Dieter Leseberg

Subdensity as a convenient concept for Bounded Topology

ABSTRACT. A subdensity space is a special case of a density space, which also occur under the name of hypernear space in [17]. Hence, most of classical spaces, like topological spaces, uniform spaces, proximity spaces, contiguity spaces or nearness spaces, respectively can be immediately described and studied in this general framework. Moreover, the more specific defined subdensity spaces allow us to consider and integrate the fundamental species of b topological and b-near spaces, too, as presented and studied in [19]. In this paper it is shown that b-proximal spaces also can be involved, and b-topological spaces then have an alternate description by different corresponding subdensity spaces.

At last, we establish a one-to-one correspondence between suitable subdensity spaces and their related strict topological extensions [1]. This relationship generalizes the one of LODATO, studied by him in the realm of generalized proximity spaces [20].

KEY WORDS AND PHRASES. Bounded Topology; b-topological space; b-proximal space; strict topological extension

1 Basic Concepts

As usual $\underline{P} X$ denotes the power set of a set X, and we call $\mathcal{B}^{X} \subset \underline{P} X$ a bornology (on X) [8], if it possesses the following properties, i.e.
$\left(\mathrm{b}_{0}\right) \emptyset \in \mathcal{B}^{X} ;$
(b_{1}) $B_{2} \subset B_{1} \in \mathcal{B}^{X}$ imply $B_{2} \in \mathcal{B}^{X}$;
$\left(\mathrm{b}_{2}\right) x \in X$ implies $\{x\} \in \mathcal{B}^{X}$;
$\left(\mathrm{b}_{3}\right) B_{1}, B_{2} \in \mathcal{B}^{X}$ imply $B_{1} \cup B_{2} \in \mathcal{B}^{X}$.
The elements of \mathcal{B}^{X} are called bounded sets. Then, for bornologies $\mathcal{B}^{X}, \mathcal{B}^{Y}$ a function f : $X \longrightarrow Y$ is called bi-bounded iff f satisfies
(bib $\left._{1}\right) f \mathcal{B}^{X}:=\left\{f[B]: B \in \mathcal{B}^{X}\right\} \subset \mathcal{B}^{Y}$;
(bib_{2}) $f^{-1} \mathcal{B}^{Y}:=\left\{f^{-1}[D]: D \in \mathcal{B}^{Y}\right\} \subset \mathcal{B}^{X}$.
Evidently, for corresponding power sets each map $f: X \longrightarrow Y$ is bi-bounded. As an instructive example we consider for sets X, Y as bornologies in each case the set of all finite subsets of those. Then, for each map $f: X \longrightarrow Y$ and some $B \in \mathcal{B}_{f i}^{X}:=\{D \subset X: D$ is finite\} we look at the power set on B and consider the restriction $\left.f\right|_{B}$ of f on B. Then $\left.f\right|_{B}$ is bi-bounded.

Then we make use of the following notations: For collections $\rho, \rho_{1}, \rho_{2} \subset \underline{P} X$ we put:

$$
\begin{aligned}
& \rho_{2} \ll \rho_{1} \text { iff } \forall F_{2} \in \rho_{2} \exists F_{1} \in \rho_{1} F_{1} \subset F_{2} ; \\
& \rho_{1} \vee \rho_{2}:=\left\{F_{1} \cup F_{2}: F_{1} \in \rho_{1}, F_{2} \in \rho_{2}\right\} ; \\
& \sec \rho:=\{D \subset X: \forall F \in \rho D \cap F \neq \emptyset\} .
\end{aligned}
$$

Definition 1.1 We call a triple $\left(X, \mathcal{B}^{X}, N\right)$ consisting of a set X, bornology \mathcal{B}^{X} and a function $N: \mathcal{B}^{X} \longrightarrow \underline{P}(\underline{P}(\underline{P} X))$ an episd-space (shortly esd-space) iff the following axioms are satisfied:
$\left(\operatorname{esd}_{1}\right) \rho_{2} \ll \rho_{1} \in N(B), B \in \mathcal{B}^{X}, \rho_{2} \subset \underline{P} X$ imply $\rho_{2} \in N(B)$;
$\left(\operatorname{esd}_{2}\right) B \in \mathcal{B}^{X}$ implies $\mathcal{B}^{X} \notin N(B) \neq \emptyset$;
$\left(\operatorname{esd}_{3}\right) \rho \in N(\emptyset)$ implies $\rho=\emptyset$;
$\left(\operatorname{esd}_{4}\right) x \in X$ implies $\{\{x\}\} \in N(\{x\}) ;$
$\left(\operatorname{esd}_{5}\right) \emptyset \neq B_{2} \subset B_{1} \in \mathcal{B}^{X}$ imply $N\left(B_{2}\right) \subset N\left(B_{1}\right) ;$
$\left(\operatorname{esd}_{6}\right)\left\{\operatorname{cl}_{N}(F): F \in \rho\right\} \in N(B), \rho \subset \underline{P} X, B \in \mathcal{B}^{X}$ imply $\rho \in N(B)$, where $l_{N}(F):=\{x \in$ $X:\{F\} \in N(\{x\})\} ;$
$\left(\operatorname{esd}_{7}\right) \rho_{1} \vee \rho_{2} \in N(B), \rho_{1}, \rho_{2} \subset \underline{P} X, B \in \mathcal{B}^{X}$ imply $\rho_{1} \in N(B)$ or $\rho_{2} \in N(B)$;
$\left(\operatorname{esd}_{8}\right) B \in \mathcal{B}^{X}$ implies cl $l_{N}(B) \in \mathcal{B}^{X}$;
$\left(\operatorname{esd}_{9}\right) \rho \cap \mathcal{B}^{X} \in N(B), B \in \mathcal{B}^{X} \backslash\{\emptyset\}, \rho \subset \underline{P} X$ imply $\rho \in N(B)$.
If $\rho \in N(B)$ for some $B \in \mathcal{B}^{X}$, then we call ρ a B -collection (in N). For esd-spaces $\left(X, \mathcal{B}^{X}, N\right),\left(Y, \mathcal{B}^{Y}, M\right)$ a function $f: X \longrightarrow Y$ is called bi-bounded sd-map (shortly bibsdmap iff it satisfies $\left(\mathrm{bib}_{1}\right),\left(\mathrm{bib}_{2}\right)$ and
(sd) $B \in \mathcal{B}^{X}$ and $\rho \in N(B)$ imply $f \rho:=\{f[F]: F \in \rho\} \in M(f[B])$.
We denote by ESD the corresponding category.

Remark 1.2 In a former paper [19] it was shown, that the category b-TOP of b-topological spaces and b-continuous maps as well as the category b-NEAR of b-nearness spaces and b-near maps can be fully embedded into ESD. In our following research we will establish a further equivalent description of b-topological spaces by means of different esd-spaces resulting into an alternate description of the category TOP, if the given bornology \mathcal{B}^{X} of the considered esd-space is saturated, which means X is an element of \mathcal{B}^{X}. Moreover, we focus our attention on so called b-proximal spaces which also can be integrated into the above defined concept. Then, in a natural way, we will characterize those esd-spaces which can be extended to a certain topological one. In case of saturation this new established connection deliver us the well-known famous theorem of LODATO [20] up to isomorphism.

Definition 1.3 For a set X let \mathcal{B}^{X} be a bornology. A function $t: \mathcal{B}^{X} \longrightarrow \underline{P} X$ is called a b-topological operator (b-topology) (on \mathcal{B}^{X}) iff the following axioms are satisfied, i.e.
(b-t $\left.{ }_{1}\right) B \in \mathcal{B}^{X}$ implies $t(B) \in \mathcal{B}^{X}$;
$\left(\mathrm{b}-\mathrm{t}_{2}\right) t(\emptyset)=\emptyset$;
(b-t $\left.\mathrm{t}_{3}\right) B \in \mathcal{B}^{X}$ implies $B \subset t(B)$;
$\left(\mathrm{b}-\mathrm{t}_{4}\right) B_{1} \subset B_{2} \in \mathcal{B}^{X}$ imply $t\left(B_{1}\right) \subset t\left(B_{2}\right) ;$
$\left(\mathrm{b}-\mathrm{t}_{5}\right) B \in \mathcal{B}^{X}$ implies $t(t(B)) \subset t(B)$;
$\left(\mathrm{b}-\mathrm{t}_{6}\right) B_{1}, B_{2} \in \mathcal{B}^{X}$ imply $t\left(B_{1} \cup B_{2}\right) \subset t\left(B_{1}\right) \subset t\left(B_{2}\right)$.
Then the triple $\left(X, \mathcal{B}^{X}, t\right)$ is called a b-topological space. For b-topological spaces $\left(X, \mathcal{B}^{X}, t^{X}\right)$, $\left(Y, \mathcal{B}^{Y}, t^{Y}\right)$ a function $f: X \longrightarrow Y$ is called b-continuous map iff it is bi-bounded and satisfies the following condition, i.e.
(cont) $B \in \mathcal{B}^{X}$ implies $f\left[t^{X}(B)\right] \subset t^{Y}(f[B])$.
We denote by b-TOP the corresponding category [19].
Example 1.4 For a set X let \mathcal{B}_{f}^{X} be denote the set of all finite subsets of X. Thus, \mathcal{B}_{f}^{X} defines a bornology on X. Then, for a fixed set $D \in \mathcal{B}_{f}^{X}$ we establish a b-topology $t^{D}: \mathcal{B}^{X} \longrightarrow \underline{P} X$ by setting $t^{D}(\emptyset):=\emptyset$ and $t^{D}(B):=B \cup D$, otherwise.

Remark 1.5 If \mathcal{B}^{X} is saturated, then a b-topological space can be considered as topological space and vice versa. Moreover, if for bornologies $\mathcal{B}^{X}, \mathcal{B}^{Y}$ with saturated $\mathcal{B}^{X} f: X \longrightarrow Y$ is constant map, then f is automatically b-continuous.

Lemma 1.6 For a b-topological space $\left(X, \mathcal{B}^{X}, t\right)$ we set: $N_{t}(\emptyset):=\{\emptyset\}$ and $N_{t}(B):=\{\rho \subset$ $\left.\underline{P} X: B \in \sec \left\{t(F): F \in \rho \cap \mathcal{B}^{X}\right\}\right\}$, otherwise.

Then $\left(X, \mathcal{B}^{X}, N_{t}\right)$ is an esd-space such that $t=c l_{N_{t}}$ (see also Chapter 2).

