 1B( +F(J;) +1) Hl (atl,(j )F(J;J)Jr(J )+),t€[0,1].
]:

Similarly we can prove that

+o0 +o0 1—
_ i—1B(atlatk—n+1) B(a+l,(j—1)a+jk+(j—1)i+1)
Z U; = Z; MoyLj o jl;[l J F(aj) j

is convergent. Hence

t" %o (t) + " [P1(t) — P ()] + 1" [P (t) — D1 ()] +- - -+ " [i(t) — Pia ()] +-- - , £ € [0, 1]

is uniformly convergent. Then {t — "~ “¢;(t)} is convergent uniformly on [0, 1]. O

Lemma 3.2.3 Suppose that (A2), (H2) hold. Then ¢(t) =t lim t""%¢;(t) defined

7,*) oo
on (0,1) is a unique continuous solution of the integral equation

n

2(t) = ¥ matirnt®” Ut fy SR pa(s) Fa(s, a(s)), t € (0,1). (3.2.1)

v=1

Proof: By 11+m " (t) = t""“¢(t) and the uniformly convergence, we see ¢(t) is contin-
1——+00
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uous on (0,1]. From

S o (5) (s, d(5)) — fi Sl () Fa(s, dy(s))ds

tnfa

<Ltnaﬁ“5a sF(1 = )| dp(s) — dg(s)|ds

tsa—H 1

< L2||¢p ¢q||tn afo T T(e) st s

B l,a+k—
S L2||¢p - ¢q||ta+k+l (ot 1?(—;) o)

< Lsl||¢p, — %HW — 0 uniformly as p, g — 400,

we know

o(t) =t*™ lim " *¢;(t)

i——+00

N T Z Tt 0 o S pa(s) Fa(s, éia (s))ds

1—+00

[
M=

t*7Y + lim fo

i——+00

“pa(s) Fa(s, ¢ior(s))ds

I'(a— v+1)

Il
—

v

3 et o P9 Fals, 0(s))ds.
Then ¢ is a continuous solution of (3.2.1) defined on (0, 1].
Suppose that ¢ defined on (0, 1] is also a solution of (3.2.1). Since F is a II-Carathéodory

function, we know

My = sup [Falt, 6(8) = sup |F(ttomn=op(e)| € sup  |F(t, to"a)] < +oo.
t€(0,1] t€(0,1] t€(0,1],|z[<[[+]]

Then
_ - T a—v ! (t — S)a_l
00 =Dyt [ Bl Vs 1€ 0.1)
We need to prove that ¢(t) = ¢(t) on (O, 1]. Then

e () = (0] = 70|y 5

n B(a+lk
(5) Fa(s, ¢h(s))ds| < Mytm+hs! Bletiitd),

Furthermore, we have

e (t) — er ()] = | [ 4 2(8)[F2(s,10(s)) — Fa(s, ¢o(s))lds

+n+2k+21 Blatla+2k+1+1) B(atlk+1)
< MoLot™™ T(a) T(a)
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By mathematical induction method, we can get

5

tn—a‘w(t) _ (ZSZ 1 ’ — tn [

8)[Fa(s,10(s)) — Fa(s, dia(s))]ds

. . . . 271 . . .
< MOLZQ—lt(z—l)a+n+zk+zlB(a+l1,ro&-)k—n+1) I1 B(a+l,(a—1)?$k+(a—l)l+l)

j=1

i—1
i—1B(atl,a+k—n+1) B(a+1,(j—1)a+jk+(j—1)I4+1)
< MoLy =455 ]131 B .t €0,1].

Hence

tn—a|,¢(t) _ sz'—l( )l < M Lz 1B(a+ll a+k n+1) H B(a+1,(j— 1?(+ag)k+(] 1)I+1) fOI‘ all i — 1, 2

Similarly we have 'liin t"%¢;(t) = t"*)(t) uniformly on (0, 1]. Then ¢(t) = 1(t) on (0, 1].
1—+00
Then (3.2.1) has a unique solution ¢. The proof is completed. O

Theorem 3.2.1 Suppose that (A2), (H2) hold. Then z € C,_,(0,1] is a solution of
IVP (3.0.2) if and only if v € C,_4(0,1] is a solution of the integral equation (3.2.1).

Proof: Suppose that z € C,_,(0,1] is a solution of IVP (3.0.2). Then t — " *z(¢) is
continuous on (0, 1] by defining t"~*z(t)|;=0 = lim t"%z(t) and ||z|| = r < +o00. Since F;
t—0

is a II-Carathéodory function, we know

M, = sup |Fy(t,xz(t))| = sup |Fao(t,t*"t"x(t))| < sup |Fy(t,t* "z)| < +o0.
t€(0,1] te(0,1] te(0,1],|z|<r

By £ =u, we get

_ n a—1 - n a—1,,,a—n,, n—«a
811)1(1;5r INE z(w)dw = slg(% INE w* """z (w)dw

= lim £"“x(¢) J; (s — w)" " 'w*"dw by mean value theorem of integral, & € (0, s)
5—0

n—« 1 n—a— a—n n
:Sl_1>r(r)1+§ z(€) [, (1 —u) Luendu = F(aﬁnH)B(n—a,a—n—i-l).
(3.2.2)
From (A2), we have similarly to Lemma 3.2.1 that
e | [ S py(s) Fa(s, ds‘ < Mt [ s (1 — s)lds < Mgkt Bladbidl),
Sot—t" ft (= 5)a 1]?2( )Fy(s, z(s))ds is continuous on [0, 1] and
lim "~ O‘ft (t— S pg( VFa(s,2z(s))ds = 0. (3.2.3)

t—0+
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We have from #2Dg, x(t) = po(t) Fo(t, z(t)), a.e.,t € (0,1) that

Jy S pas) Fals. 2(s))ds = I, pat) Fa(t. 2(t)) = I ™ DG, ()

—s)*~ 1 s n—a— n
= f()t : F()a) |:F(n1—oz) (fO (S - ’U}) 1.23(w)d'UJ)( ):| ds

s—w n—a—1 (nfl)
- F(a) fO t B 8 Ot 'd <f F(T)L*CM) x(w)dw)

= oy Jutt — 9)ta (R D ()

31

= i (t — )2 (FF D a(s)) }g—i-m fot(t—s)o"z(fos(s—w)"*aflx(w)dw)(n Vs

I(a)

= ot J = )77 (g (s — w)r e (w)dw) TV ds — et

= oty ot 9077 (o (s — w)r = (w)dw) P ds — st —

72 o= 2
T T(a—1)

n—1
t a—n S n—o— / v a—v
= Tn-a Fla— 1 fo (t—s) (fo (s —w) 1$(w)dw) ds— > ¢ ajv—f—l t
GG T) 2 Tl

a—n s n—a— t
— oy (= 97 (U (s = w)r et (w)dw) |

n—1

= T e D) [f(f (t = &) (fy (s —w)" o La(w)dw) d } Z

v ta—v
(a—v+1)

/
Fa—n+1) it —s)o [5(s— w)n—a—lx(w)dwds} - T et

by using (3.1.10)

n—1

/
— oty o Ji (=8 (s—w) e dsa(w)dw| — it =X it

1 t ol a—n,,n—a— ! < v
= T(n—a)T(a—(n—1)) [fo fo (1 —w)*"w 1dwx(w)dw} - UZ:JI mt

a—v
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Then

z(t) = Z ot "+ fo F(a) pg(s)FZ(s,m(s))ds.
Then z € C,,_,[0,1] is a solution of (3.2.1).
On the other hand, suppose that x € C,_,[0, 1] is a solution of IVP (3.2.1). Then

a—v < v—u 3 5
RLD0+ ( ) z_: (v— v+1 t + f (t

So lim "~ (t) = " and RLDeT2(0) = n,, v € N[1,n — 1]. Furthermore, we have
t—0

—1

pa(s) Fa(s, x(s))ds.

DG, a(t) = e ( S - 3)”_0‘_133(5)615) .

B (n)
_ m <f0t(t _ g)na-l (Z e v+1 SOV 4 fOS (s—;&) pz(u)FQ(u,x(u))du) ds)

n _oya—1 (n)
(z_:l 71“(0421;-‘-1) fot(t—s)”_a_1s"““ds—i—fg(t—s)"‘"‘_1 I (s 1“1?)(1) pz(u)Fz(u,;B(u))duds)
I'(n—a)

(Z o v+1 Mo yn— vfo 1 _ )n—a—lwa—vdw
o (n)
o Jy Jult = o) O s () Fy(u, () du )

<Z o U+1)tn 'L)fo 1 _ )nfaflwaf'udw

= ) ) P, () ) = pa(t) a1 (1)),

So z € C,,_,]0,1] is a solution of IVP (3.0.2). The proof is completed. O

Theorem 3.2.2 Suppose that (A2), (H2) hold. Then
(i) IVP (3.0.2) has a unique solution.
(ii) If there exist constants k > —1, 1 < 0 with | > max{—a, —n — k} and M > 0 such that
|F(t)] < Mtk(1 —t)! for all t € (0,1), then following special problem
FEDga(t) = F(t), t € (0,1],
lm " (t) = 5y (3.2.4)

t—0t

lim 2D (t) = n;,5 € N[1,n — 1]

t—0t
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has a unique solution

o(t) = f et L R (s)ds, € (0, 1), (3.2.5)

Proof: (i) From Lemmas 3.2.1, 3.2.2 and 3.2.3, and Theorem 3.1.1, we see that IVP (3.0.2)

has a unique solution.

(ii) From the assumptions mentioned and (i), we know (3.2.4) has a unique solution. We

get
a—v (t—s)o—1
x(t) = Z T(a— v+1)t + fo T(a) F(s)ds

by replacing po(t) Fy(t, z(t)) with F(t). Then we get x satisfies (3.2.5). The proof is com-
pleted. O

3.3 Existence and uniqueness of solutions of (3.0.3)

Choose Picard function sequence as

n

60(t) = 3 (g t)™, £ € (Le],

v=

6i(t) = do(t) + w5 J{ (log 1) ps(s)Fi(s, dia(s) Lt € (1,e)i=1,2, -+ .
Lemma 3.3.1 Suppose that (A3), (H3) hold. Then ¢; € LC,_,(1,¢].

Proof: In fact, we have ¢y € LC,,_4[1,¢]. Since Fj is a III-Carathéodory function, we

have
My = sup [F3(t,z(t))| = sup |F3(Z, (logt)* " (logt)" “z(t))]
te(l,e] te(1,e]
< sup |F5(t, (logt)*"x)| < 400.
te(Le],|z[<||dol|
and

JE (og )" py(s) Fa(s, do(s))

(logt)"—

< My(logt)"@ flt (log é)a_l (log s)k(1 — log s)lds
< Mo(log t)"~ [ (log £)*"" (log )42

= My(log t)""*'B(a+ 1,k + 1) = 0 as t — 0T,

we know that

= vy i (log &) pals) Fy(s. 60(s)) %
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is continuous on (1, e] and lim+(log t)" %@y (t) exists. Then ¢ € LC,_,[1,e]. By mathemat-
t—0

ical induction method, we can show ¢; € LC,_,[1,€].

]

Lemma 3.3.2 Suppose that (A3), (H3) hold. Then {t — (logt)"~%¢;(t)} is convergent

uniformly on [1,e].

Proof: In fact we have for ¢ € [1, ¢] similarly to Lemma 3.3.1

(logt)"~*|¢1(t) — do(t)| = 15y (log t)"

S M[)(log t)n-l—k-‘rl B(O‘;'(l(;é’;"'l) .

So

(log 1)"=[6a(t) — 61(8)] = s (og )"~ | [ (log )" pa(s) [Fa(5. 61 (s)) —

< Lygs(log )= [! (log £)™" " (log 5)*[¢1(s) — gu(s)| L

< Lagiy (log )"~ J{ (log £)™""" (log )" (log 5) =" Mp(log )+ + BT o

()

jo-a atl-1 o B(a+lk+1
< ML (log 1)~ J! (log £)*~" (log 5211 Blozlien

_ MOLg(log t)a+n+2k+2l B(a+l,?z;2)k+l+1) B(aFJr(lC;l;:Jrl) ‘

Similarly by the mathematical induction method, we get for every i = 1,2, ---

(logt)"=%|pi(t) — di-1(t)]

< MOLZ l(logt) i—1)a+n-+ik+il H B(atl,(j— 1)?(“;])]“"‘(1 Di+1)
]_

. il . _
< M()Lé:l Hl B(onrl,(]fl)I?z(ZJ)kJr(zfl)lJrl)7t c (1, 6].
‘]:

Similarly we can prove that

+o00 —+00 i—1
o i—1 B(a+l,(j—1)a+jk+(i—1)l+1)
i; u; = 1:21 MoLs jl;[l T(a)

is convergent. Hence

(log#)"“¢o(t) + (log )" *[dr(t) — Go(t)] + - - - + (logt)"~[¢:(t) — i1 ()] +

is uniformly convergent. Then {¢t — (logt)" “¢;(t)} is convergent uniformly on (1, €].

Ji (tog )™ pas) Fas, du(s)) &

5, 00(s))]%

te(l,e

]



BVPs for impulsive FDEs 35

Lemma 3.3.3 Suppose that (A3), (H3) hold. Then ¢(t) = (logt)>" 'li_iI}l (logt)" ¢y (t)

defined on (1,e€) is a unique continuous solution of the integral equation

w(t) = Zijr(a sy (log )™ + s [} (log £)" " pa(s) Fy(s,2(s)) 2,1 € (Le).  (33.1)

Proof: By 41iﬁr_n (logt)"~*¢;(t) = (logt)" “¢(t) and the uniformly convergence, we see ¢(t)
1—+00

is continuous on (1, e]. From

(log t)"= | [} (log £)" " ps(s) Fals, 6p(s)% — [ (log 1) pa(s) (s, () 2

-« otl- a—n|ds
< Lylldy — dulllogty == f! (log 1)~ (log )" (log s
< Lolldy — dall (ot [ (log 1)+ (log s)erth-rs
< Lyllby — 64l(logt) ™ Ba + Lo+ k—n+ 1)

< Lsl|¢pp — ¢4||B(a+ I, + k — n+ 1) — 0 uniformly as p,q — +0o0,

we know that

¢(t) = (log#)*™" lim (log?)" ¢, (t)

— lim z 2 (log 1) + s [ (log £) 7 pa(s) Fa(s, dii (5)) &

1—+00

n

— Zl F(a oy (logt)* ¥ 4+ lim fl (log ) 3(8)F3(s,¢i_1(8))%

— i—+00

i o= erl)(logt)“ Y Fey f1 (log ) ; pg(s)Fg(s,qﬁ(s))%

Then ¢ is a continuous solution of (3.3.1) defined on (1,€].

Suppose that ¢ defined on (1, ] is also a solution of (3.3.1). Then

_HL aivitoza_lsss@ e
_;F<Q_U+1)(logt) +F(a)/1 (1 g5> p3(s)F3(s,1(s)) , te (1.

We need to prove that ¢(t) = ¢ (t) on (1, e]. Since F3 is a ITI-Carathéodory function, we

have
Mo = sup |F(t, (1)) = sup [Fs(t, (logt)* " (logt)"~*¢(¢))]

te(l,e] te(L,e]

< sup  |F3(t, (logt)* "z)| < +o0.
te(Lel, || <|[|¢]|
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Then

(log )™ *|8b(t) — do(t)] = (log )"~ | [{ (log £)*™" ps(s) Fi (s, v(s)) &

< M, (10g t)n+k+l B(alj_(lc;l;+1) ‘

Furthermore, we have

(log )"~ (t) — éa(8)] = (log 1) s | (1og )" pas) [Fa(s.0(5)) — Fa(s. du(s))] &

< MyLs (log t)a+n+2k+2l B(a+l,;y(22)k+l+1) B(aljr(lc;l;ﬂ) .

By mathematical induction method, we can get that
(log )" =[¥)(t) — ¢i-1(?)]

J{ (1og 2)™ " ps()[Fy(s, () — Fi(s. di—als))lds

= (log t)”_aﬁ

, ' | . o
< MoLg_l(log t)(zfl)aJrnJrszrzl 11 B(O“Ha(J—1)?(‘1'1])k+(1—1)l+1)
j=1

i

. -1 . . .
< MyLi ' T] B(C““"J*”ﬁg)’”“*lﬂ“)7t € (1,e], foralli=1,2,-

J=1

Similarly we have Aliin (logt)"*¢;(t) = (logt)™ “4(t) uniformly on (1, e]. Then ¢(t) = 1(t)
1—+00
on (1,e]. Then (3.2.1) has a unique solution ¢. The proof is completed. O

Theorem 3.3.1 Suppose that (A3), (H3) hold. Then z is a solution of IVP (3.0.3) if
and only if x € LC,_.(1,¢€] is a solution of the integral equation (3.3.1).

