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Subdensity as a convenient concept for
Bounded Topology

ABSTRACT. A subdensity space is a special case of a density space, which also occur under
the name of hypernear space in [17]. Hence, most of classical spaces, like topological spaces,
uniform spaces, proximity spaces, contiguity spaces or nearness spaces, respectively can be
immediately described and studied in this general framework. Moreover, the more specific
defined subdensity spaces allow us to consider and integrate the fundamental species of b-
topological and b-near spaces, too, as presented and studied in [19]. In this paper it is shown
that b-proximal spaces also can be involved, and b-topological spaces then have an alternate
description by different corresponding subdensity spaces.

At last, we establish a one-to-one correspondence between suitable subdensity spaces and
their related strict topological extensions [1]. This relationship generalizes the one of
LODATO, studied by him in the realm of generalized proximity spaces [20].
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1 Basic Concepts

As usual PX denotes the power set of a set X, and we call BX ⊂ PX a bornology (on X)
[8], if it possesses the following properties, i.e.

(b0) ∅ ∈ BX ;

(b1) B2 ⊂ B1 ∈ BX imply B2 ∈ BX ;

(b2) x ∈ X implies {x} ∈ BX ;

(b3) B1, B2 ∈ BX imply B1 ∪B2 ∈ BX .

The elements of BX are called bounded sets. Then, for bornologies BX ,BY a function f :

X −→ Y is called bi-bounded iff f satisfies
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(bib1) fBX : ={f [B] : B ∈ BX} ⊂ BY ;

(bib2) f−1BY : ={f−1[D] : D ∈ BY } ⊂ BX .

Evidently, for corresponding power sets each map f : X −→ Y is bi-bounded. As an
instructive example we consider for sets X, Y as bornologies in each case the set of all finite
subsets of those. Then, for each map f : X −→ Y and some B ∈ BXfi : ={D ⊂ X : D is
finite} we look at the power set on B and consider the restriction f |B of f on B. Then f |B
is bi-bounded.

Then we make use of the following notations: For collections ρ, ρ1, ρ2 ⊂ PX we put:

ρ2 << ρ1 iff ∀F2 ∈ ρ2∃F1 ∈ ρ1 F1 ⊂ F2;

ρ1 ∨ ρ2 : ={F1 ∪ F2 : F1 ∈ ρ1, F2 ∈ ρ2};
sec ρ : ={D ⊂ X : ∀F ∈ ρD ∩ F 6= ∅}.

Definition 1.1 We call a triple (X,BX , N) consisting of a set X, bornology BX and a
function N : BX −→ P (P (PX)) an episd-space (shortly esd-space) iff the following axioms
are satisfied:

(esd1) ρ2 << ρ1 ∈ N(B), B ∈ BX , ρ2 ⊂ PX imply ρ2 ∈ N(B);

(esd2) B ∈ BX implies BX 6∈ N(B) 6= ∅;

(esd3) ρ ∈ N(∅) implies ρ = ∅;

(esd4) x ∈ X implies {{x}} ∈ N({x});

(esd5) ∅ 6= B2 ⊂ B1 ∈ BX imply N(B2) ⊂ N(B1);

(esd6) {clN(F ) : F ∈ ρ} ∈ N(B), ρ ⊂ PX,B ∈ BX imply ρ ∈ N(B), where clN(F ) : ={x ∈
X : {F} ∈ N({x})};

(esd7) ρ1 ∨ ρ2 ∈ N(B), ρ1, ρ2 ⊂ PX,B ∈ BX imply ρ1 ∈ N(B) or ρ2 ∈ N(B);

(esd8) B ∈ BX implies clN(B) ∈ BX ;

(esd9) ρ ∩ BX ∈ N(B), B ∈ BX\{∅}, ρ ⊂ PX imply ρ ∈ N(B).

If ρ ∈ N(B) for some B ∈ BX , then we call ρ a B-collection (in N). For esd-spaces
(X,BX , N), (Y,BY ,M) a function f : X −→ Y is called bi-bounded sd-map (shortly bibsd-
map iff it satisfies (bib1), (bib2) and

(sd) B ∈ BX and ρ ∈ N(B) imply fρ : ={f [F ] : F ∈ ρ} ∈M(f [B]).

We denote by ESD the corresponding category.
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Remark 1.2 In a former paper [19] it was shown, that the category b-TOP of b-topological
spaces and b-continuous maps as well as the category b-NEAR of b-nearness spaces and
b-near maps can be fully embedded into ESD. In our following research we will establish
a further equivalent description of b-topological spaces by means of different esd-spaces
resulting into an alternate description of the category TOP, if the given bornology BX of the
considered esd-space is saturated, which means X is an element of BX . Moreover, we focus
our attention on so called b-proximal spaces which also can be integrated into the above
defined concept. Then, in a natural way, we will characterize those esd-spaces which can be
extended to a certain topological one. In case of saturation this new established connection
deliver us the well-known famous theorem of LODATO [20] up to isomorphism.

Definition 1.3 For a set X let BX be a bornology. A function t : BX −→ PX is called
a b-topological operator (b-topology) (on BX) iff the following axioms are satisfied, i.e.

(b-t1) B ∈ BX implies t(B) ∈ BX ;

(b-t2) t(∅) = ∅;

(b-t3) B ∈ BX implies B ⊂ t(B);

(b-t4) B1 ⊂ B2 ∈ BX imply t(B1) ⊂ t(B2);

(b-t5) B ∈ BX implies t(t(B)) ⊂ t(B);

(b-t6) B1, B2 ∈ BX imply t(B1 ∪B2) ⊂ t(B1) ⊂ t(B2).

Then the triple (X,BX , t) is called a b-topological space. For b-topological spaces (X,BX , tX),
(Y,BY , tY ) a function f : X −→ Y is called b-continuous map iff it is bi-bounded and satisfies
the following condition, i.e.

(cont) B ∈ BX implies f [tX(B)] ⊂ tY (f [B]).

We denote by b-TOP the corresponding category [19].

Example 1.4 For a set X let BXf be denote the set of all finite subsets of X. Thus,
BXf defines a bornology on X. Then, for a fixed set D ∈ BXf we establish a b-topology
tD : BX −→ PX by setting tD(∅) : = ∅ and tD(B) : =B ∪D, otherwise.

Remark 1.5 If BX is saturated, then a b-topological space can be considered as topological
space and vice versa. Moreover, if for bornologies BX ,BY with saturated BXf : X −→ Y is
constant map, then f is automatically b-continuous.

Lemma 1.6 For a b-topological space (X,BX , t) we set: Nt(∅) : ={∅} and Nt(B) : ={ρ ⊂
PX : B ∈ sec{t(F ) : F ∈ ρ ∩ BX}}, otherwise.