Proof: Firstly, we have to verify that N_{t} is satisfying the axioms $\left(\operatorname{esd}_{1}\right)$ to $\left(\operatorname{esd}_{9}\right)$.
to $\left(\operatorname{esd}_{1}\right): \rho_{2} \ll \rho_{1} \in N_{t}(B), \rho \subset \underline{P} X, B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $F \in \rho_{2} \cap \mathcal{B}^{X}$ imply the existence of $F_{1} \in \rho_{1}$ with $F_{1} \subset F_{2}$. Hence $F_{1} \in \rho_{1} \cap \mathcal{B}^{X}$ follows by applying (b_{1}), and $B \cap t\left(F_{1}\right) \neq \emptyset$ results by hypothesis. Consequently, $B \cap t\left(F_{2}\right) \neq \emptyset$ is valid according to (b- t_{4}), resulting into $\rho_{2} \in N_{t}(B)$.
to $\left(\right.$ esd $\left._{2}\right)$: Let $B \in \mathcal{B}^{X}$; in first case if $B=\emptyset$ we have $\emptyset \in N_{t}(B)$ by definition. In second case if $B \neq \emptyset$ we get $\{B\} \in N_{t}(B)$, since $B \cap t(B) \neq \emptyset$ is valid.
Further suppose $\mathcal{B}^{X} \in N_{t}(B)$, and without restriction $B \neq \emptyset$, otherwise $B=$ \emptyset contradicts. Then $B \in \sec \left\{t(F): F \in B^{X}\right\}$ implies $B \cap t(\emptyset) \neq \emptyset$, which contradicts too. Hence $\mathcal{B}^{X} \notin N_{t}(B)$ follows.
to $\left(\mathrm{esd}_{3}\right)$: evident by definition of N_{t}.
to $\left(\operatorname{esd}_{4}\right)$: see especially proof of $\left(e s d_{2}\right)$.
to $\left(\operatorname{esd}_{5}\right)$: evident.
to $\left(\operatorname{esd}_{6}\right)$: For $\left\{c l_{N_{t}}(F): F \in \rho\right\} \in N_{t}(B), \rho \subset \underline{P} X, B \in \mathcal{B}^{X}$ let $A \in \rho \cap \mathcal{B}^{X}$, we have to verify $B \cap t(A) \neq \emptyset$. Since $c l_{N_{t}}(A) \in\left\{c l_{N_{t}}(F): F \in \rho\right\}$ we get $B \cap t\left(c l_{N_{t}}(A)\right) \neq \emptyset$ by hypothesis. Note, that $c l_{N_{t}}(A) \subset t(A) \in \mathcal{B}^{X}$ is valid. Consequently $B \cap t(t(A)) \neq$ \emptyset follows, and $B \cap t(A) \neq \emptyset$ results according to (b- t_{5}), showing our made assertion.
to $\left(\operatorname{esd}_{7}\right): \rho_{1} \vee \rho_{2} \in N_{t}(B)$ and without restriction $B \neq \emptyset$ with $\rho_{1} \neq \emptyset \neq \rho_{2}$ imply $B \in$ $\sec \left\{t(F): F \in\left(\rho_{1} \vee \rho_{2}\right) \cap \mathcal{B}^{X}\right\}$. Now, let us suppose $\rho_{1}, \rho_{2} \notin N_{t}(B)$. Hence there exists $F_{1} \in \rho_{1} \cap \mathcal{B}^{X} B \cap t\left(F_{1}\right)=\emptyset$ and $F_{2} \in \rho_{2} \cap \mathcal{B}^{X} B \cap t\left(F_{2}\right)=\emptyset$. But $F_{1} \cup F_{2} \in\left(\rho_{1} \vee \rho_{2}\right) \cap \mathcal{B}^{X}$, since \mathcal{B}^{X} is bornology and
$\emptyset=\left(B \cap t\left(F_{1}\right)\right) \cup\left(B \cap t\left(F_{2}\right)\right)=B \cap\left(t\left(F_{1}\right) \cup t\left(F_{2}\right)\right)=B \cap t\left(F_{1} \cup F_{2}\right)$
according to (b-t t_{4}) and (b- t_{6}), respectively which contradicts.
to $\left(\operatorname{esd}_{8}\right)$: evident.
to $\left(\operatorname{esd}_{9}\right): B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\rho \cap \mathcal{B}^{X} \in N_{t}(B), \rho \subset \underline{P} X$ imply $B \in \sec \{t(F): F \in(\rho \cap$ $\left.\left.\mathcal{B}^{X}\right) \cap \mathcal{B}^{X}\right\}$, and $\rho \in N_{t}(B)$ results. To show the equality $t=c l_{N_{t}}$ is valid let without restriction $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$, then $x \in c l_{N_{t}}(B)$ is equivalent to the statement $\{B\} \in N_{t}(\{x\})$, which is further equivalent to $\{x\} \in \sec \left\{t(F): F \in B \cap \mathcal{B}^{X}\right\}$, at last resulting into the statement $x \in t(B)$ as equivalent to above.

Remark 1.7 As an interpretation of this Lemma we keep hold that every b-topological space is induced by a certain esd-space.

As a next step in our research we will introduce the concept of b-proximal spaces and related facts.

Definition 1.8 For a bornology \mathcal{B}^{X} a relation $\delta \subset \mathcal{B}^{X} \times \mathcal{B}^{X}$ is called b-proximal, and the triple $\left(X, \mathcal{B}^{X}, \delta\right)$ a b-proximal space iff δ satisfies the following conditions, i.e.
$\left(\mathrm{b}-\mathrm{p}_{1}\right) B \in \mathcal{B}^{X}$ implies $\operatorname{cl}_{\delta}(B) \in \mathcal{B}^{X}$, where $\operatorname{cl}_{\delta}(B):=\{x \in X:\{x\} \delta B\} ;$
$\left(\mathrm{b}-\mathrm{p}_{2}\right) \emptyset \bar{\delta} D$ and $B \bar{\delta} \emptyset$ for each $B, D \in \mathcal{B}^{X}$;
$\left(\mathrm{b}-\mathrm{p}_{3}\right) B \delta\left(D_{1} \cup D_{2}\right)$ iff $B \delta D_{1}$ or $B \delta D_{2}$ for each $B, D_{1}, D_{2} \in \mathcal{B}^{X}$;
(b-p $\left.{ }_{4}\right) x \in X$ implies $\{x\} \delta\{x\}$;
(b-p $\left.)_{5}\right) B_{1} \subset B \in \mathcal{B}^{X}$ and $B_{1} \delta D$ imply $B \delta D$ for each $D \in \mathcal{B}^{X}$;
(b-p $\left.\mathrm{p}_{6}\right) B_{1} \delta D$ and $D \subset \operatorname{cl}_{\delta}(B), B \in \mathcal{B}^{X}$ imply $B_{1} \delta B$.
(Hereby, $\bar{\delta}$ denotes the negation of $\delta)$. For b-proximal spaces $\left(X, \mathcal{B}^{X}, \delta\right),\left(Y, \mathcal{B}^{Y}, \gamma\right)$ a function $f: X \longrightarrow Y$ is called b-proximal map iff f is bi-bounded and satisfies the following condition, i.e.
(prox) $B \delta D$ implies $f[B] \gamma f[D]$. We denote by b-PX the corresponding category.
Remark 1.9 If \mathcal{B}^{X} is saturated, then a b-proximal space $\left(X, \mathcal{B}^{X}, \delta\right)$ may be considered as a generalized proximity space and vice versa [14]. In special cases LEADER proximities as well as LODATO proximities then can be easily recovered.

Proposition 1.10 For a b-topological space $\left(X, \mathcal{B}^{X}, t\right)$ we set: $B \delta_{t} D$ iff $B \cap t(D) \neq \emptyset$ for each $B, D \in \mathcal{B}^{X}$. Then $\left(X, \mathcal{B}^{X}, \delta_{t}\right)$ defines a b-proximal space which additionally is additive by satisfying
(add) $\left(B_{1} \cup B_{2}\right) \delta D, B_{1}, B_{2}, D \in \mathcal{B}^{X}$ imply $B_{1} \delta D$ or $B_{2} \delta D$.

Proof: straight forward.

Definition 1.11 A b-proximal space $\left(X, \mathcal{B}^{X}, \delta\right)$ is called symmetric iff in addition holds
(s) $B_{1} \delta B_{2}$ implies $B_{2} \delta B_{1}$ for each $B_{1}, B_{2} \in \mathcal{B}^{X}$.

Remark 1.12 Here, we only note that if \mathcal{B}^{X} is saturated, then $\left(X, \mathcal{B}^{X}, \delta\right)$ can be essentially considered as a LODATO proximity space [20] and vice versa. We denote by b-SPX the corresponding full subcategory of b-PX.

2 b-TOP, b-PX and b-SPX as fully embedded subcategories of ESD

Now, firstly let us start with the objects of b-PX.
Lemma 2.1 For a b-proximal space $\left(X, \mathcal{B}^{X}, \delta\right)$ we set: $N_{\delta}(\emptyset):=\{\emptyset\}$ and $N_{\delta}(B):=\{\rho \subset$ $\left.\underline{P} X: \rho \cap \mathcal{B}^{X} \subset \delta(B)\right\}$, where $\delta(B):=\left\{D \in \mathcal{B}^{X}: B \delta D\right\}$, otherwise. Then $\left(X, \mathcal{B}^{X}, N_{\delta}\right)$ is an esd-space.

Proof: Straight forward. Here, we only will verify the validity of the axioms $\left(\operatorname{esd}_{6}\right),\left(\operatorname{esd}_{7}\right)$ and $\left(\mathrm{esd}_{8}\right)$ in definition 1.1.
to $\left(\operatorname{esd}_{6}\right)$: For $\rho \subset \underline{P} X$ let $\left\{c l_{N_{\delta}}(F): F \in \delta\right\} \in N_{\delta}(B)$, we have to verify $\rho \cap \mathcal{B}^{X} \subset \delta(B)$. $A \in \rho \cap \mathcal{B}^{X}$ implies $c l_{N_{\delta}}(A) \in\left\{c l_{N_{\delta}}(F): F \in \rho\right\}$. Since $A \in \mathcal{B}^{X}$ we claim $c l_{N_{\delta}}(A) \subset c l_{\delta}(A)$, hence $c l_{N_{\delta}}(A) \in \mathcal{B}^{X}$. By hypothesis $c l_{N_{\delta}}(A) \in \delta(B)$ follows, showing that $B \delta c l_{N_{\delta}}(A) \subset c l_{\delta}(A)$ is valid. But δ is satisfying (b-p6), and $B \delta A$ results, hence $A \in \delta(B)$ follows.
to $\left(\operatorname{esd}_{7}\right)$: Without restriction let $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\rho_{1} \vee \rho_{2} \in N_{\delta}(B), \rho_{1} \neq \emptyset \neq \rho_{2}$. If supposing $\rho_{1}, \rho_{2} \notin N_{\delta}(B)$ we get $F_{1}, F_{2} \notin \delta(B)$ for some $F_{1} \in \rho_{1} \cap \mathcal{B}^{X}$ and $F_{2} \in \rho_{2} \cap \mathcal{B}^{X}$. Hence $B \bar{\delta} F_{1}$ and $B \bar{\delta} F_{2}$ implying $B \bar{\delta}\left(F_{1} \cup F_{2}\right)$ according to (b-p $\left.{ }_{3}\right)$, note that \mathcal{B}^{X} is bornology. But $F_{1} \cup F_{2} \in\left(\rho_{1} \cup \rho_{2}\right) \cap \mathcal{B}^{X}$ leads us to a contradiction.
to $\left(\operatorname{esd}_{8}\right): B \in \mathcal{B}^{X}$ implies $c l_{\delta}(B) \in \mathcal{B}^{X}$. We will show that $c l_{N_{\delta}}(B) \subset c l_{\delta}(B)$, then by $\left(\mathrm{b}_{1}\right)$ we get the desired result. $x \in c l_{N_{\delta}}(B)$ implies $\{B\} \in N_{\delta}(\{x\})$, hence $\{B\} \subset$ $\delta(\{x\})$, and $\{x\} \delta B$ results, showing that $x \in \operatorname{cl}_{\delta}(B)$ is valid.