Proof: Suppose that z is a solution of IVP (3.0.3). Then t — (logt)" “x(t) is continuous
on [1,e] by defining (logt)"*z(t)|;=1 = lirnJr(log t)"*x(t) and ||z|| = r < +o0. Since Fj is
t—1

a III-Carathéodory function, we know

M, = sup |Fy(t,z(t))| = sup |Fs(t, (logt)* ™" (logt)"~x(t))|

te(1,e] te(1,e]

< sup |F3(t, (logt)* "z)| < 4o0.

te(Lelifal<r
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So

lim [ (log %)n_a_l r(w)? = lim [ (log i)n_a_l (log w)*"(log w)"“z(w) 2

s—1t s—1+ w

~ lim (log€)"5(6) J; (1og 2)" ™"~ logu)~ts

s—1t

by mean value theorem of integral, £ € (1, s)

= lim (log &)™ 2z (€) fol(l ) lyengy by oEw

so1+ log s

= tamB —a,a—n+1).

and for v € N[1,n — 1] we have

lim (s£)"" (fls (log g)nia*l x(w) dw) =I(n—v—(a—w)) lim B DYva(t)

t1+ © 98 w t—1+
=T'(n—a)n,.
From (A3), we have

(log t)"= | [ (log 1) pa(s) Fa(s, z(s)) &

< (logt)" [/ (log ﬁ)ail M, (log s)¥(1 — log )"

s

< Mr(logt)"*a flt (log §>a+lfl (log S)k% _ Mr(log t)n+k+lB(a/ + l, k+ 1)‘

So t — (logt)"* [/ (log %)a_lpg(S)Fg(S, 2(s))% is defined on (1, €] and

lim (log¢)"« flt (log i)a_lpg(S)Fg(S, x(s))df =0. (3.3.2)

t—1t

Then t — (logt)" @ flt (log i)ailpg(S)F:),(S, 2(s))% is continuous on [1,e] by defining

S

(log )" [/ (log ﬁ)ail p3(s)F3(s,z(s)) L =0. (3.3.3)

t=1
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We have # 1% BLH D2 4(¢)

7 Ji (log£)"”

d
Sds

e i (og )™ ()" (

1
I'(«)

d

o) Tee) l(log ) (s

)n—l (

+Ha—1) i (log £)* 7 (s

ds

Jim (s

oy (log )t

o ey i (log 5 (s

1 1
T 1) fn-a)

1

- sy (log )" +

1

; (a— v+1 (1Ogt) "+ I'(n—a)T'(

+(a—n+1) f1 (log )a nfl (log )n “ 1a:(w)

ps(s)Fa(s, 2(s)) % =

e i (og )" M a | (s2)" 7 (

J

1

MNa—n+1)T
; ratsrm 108" + vy Toey

st [ 108 9" I (g

Y. Liu

= "1 ps(t)F3(t, z(t)). So

(log 3)"™"" a(w)de ) &
Ji (log 2)" w(w) e )]
(o5 2)" ™" a2

" (log %)a_

ey Ji (log )"

gt [F os ) (17 o) " atw)

w

dw

w

/
ds
S

Z (a— v+1 (logt) T F(n—a)Fl(a—n+2) |:tlirlr},. (logt a " fl ( w)n ! (w)d?w
/
+(@=n+1) [} (log )" (log 2)"™"" La(uw) ]
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n—1
1 n
== Zl e 108" " + saare—! [F(aﬁn—i-l)B(n —a,a —n+1)(logt)

a—n+1

!/ n
+ (Oé —n+ 1 fl fo 1 _u>a no e 1du[p( )Ew] = [L‘(t) — ;W (logt)a*U
Then « € LC,_,[1, €] is a solution of (3.3.1).

On the other hand, suppose that x is a solution of (3.3.1). Together with Lemmas 3.3.1, 3.3.2,
3.3.3 and the result at the beginning of the proof, it follows that lim+ (logt)"~*x(t) = ==
t—1

I'(a—n+1)
and #F DO (1) = n,,v € N[1,n — 1]. Furthermore, we have

REE DY a(t) = W( ) <f1 (10 _)n . 195(3)%)
:ﬁ( ) {fl (10 -)n ot (Enl T(a— v+1)(logs) -

ey Ji (108:5)" 7 palw) Fa(uw, 5”(“’))%0) d?}

- F(n a) Z T(a— v+1) ( dt) fl (1 0g )n_a_l (log s)a—”%

+F(1a) F(n ) ( ) fl ( s)n_a_l fls (lOg %)a_lp?’(w)Fg(w’x(w))dEw%

- F(n ) z I'(a— v+1) ( dt) (10gt n vf() )n_a_l W dw

s|E

ds
S

e ey (F) " Y (log )" [ (log )" ps(w) Fy(w, w(w)
= Fay i (G 7 5 (log £ (log 2)™ ™ “pa(w) Fy(w, a(w)) &
= e (t8)" f) (log £)" 7 fy (1= w)" ™ e dupg (w) Fy (w, a(w)) 2
= iy (t2)" [} (log £)" ps(w) F(w, x(w)) 2 = ps(t) F(t, x(t)).
So z € LC,_4(1,¢] is a solution of IVP (3.0.3). The proof is completed. O

Theorem 3.3.2 Suppose that (A3), (H3) hold. Then

(i) IVP (3.0.3) has a unique solution.
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(ii) If there exist constants k > —1, 1 <0 with | > max{—«a, —n — k} and M > 0 such that
|G(t)] < M(logt)*(1 —logt)! for all t € (1,¢), then following special problem

REH Do g (t) = G(t), te(l,e,

Jim (log )™ 2(t) = w2y (3.3.4)
lim AL DY (t) =y, 5 € N[1,n — 1]
t—1t
has a unique solution
n 1 o
z(t) = Z = v+1 (logt)*™" + g2 f1 (log £ ) G(s)%, t e (1,e. (3.3.5)

Proof: (i) From Lemma 3.3.1, 3.3.2 and 3.3.3, IVP (3.0.3) has a unique solution.

(ii) From the assumption mentioned and (i), IVP (3.3.4) has a unique solution. We get

n

( ) = Z (a— v+1 (logt)a Y+ '« )fl (log ) 1G(S)%

v=1

By replacing ps(t) F3(t, z(t)) with G(t). Then x satisfies (3.3.5). The proof is completed. [

3.4 Existence and uniqueness of solutions of (3.0.4)

Choose Picard function sequence as

ult) =S Hllog) 1 € (1]

¢Z(t) = Qb()(t) + ﬁ flt <1Og é)ail p4(S)F4(87 qbi—l(s))%at S [17 6]7i = 17 2a o
Lemma 3.4.1 Suppose that (A4), (H4) hold. Then ¢; € C[1,¢].

Proof: On sees ¢y € C[1,e]. Since Fy is a IV-Carathéodory function, we know

My = sup [Fi(t,do(t))| = sup < sup | Fi(t,2)] < +oc.
tG(l,e] tG(l,e] te(l,e],\x|§||¢0||

Y (108 2)™ pa(s) (s, dul) %
< flt (log ﬁ)a_l My(log s)*(1 — log s)' %

< M, flt (log S) (log s)kds

= My(logt)*™*B(a + 1,k +1) > 0 as t — 1T,
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we get that lim ¢, (t) exists and ¢; is continuous on [1,¢e]. Then ¢; € C[1,e|. By mathe-
t—1
matical induction method, we see that ¢, € C(1,e]. O

Lemma 3.4.2 Suppose that (A4), (H4) hold. Then ¢; is convergent uniformly on [1,€].

Proof: Let M be defined in the proof of Lemma 3.4.1. In fact we have for t € [1, ¢] that

‘¢1(t) - ¢0(t)‘ =

ot S « [e% s
ray Jy (g 1) pals)Fals, 60(s)) % | < Mo(log 1)+ Blass,

So
6a(6) — 0n(0)] = |y [} (082" pals)[Fuls, 61(5)) — Fuls, on(s))]2

< w5 J1 (log £)™ 7 (log 5)*(1 — log ) Luln (s) — o (s)| £

a+l—-1 o )
< MyLag= ft (log £) 7 (log 5)k (log s )k Blot ;(Z’;H)d?

o B(a+l,a+2k+i+1) B(a+l,k
= MyLy(logt)? +2k+21 Bt FZ;) +i41) (;r(a)+1)

Similarly by the mathematical induction method, we get for every ¢ = 1,2, --- that

[64(t) = 611 (8)] < MLy (log ¢+ ] Bletblitig s L)
j=1

< MOLifl Hl B(a+l,(i*l)lgz(zi)kJr(ifl)lJrl)7t e (1, 6].
‘7:

Similarly we can prove that

+o0 +o0 7
L i—1 B(a+l,(i—1)a+ik+(i—1)I+1)
i;l U; = Z:Zl M()L4 jl;[l T'(a)

is convergent. Hence

¢o(t) + [01(2) — do(D)] + [d2(t) — o1 (O] + -+ + [di(E) — dia ()] + -+t € [1, ]
is uniformly convergent. Then {¢;(t)} is convergent uniformly on [1, e]. O

Lemma 3.4.3 Suppose that (A4), (H4) hold. Then ¢(t) = lliin ®i(t) defined on [1, €]

1 a unique continuous solution of the integral equation

x(t) = :Z_:_: %(log ) + ﬁ flt (log i)a_1p4(s)F4(s, x(s))%. (3.4.1)
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Proof: By 'liin ¢i(t) = ¢(t) and the uniformly convergence, we see ¢(t) is continuous on
1—>+00

[1,e]. From
1 (108)™" pa(s) Fa(s, (5% = (10g.2)" ™ pa(s) (s, 6,(5)) 2
< Lalléy = &yl J} (log 1) (logs)*(1 ~ logs)'(log s)* "%
< Lu|[¢p — d4l| flt (log ﬁ)aﬂ_l (log s)Fto—nds
< Ly||¢p — ¢4ll(log t)O‘*k“W — 0 uniformly as p,q — 400,

we know that

1—00 i——+00

n—1
o(t) = lim ¢;(t) = lim ;) %(log t)7 + ﬁ flt (log é)a_l pa(s)Fa(s, di1(s))%

n—1 . a—
= 3= Bllog 1)’ + riay [} (lo8 £)"™" pals) s, 6(s)) %
]:

Then ¢ is a continuous solution of (3.4.1) defined on [1, €].

Suppose that ¢ defined on [1, €] is also a solution of (3.4.1). Then

W(t) = Z_: fj(logt)j + %/1 (log 2)“‘ p4(5)F4(s,¢(s))%,t € (1,¢].

We need to prove that ¢(t) = ¢(t) on (0, 1]. Since Fj is a IV-Carathéodory function, we
know

My = sup |Fy(t,v()| = sup < sup |yt )] < +oc.
te(l,e] te(le]  te(lel|z|<|¢||

Now we have
JE (og ) py(s) Fals, v(s))]

() = do()] = 1

< Mo(log t)a-&-k—i-l%'

Furthermore, we have similarly to the proof of Lemma 3.4.2

(1) — (D] = w5 | [ (log £)™ " pa(s)[Fals,v(s)) — Fi(s, do(s))] %

a B(a+l,a+2k+1+1) B(a+l,k+1
< MyLa(log t)2e+2e+2 (at Fz;) +1+1) (F+(a)+ )
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By mathematical induction method, we can get that

(1) = $i1(8)] = 7 i (log 1) pa(s)[Fi(s, (s)) — Fals, ¢i-a(s))] 2

MOLZ l(log t)za+lk‘+1l ﬁ (a+1,(i—1) a(—;z)k—i—(z 1)I4+1)

< MOLZfl Hl B(a+l,(i71)?(4;1‘)k+(i71)l+1)’t € (17 6].
J:

Similarly we have .hﬂﬂ ¢i(t) = 1(t) uniformly on [1,e]. Then ¢(¢) = ¢(t) on [1,e]. Then
1—+00
(3.4.1) has a unique solution ¢. The proof is completed. O

Theorem 3.4.1 Suppose that (A4), (H4) hold. Then x € C[l,e] is a solution of
IVP (3.0.4) if and only if x € C[1, €] is a solution of the integral equation (3.4.1).

Proof: Suppose that © € C(1,¢] is a solution of IVP (3.0.4). Then z is continuous on

[1, €] by defining x(¢)|i=1 = lim z(t) and ||z|| = r < +00. Since F} is a IV-Carathéodory
t—1

function, we know

M, = sup |Fy(t,z(t))] = sup < sup |Fy(t,z)| < +oc.
te(1,e] te(1,e] te(1,el,|z|<r

One can see that . -
IR (log ﬁ) (log s)k(1 — log s)l ds

a+l—1 s og s
< Ji (log )7 (log s)* 4 by £&5 = u
= (log t)*h+ fol (1 — )" ukdu
< (logt)>th+t fol (1 — )" ukdu

= (logt)* ™ ' B(a + 1,k + 1).
From (A4), we have for ¢ € [1, e] that

Ji (log £) ™ pa(s) Fu(s, x(s)) &

< [{ (log é)a_l M, (log s)*(1 — log s)"4

< M, flt (log s) (log s)Fe = M, (logt)* "B (o + I,k + 1).
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So t — flt (log ﬁ)a_1p4(s)F4(s,x(s))% is defined on (1, €] and

lim f1 (log £)* 1p4(s)F4(s,x(s))% = 0. (3.4.2)

t—1t

Furthermore, we have t — flt (log i)ail pa(s)Fy(s, x(s))ds is continuous on (1, e]. So

e /lt (1°g §>alp4(S)F4(s,x(3))§

S

is continuous on [1, e] by defining

S (og 1) pa(s) Fi(s, (s)) & _ =0 (3.4.3)
We have 71 “H Do () = 1% py(t)Fy(t, z(1))]. So
ma i (08 1) pu()Fus,2(s) % = " Ipa(t) Fa(t, (1))

HIa CHDH:L.( )
=ty J{ (o )" [ty S (o )" (wi) et

= ey i o £)* (log )" 4 ()"

= Feyrma Ji (og )" Jy (1 =)™ o du (wi) " aw)

— ity (og £)" (i) " a(w) % = J} (1og 1) d [ (wit)" a(w)]

t

= ity (tog £)" 7 [(wi)" ™ a(w)]| +

o i (0g )" [(wil)" ()] 22

=~ 2 (log ) o fY (log £)" 7 [(with) " a(w)| 2

== 5 g logt)" 7+ i = 2(0) — - % (log)
So o
o) = 52 % logt) + i 1 (1082)" (o)l ()2

Then = € C]1, ¢] is a solution of (3.4.1).



BVPs for impulsive FDEs 45

On the other hand, if = € C[1, ¢] is a solution of (3.4.1), we get

j j—v a—v—1 o
CHDY a(t) = Y 25 (logt) ™ + s Ji (log t) pa(s)Fu(s, x(s))%.
Jj=v

Similar to (3.4.2), we have lim z(t) = ny and “ D¥, x(1) = n,,v € N[1,n—1]. Furthermore,

t—1+

we have for t € (1,¢)

a—n

" (log 1) " pal(s)Fu(s, x(s)) | < [ (log £)"™" M, (log s)*(1 — log s)' &

< M,(1—logt)! flt (log %)Q_n (log s)k%

= M,(1 —logt)'(logt)> "™ B(a—n+1,k+1) - 0ast — 1T.
Then

CHDIJF‘T n o) fl ( s)niail (S%)nl‘(s)%

= i i (08 )" ()" (Z g )’ + gy Ji (108 3)" [B<u>x<u>+a<u>1%‘>%

Jj=0

—a— nnfl ) s
- ﬁ ff (log %) ' (5%) j;o %(log s)Jd?

= e b (08 )" ()" (7 (og )" paCw) P w(u)) )

—— S a—n /
= by i 0g )" (U7 (log 2)™ " pale) Fu(u, ()22 ds

= ot [ (og )" (7 (0g:2)" " Bluja(w) + G4 ) ds}

— ﬁﬁt (log ﬁ)nfa I3 (log 5)a7np4(u)F4(u,:r(u))d7w

+(n—a)d f (log 1) f} (tog 2)" 7" paw) Faw, w(w)) L2ds|
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[ n—a—1 a—n Jg W !
= et [ Qo) (o8 2)" " Sy () P, () 2
:|/
I 1 n—oa— a—n w !
(a) T(n— )t flt fo (1—w) tu dupdw)ﬂ(w,x(w))%} = pa(t) Fu(t, x(t)).
So x € C[1,¢] is a solution of IVP (3.0.4). The proof is completed. O

=|g

= Myt [ S (Qog )" (log £)" pa(w) Falw, w(w))

Theorem 3.4.2 Suppose that (A4), (H4) hold. Then

(i) VP (3.0.4) has a unique solution.