Then (X,BX , Nt) is an esd-space such that t = clNt (see also Chapter 2).
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Proof: Firstly, we have to verify that Nt is satisfying the axioms (esd1) to (esd9).

to (esd1): ρ2 << ρ1 ∈ Nt(B), ρ ⊂ PX,B ∈ BX\{∅} and F ∈ ρ2 ∩ BX imply the existence
of F1 ∈ ρ1 with F1 ⊂ F2. Hence F1 ∈ ρ1 ∩ BX follows by applying (b1), and
B ∩ t(F1) 6= ∅ results by hypothesis. Consequently, B ∩ t(F2) 6= ∅ is valid
according to (b-t4), resulting into ρ2 ∈ Nt(B).

to (esd2): Let B ∈ BX ; in first case if B = ∅ we have ∅ ∈ Nt(B) by definition. In second
case if B 6= ∅ we get {B} ∈ Nt(B), since B ∩ t(B) 6= ∅ is valid.

Further suppose BX ∈ Nt(B), and without restriction B 6= ∅, otherwise B =

∅ contradicts. Then B ∈ sec{t(F ) : F ∈ BX} implies B ∩ t(∅) 6= ∅, which
contradicts too. Hence BX 6∈ Nt(B) follows.

to (esd3): evident by definition of Nt.

to (esd4): see especially proof of (esd2).

to (esd5): evident.

to (esd6): For {clNt(F ) : F ∈ ρ} ∈ Nt(B), ρ ⊂ PX,B ∈ BX let A ∈ ρ∩BX , we have to verify
B ∩ t(A) 6= ∅. Since clNt(A) ∈ {clNt(F ) : F ∈ ρ} we get B ∩ t(clNt(A)) 6= ∅ by
hypothesis. Note, that clNt(A) ⊂ t(A) ∈ BX is valid. Consequently B∩ t(t(A)) 6=
∅ follows, andB∩t(A) 6= ∅ results according to (b-t5), showing our made assertion.

to (esd7): ρ1 ∨ ρ2 ∈ Nt(B) and without restriction B 6= ∅ with ρ1 6= ∅ 6= ρ2 imply B ∈
sec{t(F ) : F ∈ (ρ1 ∨ ρ2) ∩ BX}. Now, let us suppose ρ1, ρ2 6∈ Nt(B). Hence
there exists F1 ∈ ρ1 ∩ BXB ∩ t(F1) = ∅ and F2 ∈ ρ2 ∩ BX B ∩ t(F2) = ∅. But
F1 ∪ F2 ∈ (ρ1 ∨ ρ2) ∩ BX , since BX is bornology and

∅ = (B ∩ t(F1)) ∪ (B ∩ t(F2)) = B ∩ (t(F1) ∪ t(F2)) = B ∩ t(F1 ∪ F2)

according to (b-t4) and (b-t6), respectively which contradicts.

to (esd8): evident.

to (esd9): B ∈ BX\{∅} and ρ ∩ BX ∈ Nt(B), ρ ⊂ PX imply B ∈ sec{t(F ) : F ∈ (ρ ∩
BX) ∩ BX}, and ρ ∈ Nt(B) results. To show the equality t = clNt is valid let
without restriction B ∈ BX\{∅}, then x ∈ clNt(B) is equivalent to the statement
{B} ∈ Nt({x}), which is further equivalent to {x} ∈ sec{t(F ) : F ∈ B ∩ BX}, at
last resulting into the statement x ∈ t(B) as equivalent to above.

Remark 1.7 As an interpretation of this Lemma we keep hold that every b-topological
space is induced by a certain esd-space.
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As a next step in our research we will introduce the concept of b-proximal spaces and related
facts.

Definition 1.8 For a bornology BX a relation δ ⊂ BX × BX is called b-proximal, and
the triple (X,BX , δ) a b-proximal space iff δ satisfies the following conditions, i.e.

(b-p1) B ∈ BX implies clδ(B) ∈ BX , where clδ(B) : ={x ∈ X : {x}δB};

(b-p2) ∅δ̄D and Bδ̄∅ for each B,D ∈ BX ;

(b-p3) Bδ(D1 ∪D2) iff BδD1 or BδD2 for each B,D1, D2 ∈ BX ;

(b-p4) x ∈ X implies {x}δ{x};

(b-p5) B1 ⊂ B ∈ BX and B1δD imply BδD for each D ∈ BX ;

(b-p6) B1δD and D ⊂ clδ(B), B ∈ BX imply B1δB.

(Hereby, δ̄ denotes the negation of δ). For b-proximal spaces (X,BX , δ), (Y,BY , γ) a function
f : X −→ Y is called b-proximal map iff f is bi-bounded and satisfies the following condition,
i.e.

(prox) BδD implies f [B]γf [D]. We denote by b-PX the corresponding category.

Remark 1.9 If BX is saturated, then a b-proximal space (X,BX , δ) may be considered as
a generalized proximity space and vice versa [14]. In special cases LEADER proximities as
well as LODATO proximities then can be easily recovered.

Proposition 1.10 For a b-topological space (X,BX , t) we set: BδtD iff B∩t(D) 6= ∅ for
each B,D ∈ BX . Then (X,BX , δt) defines a b-proximal space which additionally is additive
by satisfying

(add) (B1 ∪B2)δD,B1, B2, D ∈ BX imply B1δD or B2δD.

Proof: straight forward.

Definition 1.11 A b-proximal space (X,BX , δ) is called symmetric iff in addition holds

(s) B1δB2 implies B2δB1 for each B1, B2 ∈ BX .

Remark 1.12 Here, we only note that if BX is saturated, then (X,BX , δ) can be essentially
considered as a LODATO proximity space [20] and vice versa. We denote by b-SPX the
corresponding full subcategory of b-PX.
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2 b-TOP, b-PX and b-SPX as fully embedded subcategories of ESD

Now, firstly let us start with the objects of b-PX.

Lemma 2.1 For a b-proximal space (X,BX , δ) we set: Nδ(∅) : ={∅} and Nδ(B) : ={ρ ⊂
PX : ρ ∩ BX ⊂ δ(B)}, where δ(B) : ={D ∈ BX : BδD}, otherwise. Then (X,BX , Nδ) is an
esd-space.