Definition 2.2 An esd-space $\left(X, \mathcal{B}^{X}, N\right)$ is called conic iff N satisfies the condition (con) $B \in \mathcal{B}^{X}$ implies $\bigcup\{\rho \subset \underline{P} X: \rho \in N(B)\} \in N(B)$.

Example 2.3 According to Lemma 1.6 we state that the esd-space $\left(X, \mathcal{B}^{X}, N_{t}\right)$ is conic.
Remark 2.4 Here, we note that the esd-space $\left(X, \mathcal{B}^{X}, N_{\delta}\right)$ is conic, too. But in general this property must not be necessary fulfilled, if, par example we look at the near subdensity spaces considered in [19].

Lemma 2.5 For a conic esd-space $\left(Y, \mathcal{B}^{Y}, M\right)$ we put $B \gamma_{M} D$ iff $\{D\} \in M(B)$ for sets $B, D \in \mathcal{B}^{Y}$. Then $\left(Y, \mathcal{B}^{Y}, \gamma_{M}\right)$ is a b-proximal space such that $N_{\gamma_{M}}=M$.

Proof: Straight forward. Here, we only will verify the validity of axiom (b-p6) in definition 1.8.
to (b-p6): $B_{1} \delta D$ and $D \subset \operatorname{cl}_{\gamma_{M}}(B), B \in \mathcal{B}^{Y}$ imply $\{D\} \in M\left(B_{1}\right)$, hence $\left\{\operatorname{cl}_{M}(B)\right\} \ll$ $\left\{c l_{\gamma_{M}}(B)\right\} \ll\{D\}$ follows, and $\left\{c l_{M}(B)\right\} \in M\left(B_{1}\right)$ is valid. We get $\{B\} \in$ $M\left(B_{1}\right)$, according to $\left(\operatorname{esd}_{6}\right)$ which results in $B_{1} \gamma_{M} B$. It remains to prove the equality $N_{\gamma_{M}}=M$. Without restriction let $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\rho \in N_{\gamma_{M}}(B)$, hence $\rho \cap \mathcal{B}^{X} \subset \gamma_{M}(B)$. Now, we will show that $\gamma_{M}(B) \subset \bigcup\{\sigma: \sigma \in M(B)\}$ holds. $D \in \gamma_{M}(B)$ implies $B \gamma_{M} D$, hence $\{D\} \in M(B)$ is valid with $D \in\{D\}$, and $D \in \bigcup\{\sigma: \sigma \in M(B)\}$ follows. Consequently, $\rho \cap \mathcal{B}^{X} \in M(B)$ can be deduced by applying $\left(\operatorname{esd}_{1}\right)$, resulting into $\rho \in M(B)$ according to $\left(\operatorname{esd}_{9}\right)$. The reverse case is easily to verify.

Theorem 2.6 The full subcategory CON-ESD of ESD, whose objects are the conic esdspaces is isomorphic to the category b-PX.

Proof: Taking into account former results we further note that for a given b-proximal space $\left(X, \mathcal{B}^{X}, \delta\right)$ the equality $\gamma_{N_{\delta}}=\delta$ is valid. Moreover, we claim that for each b-proximal map f between b-proximal spaces f is bibsd-map between the corresponding esd-spaces and vice versa.

Definition 2.7 A conic esd- space $\left(X, \mathcal{B}^{X}, N\right)$ is called proximal iff N satisfies the condition
(px) $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\rho \in N(B)$ imply $\{B\} \in \bigcap\left\{N(F): F \in \rho \cap \mathcal{B}^{X}\right\}$.
Remark 2.8 Here, we note that for a given symmetric b-proximal space $\left(X, \mathcal{B}^{X}, \delta\right)$ the corresponding esd-space $\left(X, \mathcal{B}^{X}, N_{\delta}\right)$ is proximal. Because for $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\rho \in N_{\delta}(B)$ we have $\rho \cap \mathcal{B}^{X} \subset \delta(B)$. Then, $F \in \rho \cap \mathcal{B}^{X}$ implies $\{B\} \in N_{\delta}(F)$. Since by hypothesis $B \delta F$ is valid $F \delta B$ results, because δ is symmetric.

Corollary 2.9 The full subcategory $\mathbf{P X}-\mathbf{E S D}$ of $\boldsymbol{C O N}-\mathbf{E S D}$, whose objects are the proximal esd-spaces is isomorphic to the category $\boldsymbol{b}-\boldsymbol{S P X}$.

Proof: Here, we only note that for a given proximal esd-space the corresponding b-proximal space is symmetric.

Proposition 2.10 Every proximal esd-space $\left(X, \mathcal{B}^{X}, N\right)$ is closed by satisfying (clo) $B \in \mathcal{B}^{X}$ implies $N\left(c_{N}(B)\right)=N(B)$.

Proof: Without restriction let $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\rho \in N\left(c l_{N}(B)\right)$, we will show that $\rho \cap \mathcal{B}^{X} \subset$ $\cup\{\sigma: \sigma \in N(B)\}$ is valid. $F \in \rho \cap \mathcal{B}^{X}$ implies $\left\{c l_{N}(B)\right\} \in N(F)$, since $\left(X, \mathcal{B}^{X}, N\right)$ is
proximal. Then $\{B\} \in N(F)$ follows by applying $\left(\operatorname{esd}_{6}\right)$, and $\{F\} \in N(B)$ results with respect to (px). Consequently, $F \in \cup\{\sigma: \sigma \in N(B)\}$ is valid, showing that $\rho \cap \mathcal{B}^{X} \in N(B)$, according to $\left(\operatorname{esd}_{1}\right)$. But this induce $\rho \in N(B)$ by applying $\left(\operatorname{esd}_{9}\right)$. The reverse inclusion then can be easily verified with respect to $\left(\operatorname{esd}_{5}\right)$.

Proposition 2.11 Every proximal esd-space $\left(X, \mathcal{B}^{X}, N\right)$ is linked by satisfying
(lik) $\rho \in N\left(B_{1} \cup B_{2}\right), B_{1}, B_{2} \in \mathcal{B}^{X}$ imply $\{F\} \in N\left(B_{1}\right) \cup N\left(B_{2}\right) \forall F \in \rho \cap \mathcal{B}^{X}$.

Proof: evident.
Definition 2.12 A conic esd-space $\left(X, \mathcal{B}^{X}, N\right)$ is called covered iff N satisfies the condition
(cov) $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\rho \in N(B)$ imply $B \in \sec \left\{c_{N}(F): F \in \rho \cap \mathcal{B}^{X}\right\}$.
Example 2.13 With respect to example 2.3 we note that $\left(X, \mathcal{B}^{X}, N_{t}\right)$ is a covered esdspace.

Lemma 2.14 For a covered esd-space $\left(X, \mathcal{B}^{X}, N\right)$ the restriction of $c l_{M}$ on \mathcal{B}^{X}, denoted by $c l_{M}^{b}$ is a b-topology on \mathcal{B}^{X} such that $N_{c l_{M}^{b}}=M$.

Proof: Firstly, we only will verify the validity of the axioms $\left(b-\mathrm{t}_{5}\right)$ and $\left(\mathrm{b}-\mathrm{t}_{6}\right)$, respectively in definition 1.3. Then, the remaining is clear.
to $\left(\mathrm{b}-\mathrm{t}_{5}\right): x \in \operatorname{cl}_{M}^{b}\left(c l_{M}^{b}(B)\right), B \in \mathcal{B}^{X}$ imply $\left\{c l_{M}^{b}(B)\right\} \in M(\{x\})$, hence $\left\{c l_{M}(B)\right\} \in M(\{x\})$ is valid, and $\{B\} \in M(\{x\})$ results, according to $\left(\operatorname{esd}_{6}\right)$. But then $x \in c l_{M}(B)=$ $c l_{M}^{b}(B)$ follows.
to $\left(\mathrm{b}-\mathrm{t}_{6}\right): B_{1}, B_{2} \in \mathcal{B}^{X}$ and without restriction let $B_{1} \neq \emptyset \neq B_{2} \cdot x \in c l_{M}^{b}\left(B_{1} \cup B_{2}\right)$ implies $\left\{B_{1} \cup B_{2}\right\} \in M(\{x\})$, by paying attention to the fact that \mathcal{B}^{X} is bornology. Since $\left\{B_{1}\right\} \vee\left\{B_{2}\right\}=\left\{B_{1} \cup B_{2}\right\}$, we get $\left\{B_{1}\right\} \in M(\{x\})$ or $\left\{B_{2}\right\} \in M(\{x\})$ by applying $\left(\operatorname{esd}_{7}\right)$, resulting into $x \in c l_{M}^{b}\left(B_{1}\right) \cup c l_{M}^{b}\left(B_{2}\right)$. In showing the equality $N_{c l_{M}^{b}}=M$ let without restriction $B \in \mathcal{B}^{X} \backslash\{\emptyset\} . \quad \rho \in N_{c l_{M}^{b}}(B)$ implies $B \in \sec \left\{c l_{M}^{b}(F)\right.$: $\left.F \in \rho \cap \mathcal{B}^{X}\right\}$, which is the same as $B \in \sec \left\{\operatorname{cl}_{M}(F): F \in \rho \cap \mathcal{B}^{X}\right\}$. Since $\left(X, \mathcal{B}^{X}, M\right)$ is conic, we know that $\bigcup\{\sigma: \sigma \in M(B)\} \in M(B)$. Thus, it remains to verify $\rho \cap \mathcal{B}^{X} \subset \cup\{\sigma: \sigma \in M(B)\}$, because then $\rho \cap \mathcal{B}^{X} \in M(B)$ follows, according to $\left(\operatorname{esd}_{1}\right)$, and $\rho \in M(B)$ is valid by applying $\left(\operatorname{esd}_{9}\right)$. $F \in \rho \cap \mathcal{B}^{X}$ implies $B \cap c l_{M}(F) \neq \emptyset$, hence $x \in \operatorname{cl}_{M}(F)$ for some $x \in B$. Consequently, $\{F\} \in M(\{x\}) \subset M(B)$ follows, showing that $F \in \bigcup\{\sigma: \sigma \in M(B)\}$, which put an end of this. Then, the reverse inclusion is easily to verify.