(ii) If there exist constants k > —a+mn —1, 1 <0 with | > max{—a,—a —k} and M >0
such that |G(t)] < M(logt)k(1 —logt)! for all t € (1,¢), then following special problem

CHpa z(t) = G(t), t € (1€,

. j . (3.4.4)
tl_l)I}l+ (t4) 2(t) = n;,j € N[0,n — 1]
has a unique solution
x(t) = 2 L(logt) + s [1 (log£)" 7 Gs)Z, t € (1el. (3.4.5)

Proof: (i) From Lemmas 3.4.1, 3.4.2 and 3.4.3, Theorem 3.4.1, IVP (3.0.4) has a unique

solution.
(ii) From the assumption mentioned and (i), IVP (3.4.4) has a unique solution. We get

n—1

x(t) = Z L(logt) + 7= f1 (log ) 1G(s)df

]70

by replacing p4(t) Fy(t, x(t)) with G(t). Then z satisfies (3.4.5). The proof is completed. []

4 Exact piecewise continuous solutions of LFDEs

In this section, we present exact piecewise continuous solutions of the following linear frac-

tional differential equations (LFDEs), respectively:
CD0+$( ) = Fl(t)aa'e-v te (tiati-i-l]?i € N[Oam]a (401)

BLDx x(t) = Fy(t), a.e., t € (t;,ti11],7 € N[0, m], (4.0.2)
REA Do o(t) = F3(t), a.e., t € (s4,8i11],1 € N[0, m], (4.0.3)
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and
CHDgx(t) = Fu(t), ae., t € (si,5i41],7 € N[0, m], (4.0.4)

wheren — 1 <a<n AeR, 0=t <t; < -+ <ty <ty =1in (3.2.1) and (3.2.2)
and 1 =1t) <t < -+ <ty <tpy =ein (3.2.3) and (3.2.4). We say that x : (0,1] - R
is a piecewise solution of (4.0.1) (or (4.0.2)) if z € P,,C(0,1] (or P,,C,—4(0, 1]) and satisfies
(4.0.1) or (4.0.2). We say that x : (1,e] — R is a piecewise continuous solutions of (4.0.3)
(or (4.0.4)) if x € LP,,C,,—u(1,€], (or LP,,C(1,€]) and z satisfies all equations in (4.0.3) (or
(4.0.4)).

(B1) there exists constants k > —a+n—1,1 <0 with { > max{—a, —a — k}, M > 0 such
that |Fy(t)| < Mt*(1 —t)! for all t € (0,1).

(B2) there exists constants k > —1, [ < 0 with [ > max{—«a, —n — k}, M > 0 such that
|Fy(t)| < th(1 —¢t)! for all t € (0,1).

(B3) there exists constants k > —1, [ < 0 with [ > max{—«a,—n — k}, M > 0 such that
|F3(t)| < (logt)¥(1 —logt)! for all t € (1,e).

(B4) there exists constants k > —a+n—1, 1 < 0 with [ > max {—«a, —a — k}, M > 0 such
that |Fy(t)| < (logt)*(1 —logt)! for all t € (1,¢).

Theorem 4.0.1 Suppose that (B1) holds. Then x is a piecewise solution of (4.0.1) if
and only if there exist constants c;,,(i € N[0, m],v € N[0,n — 1]) € R such that

x(t) = Z Z et — 1) + [y Sl Fi(s)ds,t € (ti, tia],i € N[0, m]. (4.0.5)

(o)
o=0v=

Proof: We find for s € (0,1)

I'(a— n+1)

(s— {emw) Fi(u du’ < fo (Gl uF(1 — u)ldu

S (s—u « n 1 w)e—n
< (1—9) [y fgsubdu = (1 — )ttt [0 Lotk du (4.0.6)

_ (1 _ S)Z a+k—n+1B(a—n+1,k+1)

- TaniT) —0ass—0".

We also have for t € (t;,t;41] that

"t —s)* 1R (s ds‘ < fo e Fy(s)]ds < fot(t—s)aflsk(l — s)lds

< Jo(t = s)* ¥ skds = otk [H(1 —w) ™ wbdw = 1B (a + 1k + 1).

Then [)(t — s)* ' Fi(s)ds is continuous on [0, 1].
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If x is a solution of (4.0.5), then we know that lim x(t) (i € N[0, m]) exist and z € P,,C(0, 1].

t—)t

Now we prove that z satisfies differential equation in (4.0.1). In fact, for ¢ € (¢o,t1] we have
by Theorem 3.1.2 D, z(t) = F(t). For t € (t;,t;+1] (i € N[1,m]), we have by Definition 2.3

CD0+37( )=

t
= 5o Jo

=ty Jo

_7‘L
Ots

1

o(t—s8)" "

i n « (s—uw)* ™™
I'(n—a+1) - (fO T(a—n+1) n+1) )du’> 0

i n—oa— n
mfo (t — s)" otz (s)ds

[i—1
> [t = st (s)ds + [t - SVMW(SMS]
7=0"" Z

[i-1 j n-l )
> J;tﬁl(t_ s)n—a <Z S or(s —t,)" + [y (S u) Fl( )du) ds
=0 '

n—

% 1 n)
s)”‘“‘1<20 >, St (s s— 1) + Jo BT )du) ds}

s (eam (n)
C 1Fl(u)czu) ds
(

“(h
ot <f0 I'(a—n+1)

a—n /
G u)du) ds

r /
t n (0% !
T(n—atl) Jot— (fo F(a n+1 )d“) ds]

t

using (4.0.6)

/
+<n_a fo t—S n—o— 1f0 mFl( )duds]

_f(f<t n “ 1f0 Igsaun+1 )d’U/dSi|

fof (t — s)no 1" go (v )du}/

I'a— n+1

- /
fg fol(l — )l w? dwFl( )du] by =% =w

F(a n+1)

= Fl(t)7t S (tiyti-i-l]ai € N[Ovm]

We have done that x satisfies (4.0.1) if x satisfies (4.0.5).

Now, we suppose that z is a solution of (4.0.1). We will prove that x satisfies (4.0.5) by
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mathematical induction method. Since x is continuous on (¢;, ;1] and the limit lim x(t) (i €
t— t

N[0, m]) exists, then x € P,,C(0,1]. For t € (to,t1], we know from Theorem 3.1.2 that there
exists ¢y, € R such that

n 1
z(t) = %ﬂ+k

Then (4.0.5) holds for i = 0. We suppose that (4.0.5) holds for all i € N[0, j],7 < m—1. We

derive the expression of x on (¢;11,%;42]. In order to get the expression of x on (¢;11,%;42],

)dS t e (to,tl]

suppose that

ZC(t) = q)(t) + i nil Lov t—t v4 fO I‘ )dS t e ( ]+1,tj+2]. (407)

o=0v=
By CDOJrli( ) = Fl(t),t S (t]’+1, tj+2], we get

Fi(t) = “Dgea(t) = gy Jo (b = 9)" e (s)ds

t 1 s)yn—a— 1 c (n)
= ZL/H- tr(l - (Z Z Cou —|—f0 o) u)du> ds

(n)
)du) ds

yn—e 1 j n=l
ﬁg+1T(®<S)+Z ZOCM (s — o) +f0

o=0v=

a t n—o— s (s—u a—1 (7’1)
= “Dg B(t) + i ot —9) 1( fi s Fl(u)du> ds

/
_ Cna n—a—
- Dt;.;l@ T(n—a) fo (t =) ' (fo F(a n+1 u)du> ds
!/
CD%HCI)(t) T(n—a+1) a+1 {fo ( 0S lgs(a%?n—‘,—l 1(u )du) d} )

By a similar computation, we get

Fi(t) = Fi(t) + D% ®(1),

J+1

It follows that D¢, ®(t) = 0 for all t € (t;11,;42]. By Theorem 3.1.2, we know that there
ta
n—1

exists ¢j11, € R (v € N[0,n — 1]) such that ®(t) = Z Lt — t4q)" for t € (tj4a, 4.
Substituting ® into (4.0.7), we get that (4.0.5) holds for i = j+ 1. By the mathematical

induction method, we know that « satisfies (4.0.5) and x|, 4,,,] is continuous and hrri x(t)
t—t;

exists. The proof is completed. O
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Remark 4.0.1 It is easy to see from (4.0.5) that « is a solution of (4.0.1) if and only if
satisfies that there exist numbers C;, (i € N[0, m],v € N[0,n — 1] such that

z(t) = Z Cat? + f§ &5 G Fi(s)ds, t € (ti,tin], i € N[O, m].
In |73], authors proved the similar result under a strong assumption that F is continuous
on [0, 1]. So our result generalizes the result in [73]. One sees that (4.0.5) is more convenient

for use. For example, when consider the following impulsive problem
“Dg x(t) = Fi(t),t € (ti,tisa],7 € N[0, m],
AxU(t;) = a;j,i € N[1,m], j € N[0,n — 1],
29)(0) = ag,j € N[0, n — 1]
where o € (n — 1,n), F} satisfies (B1). Then we can easily get by (4.0.5)
Cov = Qoy, v € N[0O,n — 1], ¢ = a4, v € N[0O,n — 1],7 € N[1,m].

So

st —t,)" + fo = Fa 1(s)ds,t € (i, tiv1],7 € N[0, m].

Theorem 4.0.2 Suppose that (B2) holds. Then x is a solution of (4.0.2) if and only
if there exist constants c,,(0 € N[0, m],v € N[1,n]) € R such that

7

x(t) = ;;F;t;ﬂ (t—to) + fy 5k 1F2( )ds,t € (t; tipa],i € N[0,m].  (4.0.8)

Proof: For ¢t € (t;,t;41] (j € N[0, m]), similarly to the beginning of the proof of Theorem
4.0.1 we know that

tna

Jy(t = 5y Pals)ds| < [yt = )2 Fa(s)lds
< e [Tt — s)0 7 sF (1 — s)lds < ¢ [(t — s)*H " shds

_ gtk f01<1 —w)* - wkdw = " TFHB (a4 1k + 1).

Qo o fot(t — 8)*7 1y (s)ds is continuous on [0, 1].

If x is a solution of (4.0.8), we have z € P,,C1_,[0,1]. It follows for t € (t;,t;+1] and from
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Definition 2.2 that

(n)
RLD& x(t) = e [fo ) a_lx(s)ds]

(n)
- 1“(n @) [Z ﬁle z:: ; aafu_u (s—t )a_”dsl

(a—v+1)

% n (n)
+1"(n17a) [Lﬁ (t - S)n—oz—l ; ; Tty ( - tg)a_vd8:|

+F(n1—04) [fOt(t ) lfo Fa >d“d8]

1

j j (n)
i—1 n
=YY t n—a— a—v
= T'(n—a) [Z Z Z I‘(acj;)Jrl) ‘ﬁf]-]+1 (t - 8) 1(8 - to’) dS]

7=00=0v=1

7 n (n)
__Cov t n—o— —
I‘(n a) Z Z T'(a—v+1 ftl (t - S) “ 1(5 o tU)a vds
o=0v=1 )

L [ i = sy e ds ]

j—to
it

1 i—1 7 n tjjl;tc X (n)
= To—o) Z:O ZO Z:l F(ac—g;j-',-l) (t — tg>n—v L ot (1 _ w)n—oc— W' dw
j=00=0v=

353 ()
l_a) {Z{)lea o1 1) ft ta 1_ n alwavdw:|

(n)

L =t [ — eyt

(u)du

7 n tiy1—to (n)
= F(n «) ZO Zl F(aCa;;+1)( to')n_v ftjj;(:o (1 — w)"‘a_lwa_”dw

—_
=
—_

I
q

J v=

t—to

o=0v=1

7 n (n)
___Cov 1 n—a— a—v
[Z > i Juste (1= w)" ™ dw}

- (n)
t —u)" 1
+ [fo (t(n—)l)! FQ(U)dU}
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7 n (n)

N Zozar(a iy (o) nvfo (I—w)"*w* ™ dw|  + F(t)

= F5(t),t € (i, tiva].
It follows that z is a solution of (4.0.2).
Now we prove that if = is a solution of (4.0.2), then x satisfies (4.0.8) and = € P,,C,,_4[0, 1]

by mathematical induction method. By Theorem 3.2.2, we know that there exists a constant
cop € R(v € N[1,n] such that

n —s a—1
x(t) = Zl Tt + [ (t F()) Fy(s)ds,t € (to, t1]-
Hence (4.0.8) holds for ¢ = 0. Assume that (4.0.8) holds for i = 0,1,2,--- | j < m — 1, we
will prove that (4.0.8) holds for i = j + 1. Suppose that

n

0304 5§ sttt e

o=0v=1

—s a—1
F()) FQ(S)dS,t c (thrl, tj+2].

Then for t € (t;41,tj12] we have

(n)
F(t) = "L Dg, a(t) = Ejfﬁl sy e ta(s)ds + f) | (E = s)" 0 a(s)ds

Similarly to the above discussion we can get

F(t) = " Dga(t) = F(t) + D2 ()

+

So RLD?; ®(t) =0 on (tj11,t;+2]. Then Theorem 3.2.2 implies that there exists a constant

Jj+1

Ci+10 € R such that ®(t) = Z S (f— ti01) TV (E — tj1)™ on (E41, t10). Hence

I'(a—v+1)
jtl n
Cpv oa—v t S
2(t) = Zo 21 F(a—pv—i-l) (t—1,) + f (t F2(3)d3at € (tjr1,tj42l-
p=0v=

By mathematical induction method, we know that (4.0.8) holds for j € N[0—, m]. The proof
is completed. O

Theorem 4.0.3 Suppose that (B3) holds. Then x is a solution of (4.0.3) if and only
if there exist constants cj, € R (j € N[0, m],v € N[1,n]) such that

Cin a—v a—1 s .
Z F(a—]11+1) <10g %) + ﬁ flt (log é) F3(S)d?>t € (tza ti-i—l]az S N[Oa m]
(4.0.9)
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Proof: The proof is similar to the proof of Theorem 4.0.2 and is omitted. n

Theorem 4.0.4 Suppose that (B4) holds. Then x is a piecewise solution of (4.0.4) if
and only if there exist constants cj, € R (j € N[0, m],v € N[1,n]) such that

7 n—1 . v a—1 o .
w() =3 5 @ (og 2)" + o S (log ) Fu(s) 2,1 € (141l € ND ). (40.10)

p=0 v=0

Proof: The proof is similar to the proof of Theorem 4.0.1 and is omitted. ]

5 Main results

In this section, we establish existence results for solutions of BVP (1.0.i) (i = 8,9,10,11)
respectively. The following two well known fixed point theorems will be of use in the sec-
tions to follow. In particular, the Nonlinear Alternative (|28]: Theorem 5.1, p.61) will be
employed.

Lemma 5.0.1 |Nonlinear Alternative] Let X be a normed space with C' a conver

subset of X. Let U be an open subset of C' with 0 € C and consider a compact map
H:U—=C.If

uw# NHu  for allu € OU and for all X € [0, 1]

then H has at least one fixed—point.

5.1 Solvability of BVP (1.0.8)

In this section, we present some preliminary results that can be used in next sections for get
solutions of BVP (1.0.8).

Lemma 5.1.1 Suppose that o : (0,1) — R is continuous and satisfies that there exist
numbers k > 1— 3 and | <0 with | > max{—f,—3 — k} such that |o(t)| < t*(1 —¢t)" for all
t € (0,1). The x is a solutions of

( Dl a(t) = o(t),t € (t;, tina],i € N[O, m],

z(0) =a, 2/(1) =0, (5.1.1)

L Al’(tl) = ]i7 AJZ/(tl) = Ji, 1€ N[l,m]
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if and only if x and

z(t)=a+ |b— 01 %a(s)ds — 21 Jo| t
(5.1.2)
+ 30 Lo+ (t—to) o] + fy SEh—0(s)ds, t € (b, tia),i € N[0, m].
o=1

Proof: Let z be a solution of (5.1.1). We know by Theorem 4.0.1 that there exist numbers
Cs0,Co1 € R (0 € N[0, m]) such that

i

z(t) = z_j [Co0 + o1 (t — to)] + [1 U5 s)ds,t € (t;,ti11],1 € N[0, m]. (5.1.3)
So
v'(t) = Z o + 7 & FB o (s)ds,t € (i, tina],i € N[O, m]. (5.1.4)
By
Jot—s)"o dS’ < [t —5)P sk (1 — s)lds

< [U(t — )P+ Askds = tFHHOB(B + 1k + 1) — 0 as t — 0%,

together with (5.1.3), (5.1.4) and the boundary conditions and the impulse assumption in
(5.1.1) that

Coo = @, Co0 = IO') Co1 = Jaa (S N[lam]a

u 1 (1—s)8—2
z_:ocgl + /5 (F(B) ) o(s)ds =b.