Proof: Straight forward. Here, we only will verify the validity of the axioms (esd6), (esd7)
and (esd8) in definition 1.1.

to (esd6): For ρ ⊂ PX let {clNδ(F ) : F ∈ δ} ∈ Nδ(B), we have to verify ρ ∩ BX ⊂ δ(B).
A ∈ ρ ∩ BX implies clNδ(A) ∈ {clNδ(F ) : F ∈ ρ}. Since A ∈ BX we claim
clNδ(A) ⊂ clδ(A), hence clNδ(A) ∈ BX . By hypothesis clNδ(A) ∈ δ(B) follows,
showing that BδclNδ(A) ⊂ clδ(A) is valid. But δ is satisfying (b-p6), and BδA

results, hence A ∈ δ(B) follows.

to (esd7): Without restriction let B ∈ BX\{∅} and ρ1 ∨ ρ2 ∈ Nδ(B), ρ1 6= ∅ 6= ρ2. If
supposing ρ1, ρ2 6∈ Nδ(B) we get F1, F2 6∈ δ(B) for some F1 ∈ ρ1 ∩ BX and
F2 ∈ ρ2 ∩ BX . Hence Bδ̄F1 and Bδ̄F2 implying Bδ̄(F1 ∪ F2) according to (b-p3),
note that BX is bornology. But F1∪F2 ∈ (ρ1∪ρ2)∩BX leads us to a contradiction.

to (esd8): B ∈ BX implies clδ(B) ∈ BX . We will show that clNδ(B) ⊂ clδ(B), then by (b1)
we get the desired result. x ∈ clNδ(B) implies {B} ∈ Nδ({x}), hence {B} ⊂
δ({x}), and {x}δB results, showing that x ∈ clδ(B) is valid.

Definition 2.2 An esd-space (X,BX , N) is called conic iff N satisfies the condition

(con) B ∈ BX implies
⋃
{ρ ⊂ PX : ρ ∈ N(B)} ∈ N(B).

Example 2.3 According to Lemma 1.6 we state that the esd-space (X,BX , Nt) is conic.

Remark 2.4 Here, we note that the esd-space (X,BX , Nδ) is conic, too. But in general
this property must not be necessary fulfilled, if, par example we look at the near subdensity
spaces considered in [19].

Lemma 2.5 For a conic esd-space (Y,BY ,M) we put BγMD iff {D} ∈ M(B) for sets
B,D ∈ BY . Then (Y,BY , γM) is a b-proximal space such that NγM = M .

Proof: Straight forward. Here, we only will verify the validity of axiom (b-p6) in defini-
tion 1.8.
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to (b-p6): B1δD and D ⊂ clγM (B), B ∈ BY imply {D} ∈ M(B1), hence {clM(B)} <<
{clγM (B)} << {D} follows, and {clM(B)} ∈ M(B1) is valid. We get {B} ∈
M(B1), according to (esd6) which results in B1γMB. It remains to prove the
equality NγM = M . Without restriction let B ∈ BX\{∅} and ρ ∈ NγM (B), hence
ρ ∩ BX ⊂ γM(B). Now, we will show that γM(B) ⊂

⋃
{σ : σ ∈ M(B)} holds.

D ∈ γM(B) implies BγMD, hence {D} ∈ M(B) is valid with D ∈ {D}, and
D ∈

⋃
{σ : σ ∈ M(B)} follows. Consequently, ρ ∩ BX ∈ M(B) can be deduced

by applying (esd1), resulting into ρ ∈M(B) according to (esd9). The reverse case
is easily to verify.

Theorem 2.6 The full subcategory CON-ESD of ESD, whose objects are the conic esd-
spaces is isomorphic to the category b-PX.

Proof: Taking into account former results we further note that for a given b-proximal space
(X,BX , δ) the equality γNδ = δ is valid. Moreover, we claim that for each b-proximal map
f between b-proximal spaces f is bibsd-map between the corresponding esd-spaces and vice
versa.

Definition 2.7 A conic esd- space (X,BX , N) is called proximal iff N satisfies the con-
dition

(px) B ∈ BX\{∅} and ρ ∈ N(B) imply {B} ∈
⋂
{N(F ) : F ∈ ρ ∩ BX}.

Remark 2.8 Here, we note that for a given symmetric b-proximal space (X,BX , δ) the
corresponding esd-space (X,BX , Nδ) is proximal. Because for B ∈ BX\{∅} and ρ ∈ Nδ(B)

we have ρ∩BX ⊂ δ(B). Then, F ∈ ρ∩BX implies {B} ∈ Nδ(F ). Since by hypothesis BδF
is valid FδB results, because δ is symmetric.

Corollary 2.9 The full subcategory PX-ESD of CON-ESD, whose objects are the
proximal esd-spaces is isomorphic to the category b-SPX.

Proof: Here, we only note that for a given proximal esd-space the corresponding b-proximal
space is symmetric.

Proposition 2.10 Every proximal esd-space (X,BX , N) is closed by satisfying

(clo) B ∈ BX implies N(clN(B)) = N(B).

Proof: Without restriction let B ∈ BX\{∅} and ρ ∈ N(clN(B)), we will show that ρ∩BX ⊂
∪{σ : σ ∈ N(B)} is valid. F ∈ ρ ∩ BX implies {clN(B)} ∈ N(F ), since (X,BX , N) is
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proximal. Then {B} ∈ N(F ) follows by applying (esd6), and {F} ∈ N(B) results with
respect to (px). Consequently, F ∈ ∪{σ : σ ∈ N(B)} is valid, showing that ρ∩BX ∈ N(B),
according to (esd1). But this induce ρ ∈ N(B) by applying (esd9). The reverse inclusion
then can be easily verified with respect to (esd5).

Proposition 2.11 Every proximal esd-space (X,BX , N) is linked by satisfying

(lik) ρ ∈ N(B1 ∪B2), B1, B2 ∈ BX imply {F} ∈ N(B1) ∪N(B2)∀F ∈ ρ ∩ BX .

Proof: evident.

Definition 2.12 A conic esd-space (X,BX , N) is called covered iff N satisfies the con-
dition

(cov) B ∈ BX\{∅} and ρ ∈ N(B) imply B ∈ sec{clN(F ) : F ∈ ρ ∩ BX}.

Example 2.13 With respect to example 2.3 we note that (X,BX , Nt) is a covered esd-
space.

Lemma 2.14 For a covered esd-space (X,BX , N) the restriction of clM on BX , denoted
by clbM is a b-topology on BX such that NclbM

= M .