Theorem 2.15 The full subcategory COV-ESD of CON-ESD, whose objects are the covered esd-spaces is isomorphic to the category b-TOP.

Proof: Taking into account former results we further note that for each b-continuous map f between b-topological spaces f is bibsd-map between the corresponding esd-spaces and vice versa.

Theorem 2.16 The category $\mathbf{C O N} \boldsymbol{E S D}$ is bireflective in $\boldsymbol{E S D}$.

Proof: For an esd-space $\left(X, \mathcal{B}^{X}, N\right)$ we set: $N^{C}(\emptyset):=\{\emptyset\}$ and $N^{C}(B):=\{\mathcal{A} \subset \underline{P} X$: $\left.\left\{c l_{N}(A): A \in \mathcal{A} \cap \mathcal{B}^{X}\right\} \subset \bigcup\{\rho: \rho \in N(B)\}\right\}$, otherwise. Then $\left(X, \mathcal{B}^{X}, N^{C}\right)$ is conic esdspace, and $\underline{1}_{X}:\left(X, \mathcal{B}^{X}, N\right) \longrightarrow\left(X, \mathcal{B}^{X}, N^{C}\right)$ is bibsd-map. In the following we only will verify the validity of the axioms $\left(\operatorname{esd}_{6}\right),\left(\operatorname{esd}_{7}\right)$ in definition 1.1 and that of axiom (con) in definition 2.2. Then the remaining statements are obvious.
to $\left(\operatorname{esd}_{6}\right):\left\{c l_{N^{C}}(A): A \in \mathcal{A}\right\} \in N^{C}(B), B \in \mathcal{B}^{X} \backslash\{\emptyset\}, \mathcal{A} \subset \underline{P} X$ imply $\left\{c l_{N}(F): F \in\right.$ $\left.\left\{c l_{N^{C}}(A): A \in \mathcal{A}\right\} \cap \mathcal{B}^{X}\right\} \subset \bigcup\{\rho: \rho \in N(B)\}$. We will show that $\left\{\operatorname{cl}_{N}(A): A \in\right.$ $\left.\mathcal{A} \cap \mathcal{B}^{X}\right\} \subset \bigcup\{\rho: \rho \in N(B)\} . A \in \mathcal{A} \cap \mathcal{B}^{X}$ implies $l_{N}\left(c l_{N^{C}}(A)\right) \in \bigcup\{\rho: \rho \in$ $N(B)\}$, since $c l_{N^{C}}(A) \in \mathcal{B}^{X}$. Further we have the inclusion $c l_{N^{C}}(A) \subset c l_{N}(A)$ is valid: $x \in c l_{N^{C}}(A)$ implies $\{A\} \in N^{C}(\{x\})$, hence $c l_{N}(A) \in \rho$ for some $\rho \in$ $N(\{x\}) .\left\{c l_{N}(A)\right\} \in N(\{x\})$ holds by applying $\left(\operatorname{esd}_{1}\right)$, and $\{A\} \in N(\{x\})$ results according to $\left(\operatorname{esd}_{6}\right)$, hence $x \in c l_{N}(A)$ follows. By hypothesis $c l_{N}\left(c l_{N^{C}}(A)\right) \in \sigma$ for some $\sigma \in N(B)$, and $\left\{c l_{N}(A)\right\} \in N(B)$ follows by applying (esd ${ }_{6}$), again. Consequently our assertion holds.
to (esd_{7}): Let $\mathcal{A}_{1} \vee \mathcal{A}_{2} \in N^{C}(B)$ and without restriction $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ with $\mathcal{A}_{1} \neq \emptyset \neq \mathcal{A}_{2}$. Then $\left\{c l_{N}(A): A \in\left(\mathcal{A}_{1} \vee \mathcal{A}_{2}\right) \cap \mathcal{B}^{X}\right\} \subset \bigcup\{\rho: \rho \in N(B)\}$ follows. If supposing $\mathcal{A}_{1}, \mathcal{A}_{2} \notin N^{C}(B)$ we can choose $A_{1} \in \mathcal{A}_{1} \cap \mathcal{B}^{X}$ with $c_{N}\left(A_{1}\right) \notin \bigcup\{\rho: \rho \in N(B)\}$ and $A_{2} \in \mathcal{A}_{2} \cap \mathcal{B}^{X}$ with $c_{N}\left(A_{2}\right) \notin \bigcup\{\rho: \rho \in N(B)\}$. Consequently, $A_{1} \cup A_{2} \in$ $\left(\mathcal{A}_{1} \vee \mathcal{A}_{2}\right) \cap \mathcal{B}^{X}$ follows, since \mathcal{B}^{X} is bornology. By hypothesis $c_{N}\left(A_{1} \cup A_{2}\right) \in \mathcal{A}$ for some $\mathcal{A} \in N(B)$, hence $\left\{c l_{N}\left(A_{1} \cup A_{2}\right)\right\} \in N(B)$ is valid. But $\left\{c l_{N}\left(A_{1}\right)\right\} \vee$ $\left\{c l_{N}\left(A_{2}\right)\right\}=\left\{c l_{N}\left(A_{1} \cup A_{2}\right)\right\}$ is holding, and consequently $\left\{\operatorname{cl}_{N}\left(A_{1}\right)\right\} \in N(B)$ or $\left\{c l_{N}\left(A_{2}\right)\right\} \in N(B)$ follows by applying $\left(\operatorname{esd}_{7}\right)$ which contradicts.
to (con): Without restriction let $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$. We have to verify $\bigcup\left\{\mathcal{A}: \mathcal{A} \in N^{C}(B)\right\} \in$ $N^{C}(B)$, which means that $\left\{c l_{N}(F): F \in \bigcup\left\{\mathcal{A}: \mathcal{A} \in N^{C}(B)\right\} \cap \mathcal{B}^{X}\right\} \subset \bigcup\{\rho:$ $\rho \in N(B)\}$. Now, let $c l_{N}(F)$ be given for $F \in \bigcup\left\{\mathcal{A}: \mathcal{A} \in N^{C}(B)\right\} \cap \mathcal{B}^{X}$ hence $F \in \mathcal{A}$ for some $\mathcal{A} \in N^{C}(B)$. By hypothesis there exists $\rho \in N(B)$ with $c l_{N}(F) \in \rho^{\prime}$, and $c l_{N}(F) \in \bigcup\{\rho: \rho \in N(B)\}$ results. Now, let $\left(Y, \mathcal{B}^{Y}, M\right)$ be a conic esd-space and $f:\left(X, \mathcal{B}^{X}, N\right) \longrightarrow\left(Y, \mathcal{B}^{Y}, M\right)$ be a bibsd-map, we have to
show $f:\left(X, \mathcal{B}^{X}, N^{C}\right) \longrightarrow\left(Y, \mathcal{B}^{Y}, M\right)$ is bibsd-map, too. Since by hypothesis f is bi-bounded, we will now verify the validity of axiom (sd) in definition 1.1.
to (sd): Without restriction let $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\mathcal{A} \in N^{C}(B)$, hence by definition $\left\{c_{N}(A): A \in \mathcal{A} \cap \mathcal{B}^{X}\right\} \subset \bigcup\{\rho: \rho \in N(B)\}$ is valid. It suffices to show $f \mathcal{A} \cap \mathcal{B}^{Y} \in M(f[B])$. Therefore its being enough to verify the validity of the inclusion $f \mathcal{A} \cap \mathcal{B}^{Y} \subset \bigcup\{\mathcal{M}: \mathcal{M} \in M(f[B])\} . D \in f \mathcal{A} \cap \mathcal{B}^{Y}$ implies $D=f[A]$ for some $A \in \mathcal{A}$. Then $A \subset f^{-1}[f[A]]=f^{-1}[D] \in \mathcal{B}^{X}$, and $A \in \mathcal{B}^{X}$ follows. Hence $c l_{N}(A) \in \rho$ for some $\rho \in N(B)$ by hypothesis. Consequently, $f \rho \in M(f[B])$ follows with $f\left[c l_{N}(A)\right] \in f \rho$. Since $c l_{M}(f[A]) \supset f\left[c l_{N}(A)\right]$ we get $\left\{\operatorname{cl}_{M}(f[A])\right\} \in M(f[B])$, and $\{D\}=\{f[A]\} \in M(f[B])$ results, according to $\left(\operatorname{esd}_{6}\right)$. But then $f \mathcal{A} \cap \mathcal{B}^{Y} \in M(f[A])$ is valid, since by hypothesis $\left(Y, \mathcal{B}^{Y}, M\right)$ is conic, and at last $f \mathcal{A} \in M(f[B])$ can be deduced by applying $\left(\operatorname{esd}_{9}\right)$.

Theorem 2.17 The category COV-ESD is bicoreflective in CON-ESD.

Proof: For a conic esd-space $\left(X, \mathcal{B}^{X}, N\right)$ we set: $N^{C V}(\emptyset):=\{\emptyset\}$ and $N^{C V}(B):=\{\rho \subset \underline{P} X$: $\left.B \in \sec \left\{\operatorname{cl}_{N}(F): F \in \rho \cap \mathcal{B}^{X}\right\}\right\}$, otherwise. Then $\left(X, \mathcal{B}^{X}, N^{C V}\right)$ is a covered esd-space, and $\underline{1}_{X}:\left(X, \mathcal{B}^{X}, N^{C V}\right) \longrightarrow\left(X, \mathcal{B}^{X}, N\right)$ is bibsd-map. It is straight forward to verify that $\left(X, \mathcal{B}^{X}, N^{C V}\right)$ is a covered esd-space. In showing that $\underline{1}_{X}$ is bibsd-map let $\rho \in N^{C V}(B)$ and without restriction $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$. Consequently, $B \in \sec \left\{c_{N}(F): F \in \rho \cap \mathcal{B}^{X}\right\}$ holds by definition of $N^{C V}$. Now, we will verify that $\rho \cap \mathcal{B}^{X}$ is a subset of $\bigcup\{\mathcal{A}: \mathcal{A} \in N(B)\}$. $F \in \rho \cap \mathcal{B}^{X}$ implies the existence of an element $x \in B$ with $x \in c l_{N}(F)$. Hence $\{F\} \in$ $N(\{x\}) \subset N(B)$ follows, showing that $F \in \bigcup\{\mathcal{A}: \mathcal{A} \in N(B)\}$ is valid. Now, let $\left(Y, \mathcal{B}^{Y}, M\right)$ be a covered esd-space and $f:\left(Y, \mathcal{B}^{Y}, M\right) \longrightarrow\left(X, \mathcal{B}^{X}, N\right)$ be a bibsd-map, we have to show $f:\left(Y, \mathcal{B}^{Y}, M\right) \longrightarrow\left(X, \mathcal{B}^{X}, N^{C V}\right)$ is bibsd-map, too. Since by hypothesis f is bi-bounded we will verify the validity of axiom (sd) in definition 1.1. Without restriction let $B \in \mathcal{B}^{Y} \backslash\{\emptyset\}$ and $\rho \in M(B)$, hence $B \in \sec \left\{c_{M}(F): F \in \rho \cap \mathcal{B}^{Y}\right\}$. For $A \in f \rho \cap \mathcal{B}^{X}$ we have $A=f[F]$ for some $F \in \rho$ with $f^{-1}[A] \in \mathcal{B}^{Y}$, since f is bi-bounded. Consequently, $F \in \mathcal{B}^{Y}$ is valid, and we can choose $y \in C l_{M}(F)$ for some $y \in B$ by hypothesis. But f also satisfies (sd) in definition 1.1, hence $f(y) \in c l_{N}(A) \cap f[B]$ results, concluding the proof.