Then

m

fo F(ﬁ 1) s)ds — > J,. (5.1.5)

o=1

Substituting c¢,o, ¢,1(0 € N[0, m]) into (5.1.3), we get (5.1.2) obviously.

On the other hand, if = satisfies (5.1.2), then x|y, 4., (i € N[0,m]) are continuous and

the limits Tim z(t) (i € N[0, m]) exist. So z € P,C(0,1]. Using (5.1.5) and ¢y = a,
t—t;

Co0 = Iy +t5J5, ¢o1 = Jy, 0 € N[1,m], we rewrite z by

2(t) = 3 [coo +eon(t —to)] + fy U5 F s)ds,t € (t;,tiy1],7 € NJ0, 1].

o=0

Since o is continuous on (0,1) and |o(¢)] < t*(1 — t)!, one can show easily that x is con-
tinuous on (t;,t;41](i = 0,1) and the limits lim x(¢) (¢ € N[0, m]) exist. So =z € P,,C(0,1].

t—t}
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Furthermore, by direct computation, we have x(0) = a, /(1) = b, lim x(t) — x(t;) = I; and
t—=t;
lim z(t) — z(t;) = J;. Furthermore, we have by Theorem 4.0.1

t—t}
D0+LE‘( ) (t),t S (ti,t“_l],i S N[O,m]

So z is a solution of (5.1.1). The proof is completed. O

Define the nonlinear operator @ on P,,C(0,1] by Qx for x € P,,C(0, 1] with

= [ ()G (s, x(s))ds

X s))ds = Jy S p(s) (s, 0(9)ds = 3 St (k)|
£ 3 Ul 0(t)) + (¢ — 1) (L 2(t,)]

+ Jy S p(s) (s, 2(5))ds, £ € (ti,tia] i € N[O, m].

Lemma 5.1.2 Suppose that (a)-(e) hold, and f,G, H are impulsive I-Carathéodory
functions, I, J discrete I-Carathéodory functions. Then Q : P,C(0,1] — P,,C(0,1]
is well defined and is completely continuous, v € P,C(0,1] is a solution of BVP (1.0.8) if
and only if v € P,,C(0,1] is a fized point of Q.

Proof. The proof is similar to that of Theorem 3.1 in [%5] and is omitted.

Theorem 5.1.1 Suppose that (a)-(e) hold, f,G,H are impulsive I-Carathéodory
functions, I, J discrete I-Carathéodory functions and

(C1) there exist nondecreasing functions Mg, My, My, My, M; : [0,4+00) — [0,+00) such
that
|f(t, )] < My(lz]),t € (0,1), € R,

|G(t, )| < Ma(|z]),t € (0,1),z € R,
|H(t,2)] < Mu(|z]),t € (0,1),z € R,
[1(t:, x)| < My(|]),i € N[1,m],z € R,

|J(ti, x)| < My(|z]),i € N[1,m],z € R.
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Then BVP (1.0.8) has at least one solution if there exists ro > 0 such that

|[&l[1 M (ro) + |[|[1 Mu(ro) + mMi(ro) + 2mM;(ro)
(5.1.6)

B(B+l—1,k+1) |, B(B+Lk+1
+ | PO 4 B My (ro) < o

Proof: From Lemma 5.1.1, Lemma 5.1.2 and the definition of Q, x € P,,C(0, 1] is a solution
of BVP (1.0.7) if and only if z € P,,C(0,1] is a fixed point of ). Lemma 5.1.2 implies that
@ is a completely continuous operator. From (C1), we have for € P,,C(0, 1] that

[F(tx(6)] < My(Je(@)]) < My([ll]), ¢ € (0,1),
G(t, z(t))] < Ma(||z]]), t € (0,1),

[H(t,2(1))] < Myu([[z]]),t € (0,1),

[ (ts, x(t:))] < Mi([|z]]), i € N[1, m],

|J (s, x(t:))] < My([[x]]), 4 € N[L, m].

We consider the set Q = {z € P,,C(0,1] : x = X\(Tz), for some A € [0,1)}. For xz € Q, we
have for t € (t;,t;41] that

Q) ()] < (|8l Ma(ll2l]) + [0l Mu (|[21])+ fy G s*(1—s)dsMy(||]])+ mM (||]])

t (t—s)P—1
+mM;(|al]) + mM,(||z]) + fy —s" (1 — 5)'dsM;(]|a]])

< l[olls Ma(ll]) + [Pl M ([ |]]) + mMi(||]) + 2mM,(]|x]])

B(B+1-1k+1 B(B+1,k+1
T [ : r(B-1) : + ( T'(3) )] Mf(||$||)

It follows that

2|l = M|T=|| < [T < [[oll Ma(l]]) + [l M () + mMi([|2|]) + 2m M (]]z]])

B(B+l-1,k+1 B(B+1,k+1
| BloEEAEE) | BORE | A (|Jo])).

From (5.1.6), we choose Q = {z € P,,C(0,1] : ||z|| < r0} and C' = X. Then  is a open
subset of C' with 0 € C.
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If there exists x € J€ such that x = Qx, then z is a solution of BVP (1.0.7). If there exist
some x € I and A € [0, 1) such that z = AQz, then

ro = ||x|| = M|Qz|| < [|Qz|] < [|d][1 Ma(ro) + [[¢|[1 Mu (o) +mM;(ro) + 2mM;(ro)

B(B+1—1,k+1 B(B+1,k+1
(ﬁ;r(ﬁ_l)Jr)_'_ (B+1,k+1) Mf(ro)STo,

+ T(5)

a contradiction. As a consequence of Lemma 5.0.1, we deduce that ) has a fixed point which
is a solution of the problem BVP (1.0.8). The proof is completed. The proof of Theorem
5.1.1 is completed. O

Corollary 5.1.1 Suppose that (a)-(e), and (C1) hold. Then BVP (1.0.8) has at least

one solution if

ll¢l12 M (r)-+ [l Mg (r)-+mMy (r)+2m My (r)+ [ PO 4 BERLEED g (r)

inf

r€(0,400)

< 1.

T

Proof: From the assumption, we know that there exists o > 0 such that (5.1.6) holds. By
Theorem 5.1.1, BVP (1.0.8) has at least one solution. The proof is omitted. O

Corollary 5.1.2  Suppose that (a)-(e), and (C1) hold. Then BVP (1.0.8) has at least

one solution if

16111 M ()91 Mz (r)+m My (r)+2m My () + [ BEELLAED | BEELEED | pp ()

lim (=) & =0 or
r—-+00 T
lim 19111 M (r) -+l M (r)+mMy ()+2m M (r) + [ PO + PO My () 0

r—0 r

Proof: From the assumption, we know that there exists ro > 0 such that (5.1.6) holds. By
Theorem 5.1.1, BVP (1.0.7) has at least one solution. The proof is omitted. O

5.2 Solvability of BVP (1.0.9)

In this subsection, we present some preliminary results that can be used in next sections for
get solutions of BVP (1.0.9).

Lemma 5.2.1 Suppose that o : (0,1) — R is continuous and satisfies that there exist
numbers k > —1 and max{—3, —2—k} < 1 < 0 such that |o(t)| < t*(1—1t)! for all t € (0,1).



58 Y. Liu

The x is a solutions of

( RLD0+:C( ) (t)7t€ (tivtiJrl]?iEN[OamL
lim t*~Pz(t) = a, x(1) =b,

t—0t
lim (t — t;)> Pz (t) = L;,i € N[1,m], (5.2.1)

t—th

ARLDE 2 (t) = Jiyi € N[1,m],

\

if and only if x satisfies

x(t) =71 [b —a— fol %a(s)ds -> (J"(ll:(—tﬁ"))ﬁ_l +I,(1— t0)5_2>] + at??

il

Jo+(t—t, 52]} + Jo S5 5)5 (s)ds,t € (t;, ti11],7 € N[0, m).
(5.2.2)

Proof: Let x be a solution of (5.2.1). By Theorem 4.0.2, we know that there exist numbers
¢s0,Co1 € R(o € N[1,n]) such that

i ¢ —t )B-1 e —+ )B—2 _g)B-1 .
x(t) = ;[“‘}(g’} + Cealite) ]+f0t =0 (s)ds, t € (ti, tia],i € N[0,m].  (5.2.3)

It follows that

RLDSa(t) = E Co1 + [y o(s)ds,t € (i, ti1],i € N[O, m]. (5.2.4)

It follows from the boundary conditions and the impulse assumption in (3.3.1) that cpy =
(B —1a, coo =T(8—1)I,(c € N[1,m]), c;1 = J,(c € N[1,m]) and

o [eo (1—t5)P~1 Coa(1—ty)B—2 1 (1—s)f—1 _
ZO[ T T -1 } + Jo NE) o(s)ds =b.

Then

con =T(8 [— o [lO= ds—i(%ﬂu t,)8~ 2)] (5.2.5)

o=1
Substituting ¢,1, coo(o € N[0, m]) into (5.2.3), we get (5.2.2) obviously.

On the other hand, if z satisfies (3.3.2), tia](@ € N[0,m]) are continuous and
the limits lini(t — ;) Pa(t)(i € N[0,m]) exist. So z € P,Ca_5(0,1]. Using (3.3.5) and
t

i

coe =T'(B—1)a, coo =T(—1)I,(0c € N[1,m]), c,1 = J,(0 € N[1,m]), we rewrite z by (5.2.3).
Since o is continuous on (0,1) and |o(t)| < t*(1 —t)!, one can show easily that z is continu-

ous on (t;,t;11](¢ = 0,1) and using the method at the beginning of the proof of this lemma,
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we know that both the limits lim (¢t — ¢;)*Px(t)(i € N[0, m]) exist. So z € P,,Cy_5(0,1].

t—ot}
Furthermore, by direct computation, we have z(1) = b, and lim t2=Pz(t) = a. One have
t—0
from Theorem 4.0.2 similarly that D0+a:( ) = o(t) and for t € (¢;,t;11](¢ € Ng). So z is a
solution of (5.2.1). The proof is completed. O

Define the nonlinear operator 7" on P,,Csy_4(0, 1] for x € P,,Cs_3(0, 1] by

1

(T)(8) = 174 [ fo 0() (s, 2(5))ds — [, ()G, a(s)ds — [ 52 "a(s) (s, 2(5))ds

i ( tamr(; o)™ 4 I (t,, 2(t,))(1 —tg)5_2>} +1072 [ 0(s)G (s, 2(s))ds

o=1

+ 30 [ St 0lto)) + (¢~ 1) (10,008

e

Lemma 5.2.2 Suppose that (a)-(e) hold, and f,G, H are impulsive II-Carathéodory
functions, I, J discrete II-Carathéodory functions. Then T : P,,Cy_3(0,1] —
P,,Cy_5(0,1] is well defined and is completely continuous, x € P,Co_5(0,1] is a solution of
BVP (1.0.9) if and only if x € P,,C2_5(0,1] is a fized point of T'.

s)f(s,x(s))ds,t € (t;,tit1],7 € N[0, m].

Proof: The proof is similar to that of the proof of Lemma 3.1 in [81] and is omitted. [

Theorem 5.2.1 Suppose that (f)-(h), f,G,H are impulsive II-Caratéodory func-

tions, I, J discrete II-Carathéodory functions and

(C2) there exist nondecreasing functions Mg, My, My, My, M; : [0,4+00) — [0,+00) such
that

f(t, (t = t:)°%2)] < My(|2]),t € (ti, tia], i € N[0,m], z € R,

|G(t, (t — t:)°?z)| < Mg(|z]),t € (ti,tn] i € N[0, m],z € R,

|H(t, (t —t;)22)| < My(|z|),t € (t;,ti],i € N[0,m],z € R,

I(ti, (ti — tim1)? )| < My(|z]),i € N[I,m],z € R,

| J(ts, (t: — i) 22)| < My(|2]),7 € N[1,m],z € R.
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Then BVP (1.0.9) has at least one solution if there exists a ro > 0 such that

19111 M (ro) + 2[16|[1 Ma(ro) + £i5 M (ro)
(5.2.6)

+ |m+ 2_31(1 - ta)ﬁ_Q} MI(TO) + [ (ﬁilﬁl;ﬂ) + (’BJr(lBI;H)] Mf(ro) < rp.

Proof: From Lemma 5.2.1, the definition of T, z € P,,C>_3(0, 1] is a solution of BVP (1.0.8)
if and only if z € P,,Cy_5(0,1] is a fixed point of T in P,,Cy_5(0,1]. Lemma 5.2.2 implies
that 7" is a completely continuous operator. From (C2), we have for x € P,,Cy_5(0, 1] that

[f(tx(@)] = £t (= 1) 2(t — t:)* (D))

< My(|(t = t:)*Pa(®)]) < My(||z]]).t € (i, tisa], i € N[0, m],
|Gt 2(t)] < Me([|2]]), ¢ € (8, tia], 7 € N[0, m],

[H(t,2(1)] < Mu([[z]]),t € (i, tia], 7 € N[0, m],

[L(ts, 2(ta)] = [ (t, (6 — tima) 72 (= tim1)* P2 (t:))]

< Mi((ti = tia)*Pla(t)]) < Mi(||z]]), i € N[1,m],

| J (i, (ti))] < My([[]]), i € N[1,m].

We consider the set Q = {z € P,,Cy_5(0,1] : © = A\(Tx), for some A € [0,1)}. For x € Q,
we have for t € (t;,t;41]

(t=t)* P|(T2) (@) < (¢ = t:)* P77 [[[W][1Mu(||2]]) + [lol[ Me(]|2]])

- z 2)A1 _
iy SR - s () + 3 (M) HWWWFQWﬂ

= 6ol Malel) + (¢ — 07 35 [SSEE My (o) + (0 172011 o)

— t —S B-1
H(t = 17 fy st (L= 9)'ds My (][]

< [l Mu([l2|l) + 2llgll: Ma(|l2|]) + £ M (ll2]])

I,k+1 B l,k+1
+—m+za—wﬂﬂMmmo [BUHLED 4 BEAED] yy((la)).
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It follows that

2]l = N|Tz|| < ||T|] < [[¥l[Ma(ll2]]) + 2llol Me(ll=[]) + w5 Ma(ll]])

U _ B(B+Lk+1) | B(B+lk+1
[ 30 200272 atlal) + [P 4+ BT o).

From (5.2.6), we choose Q = {x € PiCy_5(0,1] : ||z|| < 7ro}. For x € Q, we get @ # A\(Tx)
for any A € [0,1) and x € 09Q. In fact, if 2 = A\(Tx) for some A € [0,1) and = € 052, then

ro = ||zl| < [[¥[lMn(ro) +2[|¢l|s Mc(ro) + 5 Ma(ro)

- - B(B+Lk+1) | B(B+Lk+1
o +az::1(1 ~to)’ 2} Mi(ro) + [ (B;(ﬁ)+ L+ (ﬂlf(ﬁ)+ L My (ro) < o,

which is a contradiction. As a consequence of Lemma 5.0.1, we deduce that T has a fixed
point which is a solution of the problem BVP (1.0.9). The proof is completed. The proof of
Theorem 5.2.1 is completed. O

Corollary 5.2.1 Suppose that (f)-(h), and (C2) hold. Then BVP (1.0.9) has at least

one solution if

: 1 2m
nf (Il (r) + 26l Mo(r) + A5 Mo ()

@) %) <1

o=1

+ {m + i (1 _ ta)ﬁ—z} M[(T) + [B(,8+l,k+1) + B(6+l,k+1)] Mf(r)

Proof: From the assumption, we know that there exists 79 > 0 such that (5.2.6) holds. By
Theorem 4.0.1, BVP (1.0.9) has at least one solution. The proof is omitted. O

5.3 Solvability of BVP (1.0.10)

In this section, we present some preliminary results that can be used in next sections for get
solutions of BVP (1.0.10).