Proof: Firstly, we only will verify the validity of the axioms (b-t5) and (b-t6), respectively
in definition 1.3. Then, the remaining is clear.

to (b-t5): x ∈ clbM(clbM(B)), B ∈ BX imply {clbM(B)} ∈M({x}), hence {clM(B)} ∈M({x})
is valid, and {B} ∈M({x}) results, according to (esd6). But then x ∈ clM(B) =

clbM(B) follows.

to (b-t6): B1, B2 ∈ BX and without restriction let B1 6= ∅ 6= B2 · x ∈ clbM(B1 ∪ B2) implies
{B1∪B2} ∈M({x}), by paying attention to the fact that BX is bornology. Since
{B1}∨{B2} = {B1∪B2}, we get {B1} ∈M({x}) or {B2} ∈M({x}) by applying
(esd7), resulting into x ∈ clbM(B1) ∪ clbM(B2). In showing the equality NclbM

= M

let without restriction B ∈ BX\{∅}. ρ ∈ NclbM
(B) implies B ∈ sec{clbM(F ) :

F ∈ ρ ∩ BX}, which is the same as B ∈ sec{clM(F ) : F ∈ ρ ∩ BX}. Since
(X,BX ,M) is conic, we know that

⋃
{σ : σ ∈M(B)} ∈M(B). Thus, it remains

to verify ρ ∩ BX ⊂ ∪{σ : σ ∈ M(B)}, because then ρ ∩ BX ∈ M(B) follows,
according to (esd1), and ρ ∈ M(B) is valid by applying (esd9). F ∈ ρ ∩ BX

implies B ∩ clM(F ) 6= ∅, hence x ∈ clM(F ) for some x ∈ B. Consequently,
{F} ∈M({x}) ⊂M(B) follows, showing that F ∈

⋃
{σ : σ ∈M(B)}, which put

an end of this. Then, the reverse inclusion is easily to verify.
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Theorem 2.15 The full subcategory COV-ESD of CON-ESD, whose objects are the
covered esd-spaces is isomorphic to the category b-TOP.

Proof: Taking into account former results we further note that for each b-continuous map
f between b-topological spaces f is bibsd-map between the corresponding esd-spaces and
vice versa.

Theorem 2.16 The category CON-ESD is bireflective in ESD.

Proof: For an esd-space (X,BX , N) we set: NC(∅) : ={∅} and NC(B) : ={A ⊂ PX :

{clN(A) : A ∈ A ∩ BX} ⊂
⋃
{ρ : ρ ∈ N(B)}}, otherwise. Then (X,BX , NC) is conic esd-

space, and 1X : (X,BX , N) −→ (X,BX , NC) is bibsd-map. In the following we only will
verify the validity of the axioms (esd6), (esd7) in definition 1.1 and that of axiom (con) in
definition 2.2. Then the remaining statements are obvious.

to (esd6): {clNC (A) : A ∈ A} ∈ NC(B), B ∈ BX\{∅},A ⊂ PX imply {clN(F ) : F ∈
{clNC (A) : A ∈ A} ∩ BX} ⊂

⋃
{ρ : ρ ∈ N(B)}. We will show that {clN(A) : A ∈

A ∩ BX} ⊂
⋃
{ρ : ρ ∈ N(B)}. A ∈ A ∩ BX implies clN(clNC (A)) ∈

⋃
{ρ : ρ ∈

N(B)}, since clNC (A) ∈ BX . Further we have the inclusion clNC (A) ⊂ clN(A)

is valid: x ∈ clNC (A) implies {A} ∈ NC({x}), hence clN(A) ∈ ρ for some ρ ∈
N({x}). {clN(A)} ∈ N({x}) holds by applying (esd1), and {A} ∈ N({x}) results
according to (esd6), hence x ∈ clN(A) follows. By hypothesis clN(clNC (A)) ∈ σ
for some σ ∈ N(B), and {clN(A)} ∈ N(B) follows by applying (esd6), again.
Consequently our assertion holds.

to (esd7): Let A1 ∨ A2 ∈ NC(B) and without restriction B ∈ BX\{∅} with A1 6= ∅ 6= A2.
Then {clN(A) : A ∈ (A1 ∨ A2) ∩ BX} ⊂

⋃
{ρ : ρ ∈ N(B)} follows. If supposing

A1,A2 6∈ NC(B) we can choose A1 ∈ A1 ∩ BX with clN(A1) 6∈
⋃
{ρ : ρ ∈ N(B)}

and A2 ∈ A2 ∩ BX with clN(A2) 6∈
⋃
{ρ : ρ ∈ N(B)}. Consequently, A1 ∪ A2 ∈

(A1 ∨ A2) ∩ BX follows, since BX is bornology. By hypothesis clN(A1 ∪ A2) ∈ A
for some A ∈ N(B), hence {clN(A1 ∪ A2)} ∈ N(B) is valid. But {clN(A1)} ∨
{clN(A2)} = {clN(A1 ∪ A2)} is holding, and consequently {clN(A1)} ∈ N(B) or
{clN(A2)} ∈ N(B) follows by applying (esd7) which contradicts.

to (con): Without restriction let B ∈ BX\{∅}. We have to verify
⋃
{A : A ∈ NC(B)} ∈

NC(B), which means that {clN(F ) : F ∈
⋃
{A : A ∈ NC(B)} ∩ BX} ⊂

⋃
{ρ :

ρ ∈ N(B)}. Now, let clN(F ) be given for F ∈
⋃
{A : A ∈ NC(B)} ∩ BX

hence F ∈ A for some A ∈ NC(B). By hypothesis there exists ρ ∈ N(B) with
clN(F ) ∈ ρ′, and clN(F ) ∈

⋃
{ρ : ρ ∈ N(B)} results. Now, let (Y,BY ,M) be a

conic esd-space and f : (X,BX , N) −→ (Y,BY ,M) be a bibsd-map, we have to
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show f : (X,BX , NC) −→ (Y,BY ,M) is bibsd-map, too. Since by hypothesis f
is bi-bounded, we will now verify the validity of axiom (sd) in definition 1.1.

to (sd): Without restriction let B ∈ BX\{∅} and A ∈ NC(B), hence by definition
{clN(A) : A ∈ A ∩ BX} ⊂

⋃
{ρ : ρ ∈ N(B)} is valid. It suffices to show

fA ∩ BY ∈ M(f [B]). Therefore its being enough to verify the validity of the
inclusion fA ∩ BY ⊂

⋃
{M : M ∈ M(f [B])}. D ∈ fA ∩ BY implies D = f [A]

for some A ∈ A. Then A ⊂ f−1[f [A]] = f−1[D] ∈ BX , and A ∈ BX fol-
lows. Hence clN(A) ∈ ρ for some ρ ∈ N(B) by hypothesis. Consequently,
fρ ∈ M(f [B]) follows with f [clN(A)] ∈ fρ. Since clM(f [A]) ⊃ f [clN(A)] we
get {clM(f [A])} ∈ M(f [B]), and {D} = {f [A]} ∈ M(f [B]) results, according to
(esd6). But then fA ∩ BY ∈ M(f [A]) is valid, since by hypothesis (Y,BY ,M) is
conic, and at last fA ∈M(f [B]) can be deduced by applying (esd9).

Theorem 2.17 The category COV-ESD is bicoreflective in CON-ESD.

Proof: For a conic esd-space (X,BX , N) we set: NCV (∅) : ={∅} and NCV (B) : ={ρ ⊂ PX :

B ∈ sec{clN(F ) : F ∈ ρ ∩ BX}}, otherwise. Then (X,BX , NCV ) is a covered esd-space,
and 1X : (X,BX , NCV ) −→ (X,BX , N) is bibsd-map. It is straight forward to verify that
(X,BX , NCV ) is a covered esd-space. In showing that 1X is bibsd-map let ρ ∈ NCV (B)

and without restriction B ∈ BX\{∅}. Consequently, B ∈ sec{clN(F ) : F ∈ ρ ∩ BX} holds
by definition of NCV . Now, we will verify that ρ ∩ BX is a subset of

⋃
{A : A ∈ N(B)}.