3 Topological extensions and related esd-spaces

We will now consider the problem for finding a one-to-one correspondence between certain topological extensions and their related esd-spaces. This question arises from a problem formulated by LODATO in 1966 as follows:

He asked for an axiomatization of the following binary nearness relation on the power set of a set X : there exists an embedding of X into a topological space Y such that subsets A and B are near in X iff their closures meet in Y.

Now, we will generalize and solve this problem for esd-spaces, involving also LODATO's result as a special case. At first, we define the category BTEXT of so-called bornotopological extensions - shortly btop-extensions - and related morphisms (see also [19]).

Definition 3.1 Objects of BTEXT are triples $E:=\left(e, \mathcal{B}^{X}, Y\right)$, where $X:=\left(X, t_{X}\right)$, $Y:=\left(Y, t_{Y}\right)$ are topological spaces (given by closure operators t_{X} respectively t_{Y}) with bornology \mathcal{B}^{X}, so that iff $B \in \mathcal{B}^{X}$ then $t_{X}(B) \in \mathcal{B}^{X}$ also holds.
$e: X \longrightarrow Y$ is a function satisfying the following conditions:
(btx ${ }_{1}$) $B \in \mathcal{B}^{X}$ implies $t_{X}(B)=e^{-1}\left[t_{y}(e[B])\right]$, where e^{-1} denotes the inverse image under e; ($\left.\mathrm{btx}_{1}\right) t_{Y}(e[X])=Y$, which means that the image of X under e is dense in Y.

Morphisms in BTEXT have the form $(f, g):\left(e, \mathcal{B}^{X}, Y\right) \longrightarrow\left(e^{\prime}, \mathcal{B}^{X^{\prime}}, Y^{\prime}\right)$, where $f: X \longrightarrow$ $X^{\prime} g: Y \longrightarrow Y^{\prime}$ are continuous maps such that f is bi-bounded, and the following diagram commutes

If $(f, g):\left(e, \mathcal{B}^{X}, Y\right) \longrightarrow\left(e^{\prime}, \mathcal{B}^{X^{\prime}}, Y^{\prime}\right)$ and $\left(f^{\prime}, g^{\prime}\right):\left(e^{\prime}, \mathcal{B}^{X^{\prime}}, Y^{\prime}\right) \longrightarrow\left(e^{\prime \prime}, \mathcal{B}^{X^{\prime \prime}}, Y^{\prime \prime}\right)$ are BTEXT-morphisms, then they can be composed according to the rule $\left(f^{\prime}, g^{\prime}\right) \circ(f, g):=$ $\left(f^{\prime} \circ f, g^{\prime} \circ g\right):\left(e, \mathcal{B}^{X}, Y\right) \longrightarrow\left(e^{\prime \prime}, \mathcal{B}^{X^{\prime \prime}}, Y^{\prime \prime}\right)$, where "०" denotes the composition of maps.

Remark 3.2 Observe, that axiom (btx_{1}) in this definition is automatically satisfied if e : $X \longrightarrow Y$ is a topological embedding. Moreover, we admit an ordinary bornology \mathcal{B}^{X}, which need not be necessary coincide with the power set $\underline{P} X$.

Definition 3.3 We call such an extension $E:=\left(e, \mathcal{B}^{X}, Y\right)$
(i) strict iff E satisfies the condition
(st) $\left\{t_{Y}(e[A]): A \subset X\right\}$ forms a base for the closed subsets of Y [1];
(ii) symmetric iff E satisfies the condition

$$
\text { (sy) } x \in X \text { and } y \in t_{Y}(\{e(x)\}) \text { imply } e(x) \in t_{Y}(\{y\}) \text { [3]. }
$$

Example 3.4 For a symmetric bornotopological extension $E:=\left(e, \mathcal{B}^{X}, Y\right)$ we consider the triple $\left(X, \mathcal{B}^{X}, N^{e}\right)$, where N^{e} is defined by setting:
$N^{e}(\emptyset):=\{\emptyset\}$ and
$N^{e}(B):=\left\{\rho \subset \underline{P} X: t_{Y}(e[B]) \in \sec \left\{t_{Y}(e[F]): F \in \rho \cap \mathcal{B}^{X}\right\}\right\}$, otherwise.
Then $\left(X, \mathcal{B}^{X}, N^{e}\right)$ is a proximal esd-space such that for each $B \in \mathcal{B}^{X} c l_{N^{e}}(B)=t_{X}(B)$.
Proof: Firstly, we will verify the above cited equality. Without restriction let $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$.
to " \subset ": $x \in \operatorname{cl}_{N^{e}}(B)$ implies $\{B\} \in N^{e}(\{x\})$, hence $t_{Y}(\{e(x)\}) \cap t_{Y}(e[B]) \neq \emptyset$. Then we can choose $y \in t_{Y}(e[B])$ with $y \in t_{Y}(\{e(x)\})$. Since by hypothesis E is symmetric, we get $e(x) \in t_{Y}(\{y\})$. But then $e(x) \in t_{Y}(e[B])$ is valid, because t is topological. Consequently, $x \in t_{X}(B)$ follows by applying (btx ${ }_{1}$) in definition 3.1.
to " \supset ": $x \in t_{X}(B)$ implies $e(x) \in t_{Y}(e[B])$ according to (btx ${ }_{1}$), hence $\{B\} \in N^{e}(\{x\})$ follows, resulting into $x \in c l_{N^{e}}(B)$. Further, we only will verify the validity of the axioms $\left(\operatorname{esd}_{6}\right)$ and $\left(\operatorname{esd}_{7}\right)$, respectively. Then the remaining statements are clear.
to $\left(\operatorname{esd}_{6}\right):\left\{c l_{N^{e}}(F): F \in \rho\right\} \in N^{e}(B), B \in \mathcal{B}^{X} \backslash\{\emptyset\}, \rho \subset \underline{P} X$ imply $t_{Y}(e[B]) \in \sec \left\{t_{Y}(e[A])\right.$:
$\left.A \in\left\{c l_{N^{e}}(F): F \in \rho\right\} \cap \mathcal{B}^{X}\right\}$. Then $F^{\prime} \in \rho \cap \mathcal{B}^{X}$ implies $c l_{N^{e}}\left(F^{\prime}\right) \in\left\{c l_{N^{e}}(F):\right.$ $F \in \rho\} \cap \mathcal{B}^{X}$, because $c l_{N^{e}}\left(F^{\prime}\right)=t_{X}\left(F^{\prime}\right) \in \mathcal{B}^{X}$ by definition 3.1. By hypothesis $t_{Y}(e[B]) \cap t_{Y}\left(e\left[t_{X}\left(F^{\prime}\right)\right]\right) \neq \emptyset$ follows. But $e\left[t_{X}\left(F^{\prime}\right)\right] \subset t_{Y}\left(e\left[F^{\prime}\right]\right)$ holds by apply$\operatorname{ing}\left(\mathrm{btx}_{1}\right)$, and $t_{Y}\left(e\left[t_{X}\left(F^{\prime}\right)\right]\right) \subset t_{Y}\left(e\left[F^{\prime}\right]\right)$ can be deduced, since t_{Y} is topological, resulting into $\rho \in N^{e}(B)$.
to $\left(\operatorname{esd}_{7}\right)$: Let $\rho_{1} \vee \rho_{2} \in N^{e}(B)$ and without restriction $\rho_{1} \neq \emptyset \neq \rho_{2}, B \neq \emptyset$. By definition we get $t_{Y}(e[B]) \in \sec \left\{t_{Y}(e[F]): F \in\left(\rho_{1} \vee \rho_{2}\right) \cap \mathcal{B}^{X}\right\}$. If supposing $\rho_{1}, \rho_{2} \notin N^{e}(B)$. Then we can choose $F_{1} \in \rho_{1} \cap \mathcal{B}^{X}$ with $t_{Y}(e[B]) \cap t_{Y}\left(e\left[F_{1}\right]\right)=\emptyset$ and $F_{2} \in \rho_{2} \cap \mathcal{B}^{X}$ with $t_{Y}(e[B]) \cap t_{Y}\left(e\left[F_{2}\right]\right)=\emptyset$. Hence $F_{1} \cup F_{2} \in\left(\rho_{1} \vee \rho_{2}\right) \cap \mathcal{B}^{X}$, since \mathcal{B}^{X} is bornology. Consequently, $t_{Y}(e[B]) \cap t_{Y}\left(e\left[F_{1} \cup F_{2}\right]\right) \neq \emptyset$ results. On the other hand we have $\emptyset=t_{Y}(e[B]) \cap\left(t_{Y}\left(e\left[F_{1}\right]\right) \cup t_{Y}\left(e\left[F_{2}\right]\right)\right)=t_{Y}(e[B]) \cap t_{Y}\left(e\left[F_{1}\right] \cup e\left[F_{2}\right]\right)=$ $t_{Y}(e[B]) \cap t_{Y}\left(e\left[F_{1} \cup F_{2}\right]\right)$, which contradicts.

Definition 3.5 For a proximal esd-space $\left(X, \mathcal{B}^{X}, N\right)$ and for $B \in \mathcal{B}^{X} \sigma \subset \underline{P} X$ is called B-bunch in N iff σ satisfies the following conditions:
$\left(\mathrm{bun}_{1}\right) \emptyset \notin \sigma$;
$\left(\right.$ bun $\left._{2}\right) F_{1} \cup F_{2} \in \sigma$ iff $F_{1} \in \sigma$ or $F_{2} \in \sigma$;
$\left(\mathrm{bun}_{3}\right) B \in \sigma \in N(B)$;
$\left(\right.$ bun $\left._{4}\right) A \in \sigma$ and $A \subset \operatorname{cl}_{N}(F): F \in \mathcal{B}^{X}$ imply $F \in \sigma$;
$\left(\right.$ bun $\left._{5}\right) A \in \sigma \cap \mathcal{B}^{X}$ implies $\{A\} \in \bigcap\left\{N(F): F \in \sigma \cap \mathcal{B}^{X}\right\}$.