Lemma 5.3.1 Suppose that o : (0,1) — R is continuous and there exist numbers k > —1
and max{—3,—2 — k} <1< 0 such that |o(t)] < (logt)* (1 —logt)" for all t € (1,e). Then
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x 1s a solutions of

( RLHD1+x( ) (t)vt € (tivti-i-l]yi € N[O,m],

lim (logt)*Px(t) + z(e) = a,

t—1+

lim #FH D () + BEH DI a(e) = b, (5.3.1)

t—1t

lim (logt —logt))* Pa(t) = I, ABEDY a(ty) = J;,i € N[1,m,

t—>t

ABEDI (1) = Jiyi € N[1,m,

if and only if x satisfies

o) = sy [0 35 o Jf ()% oty

B-1 B2
(log2)  +1, (log ) )
U:l o o

i B—1
ey (0= 50 - o) | Gorty 4 oty 3 (1)

i B8—2 _
+ > <log i) I, + ﬁ ff (log g)ﬁ ! o(s)%,t € (ti, tir1],i € N[0, m)].

o=1

e B— s U
%P—ﬁﬂﬁ%@lm%—Z(ﬁ

(5.3.2)

Proof: Let z be a solution of (5.3.1). We know from Theorem 4.0.3 that there exist numbers
Co1s Coo € R such that

: [& t A1 c t -2
(0= 35 |t omi) ™+ ity (o)
- (5.3.3)

+iim ft (log 1)5*1 0(3)%at € (ti,tiz1],7 € N[0, m].
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By direct computation, we have for t € (t;, ;1]

RLHDl+ x(t) = (2 3) (t5) f1 (log £ ) - w(s)%
~ i () 5 o)™ [ (e (o) 4 g (02))

s s\B— u S
ety Iy (log )" o] 4

U

it Ji (log3)" " ou)te] &

Co v 1_5 S ﬁ_l S
:=w<wzzm;Wm@(mg o

v=00=0

- B
() 5 5, e £ o) ()

-1

[¢ -8 sﬂ S
> fely i o) (log )

Co B S p-2 S
s (1) 2wt J (g ) (los )

=B s s\P~ u ds
i (1) Ji (08 ) ™ [} (105 2) " 0wy 22

changing the order of sums and integral, % = w or % =w

i—1 i—1

1 S /8_1 S
= o (1) £ 5 g i (tog ) (log )

s
oc=0v=0c

—1 :—1

¢ 2 tv+1 1-5 s p-2 ds
RINCE) ( i) Z X (log {) (log Z) s

S
oc=0v=0

i

N B—1
+F(21—ﬁ) (t7) > = Fc&é)ft (log £ ) <log i) ds
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. Co _18 S B_ S
+F(21—,B) (t%) az::o F(5_21) ftt (10g i)l (10g ;) dg

(ﬁ) T(2-5) ( dt) fl f ( ) 7 (log 5)5_1 %a(u)%u

logt, 1 —logts

S (108 2) e (1w w

logt—log ts

i () S g

— logty 41 —logto

+F ( ) i 602 Z floglffilolgfjg (]- - w)liﬁ w572dw
o=0 =0

logt—log to

by (1) 2 4

o=0

(log )flogt togre (1 —w) P wPtdw

logt—logts

Co 1 1— _
+rag (tg) > 5y Jistimonto (1 —w) P w2 dw

logt—logts

+ﬁF(1 (dt) fl (log )fo (1-w b= Ydwo (u )"ZL

=3 o1 + [l o(w) e t € (ti,tia],i € N[O, m].
o=0
We have
RLEDI () = 32 cor + [} o(u) 2, t € (ti,tiga], i € N[0, m].
o=0
One sees that

J{ (log £)" o (s)%

(log t)*~#

< (logt)*>~# [ (log ﬁ) ! (log s)kds

= (logt)?> P (log t)#+k+ fol (1 —w) " wkdw — 0 as t — 17,

< (logt)*# ff (log é)ﬁ_l (log s)* (log E)l

Y. Liu

(5.3.4)
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Similarly we have

[{o(s)%| < [{(logs)* (log €)' & < [! (log £)' (log 5)* &

= (logt)k+tH1 fol (1 —w) whdw = (logt)" "' B(l+ 1,k +1) = 0ast — 1%,

It follows from (5.3.3), (5.3.4), the boundary conditions and the impulse assumption in
(5.3.1) that

m B—1 B2
1 Co e Co 1 € B-1 ds __
renet 2 {n_é) (log )+ sy (tos ) ] o i (log )™ o) =a,

cort+ Y o + [ o(u) =b.
o=0

and Cio — F(B — 1)[1(2 S N[l,m]), Ci1 — Jl<Z € N[l,m]) Then

Co1 = 3 { i: fleo—(s)%:|7

_ e B-1 s e p-t e p-2
Coa = F(’BZ 1) |:a — ﬁ fl (10g %) U(S)d? - Z (F{%) (log ;) + 10' (10g E)

(5.3.5)
Substituting c¢,, (o € N[0, m],v € N[1, 2] into (5.3.3), we get (5.3.2) obviously.

On the other hand, if z satisfies (5.3.2), (t:t:11) (1 € N[0, m]) are continuous and the lim-
its lim (logt—logt )2 Px(t)(i € N[0, m] exist. Soz € LP,,Ca_5(1,e]. Furthermore, by direct

t—>

computatlon we have lim (log )2 Px(t) + z(e) = a, lim RLHDH x(t) + RLHDH z(e) = b,
t—1+ —>1

lim (log ¢ — log ; )2~Pu(t) = I,i € N[1,m] and AREDY e (t;) = J;,6 € N[1,m].

t—)t

Using (5.3.5) and ¢;o = I'(B—1)1;(i € N[1,m]), ¢ = J;(i € N[1,m]), we rewrite = by (5.3.3).
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One has similarly for ¢ € (;, t;41]

RLHD1+33( ) = r(zl—/a) (t%)z f(log ﬁ)l_ﬁ w(s)%

2 1-8 i 2 Cou s p-v s
b ()7 | 1 Gox )" (5 2 mees (toe2) %

e (49) [ S (0g )7 (10g 2)™ ()t ) 2

By using the method above, we have
RLHD1+x( ) =o(t).

So x is a solution of (5.3.1). The proof is completed. O

Define the nonlinear operator R on LP,,Cy_5(1,¢€] for x € LP,,Cy_,(1,¢] by (Rx)(t) by

-1

(Ra)(t [fl s = 35 It (00)) = [ a(5)f (5 5% | o)

[T 0()G s 2())ds — sy i (lo £) " a(s) (s, 2(s)) %

m i NG o
_Z<J<t;(ﬁ<;o)> (logg> + I(to, x(t5)) (10% ) )

o=1

<f1 x(s))ds — Z J(ts, x(ts)) — 1 a( ))%H (log #)°~2
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+ﬁ flt (log §)6_1 q(s)f(s,x(s)) %, t € (t;,ti], i € N[O, m].

Lemma 5.3.2 Suppose that (i)-(k) hold, and f,G, H are impulsive ITI-Carathéodo-
ry functions, I,/ a discrete III-Carathéodory functions. Then R : LP,,Cy_5(1,e] —
LP,Cy_o(1,¢] is well defined and is completely continuous, = is a solution of BVP (1.0.10)
if and only if x is a fived point of R in LP,,Cy_o(1,€].

Proof: The proof is similar to that of the proof of Lemma 3.3.2 and is omitted. n

Theorem 5.3.1 Suppose that (i), (j) and (k) hold, f,G, H are impulsive ITI-Cara-
théodory functions, I, J a discrete III-Carathéodory functions and

(C3) there exist nondecreasing functions Mg, My, My, My, M; : [0,4+00) — [0,+00) such
that

f( log x)‘ M(|z|),t € (ti,tiza],i € N[O,m],x € R,

G (t <10g ﬁf x)

H (t, <log m)‘ My(|z|),t € (ti,tit1],i € N[0O,m],x € R,

2)"e)| < Mot € Nt o e

< My(|z|),t € (ti,tiya],7 € N[O,m],z € R,

< Mi(|z]),i € N[1,m], z € R,

Then BVP (1.0.10) has at least one solution if there exists a constant ro > 0 such that

[me + leh] My (7o) + b Mg ()

B2

+ |8 + B + 8 + | Malro) + {% > (108 £) m} Mi(ro)  (5.3.6)

B(41,k+1) | B(B+Lk+1) | B(+Lk+1) | B(B+Lk+1)
+[ TN () B TV 1) R 1 ;) R N N ) }Mf(ro)fro'
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Proof: From Lemma 5.3.1 and the definition of R, x € LP,,Cy_5(1,€] is a solution of
BVP (1.0.10) if and only if z € LP,,Cy_5(1, €] is a fixed point of R. Lemma 5.3.2 implies

that R is a completely continuous operator.

From (C3), we have for z € LP,,Cy_3(1, €] that

steato) = |1 (v (ou )" ()" ot0))

< o1y (|(1ox)™"at0)] ) < MytlalD.t € st € N,
Gt ()] < Mo(llel).# € (b, i) € N0, ],

[H (&, x(t)] < Mu([[x]]),t € (t;, tisa], 2 € N[0, m],

(¢, 2(t))] = ‘[ (ti, <10g tit_i1>52 <10g tit_il>2%(t)) ‘

< oty |(tom25) " at0)]) < Mol € N0,

|1 (ti, x(t:)] < Mu([|2[]), i € N[1, m].

We consider the set Q = {x € LP,,Cy_5(1,¢€] : x = A(Rx), for some A\ € [0,1]}. For z € Q,
we have for t € (t;,t;11] that

(o) I(R2) (1)

<

artzy (1911 M) +-m M ]+ o ) (1o )10 (el ] (log 1) log £)
ol Ma(ll2l]) + w55 7 (log )" (log s)*(1 — log )& M (||
+$ (Fw)Mxnxm (logg)ﬁ‘z Mlel) )

ok (11 M (ll) + mMy ()

+ [0 (1~ log sy 0y ([l2])) | (log )" (tog £)
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Ly A L\ : 2-5 N
+m;(1ogg) (log ) Mylllel) + = (108)" (lom) Ml

" (log 8)*(1 — log s)' % M (||[)

B M ([ ]])

M ((l=[1) +

< IRZIE MH(HxH) + 21“7?,8)
BHl—1 i
9 (log s)" <& M (||]|)

+ 098 M (||21) + gm0 S (o

Mi(lall + 3 35 (g ) Mi(jel)

w5 Jr Qog $)" (1 —log s)' < M (]]]])

+2F

Il My (12l]) + s ML) +

+1—1 o
g5 My (llell) + mMy(|Jl]) + g5 J) (log 1) (log s)* M (]|]])

Me(]|[])

Al Sl ] M (lhe]) + 24

o] Mol + |3 35 (0w )" +-m| a1

T [2%) taorg T T

B(l+1,k+1) B(8+1,k+1) B(l+1,k+1) B(B+1,k+1)
Bl | DO | B | BERD| 1y (||a]).

It follows that

} My (||]) + 12 A (] 2]))

ol = Al Ral| < ||Re] < [ Bl + el

] M5l

m

m m m 1 - e
+ [21“ 5 T T T m} M ([|]]) + {5 ;::1 (log g)

B(l+1,k+1) |, B(B+Lk+1) | B(4+1,k+1) | B(B+lk+1)
+ B + BOREN o BULL | DO by (||z]]).

l|z|]| < ro}. For z € 09, we get x # A\(Rx)

From (5.3.6), we choose 2 = {x € LP,,Cy_5(1,¢] :
for any A € [0,1). In fact, if there exists x € 9 such that = A(Rx) for some A € [0, 1)
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Then
ro = llall = Ml Ral| < [|Ral| < [8 4 WILT 01y (o) 4 Lo g )
m B—2
+ (ot + s + i + ) Moo+ 3 35 (o ) +m) MiGr)

B(l+1k+1) | B(B+Lk+1) | B(+Lk+1) | B(B+Lk+1)
+[ 2I(8) T 20(B) + 4r(B) + T(B) }Mf(TO)STOa

a contradiction.

As a consequence of Lemma 5.0.1, we deduce that R has a fixed point which is a solution
of the problem BVP (1.0.10). The proof is completed. The proof of Theorem 5.3.1 is com-
pleted. 0

5.4 Solvability of BVP (1.0.11)

In this section, we present some preliminary results that can be used in next sections for get
solutions of BVP (1.0.11).

Lemma 5.4.1 Suppose that o : (0,1) — R is continuous and satisfies that there erist
numbers k > 1— and | < 0 with | > max{—f, —B —k} such that |o(t)| < (logt)*(1—logt)"
for allt € (1,e). The x is a solutions of

CHD1+1'( ) (t),t S (ti,ti+1],i € N[O,m],

v(e) + (t4) x(t)|,_, = b, (5.4.1)

lim 2(t) — 2(t;) = I,,i € N[1,m],

+
t—t]

lim (t4) z(t) — (t5) x(t)|t:ti = J;,i € N[1,m],

dt
t—tf
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if and only if v € LP,,C(1,¢] and

1

€ efB_ S € eﬁ_ S
2(t) = 4 b+ 20— o5 J3 (log £) " o) % — by [ (10g 2) " o (s)

L= <1+10gt3> Jg}
o=1 o=1 7

€ 3,3* S € eﬁ* S
5[0 [ (1089 a(s)% — 5 i (log £) " o) %

_Uil I, — gil (1 +log r) Jg} log ¢

+ Z [L, + J, (log %)} + 5 [ (log g)ﬁ‘l o(s)%,t € (ti, tir1],i € N[0, m].
o=1
(5.4.2)

Proof: Let x be a solution of (5.4.1). We know by Theorem 4.0.4 that there exist numbers
o0, Co1 € R(o € N[0,n — 1]) such that

z(t) = > [cgo + Co1 <10g i)] + ﬁ flt (log ﬁ)ﬁfl a(s)%,t € (t;,t;is1],1 € N[0, m].
o=0
(5.4.3)
It follows that

i B—2 3 .
(t4) 2(t) = Z—:o Co1 + ﬁ [ (log )" "o (s)%,t € (ti,t;11],i € N[O, m]. (5.4.4)

It follows from (5.4.3), (5.4.4), the boundary conditions and the impulse assumption in
(5.4.1) that c,0 = Iy, ¢o1 = Jy, 0 € N[1,m], coo — co1 = a and

m

3 [eo0 o (lom ) |t 1 (1089)" " 0(0) 4 2 cont iy (log2)" o) =

o=0

Then

e e\B—1 s e e\ B2 s
oo =4 [b+20— o [ (g ©)° o (5)% — ks J (low €))%

_éfg—é (1+10g2) JU} ,

(5.4.5)

1

=4 [b—a— i Jy (og )" o(5) % — b [y (10g 2) " o(s)

~3 -3 (14 ls ) ng.

o=1 o=1
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Substituting ¢y, ¢s1(0 € N[0, m]) into (5.4.3), we get (5.4.2) obviously.
On the other hand, if x satisfies (5.4.2), then x|, 4,,,1(¢ € N[0,m]) are continuous and the
limits lim z(¢). So x € LP,,C(1,¢]. Using (5.4.5), ¢oo = Iy, ¢o1 = Jo, o € N[1,m], we

t—tf
rewrite « by (5.4.3). One have from Theorem 4.0.4 easily for ¢ € (to, ;] that CHD1+x( ) =
Az(t) + o(t) and for t € (¢;,t;41] similarly to the proof of Theorem 4.0.1 that

CHDﬁx( ) = F(2 B) fl ( 5)1 ’ (5%)2x(5)%

= F(2 5) Z ftvﬂ ( ‘)1 “ (Sd%)Q {zv: (CO’O + Co1 <10g i))

o=0

1

s s\B—
+ﬁ f1 (log E)
+ﬁ ftt@ (log g)lfa (s%)Q [Zo (cgo + Co1 <log i))

it Ji (0g 2) " o(w) 2] £ = o(1).

So z is a solution of (5.4.1). The proof is completed. O

Define the nonlinear operator J on LF,,C(1,¢e] by (Jz) by

=4 0 () H s, () ds+2 f} 6(5)Gs, w(s))ds— s [ (1og €)™ p(s) £ (s, 2(s)) %

i Ji 108 8)" p() f(s.a(s)% = 3 Tltp.a(to)) - 3 (14105 £ )J(ta,xag))]

3 [ ) H (s, 2(3))ds = [ 6(5)G s, 2())ds — 5 [ (lom €)™ pls) (s, 2(5) %

i Sy (10w €)% pls) (s, 2() % = 3 Tt (1)) = 32 (14 Tog ) I (1, a(t >>} log

7

+ 30 [t 2ta)) + It 2(ts)) (log £ )| + iy Sy (108.£)"" pls) f (5. 2(5))%,

o=1
t e (ti,ti+1],i S N[O,m]

Lemma 5.4.2 Suppose that (g), (1), (m) and (n) hold, and f,G,H are impulsive
IV-Carathéodory functions, /,J discrete IV-Carathéodory functions. Then R :
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LP,C(1,e] - LP,C(1,¢] is well defined and is completely continuous, x is a solution of
BVP (1.0.11) if and only if x is a fized point of J in LP,,C(1,e].