F ∈ ρ ∩ BX implies the existence of an element x ∈ B with x ∈ clN(F ). Hence {F} ∈
N({x}) ⊂ N(B) follows, showing that F ∈

⋃
{A : A ∈ N(B)} is valid. Now, let (Y,BY ,M)

be a covered esd-space and f : (Y,BY ,M) −→ (X,BX , N) be a bibsd-map, we have to show
f : (Y,BY ,M) −→ (X,BX , NCV ) is bibsd-map, too. Since by hypothesis f is bi-bounded we
will verify the validity of axiom (sd) in definition 1.1. Without restriction let B ∈ BY \{∅}
and ρ ∈ M(B), hence B ∈ sec{clM(F ) : F ∈ ρ ∩ BY }. For A ∈ fρ ∩ BX we have A = f [F ]

for some F ∈ ρ with f−1[A] ∈ BY , since f is bi-bounded. Consequently, F ∈ BY is valid,
and we can choose y ∈ clM(F ) for some y ∈ B by hypothesis. But f also satisfies (sd) in
definition 1.1, hence f(y) ∈ clN(A) ∩ f [B] results, concluding the proof.

3 Topological extensions and related esd-spaces

We will now consider the problem for finding a one-to-one correspondence between certain
topological extensions and their related esd-spaces. This question arises from a problem
formulated by LODATO in 1966 as follows:
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He asked for an axiomatization of the following binary nearness relation on the power set of
a set X: there exists an embedding of X into a topological space Y such that subsets A and
B are near in X iff their closures meet in Y .

Now, we will generalize and solve this problem for esd-spaces, involving also LODATO’s
result as a special case. At first, we define the category BTEXT of so-called bornotopological
extensions – shortly btop-extensions – and related morphisms (see also [19]).

Definition 3.1 Objects of BTEXT are triples E : =(e,BX , Y ), where X : =(X, tX),
Y : =(Y, tY ) are topological spaces (given by closure operators tX respectively tY ) with bornol-
ogy BX , so that iff B ∈ BX then tX(B) ∈ BX also holds.

e : X −→ Y is a function satisfying the following conditions:

(btx1) B ∈ BX implies tX(B) = e−1[ty(e[B])], where e−1 denotes the inverse image under e;

(btx1) tY (e[X]) = Y , which means that the image of X under e is dense in Y .

Morphisms in BTEXT have the form (f, g) : (e,BX , Y ) −→ (e′,BX′ , Y ′), where f : X −→
X ′ g : Y −→ Y ′ are continuous maps such that f is bi-bounded, and the following diagram
commutes

X
e //

f
��

Y

g
��

X ′
e′ // Y ′

.

If (f, g) : (e,BX , Y ) −→ (e′,BX′ , Y ′) and (f ′, g′) : (e′,BX′ , Y ′) −→ (e′′,BX′′ , Y ′′) are
BTEXT-morphisms, then they can be composed according to the rule (f ′, g′) ◦ (f, g) : =

(f ′ ◦ f, g′ ◦ g) : (e,BX , Y ) −→ (e′′,BX′′ , Y ′′), where “◦” denotes the composition of maps.

Remark 3.2 Observe, that axiom (btx1) in this definition is automatically satisfied if e :

X −→ Y is a topological embedding. Moreover, we admit an ordinary bornology BX , which
need not be necessary coincide with the power set PX.

Definition 3.3 We call such an extension E : =(e,BX , Y )

(i) strict iff E satisfies the condition

(st) {tY (e[A]) : A ⊂ X} forms a base for the closed subsets of Y [1];

(ii) symmetric iff E satisfies the condition

(sy) x ∈ X and y ∈ tY ({e(x)}) imply e(x) ∈ tY ({y}) [3].

Example 3.4 For a symmetric bornotopological extension E : =(e,BX , Y ) we consider the
triple (X,BX , N e), where N e is defined by setting:
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N e(∅) : ={∅} and
N e(B) : ={ρ ⊂ PX : tY (e[B]) ∈ sec{tY (e[F ]) : F ∈ ρ ∩ BX}}, otherwise.

Then (X,BX , N e) is a proximal esd-space such that for each B ∈ BX clNe(B) = tX(B).

Proof: Firstly, we will verify the above cited equality. Without restriction let B ∈ BX\{∅}.

to “⊂”: x ∈ clNe(B) implies {B} ∈ N e({x}), hence tY ({e(x)}) ∩ tY (e[B]) 6= ∅. Then we
can choose y ∈ tY (e[B]) with y ∈ tY ({e(x)}). Since by hypothesis E is symmetric,
we get e(x) ∈ tY ({y}). But then e(x) ∈ tY (e[B]) is valid, because t is topological.
Consequently, x ∈ tX(B) follows by applying (btx1) in definition 3.1.

to “⊃”: x ∈ tX(B) implies e(x) ∈ tY (e[B]) according to (btx1), hence {B} ∈ N e({x})
follows, resulting into x ∈ clNe(B). Further, we only will verify the validity of the
axioms (esd6) and (esd7), respectively. Then the remaining statements are clear.

to (esd6): {clNe(F ) : F ∈ ρ} ∈ N e(B), B ∈ BX\{∅}, ρ ⊂ PX imply tY (e[B]) ∈ sec{tY (e[A]) :

A ∈ {clNe(F ) : F ∈ ρ} ∩ BX}. Then F ′ ∈ ρ ∩ BX implies clNe(F ′) ∈ {clNe(F ) :

F ∈ ρ} ∩ BX , because clNe(F ′) = tX(F ′) ∈ BX by definition 3.1. By hypothesis
tY (e[B]) ∩ tY (e[tX(F ′)]) 6= ∅ follows. But e[tX(F ′)] ⊂ tY (e[F ′]) holds by apply-
ing (btx1), and tY (e[tX(F ′)]) ⊂ tY (e[F ′]) can be deduced, since tY is topological,
resulting into ρ ∈ N e(B).

to (esd7): Let ρ1∨ρ2 ∈ N e(B) and without restriction ρ1 6= ∅ 6= ρ2, B 6= ∅. By definition we
get tY (e[B]) ∈ sec{tY (e[F ]) : F ∈ (ρ1 ∨ ρ2) ∩ BX}. If supposing ρ1, ρ2 6∈ N e(B).
Then we can choose F1 ∈ ρ1∩BX with tY (e[B])∩ tY (e[F1]) = ∅ and F2 ∈ ρ2∩BX

with tY (e[B]) ∩ tY (e[F2]) = ∅. Hence F1 ∪ F2 ∈ (ρ1 ∨ ρ2) ∩ BX , since BX is
bornology. Consequently, tY (e[B])∩tY (e[F1∪F2]) 6= ∅ results. On the other hand
we have ∅ = tY (e[B]) ∩ (tY (e[F1]) ∪ tY (e[F2])) = tY (e[B]) ∩ tY (e[F1] ∪ e[F2]) =

tY (e[B]) ∩ tY (e[F1 ∪ F2]), which contradicts.