Proposition 3.6 For a proximal esd-space $\left(X, \mathcal{B}^{X}, N\right)$ and for $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ with $x \in B$ $x_{N}:=\left\{A \subset X: x \in \operatorname{cl}_{N}(A)\right\}$ is a B-bunch in N. Moreover, x_{N} is maximal element in $N(\{x\}) \backslash\{\emptyset\}$, ordered by inclusion.

Proof: Evidently, x_{N} is satisfying $\left(\right.$ bun $\left._{1}\right)$ and $\left(\right.$ bun $\left._{2}\right) . B \in x_{N}$, since $\{B\} \ll\{\{x\}\} \in$ $N(\{x\}) \subset N(B)$ and $\left(\operatorname{esd}_{6}\right)$ are holding.
to $\left(\right.$ bun $\left._{4}\right): A \in x_{N}$ and $A \subset c l_{N}(F), F \in \mathcal{B}^{X}$ imply $x \in c l_{N}(A)$, hence $x \in c l_{N}(F)$ follows, showing that $F \in x_{N}$ is valid.
to $\left(\right.$ bun $\left._{5}\right): A \in x_{N} \cap \mathcal{B}^{X}$ and $F \in x_{N} \cap \mathcal{B}^{X}$ imply $\{A\} \in N(\{x\}) \subset N\left(c l_{N}(F)\right)=N(F)$, according to proposition 2.10.

Now, let $\sigma \in N(\{x\}) \backslash\{\emptyset\}$ with $x_{N} \subset \sigma$. For $F \in \sigma$ we have $\{F\} \in N(\{x\})$, and $x \in c l_{N}(F)$ follows, showing that $\sigma=x_{N}$ holds.

Definition 3.7 A proximal esd-space $\left(X, \mathcal{B}^{X}, N\right)$ is called a bunch space iff N satisfies the condition
(bun) $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\rho \in N(B)$ imply $\forall F \in \rho \cap \mathcal{B}^{X} \exists B$-bunch σ in N with $F \in \sigma$.
Proposition 3.8 The esd-space $\left(X, \mathcal{B}^{X}, N^{e}\right)$ is a bunch space.

Proof: For $B \in \mathcal{B}^{X} \backslash\{\emptyset\}, \rho \in N^{e}(B)$ let $F \in \rho \cap \mathcal{B}^{X}$, hence by definition $t_{Y}(e[B]) \cap t_{Y}(e[F]) \neq$ \emptyset holds, so that we can choose $y_{F} \in t_{Y}(e[B]) \cap t_{Y}(e[F])$. Now, we put $t\left(y_{F}\right):=\left\{A \subset X: y_{F} \in\right.$ $\left.t_{Y}(e[A])\right\}$, hence $F \in t\left(y_{F}\right) \cdot t\left(y_{F}\right)$ is a B-bunch in N^{e}, since $\emptyset \notin t\left(y_{F}\right)$, and for $A_{1} \cup A_{2} \in t\left(y_{F}\right)$ we have $y_{F} \in t_{Y}\left(A_{1} \cup A_{2}\right)=t_{Y}\left(A_{1}\right) \cup t_{Y}\left(A_{2}\right)$, showing that $A_{1} \in t\left(y_{F}\right)$ or $A_{2} \in t\left(y_{F}\right)$ is valid. If $A_{1} \in t\left(y_{F}\right)$ and $A_{1} \subset A_{2} \subset X$, then $y_{F} \in t_{y}\left(e\left[A_{1}\right]\right)$ is valid with $t_{Y}\left(e\left[A_{1}\right]\right) \subset t_{Y}\left(e\left[A_{2}\right]\right)$, and consequently $y_{F} \in t_{Y}\left(e\left[A_{2}\right]\right)$ follows, resulting into $A_{2} \in t\left(y_{F}\right)$. By definition $B \in t\left(y_{F}\right)$ holds, and $t\left(y_{F}\right) \in N^{e}(B)$, because for $A \in t\left(y_{F}\right) \cap \mathcal{B}^{X}$ we have $y_{F} \in t_{Y}(e[A]) \cap t_{Y}(e[B])$. Now, let $A \in t\left(y_{F}\right)$ and $A \subset c l_{N^{e}}(F), F \in \mathcal{B}^{X}$, hence $y_{F} \in t_{y}(e[A]) \subset t_{Y}\left(e\left[c l_{N^{e}}(F)\right]\right)=$ $t_{Y}\left(e\left[t_{X}(F)\right]\right) \subset t_{Y}(e[F])$ follows by applying (btx $)_{1}$. Consequently, $F \in t\left(y_{F}\right)$ results. At last let $A \in t\left(y_{F}\right) \cap \mathcal{B}^{X}$ and $F \in t\left(y_{F}\right) \cap \mathcal{B}^{X}$, then $\{A\} \in N^{e}(F)$ follows, because $y_{F} \in$ $t_{Y}(e[A]) \cap t_{Y}(e[F])$ is valid. The above arguments are showing that $\left(X, \mathcal{B}^{X}, N^{e}\right)$ is bunch space.

Convention 3.9 By SYBTEXT we denote the full subcategory of BTEXT, whose objects are the symmetric btop-extensions and by $B \boldsymbol{U} N$ the full subcategory of $\boldsymbol{P X} \boldsymbol{X} \boldsymbol{E S D}$ whose objects are the bunch spaces.

Theorem 3.10 Let $H: S \boldsymbol{Y B T E X T} \longrightarrow \boldsymbol{B U N}$ be defined by
(a) for a SYBTEXT-object $E:=\left(e, \mathcal{B}^{X}, Y\right)$ we put $H(E):=\left(X, \mathcal{B}^{X}, N^{e}\right)$;
(b) for a BTEXT-morphism $(f, g): E \longrightarrow E^{\prime}$ we put $H(f, g):=f$.

Then $H: S Y B T E X T \longrightarrow B U N$ is a functor.

Proof: We already know that the image of H lies in $\boldsymbol{B} \boldsymbol{U} \boldsymbol{N}$. Now, let $(f, g):\left(e, \mathcal{B}^{X}, Y\right) \longrightarrow$ $\left(e^{\prime}, \mathcal{B}^{X^{\prime}}, Y^{\prime}\right)$ be a $\boldsymbol{B T E X T}$-morphism: it has to be shown that f is bibsd-map.
By hypothesis f is bi-bounded. Without restriction let $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\rho \in N^{e}(B)$, we have to verify that $f \rho \in N^{e^{\prime}}(f[B])$. For showing this statement let $A \in f \rho \cap \mathcal{B}^{X^{\prime}}$, then we claim $t_{Y^{\prime}}\left(e^{\prime}[f[B]]\right) \cap t_{Y^{\prime}}\left(e^{\prime}[A]\right) \neq \emptyset$, which would prove our assertion. We have $A \in \mathcal{B}^{X^{\prime}}$ with $A=f[F]$ for some $F \in \rho$. By hypothesis we get $t_{Y}(e[B]) \cap t_{Y}(e[F]) \neq \emptyset$. Note, that F is also an element of \mathcal{B}^{X}, since $F \subset f^{-1}[f[F]]=f^{-1}[A] \in \mathcal{B}^{X}$ is valid, and f is bi-bounded. Now, we can choose an element $y \in t_{Y}(e[B]) \cap t_{Y}(e[F])$. Consequently, $g(y) \in g\left[t_{Y}(e[B])\right] \cap g\left[t_{Y}(e[F])\right]$ follows.

But the proposed diagram (see 3.1) commutes so that $t_{Y^{\prime}}(g[e[B]])=t_{Y^{\prime}}\left(e^{\prime}[f[B]]\right)$ and $t_{Y^{\prime}}\left(e^{\prime}[A]\right)=t_{Y^{\prime}}\left(g[e[F]]=t_{Y^{\prime}}\left(e^{\prime}[f[F]]\right)\right.$ are valid, which put an end of this. Evidently, H fulfills the remaining properties for being a functor.

4 Strict bornotopological extensions

In the previous section we have found a functor H from $\boldsymbol{S Y B T E X T}$ to $\boldsymbol{B U N}$. Now, we are going to introduce a related one in the opposite direction.

Lemma 4.1 Let $\left(X, \mathcal{B}^{X}, N\right)$ be a proximal esd-space. We set: $X^{b}:=\{\sigma \subset \underline{P} X: \sigma$ is B-bunch in N for some $\left.B \in \mathcal{B}^{X} \backslash\{\emptyset\}\right\}$, and for each $A^{b} \subset X^{b}$ we put: $t_{X^{b}}\left(A^{b}\right):=\{\sigma \in$ $\left.X^{b}: \triangle A^{b} \subset \sigma\right\}$, where $\triangle A^{b}:=\left\{F \in \mathcal{B}^{X}: \forall \sigma \in A^{b} F \in \sigma\right\}$. (By convention $\triangle A^{b}=\mathcal{B}^{X}$ if $\left.A^{b}=\emptyset\right)$. Then $t_{X^{b}}: \underline{P} X^{b} \longrightarrow \underline{P} X^{b}$ is a topological closure operator.

Proof: Firstly, we note that $t_{X^{b}}(\emptyset)=\emptyset$, since $\emptyset \notin \sigma$ for each $\sigma \in X^{b}$. Now, let A^{b} be a subset of X^{b} and consider $\sigma \in A^{b}$. Then $F \in \triangle A^{b}$ implies $F \in \sigma$, hence $A^{b} \subset t_{X^{b}}\left(A^{b}\right)$ is valid. If $A_{1}^{b} \subset A_{2}^{b}$, then $\triangle A_{2}^{b} \subset \triangle_{1}^{b}$ implying $t_{X^{b}}\left(A_{1}^{b}\right) \subset t_{X^{b}}\left(A_{2}^{b}\right)$. For arbitrary subsets $A_{1}^{b}, A_{2}^{b} \subset X^{b}$ we consider an element $\sigma \in X^{b}$ such that $\sigma \notin t_{X^{b}}\left(A_{1}^{b}\right) \cup t_{X^{b}}\left(A_{2}^{b}\right)$. Then we get $\triangle A_{1}^{b} \not \subset \sigma$ and $\triangle A_{2}^{b} \not \subset \sigma$. We can choose $F_{1} \in \triangle A_{1}^{b}$ with $F_{1} \notin \sigma$ and $F_{2} \in \triangle A_{2}^{b}$ with $F_{2} \notin \sigma$. By $\left(\right.$ bun $\left._{2}\right)$ we get $F_{1} \cup F_{2} \notin \sigma$. On the other hand $F_{1} \cup F_{2} \in \mathcal{B}^{X}$, since \mathcal{B}^{X} is bornology, and $F_{1} \cup F_{2} \in \triangle A_{1}^{b} \cap \triangle A_{2}^{b} \subset \triangle\left(A_{1}^{b} \cup A_{2}^{b}\right)$ imply $\sigma \notin t_{X^{b}}\left(A_{1}^{b} \cup A_{2}^{b}\right)$. At last, let σ be an element of $t_{X^{b}}\left(t_{X^{b}}\left(A^{b}\right)\right), A^{b} \subset X^{b}$, and suppose $\sigma \notin t_{X^{b}}\left(A^{b}\right)$. We can choose $F \in \triangle A^{b}$, with $F \notin \sigma$. By assumption we have $\Delta t_{X^{b}}\left(A^{b}\right) \subset \sigma$, hence $F \notin \triangle t_{X^{b}}\left(A^{b}\right)$. Consequently, there exists $\sigma_{1} \in t_{X^{b}}\left(A^{b}\right)$ with $F \notin \sigma_{1}$. But this implies $\triangle A^{b} \subset \sigma_{1}$, and $F \in \sigma_{1}$ results, which contradicts.