Proof: The proof is similar to that of the proof of Theorem 3.3.2 and is omitted. O

Theorem 5.4.1 Suppose that (1)-(n) hold, f,G,H are impulsive IV-Carathéodory

functions, I, J discrete IV-Carathéodory functions and

(C4) there exist nondecreasing functions Mg, My, My, My, My : [0,4+00) — [0,+00) such
that

|f (t, )] < Mg(|x]),t € (t;, tisa],i € N[0,m],z € R,

|G (8, 2)| < My(|]),t € (ti,tia], i € N[O, m], z € R,

|H (t,x)] < Mp(|x]),t € (t;,tir1],7 € N[O,m],z € R,

[T (i, 2)] < Mi(|z[),7 € N[1,m], z € R,

17 (k)] < My(Ja),i € N[1,m], 2 € R.
Then BVP (1.0.11) has at least one solution if there exists a constant ro > 0 such that

2 N1y (o) + [0l Mas(ro) + 32 My (ro) + T2 My (o)
(5.4.6)

OB(B+lk+1) | 2B(B+l-1k+1) | B(B+Lk+1)
S0 N I N(: A R N (2) ]Mf(ro)gro‘

Proof: From Lemma 5.4.1, and the definition of J, = € LP,C(1,¢] is a solution of
BVP (1.0.11) if and only if z € LP,C(1,e] is a fixed point of R. Lemma 5.4.2 implies

that J is a completely continuous operator.

From (C4), we have for x € LP,,C(1,¢] that

|f (& a(®)] < My([[z]]), ¢ € (8, tiga], 0 € N[0, m],
|Gt x()] < My([le|]) t € (8, tia], 0 € N[O, m],
[H (8, 2(t)] < My([|2l]),t € (ti; tisa], 7 € N[O, m],

|1 (s, x(t:))] < My(||l]), ¢ € N[1, m]
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We consider the set Q = {z € LP,,C(1,e] : © = A\(Jz), for some A € [0,1)}. For x € Q, we
have for ¢ € (t;,t;+1] that

()(0)] <
5 [l M) + 20l Mo(llal]) + g S5 (log 2)”™™" (tog (1 — log )42
g Iy (108 2)" (log 5)*(1 = log s)' M (|Jal]) + mMi(llal]) + 2mMy (|l
3 {1l (el ) + 1]l Mol ) + i i (10g £)"™" (10g ) (1 — log 5)' 420 )
i Ji (108 2)™ (log )* (1 — log s)' %0 (ol ) + m M (|Jal ) + 2mAM, (|1
emMy(|fe]) +mMy(llall) + 5 Ji (1o £)° (log 5)4(1 — log )" My (o]

= 2 p gy (1|l ]) + Nl gl M ([l ll) + 22 My (||l ) + T2 0] )

2B(B+1,k+1) B(f+1—-1,k+1) |, B(B+Lk+1)
T 30(B) + 3T (B-1) + T'(8) ] Mf<||$||)
It follows that

]| = M| Re|| < || Re|| < 25 My (JJ]]) + Nl M ([le]]) + 5 M (|[e]]) + 52 My (||]])

2B(B+1,k+1) 2B(B+1—1,k+1) B(8+1,k+1)
+[ 30(P) + 30(B—1) + T(3) Mi([|x]]).

From (5.4.6), we choose Q = {x € LP,,C(1,¢] : ||z|| < ro}. For x € 09, we get  # A(Jx)
for any A € [0,1). In fact, if there exists z € 092 such that © = A(Jx) for some A € [0, 1).
Then

ro = [[z|| = M| Jal| < [|J|| < 25 My (ro) + |16l Ma(ro) + %5 My (ro) + 5 My(ro)

2B(8+1,k+1)
3(8)

4 2B(B+1—1,k+1) + B(B+1,k+1) Mf(?"o) < 1o,

+ 305 1) V()

a contradiction.

As a consequence of Lemma 5.0.1, we deduce that J has a fixed point which is a solution
of the problem BVP (1.0.11). The proof is completed. The proof of Theorem 5.4.1 is
completed. O
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6 Comparison results

75

In this section, we study the solvability of two class of impulsive boundary value problems of

fractional differential equations for showing readers the differences between those equations

one’s fractional derivative has single start point and the other’s has multiple starting points.

Example 6.0.1. Let 0 =ty < t; <ty = 1. Consider the following problems:

( CDt+33( ) =p(t),t € (ti, tipa], 7 € N[O, 1],

Ax(ty) =1, A2 (ty) = J,

' (0) = xg, 2/(1) = xy,

and - .
Dy, x(t) = p(t), t € (ti, tisa],7 € N[0, 1],

Ax(ty) =1, Az'(t)) =J,

[ 2/(0) = z0, 2'(1) = 1.

It is easy to show that BVP (6.0.1) has solutions

c+x0t+f0 _r “p(s)ds, t € [0, 1],
x(t) = c-l—]+f
+1 [3}1 L (t1 aS)a 2p( ds} —O—J; T p(s)ds,t € (t1,1]

if and only if

t s s
fol (tll“(a)l s)ds + ft tllﬂ(a i) p( )ds = x1 — o — J.

However, BVP (6.0.2) has solutions

0 ¢+ wot + fot (tfs):_l (s)ds,t € [O tl]
€T =
ctI—tJ+ (zo+ Nt + [ & F( ) () ds, t € (t, 1]

if and only if

—s a—2
01 (;(all) p(s)ds = x1 — xg — J.

One sees that (6.0.3) is different from (6.0.4).

Example 6.0.2. Let 0 =1ty < t; <ty = 1. Consider the following problems:

( CDt+$( ) =p(t),t € (t;, tira],i € N[0, 1],
Ax(ty) = ax(ty), Az'(t;) = ba'(ty),

[ 2(0) = o, /(1) = a1,

and
[ CDg a(t) = p(t),t € (i, tina],i € N[0, 1],
Ax(ty) = ax(ty), Ax'(t;) = bx'(t1),
z(0) = xg, 2'(1) = 2.

( Yds — t [zl To — ftl (t as 1) )ds]

(6.0.1)

(6.0.2)

(6.0.3)

(6.0.4)

(6.0.5)

(6.0.6)
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It is easy to show that

(i) BVP (6.0.5) has no solution if and only if 1 +b =0 and x; — ft a jf s)ds # 0;
(ii) BVP (6.0.5) has a unique solution

;

To + 1+b [xl ft1 F(a i) s)ds — (1+b) fol t%(;)l p(s )ds]
+ fo F(a) s)ds,t € [0, tl]
o(t) = Hun [xl — /. <1F(;>°‘1) p(s)ds — (1+b) fy* L= p(s)ds + 2o

+ J >ds}
\+[x1— e ()ds}wf”s p(s)ds, t € (t1, 1]

if and only if 1 4+ b # 0;

(iii) BVP (6.0.5) has infinitely many solutions

o +dt + [ 5 F( ) Lp(s)ds, t € [0, 1],
_ t1 s 1 (1—5)*2
w(t)={ (1+a) [t1d+x0—l—f Lpls)ds| + o1 — f) G (s)ds| ¢
+ f,, S5 dste(tl,l]

if and only if 1 +b =0 and z; — ti (E;)j:p(s)ds =0;

(iv) BVP (6.0.6) has no solution if and only if 1 +b = 0 and z; — [ 4 S) ( )ds +

0 T(a-

t (t1—s
Jo' (tF(a)l p(s)ds # 0;
(v) BVP (6.0.6) has a unique solution

.

1 s)a— 2 S a—2
xo + ﬁ [951 0 (lr(a) -p(s)ds — bf = p(s)ds}

+f0 —~—p(s)ds,t € [0,t],

(1+a)fx0+l+b<1— 01%( ds—bf al;p(s)ds)
I’(t) = t1 (t1 3

+ /3 )ds}

s)a— 2 —s a—1
—t [xl fo lr(a) 1) p(s ds] —[h —(“F(;) p(s)ds
[ fo r(a 1) p ds] t+ ft = sa p(s)ds,t € (ty1,1]

if and only if 1 4+ b # 0;

(vi) BVP (6.0.6) has infinitely many solutions

(2o +dt+ [y S p(s)ds, te [0, 1],

1 s) 1 (1—s)2—2
o) = | (1 —i—ta) [xg + dt1 —|— f t ) (s)ds] —t [ml —Jo (;(all) p(s)ds]
- ol (tlpa) ( )ds

+ [:131 = Jo (;(S) P p(s )ds} t—l—fo Fa (s)ds,t € (t1,1]

\
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a—2

if and only if 1 +b =0 and z; — 1& ds+f al)

0 I[(a—1)

p(s)ds = 0. O

Now, we consider the existence of solutions of the following nonlinear boundary value prob-

lems of fractional impulsive differential equations

“Dpa(t) = p(t)f (1 2(t)), t € (b, L], 1 € N[0, m],

Ax(t;) = I(ti, x(t;)), Az’ (t;) = J(ti, x(t:)), i € N[1,m], (6.0.7)
ax(0) — bz'(0) = xo, cx(l) + da'(1) = 4,
and
CD0+SU( ) = q(t)g(t,z(t)), t € (i tir], i € N[0, m],
Ax(t;) = I(t;, x(t;)), Ax' (t;) = J(t;, x(t;)),i € N[1,m], (6.0.8)
az(0) — ba'(0) = xo, cx(l) +da'(1) = 21,

where « € (1,2), CD;L represents the standard Caputo fractional derivatives of order o with
the start points t;,¢ é N[0, m], CDS‘+ represents the standard Caputo fractional derivatives
of order o with the single start point 0, a,b,¢,d € R with § = ac+ ad + bc # 0, zg, x1 € R,
0=ty <ty <+ <ty <tmu =1, I,J : {t;i EN[lm]}xRﬁR(i € N[1,m],

m

f:U@iti) xR—=R, g:(0,1) x R — R, and p is defined on U (ti,tiv1), q is defined on
=0 =0

(0,1).

Lemma 6.0.1 Suppose that p : |J(t;,ti1) — R is continuous and satisfies that there

i=0
exist numbers k > —1 and | > —1 such that |p(t)| < (t —t;)*(ti1 — )" for allt € (t;,t;41),i €

N[0, m]. Then z is a solution of the following problem

CDt+9C( ) =p(t),t € (L, tira],i € N[O, m],
Ax(t;) = I;, Ax'(t;) = J;, i € N[1,m], (6.0.9)
ax(0) — bz'(0) = xg, cx(l) +da'(1) = 4

if and only if

.

Cco + dot + ft (= s)a (S)dS,t S [O,tl]

Oé

co+zfj— thJj+ZJ;j{1 el p(s)d Zt I Gl p(s)ds
x(t) = "

+<d0+ZJ +th G Ll p(s )d>t

t —S .
( +Li %p( )d37t € (ti, tip1),7 € N[1,m],

(6.0.10)
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where

COI% (C—i‘d)IO—FbIl—bCZIj—b(C—i‘d)ZJj—i‘bCZt]‘Jj
j=1 j=1 j=1

—bcft

s)ds — bdft a as)al) p(s)ds — bcz ft (i Sa 1p(s)ds

+cht f

“p(s)ds — b(c + d) > 12 S ps)ds |
(6.0.11)

doz% —cxo+ary —acy I —acy tjJ; —alc+d) Y J;

J=1 J=1 J=1

s s 2 -1
—acft (IF(a (s)ds adft (la—l)p( s)ds — ac Z ft - Wp(s)ds

+ac2t LSy plsds —ale+d) 32 f)7, Stp(s)ds

Proof: Suppose that z is a solution of (6.0.9). From “D¢ x(t) = p(t),t € (t;, 1], from The-

orem 3.1.2, there exist numbers ¢;, d; € R such that z(t) = ci—l—di(t—ti)—i-ftt, %p(s)ds,t €
(tiytis1],7 € N[0, m]. Then we have

acy — bdo = Xy,
(6.0.12)
cCm + (c+ d)dy, = 21 — cftin (1}?)&&)71]3(5)(13 - df;n (Hj)_a{) p(s)ds.

Furthermore, we have

)afl

ci—cii+(di —dia)ti =1 + ftt;_l (ti;fa) p(s)ds,

di—dioy = Ji+ [} L p(s)ds.

I'(a—1)
It follows that

i i Yot (ts (tj—s)*2
Ci:CO+le_ th]J]“f’le;J]_l (]F(O)z ( Zt J; j a 1 p(S)dS,
J= J=

=1

di =do+ ZJ + Zf (t'_as 2p(s)ds.
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Then

cm=cC+ > I; — thij + le;j]_1 (t’;a p(s)d Z t ft Ui ;f p(s)ds,
i= J=

=1

(6.0.13)
s)e 2
w=dot 50,4 3 0 G (s

Substituting (6.0.13) into (6.0.12), we get ¢y and dy defined by (6.0.11). Then = satisfies
(6.0.10). On the other hand, we can prove that z is a solution of (6.0.9) if z satisfies (6.0.10).
The proof is completed. O

Remark 6.0.1 Lemma 6.0.1 generalizes Lemma 2.3 in [108] since we allow p be singular
at t = t;(i € N[0, m]) while p € C[0,1] in [103]. We note that two examples are given at the
end of [108]. In Example 4.1 and Example 4.2, the fractional derivative is Dg, which has

single starting point 0. So these examples are unsuitable.

Lemma 6.0.2 Suppose that q : (0,1) — R is continuous and satisfies that there exist
numbers k > —1 and | > —1 such that |q(t)] < t*(1 —t)! for all t € (0,1). Then z is a
solution of the following problem
“Dgx(t) = p(t),t € (ti,ti1],i € N[0, m],
Ax(t;) = I;,;i € N[1,m],

6.0.14
Ax'(t;) = J;,i € N[1,m], ( )
ax(0) — b2’(0) = xg, cx(l) +da'(1) = xy
if and only iof
Co +d0t+f0 a ( )dS t - [0 tl]
z(t) =
Q co—l—ZI ZtJ—l—(do—i-ZJ)t—l—ft(t Sa p(s)ds,t € (ti, tiv1],i € N[1,m],
Jj=1 J
(6.0.15)
where
co=73 |(c+d)zo+bry —bed> I +bey t;]; — (c—i—d)z
Jj=1 J=1 Jj=1

2

1 _g)a—1 1 s
—be [, % ds —bd |, u—)p(s)ds ,

Jj=1 J=1 J=1

dozé [_C:Co—i-aﬂil_aczlj—i_acztjjj_a(c—i_d)zjj

-2
—acfo F (@ ds — adfo e 1) p(s)ds] :
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Proof: From D xz(t) = p(t),t € (tz,tl_i_l] from Remark 4.0.1, there exist numbers
¢i,d; € R such that z(t) = ¢; + d;(t )+ ft (t— 5 s)ds,t € (t;,tiz1],7 € N[0, m]. The

Oé

remainder of the proof is similar to that of the proof of Lemma 6.0.1 and is omitted. m

Remark 6.0.2 1In [103], the following problem was studied:

“Df.x(t) = w(t)g(t, x(t),2'(t)),t € (ti,tira], i € N[0, m],
Ax(t;) = I; (w(tz)) a'(t;) = Ji(x(t:), 7 € N[1,m], (6.0.16)
ax(0) — b2'(0) = 0, ca(1) +da'(1) =0,

where g € (1,2), CD8+ represents the standard Caputo fractional derivatives of order ¢ with
the single start point 0, a,b,c,d € R with § =ac+ad+bc #£0,0 =1ty <t; < -+ <t, <
tme1 =1, 1,J € C(R,R)(i € N[1,m], f:[0,1] x R* — R is continuous, and w is continuous
and nonnegative. We find that Theorem 2.1 in [103] is not correct. In fact, in the proof of

Theorem 2.1, it claims that there exist bg, b1, cg, ¢1 such that

{ —bo — byt + [o = SV o(s)ds,t € [0,t],
(t) =

—co — 1t + ft u Fs()qq o(s)ds,t € (t1,1s].