Definition 3.5 For a proximal esd-space (X,BX , N) and for B ∈ BXσ ⊂ PX is called
B-bunch in N iff σ satisfies the following conditions:

(bun1) ∅ 6∈ σ;

(bun2) F1 ∪ F2 ∈ σ iff F1 ∈ σ or F2 ∈ σ;

(bun3) B ∈ σ ∈ N(B);

(bun4) A ∈ σ and A ⊂ clN(F ) : F ∈ BX imply F ∈ σ;

(bun5) A ∈ σ ∩ BX implies {A} ∈
⋂
{N(F ) : F ∈ σ ∩ BX}.
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Proposition 3.6 For a proximal esd-space (X,BX , N) and for B ∈ BX\{∅} with x ∈ B
xN : ={A ⊂ X : x ∈ clN(A)} is a B-bunch in N . Moreover, xN is maximal element in
N({x}) \ {∅}, ordered by inclusion.

Proof: Evidently, xN is satisfying (bun1) and (bun2). B ∈ xN , since {B} << {{x}} ∈
N({x}) ⊂ N(B) and (esd6) are holding.

to (bun4): A ∈ xN and A ⊂ clN(F ), F ∈ BX imply x ∈ clN(A), hence x ∈ clN(F ) follows,
showing that F ∈ xN is valid.

to (bun5): A ∈ xN ∩ BX and F ∈ xN ∩ BX imply {A} ∈ N({x}) ⊂ N(clN(F )) = N(F ),
according to proposition 2.10.

Now, let σ ∈ N({x}) \ {∅} with xN ⊂ σ. For F ∈ σ we have {F} ∈ N({x}), and x ∈ clN(F )

follows, showing that σ = xN holds.

Definition 3.7 A proximal esd-space (X,BX , N) is called a bunch space iff N satisfies
the condition

(bun) B ∈ BX\{∅} and ρ ∈ N(B) imply ∀F ∈ ρ ∩ BX∃ B-bunch σ in N with F ∈ σ.

Proposition 3.8 The esd-space (X,BX , N e) is a bunch space.

Proof: For B ∈ BX\{∅}, ρ ∈ N e(B) let F ∈ ρ∩BX , hence by definition tY (e[B])∩tY (e[F ]) 6=
∅ holds, so that we can choose yF ∈ tY (e[B])∩tY (e[F ]). Now, we put t(yF ) : ={A ⊂ X : yF ∈
tY (e[A])}, hence F ∈ t(yF )·t(yF ) is a B-bunch in N e, since ∅ 6∈ t(yF ), and for A1∪A2 ∈ t(yF )

we have yF ∈ tY (A1∪A2) = tY (A1)∪ tY (A2), showing that A1 ∈ t(yF ) or A2 ∈ t(yF ) is valid.
If A1 ∈ t(yF ) and A1 ⊂ A2 ⊂ X, then yF ∈ ty(e[A1]) is valid with tY (e[A1]) ⊂ tY (e[A2]),
and consequently yF ∈ tY (e[A2]) follows, resulting into A2 ∈ t(yF ). By definition B ∈ t(yF )

holds, and t(yF ) ∈ N e(B), because for A ∈ t(yF ) ∩ BX we have yF ∈ tY (e[A]) ∩ tY (e[B]).
Now, let A ∈ t(yF ) and A ⊂ clNe(F ), F ∈ BX , hence yF ∈ ty(e[A]) ⊂ tY (e[clNe(F )]) =

tY (e[tX(F )]) ⊂ tY (e[F ]) follows by applying (btx1). Consequently, F ∈ t(yF ) results. At
last let A ∈ t(yF ) ∩ BX and F ∈ t(yF ) ∩ BX , then {A} ∈ N e(F ) follows, because yF ∈
tY (e[A]) ∩ tY (e[F ]) is valid. The above arguments are showing that (X,BX , N e) is bunch
space.

Convention 3.9 By SYBTEXT we denote the full subcategory of BTEXT , whose ob-
jects are the symmetric btop-extensions and by BUN the full subcategory of PX-ESD
whose objects are the bunch spaces.

Theorem 3.10 Let H : SYBTEXT −→ BUN be defined by

(a) for a SYBTEXT-object E : =(e,BX , Y ) we put H(E) : =(X,BX , N e);
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(b) for a BTEXT-morphism (f, g) : E −→ E ′ we put H(f, g) : = f .

Then H : SYBTEXT −→ BUN is a functor.

Proof: We already know that the image of H lies in BUN . Now, let (f, g) : (e,BX , Y ) −→
(e′,BX′ , Y ′) be a BTEXT -morphism: it has to be shown that f is bibsd-map.

By hypothesis f is bi-bounded. Without restriction let B ∈ BX\{∅} and ρ ∈ N e(B), we
have to verify that fρ ∈ N e′(f [B]). For showing this statement let A ∈ fρ ∩ BX′ , then we
claim tY ′(e

′[f [B]])∩ tY ′(e′[A]) 6= ∅, which would prove our assertion. We have A ∈ BX′ with
A = f [F ] for some F ∈ ρ. By hypothesis we get tY (e[B])∩ tY (e[F ]) 6= ∅. Note, that F is also
an element of BX , since F ⊂ f−1[f [F ]] = f−1[A] ∈ BX is valid, and f is bi-bounded. Now, we
can choose an element y ∈ tY (e[B])∩tY (e[F ]). Consequently, g(y) ∈ g[tY (e[B])]∩g[tY (e[F ])]

follows.

But the proposed diagram (see 3.1) commutes so that tY ′(g[e[B]]) = tY ′(e
′[f [B]]) and

tY ′(e
′[A]) = tY ′(g[e[F ]] = tY ′(e

′[f [F ]]) are valid, which put an end of this. Evidently, H
fulfills the remaining properties for being a functor.

4 Strict bornotopological extensions

In the previous section we have found a functor H from SYBTEXT to BUN . Now, we
are going to introduce a related one in the opposite direction.

Lemma 4.1 Let (X,BX , N) be a proximal esd-space. We set: Xb : ={σ ⊂ PX : σ is
B-bunch in N for some B ∈ BX\{∅}}, and for each Ab ⊂ Xb we put: tXb(Ab) : ={σ ∈
Xb : 4Ab ⊂ σ}, where 4Ab : ={F ∈ BX : ∀σ ∈ AbF ∈ σ}. (By convention 4Ab = BX if
Ab = ∅). Then tXb : PXb −→ PXb is a topological closure operator.