Theorem 4.2 For proximal esd-spaces $\left(X, \mathcal{B}^{X}, N\right),\left(Y, \mathcal{B}^{Y}, M\right)$ let $f: X \longrightarrow Y$ be a bibsd-map. Define a function $f^{b}: X^{b} \longrightarrow Y^{b}$ by setting for each $\sigma \in X^{b}: f^{b}(\sigma):=\{D \subset Y$: $\left.f^{-1}\left[c_{M}(D)\right] \in \sigma\right\}$. Then the following statements are valid:
(1) f^{b} is a continuous map from $\left(X^{b}, t_{X^{b}}\right)$ to $\left(Y^{b}, t_{Y^{b}}\right)$;
(2) the composites $f^{b} \circ e_{X}$ and $e_{Y} \circ f$ coincide, where $e_{X}: X \longrightarrow X^{b}$ denotes that function which assigns the $\{x\}$-bunch x_{N} to each $x \in X$.

Proof: First, let σ be a B-bunch in N. We will show that $f^{b}(\sigma)$ is a $f[B]$-bunch in M. It is easy to verify that $f^{b}(\sigma)$ satisfies the conditions (bun $)$ and (bun $)_{2}$, respectively (see 3.4). In order to establish $\left(\right.$ bun $\left._{3}\right)$ we observe that $B \in \sigma \in N(B)$ is valid by hypothesis. Since $c l_{M}(f[B]) \supset f[B]$ we have $f^{-1}\left[c l_{M}(f[B])\right] \supset f^{-1}[f[B]] \supset B$. Then $f[B] \in f^{b}(\sigma)$ results by applying (bun $)_{1}$. In showing $f^{b}(\sigma) \in M(f[B])$, we will verify that $\left\{\operatorname{cl}_{M}(D)\right.$: $\left.D \in f^{b}(\sigma)\right\} \ll f \sigma$ (note, that f is satisfying (sd) in definition 1.1). For any $D \in f^{b}(\sigma)$ we have $f^{-1}\left[c l_{M}(D)\right] \in \sigma$, hence $c l_{M}(D) \supset f\left[f^{-1}\left[c l_{M}(D)\right]\right] \in f \sigma$. By applying $\left(\operatorname{esd}_{6}\right)$ we obtain the desired result. Now, let $D \in f^{b}(\sigma)$ and $D \subset c l_{M}(F), F \in \mathcal{B}^{Y}$. We have to show that $f^{-1}\left[c l_{M}(F)\right] \in \sigma$. By hypothesis $f^{-1}\left[c l_{M}(D)\right] \in \sigma$ is valid. $f^{-1}\left[c l_{M}(F)\right] \in \mathcal{B}^{X}$ holds by applying $\left(\operatorname{esd}_{8}\right)$ and since f is bi-bounded. Consequently, $f^{-1}\left[c l_{M}(D)\right] \subset c l_{N}\left(f^{-1}\left[c l_{M}(D)\right]\right) \subset$ $c l_{N}\left(f^{-1}\left[c l_{M}(F)\right]\right)$ follows, leading us to the desired result by applying (bun ${ }_{4}$) for σ. At last let $D \in f^{b}(\sigma) \cap \mathcal{B}^{Y}$. For $F \in f^{b}(\sigma) \cap \mathcal{B}^{Y}$ we have to show that $\{D\} \in M(F)$ is valid. Since M is proximal, therefore it suffices to prove $\{F\} \in M(D)$. By hypothesis $f^{-1}\left[c l_{M}(D)\right] \in \sigma \cap \mathcal{B}^{X}$, note that f is bi-bounded. On the other hand if $F \in f^{b}(\sigma) \cap \mathcal{B}^{Y}$ we also have $f^{-1}\left[c l_{M}(F)\right] \in \sigma \cap \mathcal{B}^{X}$. But σ satisfies (bun $_{5}$), hence $\left\{f^{-1}\left[c l_{M}(F)\right]\right\} \in N\left(f^{-1}\left[c l_{M}(D)\right]\right)$ is valid. Consequently, $\left\{c l_{M}(F)\right\} \in M\left(c l_{M}(D)\right)$ follows, since f satisfies (sd) and by applying $\left(\operatorname{esd}_{5}\right)$. But then $\{F\} \in M(D)$ results according to $\left(\operatorname{esd}_{6}\right)$ and proposition 2.10. Taking all these facts into account we conclude that $f^{b}(\sigma)$ defines a $f[B]$-bunch in M, and thus $f^{b}(\sigma) \in Y^{b}$ is valid.
to (1): Let $A^{b} \subset X^{b}, \sigma \in t_{X^{b}}\left(A^{b}\right)$ and suppose $f(\sigma) \notin t_{Y^{b}}\left(f^{b}\left[A^{b}\right]\right)$. Then $\triangle f^{b}\left[A^{b}\right] \not \subset f^{b}(\sigma)$, hence $D \notin f^{b}(\sigma)$ for some $D \in \triangle f^{b}\left[A^{b}\right]$, which means $f^{-1}\left[c l_{M}(D)\right] \notin \sigma$. But $\triangle A^{b} \subset \sigma$ implies $f^{-1}\left[c_{M}(D)\right] \notin \sigma_{1}$ for some $\sigma_{1} \in A^{b}$. Consequently, $D \notin f^{b}\left(\sigma_{1}\right)$ results, which contradicts, because $D \in \triangle f^{b}\left[A^{b}\right]$ is valid.
to (2): Now, let x be an element of X. We will prove the validity of the equation $f^{b}\left(e_{X}(x)\right)=$ $e_{Y}(f(x))$. To this end let $D \in e_{Y}(f(x))$. Then $f(x) \in c l_{M}(D)$ follows, and $x \in$ $f^{-1}\left[c l_{M}(D)\right]$ is valid. Consequently, $f^{-1}\left[c_{M}(D)\right] \in x_{N}=e_{X}(x)$ holds, and $D \in$ $f^{b}\left(e_{X}(x)\right)$ results, proving the inclusion $e_{Y}(f(x)) \subset f^{b}\left(e_{X}(x)\right)$. Conversely, we note that $\left\{c l_{M}(D): D \in f^{b}\left(e_{X}(x)\right)\right\} \ll f e_{X}(x) \in M(\{f(x)\})$, since by supposition f satisfies (sd). But $e_{Y}(f(x))$ is maximal in $M(\{f(x)\}) \backslash\{\emptyset\}$, and thus we obtain the desired result.

Theorem 4.3 We obtain a functor $G: B U N$ to SYBTEXT by setting:
(a) $G\left(X, \mathcal{B}^{X}, N\right):=\left(e_{X}, \mathcal{B}^{X}, X^{b}\right)$ for any bunch space $\left(X, \mathcal{B}^{X}, N\right)$ with $X:=\left(X, c l_{N}\right)$ and $X^{b}:=\left(X^{b}, t_{X^{b}}\right) ;$
(b) $G(f):=\left(f, f^{b}\right)$ for any bibsd-map $f:\left(X, \mathcal{B}^{X}, N\right) \longrightarrow\left(Y, \mathcal{B}^{Y}, M\right)$.

Proof: With respect to $\left(\operatorname{esd}_{6}\right), c l_{N}$ is topological closure operator, and by Lemma 4.1 this also holds for $t_{X^{b}}$. Therefore we get topological spaces with bornology \mathcal{B}^{X}, and $e_{X}: X \longrightarrow$ X^{b} is a map according to theorem 4.2. Moreover, e_{X} is a function satisfying (btx x_{1}) and (btx ${ }_{2}$), respectively.

To establish (btx_{1}) let $B \in \mathcal{B}^{X}$ and suppose $x \in \operatorname{cl}_{N}(B)$. Then we get $\triangle e_{X}[B] \subset x_{N}$, hence $e_{X}(x) \in t_{X^{b}}\left(e_{X}[B]\right)$, which means $x \in e_{X}^{-1}\left[t_{X^{b}}\left(e_{X}[B]\right)\right.$. Conversely, let x be an element of $e_{X}^{-1}\left[t_{X^{b}}\left(e_{X}[B]\right)\right]$. Then by definition we have $\triangle e_{X}[B] \subset x_{N}$. Since $B \in \triangle e_{X}[B]$ we get $x \in c l_{N}(B)$. To establish (btx_{2}) let $\sigma \in X^{b}$ and suppose $\sigma \notin t_{X^{b}}\left(e_{X}[X]\right)$. By definition we get $\triangle e_{X}[X] \not \subset \sigma$, so that there exists a set $F \in \triangle e_{X}[X]$ with $F \notin \sigma$. But then $X \subset c l_{N}(F)$ follows. Since $B \in \sigma$ for some $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ we get $B \subset c l_{N}(F)$, hence $F \in \sigma$, because σ is satisfying $\left(\right.$ bun $\left._{4}\right)$. But this contradicts, and $\sigma \in t_{X^{b}}\left(e_{X}[X]\right)$ is valid. Moreover, we have that f and f^{b} are continuous maps (see also theorem 4.2), and the diagram

Finally, this establishes that the composition of bibsd-maps is preserved by G. In showing $\left(e_{X}, \mathcal{B}^{X}, X^{b}\right)$ is symmetric, let x be an element of X such that $\sigma \in t_{X^{b}}\left(\left\{e_{X}(x)\right\}\right)$. We have to prove $x_{N} \in t_{X^{b}}(\{\sigma\})$. By hypothesis we have $x_{N} \cap \mathcal{B} \subset \sigma$ and must show that $\triangle\{\sigma\} \subset x_{N}$. To this end let $F \in \triangle\{\sigma\}$, hence $F \in \sigma \cap \mathcal{B}^{X}$ follows. We already know that $\{x\} \in \sigma$ is valid, and consequently $\{F\} \in N(\{x\})$ follows by applying (bun $)_{5}$). But this implies $x \in c l_{N}(F)$, and $F \in x_{N}$ results. At last we will show that the image of G also is contained in $\boldsymbol{S T}$ SYBTEXT the full subcategory of SYBTEXT, whose objects are the strict symmetric bornotopological extensions.