However, if  satisfies above equation, we have for ¢ € (1, t2]

D, x(t) = F(2 7 fo (t — s)'7 92" (s)ds = ﬁ (fl (t — s)'792"(s)ds

t —
+—F(21—q) ftl (t — 3)1 qgj//(s)ds

q— "
= o= q)f (t— )t~ q[ bo — bis + [ (8}2) 10(u)du] ds

—_— ¢ - S— U "
+F(217q) St —s)e [ co— 15+ ft ( F(q (u)du] ds

s (s—u)11 " t _ s (s—u)d—1 "
- 2 (I) f |:f0 ( F(()I) U(U)du} ds + F(21_q) -];1 (t - 8)1 1 |:J;1 ( F(()]) 0<U)du] ds

s—u)92 ! t _ s—u)d~2
= r(zl_q)f (t—s)! [fo (F(q)l )du} d8+ﬁftl(t—s)l q[ftl F(q)l o(u )du} ds

/

t — s (s—u)e—2 !
S { Ot — s (J o ) ds}

s (s—u)12 ! /
[t =0 (1 ttuyin) ]
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_— 2 h s—u) '
= 1o {(t— 9270 (i S o(u)du) C+ =) [ =9 [y o )duds}

/
+ e {(t—S)”( o o(u )du>‘l+ 2—q) [L(t— ) [ S o (u )duds]

—q [t u)?—2 t1 pt g (s—u)12 !
= 1“(31—q) [(t —t1)*71 o1 (Sr(q)1 o(u)du + (2 —q) 01 fu(t —s)! q(r(qzn dsa(u)du}

q—2 !
+F(21—q) [fttl qu(t_ - q(s(u) dso(u )du}

s—u)d— w2 /
- r(3 ) [(t_t1>2 “Jo (r(q) 1) o(u)du + (2 fo F(q_l)dwa(u)du]

2 T2—q) |:ft1 fo - qfq dwo (u )du]/

— (1) + s (t — 1)1 [ 2o (w)du # o (1),

Hence Lemma 6.0.2 corrected Theorem 2.3 in [103]. O

We need the following assumption:

(D1) there exist nondecreasing functions ¢y € L'[0, 1], My, My, My : [0,+00) — [0, 4+00),
numbers I;, J; € R such that

|f (t,7) — @p(t)] < My(|z]),t € (ts,ti41],7 € N[0, m], z € R,
[ (ti,x) — L] < Mi(|z|),i € N[1,m],z € R,
|J (ti,x) — J;| < My(|z]),7 € N[1,m],z € R.

Denote

’ e+ dot + [ <f—;2§’1 (5)65(s)ds. t € [0,1],
G o ZtJ+ZL1WZ p(5)éy(s)ds

J=1
i

O(t)=¢ — z:ltj ij,l (tr(a ) p( )y (s)ds

j=

+<%+2J+2L1Jj (Mﬂ))

+ i SR p(s) oy (s)ds, t € (ti, tiga], i € N[1,m),

\
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where

G =t |(crdmo+br —beS I —blet+d) Y J;j+be >t
=1 '

=1

—be i} Ul p(s)dp(s)ds — bd f,) G ~p(s)y(s)ds

)al

—bCZ 7 e —p(s)é(s)ds

+bc2t S o ) (s)ds — b<c+d>§ 0 (s)ds|

do =3 |—cxo+ary—acy I; —acy t;J; —alc+d) Y J;

j=1 7=1 7=1

—ac [i} S5 p(s) s (s)ds — ad ;) S5mp(s)ds(s)ds

+aczu; Gl ()6, (9)ds — ale+ ) 3 [ S p(s)o (s

m

Theorem 6.0.1 Suppose that p = | (t;,tiy1) — R is continuous and satisfies that
i=0

there exist numbers k > —1 and | > —a + 1 such that |p(t)| < (t — t;)F(ti1 — )" for

all t € (t;,tiv1),7 € N[0,m], f is a impulsive I-Carathéodory function, I, J discrete

I-Carathéodory functions and (D1) holds. Then BVP (6.0.7) has at least one solution

if there exists ro > 0 such that

G+ | (o +1191]) + | 2m - mRleledl g mBUbdl| A (ry - )

Oé ) k—+1
2l Bl St ([0

m+1
2|6|42|ac|+2be|+|bd|+|ad]| B(a+I—1,k+1)(t;—t; 1) TF+i=1
+ X > Ty My(ro + [|®[]) < ro.
j=1

(6.0.17)
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Proof: Define the nonlinear operator 7' on P,,C|0, 1] by

'cmwa+ﬁ&%:ﬂ@ﬂ x(s))ds,t € [0,11],
%+2Uw(ﬁ 2fﬂ +ZL W p(s) f (s, 2(s))ds

j—1

(T2)(t) = 4 —Ztﬁ U p(s) f (s, 2(s))ds

7j—1

+ (d() + Z J(t;,x(t;)) + Z ft] s 2p(s)f(s,ac(s))ds> t

7j=1

+Lt§51)f« (DﬁiéﬂwﬂmZGMLmL

where

1

(c—l—d):l?o—{—bxl—bczj'(t],x( ))—b(c~|—d)§mj J(t;, x(t ))+chtJ(t],x( )

Jj=1 Jj=1 Jj=

C():

—be i} B2 p(s) f(s,2(s))ds — bd [} SEp(s) f(s, 2(s))ds

-1

“be X Ji, Gl p(s) f (s, 2(s))ds
]:

t _S)a 2

+m5:tﬁ lzxﬁZM@f@ax>m3—wc+d§:ﬁjlFal)m>f@xw»w ,

dy =3 | —cxo + axy — ac i I(t;,x(t;)) — ac i tjJ(tj, z(t;)) —alc+d) i J(t;, x(t;))

7j=1 7j=1 7j=1

—ac [} S p(s) f (s, 2(s))ds — ad [, G =p(s) f (s, 2(5))ds

—l—ath J; 8 tr'—as 5 p( )f(s,2(s))ds — a(c+ d) f:ftj Tt (s)f(s,:c(s))ds :

By Lemma 6.0.1, we have x is a solution of BVP (6.0.7) if and only if z is a fixed point of
T in P,C[0,1]. A standard proof shows that 7" : P,,C[0,1] — P,,C]0, 1] is well defined and

completely continuous.

Choose 2 = {z € P,,C[0,1] : ||z — ®|| < ro}. We will prove that TQ C Q. For z € Q, we
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have ||z|| < ||z — ®|| + ||®]| < 7o+ ||®||. Then (D1) implies

f (& (t) = op(t)] < My(Jz(8)]) < My(l|z|]) < My(ro+ [|®[]),t € (¢, tisa], i € N[O, m],
1 (L3, (ti)) — Li| < My(ro + || ®]), @ € N[1,m],

| J (i, x(t:) — Ji| < My(ro+ |[®@]]),i € N[1,m].
Then

|co — ol < 357 | lbe] Zl [1(t5,2(t;)) — L] + [b(c + d)] Zl | J(t5,2(t;)) — Jjl
j= j=

+[bc] thjU(tj,x(tj)) — Jj|
]:

oel ft S |p(s)| £(s,2(5)) — 6(s)|ds

+od] f,! L p(s)][ £ (s, 2(5)) — dy(s)|ds

+b] Zf

[p(s)[1f (s, 2(s)) = d5(s)[ds

+be| Et 5 S )1 f (s, 2(s)) — 65(s)ds

Hble+ ) 32 17, Y (s s 2(5)) = ()]s

< 757 [mlbe| M (ro + [|@]]) + mllbe| + [bd|]| M (ro + [|]]) +mlbe| M (ro + ||2])

(a

m+1
ty  (tj—s)*"1
Hloel 3o, (s = 1)t = )/ dsMy(ro + [ @])
‘]:

+[2[be| + [bd)|] th G <s—tj_1>k<tj—s)ldst<ro+||<1>||>]
< & [mlbel My (ro + [|@]]) + m[2lbe] + [bdl)| M, (ro + ||®]])

m—+1 Oz-‘,—k‘-f—l 1 (17w)a+l71 k
bl 3 (1 — 1) Sk du My(ro + |[2])
‘]:
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el a+k+l—1 )"“ 2
+[2[be] + [od)[] > (t; —tj-1) Jo &

J=1

wrdwMy(ro + [|@|)

mlbc m|2|bc|+|bd
= MM (rg + |[@]) + LA AL (g + || )

m+1
lbc| B(a+1,k+1 o 2|be|+|bd)|] B(a+l—1,k+1 o _
+ Z [T;_)H(t )ty B Bladl L)y ok 1}

Mi(ro + [|2[]).

Similarly we have

|do — do| < B My (rg + ||®||) + 22l AL (g + || )

m—+1
a+l,k+1 a 2|ac|+|ad| B(a+1—1,k+1 a —
e lae| Blatbhet) (y _y,  yarrort y Zacllod Bl bbit) (p _y Jarkti=1
Jj=
My (ro + ||@]]).

Use (6.0.17), we have for t € (;, ;1]

(

ICo—CoH!do—dono e —[p(s)[| (s, x(s ) = ¢5(s)lds, =0,
|c0—c0|+|d0—d0|+2|I(t],:c( ) — I|+Zt|J(tmﬂf( ) = Jjl

j=1

+fo]1 S Ip(s)I1f (s, 2(5) = 6(s)lds

(T2)(t) — (1) < +§:tﬁjlpa1)@(Mf@$(D by (s)|ds

= j=1

+ (Z_: | J(t5,2(t;)) — Jj

+th . t]'_j, [p(s)[1f (s, 2(s)) f(8)|d8>t
\+ﬁ

)1 (s,2(s)) = ¢5(s)lds, i € N[L,m],

<o — Co| + |do —30|

+éﬁ@w@»—M+2§U@ww»—M

+22f S I f (5. (s)) — ¢5(5)lds
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+2Zf R )] (s, 2(s)) — br(s)lds + [ R p(s) 1 (s, 2(s)) — b4(s)|ds

< St x(ty) — L+ 23 (. 2(t) — |

Jj=1 Jj=1

25 R )5, (5) — 0, ds

m+1

. _g a—2 _ —
#2350 [ RIS 2(5)) = 05(s)lds + e — ol + |do — |

: 1
Jj=

< mM;(ro +[|®|]) + 2mM;(ro + [|[])

tj . _g a—1
+2 50 [ G (s — 1y 1)K (t — 5)lds M (ro + ||]])

m+1 s)a—2 _ —
+2 Z ft tf(a)1 (s —tj-1)"(t; — s)'dsMg(ro + [|®]]) + |co — Co| + |do — do]

< mMi(ro +[|®|]) + 2mM;(ro + [|[])

m+1 w)oti=1

@ 1
23 (=) L Ry wh dwM (o + || @)

m+1 w)orti—2
+2 Z (t; — tjq)othH=L 1 L= whdw My (ro + |B|]) + o — To| + |do — do
Jj=

m—+1 Y a+k+l
< 2|6\+||zgc|\+|bc| Zl B(a+z,k+1)r(&)t]_1) Mf(’f’o + [|®]])
j=

. k+i—1
+2|5\+2\ac|+2|l;)|c\+\bd|+|ad\ Z B(ati- lk“)(gj 17;] ) My (ro + ||®|])

+lm+ m||‘ cl + m|15b\0| M;(ro + ||®|)+ [2m + m[QIa‘call-i-\adH + m[Q\bﬁs\‘-i-lbdl]]MJ(ro +||®]]) < ro.

Hence T2 C Q. By Schauder’s fixed point theorem see Theorem 2.2.1 in [35], T has a fixed
point z € € which is a solution of BVP (6.0.7). The proof is completed. O

Now suppose that
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(D2) there exist nondecreasing functions ¢, € L'[0, 1], M,, My, M; : [0,+00) — [0, 4+00),
numbers I;, J; € R such that

|g (t,l’) - ¢g(t)| S Mg(|$|)7t € (tiati-‘rl]ai € N[O7m]7$ € Ra
11 (ti,x) — L] < Mi(|z]),i € N[1,m],z € R,

|J (i, x) — Ji| < My(|z]),i € N[1,m],z € R.

Denote
(co+dot + [) 5 Sa q(5)pg(s)ds, t € [0, 4],
Co-i—ZIj—thJj—{— do—FZJj t
o(t) = =10 = i=1
|+ fy C2E—a(s)dy(s)ds, t € (1, L] i € N[1,m)],
where
50:% (C+d>$0+b.’l§'1 —bCZIj—i-bCEthj —b<C+d) ZJ]
j=1 j=1 j=1
) 2
—be fy SFE—a(s)8,(s)ds — bd [y S55a(s)de(s)ds | |

dy = % [—cxg—i—axl —acy Ij+ac) tjJ;—alc+d) > J
=1 j=1

=1

—ac fy CSa(5)6,()ds — ad fy G a(s)6,()ds)

Theorem 6.0.2 Suppose that q : (0,1) — R is continuous and satisfies that there exist
numbers k > —1 and | > —a + 1 such that |q(t)] < t*(1 —t)! for all t € (0,1), f is
a impulsive I-Carathéodory function, 7, J discrete I-Carathéodory functions and
(D2) holds. Then BVP (6.0.8) has at least one solution if

toemlaciemibel 7 (1, |||} + Zelicbe2lecebatlod 7y - || g))

(6.0.18)

|0|+|ac]+|bc| B(a+1,k+1) lad|+|bd| B(a+1—1,k+1)
+[ ] M) T 1 T{a—1) ]Mg(7”0+ [@]]) < ro.
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Proof: Define the nonlinear operator 7" on P,,C10, 1] by

(ot dot + fy Ta(s)g(s,2(s))ds. € [0, 1),

Tyt =4 ©F le I(t;, () — le tJ (ty, x(t5)) + (do + le J(t;, x(tj))> t

t (t—s)o—1 .
|+ 0 (g, 2(5)) s, € (1 tina]o i € N[1, ],

where

co=1 f:l J(tj,z(t;))

=

(c + d)ao + bx1 — be i I(t;, (t;)) + be zi”; t,1(t5, 2(t;)) — blc + d)

—S a-1 —s a—2
—be Jy B a(9)9(s, w(s))ds = bd fy Grya(s)g(s, a(s))ds|

do = 1 [—cxo + azy — ac fj I(t;,2(;)) + ac étjj(tj, 2(t)) — alc + d) il Tty 2(t;))

Jj=1 J Jj=

—ac Jy Uil a(o)g(s,2(6))ds = ad fy S a(o)g(s,a()ds]

The remainder of the proof is similar to that of the proof of Theorem 6.0.1 and is omitted. [

Remark 6.0.3 In [101], Zhao studied the eigenvalue intervals and positive solutions of in-
tegral boundary value problem for the following higher-order nonlinear fractional differential

equation with impulses
( _D8+U(t) = )‘a(t)f(t7u(t))7t S (O’ 1) \ {tlv to, - 7tm}7

Au(ty) = I(u(ty)), k € N[1,m],

w(0) = u'(0) = - = u™2(0) = 0, u(1) = [ u(s)dH(s),

where where Df, is the standard Riemann-Liouville fractional derivative of order n — 1 <
a < n,n > 3, the number n is the smallest integer greater than or equal to «, the impulsive
point sequence {t; : i € N[1,m]|} satisfies 0 = t) < t; < -+ < ty, < typ1 = 1, Au(ty) =
u(tLCu(t,;), u(ty)k) = u(ty), and u(t}) = hli%l+ u(ty + h) and u(t,C) = tlirél u(ty + h)
represent the right and left-hand limits of u(t) 21; t = t, respectively, A > 0 is_;u parameter,
feC(0,1] x[0,+00), [0, +00)), a € C((0,1), [0, +00)), I € C([0,+00), [0,00)), the integral
fol u(s)dH (s) is the Riemann-Stieltjes integral with H : [0,1] — R. The following result was
proved:
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Result Z (Lemma 2.4 [101]). If H : [0,1] — R is a function of bounded variation
§=: fol s*1dH(s) # a — 1 and h € C([0, 1]), then the unique solution of

(—Dgou(t) = h(t).t € (0.1 {trto, b},

Au(tk) = Ik(u(tk)), k= 1, 27 e, M, (6019)
| w(0) =w(0) = =u2(0) =0, w(1) = [y u(s)dH(s),
u(t) = fy Gt b(s)ds + 07 S ATL@m). L€ 01 (5020)
where
(1 —s) 2 — (t — )7t s € (0,1,
Gl(t, 8) = ﬁ

o711 —s)272 s e [t, 1],

GQ(tv S) = ij—;i(; 01 Gl(Tv S)dH(T)’ G(t78) = Gl(tv S) + G2<t73)‘

Remark 6.0.4 Result Z is wrong. In fact, (6.0.20) can be re-written by

ult) = ft (t—s)>1 h(s)ds + a1 [ 01 (1;?())372 h(s)ds + ﬁ fol G, [fol G1(T,s)h(s)ds| dH (T)

0 TI'(a)

s t,i—m(u(tk))] S T ()

k=1

a— k—1
= Jo SR h(s)ds + Agt* ! 407150 Ajt € (Bt k= 0,1, m.
j=1

Then by Definition 2.2 we have for t € (¢;,t;41] that

' (n)
=1 4
t o n Z ftT+1 (t*S)niailu(S)dvsﬁ’It,(tfs)nfaflu(s)ds
a [ t=s)" = u(s)ds] ™ Lo - i
Dgeu(t) = =55 = e

y (n)
i—1 a—1 T

ZO ftt:+l(ts)n—a—1< (f (S—Fv(zl) h(’U)dv+A08a_1+Sa_1 Zl A].)ds
| 7= I= J

T'(n—a)

(n)

j=

a—1 d
l:ftt. (t—s)n—a-1 <fos (S—F“(L> h(v)dv+Ags®™ 1 +s*71 30 Aj>ds
K3 =1
=+

I'(n—a)
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(n)
|:Z ZA ft:+1(t S)n a—lga—1gg¢

7=045=0

I'(n—a)

(n)

{fg(ts)n—a 1fe e F”()a) h(v)dvds+ 3> A [! (t—s)mo—Tse1ds
§=0 i

+ T'(n—a)

) ) (n)
1—1 1—1

{z S Ay [T (t—s)nmamTgam14g
1=07=j

I'(n—a)

i (n)
{fof (t—s)n—o— 1(s— v()) dSh(v)va’_ZoAj ftti(t—s)"o‘lsalds}
j=

+ I'(n—a)

(n)
fo(t V)" 1f 1—w)n—a~ 1“’( ) dwh(v)dv+ZA ft (t—s)n—a—lga— 1d5:|

I'(n—a)

I )

. (™)
fo(t )" 1f 1—w)n—a—lws dwh( )dv—&—ZOAjt”*l ftl] (1—w)”°‘1w"‘1dw:|
J= +

I'(n—a)

) (n)
@
Z Aj tn—l ftlj (17w)n—a—1wa—1dw

= h(t) + = ) # h(t) if A; #0.