Proof: Firstly, we note that tXb(∅) = ∅, since ∅ 6∈ σ for each σ ∈ Xb. Now, let Ab be
a subset of Xb and consider σ ∈ Ab. Then F ∈ 4Ab implies F ∈ σ, hence Ab ⊂ tXb(Ab)

is valid. IfAb1 ⊂ Ab2, then 4Ab2 ⊂ 4b
1 implying tXb(Ab1) ⊂ tXb(Ab2). For arbitrary subsets

Ab1, A
b
2 ⊂ Xb we consider an element σ ∈ Xb such that σ 6∈ tXb(Ab1) ∪ tXb(Ab2). Then we get

4Ab1 6⊂ σ and 4Ab2 6⊂ σ. We can choose F1 ∈ 4Ab1 with F1 6∈ σ and F2 ∈ 4Ab2 with F2 6∈ σ.
By (bun2) we get F1 ∪ F2 6∈ σ. On the other hand F1 ∪ F2 ∈ BX , since BX is bornology,
and F1 ∪ F2 ∈ 4Ab1 ∩ 4Ab2 ⊂ 4(Ab1 ∪ Ab2) imply σ 6∈ tXb(Ab1 ∪ Ab2). At last, let σ be an
element of tXb(tXb(Ab)), Ab ⊂ Xb, and suppose σ 6∈ tXb(Ab). We can choose F ∈ 4Ab, with
F 6∈ σ. By assumption we have 4tXb(Ab) ⊂ σ, hence F 6∈ 4tXb(Ab). Consequently, there
exists σ1 ∈ tXb(Ab) with F 6∈ σ1. But this implies 4Ab ⊂ σ1, and F ∈ σ1 results, which
contradicts.
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Theorem 4.2 For proximal esd-spaces (X,BX , N), (Y,BY ,M) let f : X −→ Y be a
bibsd-map. Define a function f b : Xb −→ Y b by setting for each σ ∈ Xb : f b(σ) : ={D ⊂ Y :

f−1[clM(D)] ∈ σ}. Then the following statements are valid:

(1) f b is a continuous map from (Xb, tXb) to (Y b, tY b);

(2) the composites f b ◦ eX and eY ◦ f coincide, where eX : X −→ Xb denotes that function
which assigns the {x}-bunch xN to each x ∈ X.

Proof: First, let σ be a B-bunch in N . We will show that f b(σ) is a f [B]-bunch in M .
It is easy to verify that f b(σ) satisfies the conditions (bun1) and (bun2), respectively (see
3.4). In order to establish (bun3) we observe that B ∈ σ ∈ N(B) is valid by hypothesis.
Since clM(f [B]) ⊃ f [B] we have f−1[clM(f [B])] ⊃ f−1[f [B]] ⊃ B. Then f [B] ∈ f b(σ)

results by applying (bun1). In showing f b(σ) ∈ M(f [B]), we will verify that {clM(D) :

D ∈ f b(σ)} << fσ (note, that f is satisfying (sd) in definition 1.1). For any D ∈ f b(σ)

we have f−1[clM(D)] ∈ σ, hence clM(D) ⊃ f [f−1[clM(D)]] ∈ fσ. By applying (esd6) we
obtain the desired result. Now, let D ∈ f b(σ) and D ⊂ clM(F ), F ∈ BY . We have to show
that f−1[clM(F )] ∈ σ. By hypothesis f−1[clM(D)] ∈ σ is valid. f−1[clM(F )] ∈ BX holds by
applying (esd8) and since f is bi-bounded. Consequently, f−1[clM(D)] ⊂ clN(f−1[clM(D)]) ⊂
clN(f−1[clM(F )]) follows, leading us to the desired result by applying (bun4) for σ. At
last let D ∈ f b(σ) ∩ BY . For F ∈ f b(σ) ∩ BY we have to show that {D} ∈ M(F ) is
valid. Since M is proximal, therefore it suffices to prove {F} ∈ M(D). By hypothesis
f−1[clM(D)] ∈ σ∩BX , note that f is bi-bounded. On the other hand if F ∈ f b(σ)∩BY we also
have f−1[clM(F )] ∈ σ∩BX . But σ satisfies (bun5), hence {f−1[clM(F )]} ∈ N(f−1[clM(D)]) is
valid. Consequently, {clM(F )} ∈ M(clM(D)) follows, since f satisfies (sd) and by applying
(esd5). But then {F} ∈ M(D) results according to (esd6) and proposition 2.10. Taking
all these facts into account we conclude that f b(σ) defines a f [B]-bunch in M , and thus
f b(σ) ∈ Y b is valid.

to (1): Let Ab ⊂ Xb, σ ∈ tXb(Ab) and suppose f(σ) 6∈ tY b(f b[Ab]). Then 4f b[Ab] 6⊂ f b(σ),
hence D 6∈ f b(σ) for some D ∈ 4f b[Ab], which means f−1[clM(D)] 6∈ σ. But
4Ab ⊂ σ implies f−1[clM(D)] 6∈ σ1 for some σ1 ∈ Ab. Consequently, D 6∈ f b(σ1)

results, which contradicts, because D ∈ 4f b[Ab] is valid.

to (2): Now, let x be an element ofX. We will prove the validity of the equation f b(eX(x)) =

eY (f(x)). To this end let D ∈ eY (f(x)). Then f(x) ∈ clM(D) follows, and x ∈
f−1[clM(D)] is valid. Consequently, f−1[clM(D)] ∈ xN = eX(x) holds, and D ∈
f b(eX(x)) results, proving the inclusion eY (f(x)) ⊂ f b(eX(x)). Conversely, we note
that {clM(D) : D ∈ f b(eX(x))} << feX(x) ∈ M({f(x)}), since by supposition f

satisfies (sd). But eY (f(x)) is maximal in M({f(x)}) \ {∅}, and thus we obtain the
desired result.
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Theorem 4.3 We obtain a functor G : BUN to SYBTEXT by setting:

(a) G(X,BX , N) : =(eX ,BX , Xb) for any bunch space (X,BX , N) with X : =(X, clN) and
Xb : =(Xb, tXb);

(b) G(f) : =(f, f b) for any bibsd-map f : (X,BX , N) −→ (Y,BY ,M).

Proof: With respect to (esd6), clN is topological closure operator, and by Lemma 4.1 this
also holds for tXb . Therefore we get topological spaces with bornology BX , and eX : X −→
Xb is a map according to theorem 4.2. Moreover, eX is a function satisfying (btx1) and
(btx2), respectively.