Corollary 4.4 The image of G is contained in ST-SYBTEXT.
Proof: Consider $\sigma \notin X^{b}$ and let A^{b} be closed in X^{b} with $\sigma \notin A^{b}$. Then $\sigma \notin t_{X^{b}}\left(A^{b}\right)$, hence $\triangle A^{b} \not \subset \sigma$. We can find some $F \in \triangle A^{b}$ such that $F \notin \sigma$. Now, for each $\sigma_{1} \in A^{b}$ we have $F \in \sigma_{1}$, which implies $\triangle e_{X}[F] \subset \sigma_{1}$, because $D \in \triangle e_{X}[F]$ implies $F \subset c l_{N}(D)$ with $D \in \mathcal{B}^{X}$, and σ_{1} satisfies $\left(\right.$ bun $\left._{4}\right)$. Therefore we conclude $\sigma_{1} \in t_{X^{b}}\left(e_{X}[F]\right)$, and $A^{b} \subset t_{X^{b}}\left(e_{X}[F]\right)$
results. On the other hand, since $F \notin \sigma$ we have $\triangle e_{X}[F] \not \subset \sigma$, hence $\sigma \notin t_{X^{b}}\left(e_{X}[F]\right)$, and $t_{X^{b}}\left(e_{X}[F]\right) \subset A^{b}$ results, which put an end of this.

Theorem 4.5 Let $H: S Y B T E X T \longrightarrow B U N$ and $G: B U N \longrightarrow S Y B T E X T$ be the above defined functors. For each object $\left(X, \mathcal{B}^{X}, N\right)$ of $\boldsymbol{B} \boldsymbol{U N}$ let $t_{\left(\mathcal{B}^{X}, N\right)}$ denote the identity map id $_{X}: H\left(G\left(X, \mathcal{B}^{X}, N\right)\right) \longrightarrow\left(X, \mathcal{B}^{X}, N\right)$. Then $t: H \circ G \longrightarrow 1_{B U N}$ is natural equivalence from $H \circ G$ to the identity functor $1_{B U N}$, i.e. id $X_{X}: H\left(G\left(X, \mathcal{B}^{X}, N\right)\right) \longrightarrow\left(X, \mathcal{B}^{X}, N\right)$ is bibsdmap in both directions for each object $\left(X, \mathcal{B}^{X}, N\right)$, and the following diagram commutes for each bibsd-map $f:\left(X, \mathcal{B}^{X}, N\right) \longrightarrow\left(Y, \mathcal{B}^{Y}, M\right)$:

Proof: The commutativity of the diagram is obvious, because of $H(G(f))=f$. It remains to prove that $i d_{X}: H\left(G\left(X, \mathcal{B}^{X}, N\right)\right) \longrightarrow\left(X, \mathcal{B}^{X}, N\right)$ is bibsd-map in both directions. Since $H\left(G\left(X, \mathcal{B}^{X}, N\right)\right)=\left(X, \mathcal{B}^{X}, N^{e_{X}}\right)$ by definition of G respectively H, it suffices to show that for each $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ we have $N^{e_{X}}(B) \subset N(B) \subset N^{e_{X}}(B)$. To this end assume $\rho \in$ $N^{e_{X}}(B), B \neq \emptyset$. Then $t_{X^{b}}\left(e_{X}[B]\right) \in \sec \left\{t_{X^{b}}(F): F \in \rho \cap \mathcal{B}^{X}\right\}$. Now, we will show that $\rho \cap \mathcal{B}^{X}$ is subset of $\bigcup\{\mathcal{A}: \mathcal{A} \in N(B)\}$. Note, that $\left(X, \mathcal{B}^{X}, N\right)$ is conic by assumption. $F \in \rho \cap \mathcal{B}^{X}$ implies the existence of $\sigma \in t_{X^{b}}(B) \cap t_{X^{b}}(F)$, hence $\triangle e_{X}[B], \Delta e_{X}[F] \subset \sigma$ are valid. Consequently, $B, F \in \sigma \cap \mathcal{B}^{X}$ result, and $\{F\} \in N(B)$ follows, since σ satisfies (bun ${ }_{5}$). Consequently, $F \in \bigcup\{\mathcal{A}: \mathcal{A} \in N(B)\}$ is valid, showing that $\rho \cap \mathcal{B}^{X} \in N(B)$. But then $\rho \in N(B)$ follows by applying ($\left.\operatorname{esd}_{9}\right)$. Conversely, let $B \in \mathcal{B}^{X} \backslash\{\emptyset\}$ and $\rho \in N(B)$. We have to verify $t_{X^{b}}\left(e_{X}[B]\right) \in \sec \left\{t_{X^{b}}(F): F \in \rho \cap \mathcal{B}^{X}\right\} \cdot F \in \rho \cap \mathcal{B}^{X}$ implies the existence of a B-bunch σ in N with $F \in \sigma$, according to (bun). Now, we claim that the following statements are valid, i.e.
(a) $\sigma \in t_{X^{b}}\left(e_{X}[B]\right)$;
(b) $\sigma \in t_{X^{b}}\left(e_{X}[F]\right)$.
to (a): We have to check that the inclusion $\triangle e_{X}[B] \subset \sigma$ is valid. $A \in \triangle e_{X}[B]$ implies $B \subset \operatorname{cl}_{N}(A)$. Since $B \in \sigma$ we get $c l_{N}(A) \in \sigma$, and $A \in \sigma$ results, according to (bun ${ }_{4}$). Note, that $A \in \mathcal{B}^{X}$ by definition.
to (b): We must show that the inclusion $\triangle e_{X}[F] \subset \sigma$ is valid. But by hypothesis we know that $F \in \sigma$ holds, hence this proving is as above.

Corollary 4.6 For a btop- T_{1} extension $E:=\left(e, \mathcal{B}^{X}, Y\right)$, where e is topological embedding and $Y T_{1}$-space, then $\left(X, \mathcal{B}^{X}, N^{e}\right)$ is separated by satisfying
(sep) $x, z \in X$ and $\{\{z\}\} \in N^{e}(\{x\})$ imply $x=z$.
Proof: For $x, z \in X$ with $\{\{z\}\} \in N^{e}(\{x\})$ there exists $y \in t_{Y}(\{e(x)\}) \cap t_{Y}(\{e(z)\})$. By hypothesis $e(x)=y=e(z)$ follows, and $x=z$ results, because e is injective.

Corollary 4.7 For a separated proximal esd-space $\left(X, \mathcal{B}^{X}, N\right)$ the function $e_{X}: X \longrightarrow$ X^{b} is injective.

Proof: For $x, z \in X$ let $e_{X}(x)=e_{X}(z)$, hence $z \in c l_{N}(\{x\})$, and $\{\{x\}\} \in N(\{z\})$ follows. By hypothesis $x=z$ results.

Remark 4.8 In making the main theorem of this paper more transparent we state that a proximal esd-space $\left(X, \mathcal{B}^{X}, N\right)$ is a bunch space iff it can be considered as subspace of a topological space Y, such that the B-collections in N for non-empty bounded sets B are characterized by the fact that their closures of bounded members in Y meet the closure of B in Y. In case if \mathcal{B}^{X} is saturated, then proximal esd-spaces essentially coincide with LODATO proximity spaces up to isomorphism. Hence the main theorem generalizes the one of LODATO, presented by him in the past and where symmetric generalized proximities are playing an important role, especially those arising from a family of bunches on a set X.
Diagram of used categories

[^0]
References

[1] Banaschewski, B. : Extensions of Topological Spaces. Canadian Math. Bull. 7 (1964), 1-23
[2] Bartsch, R. : Compactness properties for some hyperspaces and function spaces. Shaker Verlag, Aachen (2002)
[3] Bentley, H. L. : Nearness spaces and extension of topological spaces. In: Studies in Topology, Academic Press, NY (1975), 47-66
[4] Deák, J. : Extending a family of screens in a contiguity space. Topology with applications; Szekszárd, Hungary (1993), 121-133
[5] Dimov, G., and Ivanova, E. : On some categories arising in the theory of locally compact extensions. Math. Pannonica 19/2 (2008), 219-239
[6] Doîtchînov, D. : Compactly determined extensions of topological spaces. SERDICA Bulgarice Math. Pub. 11 (1985), 269-286
[7] Herrlich, H. : A concept of nearness. General Topology and its Appl. 5 (1974), 191-212
[8] Hogbe - Nlend, H. : Bornologies and functional analysis. Amsterdam, North-Holland Pub. Co (1977)
[9] Hǔsek, M. : Categorical connections between generalized proximity spaces and compactifications. Contributions to extension theory of topological structures (Proc. Symp. Berlin 1967) Berlin (1969), 127-132
[10] Ivanova, V. M., and Ivanov, A. : Contiguity spaces and bicompact extensions. Dokl. Akad. Nauk SSSR 127 (1959), 20-22
[11] Kent, D.C., and Min, W. K. : Neighbourhood spaces. IJMMS 32:7 (2002), 387-399
[12] Leseberg, D. : Supernearness, a common concept of supertopologies and nearness. Top. Appl. 123 (2002). 145-156
[13] Leseberg, D. : Bounded Topology : a convenient foundation for Topology. http://www.digibib.tu-bs.de/?docid=00029438, FU Berlin (2009)
[14] Leseberg, D. : Improved nearness research. Math. Pannonica, preprint
[15] Leseberg, D. : Improved nearness research II. Rostock. Math. Kolloq. 66 (2011), 87-102
[16] Leseberg, D. : Improved nearness research III. Int. J. of Mathematical Sciences and Applications vol. 1, No2 (May 2011), 1-14
[17] Leseberg, D. : Improved nearness research IV. Quaest. Math. preprint
[18] Leseberg, D. : Bounded proximities and related nearness. Quaest. Math. 36 (2013), 381-387
[19] Leseberg, D. : Extensions in Bounded Topology. Mathematics for Applications, preprint
[20] Lodato, M. W. : On topologically induced generalized proximity relations II. Pacific Journal of Math. vol. 17, No 1 (1966), 131-135
[21] Naimpally, S. : Proximity approach to problems in Topology and Analysis. München, Oldenburg (2009)
[22] Poppe, H. : On locally defined topological notions. Q+A in General Topology 13 (1995), 39-53
[23] Smirnov, Y. M. : On the completeness of proximity spaces. Dokl. Akad. Nauk. SSSR 88 (1953), 761-794 (in Russian). MR 15 \# 144
received: July 9, 2014

Author:

Dieter Leseberg
Department of Mathematics and Informatics
Free University of Berlin
Germany
e-mail: leseberg@zedat.fu-berlin.de

[^0]: legend

 | $\odot \longrightarrow \odot$ subcategory of | |
 | :--- | :--- |
 | $\boldsymbol{D} \boldsymbol{E N}$ | \triangleq density spaces |
 | $\boldsymbol{H} \boldsymbol{N}$ | \triangleq hypernear spaces |
 | $\boldsymbol{S} \boldsymbol{N}$ | \triangleq supernear spaces |