This shows us that Result Z is wrong.

We now correct Result Z. Involving Consider the following more general problem:

p

CDO+U< ) = h(t),t c (ti,tz‘_;_l],i € N[O,m],

AuD(t,) = Li(ty, u(ty)), k € N[1,m], i € N[0,n — 1], (6.0.21)

w(0) = u'(0) = - = u®2(0) = 0, u(1) = [, u(s)dH(s).

Theorem 6.0.3 Suppose that fo ﬁ dH(s) # 1. Then x is a solution of (6.0.21) if
and only if
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2(t) = = Jo 5 <>ds+zz“>f< z(t;))

j=1lv=

n—1

T (5, (L))

1 1 a(l—s)*1—(1—s)® e
+- L () [ 0 T(atl) h(s)ds jgly:o

j=1lv=

+ Z Z ﬂ w )Iy(tj,x(tj))] %,t € (tr, trs1], k € N[0, m)].

Proof: Suppose z is a solution of (6.0.25). By a € (n — 1,n), using Theorem 4.0.2, we
know from —“Dg,z(t) = h(t),t € (t;,ti41],7 € N[0, m] that there exist constants ¢,; € R
such that

k n—1

o(t) = — fo F5 “h(s)ds + 3 z e 8 b e (b, ], k € N[0, m). (6.0.22)

J=0v=

It follows for i =1,2,--- ,n — 1 that

k n—1

2@ (¢) = —fo % (s)ds+ > S ¢ w T ,t € (tg,trs1], k € N[O, m]. (6.0.23)
7=0 v=t
(i) By z(0) = 2/(0) = -+ = 2"2(0) = 0 and (6.22)-(6.23), we get cog = c19 = -+ =

Cpn—2,0 = 0.
(ii) By AzO(ty) = L(ty,2(tx)),k € N[1,m], i € N[0,n — 1] and (6.22)-(6.23), we get
Ci,k = Ii(tk,l’(tk)), ]{Z = 1, 2, cee M, 7 - [0,71 — 1]
(iii) By (1) = [, z(s)dH(s) and (6.22) and (i)-(ii), we get
m n—1

O s 355 S = (o) (s) = 3 1 e(5)a ()

7=0rv=

T n—1

= ff (—f; T h(v)do + 3 ch“ = )dH( )

7=0v=|

== 3 [y S hdvds £ 3 [ Z g - dH (s)

7=0 v=

T n—1

= — [ [l o dvds+2ft”lzz ¢, T dH (s)

7=0v=

m n—1

= — fy ST dsh(v)do + Y Ecu]ft

7=0rv=
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1 v 1 s—t;)” 1 gn—
== 1("1(a+)1 h(v)dv + Z Z L (ty, x(t ))ftj %dH(S) + 10 J, rll)!dH(s).

j=1lv=
Hence
m n—1
—Jy SRR + 2 5 Lty 2() S5 + e
J v
1 v m n—1 1 1 L
_fo §1(a+)1)h dv+Jz:1VZI Wty x(t ))f dH( )+ Cn 10f0 (o= dH (s).
It follows that
1 —s a—1
Cn—1,0 = L IN a F(L) h(s)ds — Z Z L(t;,x(t;))
1- fo =11 1)| H(s) j=11v=0
1 v m n—
~Jo fEih()dv + 32 3 J S dH ()L, (1))

Substituting ¢, ; into (6.0.22), we get

k n—1
t
o) = = J ST hls)ds + 30 3 SR (8, o (1)
j=lv=
m n—1
1 1 a(l—s)*1—(1—-s)> . (A—t;)” . )
+1—f01 S dH (s) [fo T(atl) h(s)ds ;ygo 1 (¢, (1))

(6.0.24)

t € (t, tgy], k € N[O, m].

On the other hand, if = satisfies (6.0.24), we can prove that z is a solution of (6.0.21) by

direct computation. The proof is completed. O

Involving the Riemann-Liouville fractional derivative, we consider the following more general
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problem:

;

RLDO+I( ) = h(t),t c (ti,ti+1],i € N[O,m],

ARLDC (1)) = Li(te, 2(ty)), k € N[L,m], i € N[L,n — 1],
(6.0.25)
AISIQZL’(tk) = ]n<tk7l’(tk)), ke N[l, m],

17792(0) = BEDe tw(0) = - - = BEDET 2 (0) = 0, w(1) = [ u(s)dH(s).

\

Theorem 6.0.4 Suppose that fol s~ =DdH(s) # 1. Then x is a solution of (6.0.25) if
and only if

v(t) = — [ L (s)ds + 3 > G Lt a(t,)

j=lv=

F(a—n+2) 1 (1_S)a71 m n (l_t_)a—u
T vane |[Jo - T ME)ds = 30 30 Lt 2(t) i

m n—1 (n—1)

1 (1-v) a—
0 F(a+1) h(v M“*’EVZ L (t;, (1 ft F(a V+1) H{(s) —ﬁ(a_nw)»té (tks trsa],

k € N[0, m].

Proof: Suppose z is a solution of (6.0.25). By a € (n — 1,n), using Theorem 4.0.1, we
know from —FLDg, z(t) = h(t),t € (t;,tiy1],i € N[0, m] that there exist constants ¢, ; € R
such that

w(t) = — [ (s)ds + 5 z Cvjtiary t € (b tial k €N[O,m]. (6.0.26)

7=0v=

It follows that

ea(t) = — [l s)ds + z z Coj i t € (bt b € N[0, ] (6.0.27)

j=0v=

and for s =1,2,--- ,n — 1 that

RLpesip(t) = — [3 U s)l) h(s)ds + ZO Z cngjyﬂ t € (tp,tp], k € N[O,m]. (6.0.28)
J v=
(i) By I'7°z(0) = R*EDg 2 (0) = -+ - = RLDS‘I("Q):U(O) =0 and (6.27) and (6.0.28), we get

Ci0 =C0 =" """ =0Cr—20=Cno— 0.
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(i) By AREDS'x(ty) = Lty z(ty)), k € N[1,m], i € N[I,n — 1] and (6.0.28), we get
cix = Li(tg, x(ty)), k € N[1,m], i € N[1,n — 1].

(iii) By Al z(ty) = In(te, 2(tr)), k € N[1,m] and (6.27), we get ¢, = Ln(ty, 2(tr)), k €
N[1,m)].

(iv) By z(1) = [} x(s)dH(s) and (6.26) and (i)-(iii), we get

70 v=

U ) ds 4+ 30 5 e S — [N a(s)dH (s) = i S a(s)dH (s)

:ngoftfﬂ <_fos T ( )dv+2 Zcuj(rsat )u+1 > dH(s)

7=0v=

:_Zﬁwkwx dMHQQW“ZZVﬁt s dH(s)

j=0v=

— Jy Jy S h(w)dvds + 2 SIS Y ey S (s)

j=0v=1

1 prl (s—v)*™
:_fo fv ( r())

" dsh(v)dv + 3 2 Cug S ey dH (s)

j=0v=

m n—1

1 (s (n—1)
_fOI‘ d’U—FZZI( ( ))Lj((atl)j+1dH<)+Cn 10f0 ﬁdH(S)

j=1lv=

Hence

N Shs (1-t)*" | ca-1,
o fO () h(S)dS +j; ; (tjax( ))F(a—]u—kl) + F(a—:z—iQ)

m n—1

_fo Fl(a-vk)l)h )dv + 3 Z Ly (t5, =(t ))f (F(;tj)”i_ly)dH(s)

j=1lv=

(n—1)

+Cn 10f a—dH(S)

I'(a—n+2)

It follows that

_ _ T(a—n+2) I ShS (1)
Cn—l,O - 17‘[‘01 8“7("71)(11‘[(5) 0 I‘(a) h<8)d8 - Z Z ‘[V( ( ))m

j=1lv=1

m n—1

1 v 1 (s— J a—v
0 T Ay + 3 2 Lt o (1) ], FacsrndH ()

j=lv=
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Substituting ¢, ; into (6.0.26), we get

kK n
t—t;)* Y
— Jy S h(s)ds + p3p3 L, 2 ()

[(a—n+2) 1 (1-s)1 u (1—t;)~
e e vang |Jo @ M8)ds = 3 30 (g, a(t) v Z=

j=1lv=1
(6.0.29)
d m n— 1[ 1 (S*t]’)a_l/ dH totf(nfl)
o rmh)dy + 30 2 Lt 2(6) [ 1 S) |ty

te (tkatk+l]7 ke N[O,m]
On the other hand, if = satisfies (6.0.29), we can prove that z is a solution of (6.0.25) by

direct computation. The proof is completed. O

Remark 6.0.5 In [30], Wang studied the the existence and uniqueness of solutions of the
following impulsive problems:
DI x(t) = f(t,2(t),t € (ti tina], i € N[0, m],
Az (t;) = L(x(t:)),i € N[1,m], j € N[0,q — 1], (6.0.30)
29)(0) = x;,j € N[0, q — 1],
where CD;% is the standard Caputo fractional derivative of order ¢ € (n — 1,n) with the

starting point ¢;. The equivalent integral equation of IVP (6.0.30) was obtained in [30] see
Lemma 2.2 [30].

Suppose that x is a solution of (6.0.30). By Theorem 3.1.2, there exist constants ¢;, € R
(v € N[0, q — 1], € N[0, m]) such that

_ ft (t—
t;

( ))dS + Z czu(t 3_)1)7 le (thti-i-l]az. € N[Oam]
Then

; t (t—s)4—J—1 . .
zO)(t) = ) %f( x(s))ds + chwr §+) t € (t;,tiv1],7 € N[0,m],j € N[1,q — 1].

By 29(0) = x;,j € N[0,q — 1], we get co; = z;(j € N[0,q — 1].
By AI(])(tl) - I],l(x@l))?Z S N[lvm]vj S N[an - 1]7 we get

_sq71 i v—j
LZ lt—_f( ())d8+Zcz IVI‘(V—J_;')_I)

= I;;(x(t;)),7 € N[1,m],j € N[0,q — 1].
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It follows that
q_l v s v—1
Gty = 3 G R o, Gy f (s 2(9))ds + L (2(ti1)
X=V
and

. _s q 1
Cij = Z Cim1w ;(V JH + [ t—_ f(s,2(s))ds + I (z(t;))

q—1 v tio1 (_q—s)2—V—1 ti—ti—1)""7
=3 ZC@ g ipitizal 1thyj)1) + 1., L §(qu) f(s,2(s))ds + I, ;-1 (x(ti-1)) —(F(y_jl_})_l)

v=j Lx=v

+ [ B f (s, w(s))ds + L (ts)

q—1q-1 .
ti ti XV tz_tz ) J t ti_1—5)4 V" 1 ti—t;—1)" "7
= Z Z Ci727X( th V—T-)l) ( (v— j1+1) Z L[t,b 21 ( 1 ) —v) f(37 x(s))ds—( F(l/—jl-i)-l)

v=j x=v

it b y—i L (ti—g)i—i—1
+ 3 L (@(tion) = + [ B f (s a(s))ds + L(a(t).

v=j

ti— 1 tim o)XY (ti—ti—1)V I (ti—ti—o)X I
By Z T(x—v+1)  Tw—j+1) — Tx—j+rn o W€ have

q—1

i i i—ti—1)""7 i—ti—1)""7
%—zkm%zfyxg Pl 3 e 2 s (a(tion) + (e ()
l/=]

1 llsqyl i li—1 —s5)2—3—1
+Zf’L———#@ﬂD%t5$,+th) f(s,2(s))ds
) )

ti—2
)X~ J —Jj
e Z Ci2,y tf* ;z ]2+1 + Z (ts Vtz j1+1) Il,yi,l(a:(ti,l)) + [j71($<tl))

I R s als)ds + L SR S (s () ds
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(tz 2 tz 3)X1 x (t 7t1 2)X J
Z Ci-3x Z Cla—x+1)  Tx—j+1)
X1=J

v _ v—j J
+Z§Z’}ﬁﬁ ey NP (oI (08 »+z:t3;,aHum4»+mmm»

X=] V=]

o B f s (s))ds + [ S f (s, a(s)) ds

ti—z  T'(q—3) T'(q—7)

" (s, x(s))ds

ti-1 T(g—j)

(ti—ti—3)1=7 (ti—ti—9)X~7 (ti—ti—1)" 7
Xlz:]cz 3X1 T(x1 3j+1 + Z I'(x— 32+1) [xz 2( ( ))“’ Z L(v— ]14_1) [V,i—l(x(ti—l))

(b)) + f12 ST (s, (s))ds

—i—ft’ ! tisij 1f( z(s) dS—l—ft l—tfsqq]; 1j‘“(s,:c(s))ds

-1 qg—1
:2%mwﬂ+;g%gm (@) + 1 (t:))
5)a—7—1
—i—fo tqu ——f (s, 2(s))ds.
Hence
Sq 1 q—1 X—3 _g)ai—1
ftz = (s >)d5+]¥0 XZ COXIF(X —j+1) +f0 = T'(q—3) F(s,2(s))ds
(6.0.31)
i-1q-]1 (ti—t)X~ J (t,t.)]' .
+ 21 Z W]X,V(‘r(tl’)) + I]’z(I(tz)) F(j;l)' t e (ti7ti+1], 1€ N[O, m]
v=1lXx=J

On the other hand, we can prove that z is a solution of (6.0.30) if x satisfies (6.0.31). We
note that Lemma 2.2 in [30] is different from our result. O

We can investigate the following similar problem for impulsive fractional differential equation
which involves a single starting point 0:

Dl x(t) = f(t,z(t)),t € (t;,tisa]),i € N[O, m],

29)(0) = z;,j € N[0, q — 1].
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In fact, suppose that x is a solution of IVP(6.0.32). By Theorem 4.0.1, there exist constants
¢jv» € R(j € N[0,m],v € N[0,n — 1]) such that

z(t) = f(f (t_l“izzq)_lf( z(s))ds + Z Z cjyF l/+1 ot € (ti,tig], i € N[0, m].

Then

—g)a—k-1 J .
W) = [ %Jf( z(s))ds + Z z cjy(;(,j 1yt € (titiga] i € N[O, m).

7=0v=
By Az®(t;)) = L.;(x(t;)),i € N[1,m],k € N[0,q — 1], we get ¢;x = Li(2(t;)),i € N[1,m],
k e N[0,q — 1].
By 2 (0) = z1, k € N[0, ¢ — 1], we get cox = 74 (k € N[0, ¢ — 1]).

Hence

n—1
—g)a—1 v
x(t) = fy 128 f(s7m(3))ds+§0x,jﬁ
(6.0.33)
Z Z Lj(x(t;) S5 € (1.t i € N[O, mi.

On the other hand, if x satisfies (6.0.33), we can prove that z is a solution of (6.0.32). Then
(6.0.32) is equivalent to (6.0.33). The proof is completed. ]
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