To establish (btx1) let B ∈ BX and suppose x ∈ clN(B). Then we get 4eX [B] ⊂ xN , hence
eX(x) ∈ tXb(eX [B]), which means x ∈ e−1

X [tXb(eX [B]). Conversely, let x be an element of
e−1
X [tXb(eX [B])]. Then by definition we have 4eX [B] ⊂ xN . Since B ∈ 4eX [B] we get
x ∈ clN(B). To establish (btx2) let σ ∈ Xb and suppose σ 6∈ tXb(eX [X]). By definition we
get 4eX [X] 6⊂ σ, so that there exists a set F ∈ 4eX [X] with F 6∈ σ. But then X ⊂ clN(F )

follows. Since B ∈ σ for some B ∈ BX\{∅} we get B ⊂ clN(F ), hence F ∈ σ, because σ
is satisfying (bun4). But this contradicts, and σ ∈ tXb(eX [X]) is valid. Moreover, we have
that f and f b are continuous maps (see also theorem 4.2), and the diagram

X
eX //

f
��

Xb

fb

��
Y

eY // Y b

commutes.

Finally, this establishes that the composition of bibsd-maps is preserved by G. In showing
(eX ,BX , Xb) is symmetric, let x be an element of X such that σ ∈ tXb({eX(x)}). We have to
prove xN ∈ tXb({σ}). By hypothesis we have xN ∩ B ⊂ σ and must show that 4{σ} ⊂ xN .
To this end let F ∈ 4{σ}, hence F ∈ σ∩BX follows. We already know that {x} ∈ σ is valid,
and consequently {F} ∈ N({x}) follows by applying (bun5). But this implies x ∈ clN(F ),
and F ∈ xN results. At last we will show that the image of G also is contained in ST-
SYBTEXT the full subcategory of SYBTEXT , whose objects are the strict symmetric
bornotopological extensions.

Corollary 4.4 The image of G is contained in ST-SYBTEXT.

Proof: Consider σ 6∈ Xb and let Ab be closed in Xb with σ 6∈ Ab. Then σ 6∈ tXb(Ab), hence
4Ab 6⊂ σ. We can find some F ∈ 4Ab such that F 6∈ σ. Now, for each σ1 ∈ Ab we have
F ∈ σ1, which implies4eX [F ] ⊂ σ1, becauseD ∈ 4eX [F ] implies F ⊂ clN(D) withD ∈ BX ,
and σ1 satisfies (bun4). Therefore we conclude σ1 ∈ tXb(eX [F ]), and Ab ⊂ tXb(eX [F ])
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results. On the other hand, since F 6∈ σ we have 4eX [F ] 6⊂ σ, hence σ 6∈ tXb(eX [F ]), and
tXb(eX [F ]) ⊂ Ab results, which put an end of this.

Theorem 4.5 Let H : SYBTEXT −→ BUN and G : BUN −→ SYBTEXT be the
above defined functors. For each object (X,BX , N) of BUN let t(BX ,N) denote the identity
map idX : H(G(X,BX , N)) −→ (X,BX , N). Then t : H◦G −→ 1BUN is natural equivalence
from H◦G to the identity functor 1BUN, i.e. idX : H(G(X,BX , N)) −→ (X,BX , N) is bibsd-
map in both directions for each object (X,BX , N), and the following diagram commutes for
each bibsd-map f : (X,BX , N) −→ (Y,BY ,M):

H(G(X,BX , N))
idX //

H(G(f))
��

(X,BX , N)

f
��

H(G(Y,BY ,M))
idY // (Y,BY ,M)

Proof: The commutativity of the diagram is obvious, because of H(G(f)) = f . It remains
to prove that idX : H(G(X,BX , N)) −→ (X,BX , N) is bibsd-map in both directions. Since
H(G(X,BX , N)) = (X,BX , N eX ) by definition of G respectively H, it suffices to show that
for each B ∈ BX\{∅} we have N eX (B) ⊂ N(B) ⊂ N eX (B). To this end assume ρ ∈
N eX (B), B 6= ∅. Then tXb(eX [B]) ∈ sec{tXb(F ) : F ∈ ρ ∩ BX}. Now, we will show that
ρ ∩ BX is subset of

⋃
{A : A ∈ N(B)}. Note, that (X,BX , N) is conic by assumption.

F ∈ ρ ∩ BX implies the existence of σ ∈ tXb(B) ∩ tXb(F ), hence 4eX [B],4eX [F ] ⊂ σ are
valid. Consequently, B,F ∈ σ∩BX result, and {F} ∈ N(B) follows, since σ satisfies (bun5).
Consequently, F ∈

⋃
{A : A ∈ N(B)} is valid, showing that ρ ∩ BX ∈ N(B). But then

ρ ∈ N(B) follows by applying (esd9). Conversely, let B ∈ BX\{∅} and ρ ∈ N(B). We
have to verify tXb(eX [B]) ∈ sec{tXb(F ) : F ∈ ρ ∩ BX} · F ∈ ρ ∩ BX implies the existence
of a B-bunch σ in N with F ∈ σ, according to (bun). Now, we claim that the following
statements are valid, i.e.

(a) σ ∈ tXb(eX [B]);

(b) σ ∈ tXb(eX [F ]).

to (a): We have to check that the inclusion 4eX [B] ⊂ σ is valid. A ∈ 4eX [B] implies
B ⊂ clN(A). Since B ∈ σ we get clN(A) ∈ σ, and A ∈ σ results, according to
(bun4). Note, that A ∈ BX by definition.

to (b): We must show that the inclusion 4eX [F ] ⊂ σ is valid. But by hypothesis we know
that F ∈ σ holds, hence this proving is as above.
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Corollary 4.6 For a btop-T1 extension E : =(e,BX , Y ), where e is topological embedding
and Y T1-space, then (X,BX , N e) is separated by satisfying

(sep) x, z ∈ X and {{z}} ∈ N e({x}) imply x = z.

Proof: For x, z ∈ X with {{z}} ∈ N e({x}) there exists y ∈ tY ({e(x)}) ∩ tY ({e(z)}). By
hypothesis e(x) = y = e(z) follows, and x = z results, because e is injective.

Corollary 4.7 For a separated proximal esd-space (X,BX , N) the function eX : X −→
Xb is injective.

Proof: For x, z ∈ X let eX(x) = eX(z), hence z ∈ clN({x}), and {{x}} ∈ N({z}) follows.
By hypothesis x = z results.

Remark 4.8 In making the main theorem of this paper more transparent we state that
a proximal esd-space (X,BX , N) is a bunch space iff it can be considered as subspace of a
topological space Y , such that the B-collections in N for non-empty bounded sets B are
characterized by the fact that their closures of bounded members in Y meet the closure
of B in Y . In case if BX is saturated, then proximal esd-spaces essentially coincide with
LODATO proximity spaces up to isomorphism. Hence the main theorem generalizes the one
of LODATO, presented by him in the past and where symmetric generalized proximities are
playing an important role, especially those arising from a family of bunches on a set X.
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