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1 Introduction

The impulsive differential equations are an adequate mathematical apparatus for simulation
of numerous processes and phenomena in biology, physics, chemistry and control theory,
e.t.c. which during their evolutionary development are subject to short time perturbations
in the form of impulses. The qualitative investigation of these processes began with the
work of Mil’man and Myshkis [17]. For the first time such equations were considered in an
arbitrary Banach space in [2, 3, 18, 19].

The problem of ψ-boundedness and ψ-stability of the solutions of differential equations in
finite dimensional Euclidean spaces, introduced for the first time by Akinyele [1] has been
studied later by many authors. A beautiful explanation about the benefits of such a use of
weighted stability and boundedness can be found for example in [15].

Inspired by the famous monographs of Coppel [6], Daleckii and Krein [7] as well as Massera
and Schaeffer [16], where the important notion of exponential and ordinary dichotomy for
ordinary differential equations is considered in details, Diamandescu [8]-[10] and Boi [4]-[5]
introduced and studied the ψ-dichotomy for linear differential equations in finite dimensional
Euclidean space, where ψ is a nonnegative continuous diagonal matrix function. The concept
of ψ-dichotomy for arbitrary Banach spaces is introduced and studied in [11] and [12]. In
this case ψ(t) is an arbitrary bounded invertible linear operator for all t.
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The goal of the present paper is to study such a weighted dichotomy for linear differential
equations with impulse effect in arbitrary Banach spaces. We will establish a dependence be-
tween the ψ-exponential dichotomy of a homogeneous impulsive equation in a Banach space
and the existence of a solution of the corresponding nonhomogeneous impulsive equation
which is ψ-bounded on the semi-axis R+.

The first investigation in this direction was made in [20] for the particular case of ψ-ordinary
dichotomy.

It must be mentioned that in [13, 14] the attempt to introduce ψ-exponential dichotomy for
impulsive differential equations in finite dimensional spaces is a real disaster - due to the
meaningless use of the fundamental matrix there even the definitions are wrong.

2 Preliminaries

Let X be an arbitrary Banach space with norm |.| and let LB(X) be the space of all linear
bounded operators acting in X with the norm ||.|| and identity I. Denote R+ = [0,∞).

We consider the nonhomogeneous impulsive equation

dx

dt
= A(t)x+ f(t) (t 6= tn) (1)

x(tn + 0) = Qnx(tn) + hn (n = 1, 2, 3, ...) (2)

where the operator valued function A(.) : R+ → LB(X) and the function f(.) : R+ → X

are strongly measurable and Bochner integrable on the finite subintervals of R+, {Qn}∞n=1 is
a sequence of impulsive operators Qn ∈ LB(X) (n = 1, 2, 3, ...), T = {tn}∞n=1 is a sequence
of points on the semi-axis R+ satisfying the condition

0 < t1 < t2 < ..., lim
n→∞

tn =∞

and {hn}∞n=1 is a sequence of elements hn ∈ X. The corresponding homogeneous linear
impulsive equation is

dx

dt
= A(t)x (t 6= tn) (3)

x(tn + 0) = Qnx(tn) (t = 1, 2, 3, ...). (4)

Definition 1 By a solution of the impulsive equation (1), (2) (or (3), (4)) we shall call
a function x(t) which for t 6= tn satisfies equation (1) (or (3)), for t = tn satisfies condition
(2) (or (4)) and is continuous from the left.
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It is known (see [18], [3]) that for the impulsive equation (3), (4) there exists an evolutionary
Cauchy operator associating with any element ξ ∈ X a solution x(t) of the impulsive equation
which satisfies the initial condition x(s) = ξ (0 ≤ s ≤ t <∞).

Lemma 1 ([3]) Let the conditions A(t), Qn ∈ LB(X) hold, where t ∈ R+ (n = 1, 2, . . . ).

Then the evolutionary operator V (t, s) (0 ≤ s ≤ t < ∞) of the impulsive equation (3), (4)
has the form

V (t, s) =


V0(t, s), tn < s ≤ t ≤ tn+1

V0(t, tn)

(
k+1∏
j=n

QjV0(tj, tj−1)

)
QkV0(tk, s),

tk−1 < s ≤ tk < tn < t ≤ tn+1

where V0(t, s) (0 ≤ s ≤ t <∞) is the evolutionary operator of equation (3).

The operator-valued function V (t, s) satisfies the equalities

V (t, t) = I (0 ≤ t <∞), (5)

V (t, s) = V (t, τ)V (τ, s) (0 ≤ s ≤ τ ≤ t <∞). (6)

Moreover, it is differentiable at the points t ∈ (tj−1, tj] (j = 1, 2, 3, . . . ) and s ∈ [tj−1, tj) (j =

1, 2, 3, . . . ), and it is

dV (t, s)

dt
= A(t)V (t, s),

dV (t, s)

ds
= V (t, s)A(s). (7)

At the points tn (n = 1, 2, 3, . . . ) the following equalities are staisfied:

V (tn + 0, s) = QnV (tn, s) (0 ≤ s ≤ tn <∞). (8)

Lemma 2 ([3]) Let the following conditions hold:

1. A(t), Qn ∈ LB(X), where t ∈ R+(n = 1, 2, . . . ).

2. The operators Qn have continuous inverses Q−1n (n = 1, 2, 3, . . . ).

Then the evolutionary operator V (t, s) (0 ≤ t, s <∞) of the impulsive equation (3), (4) has
the form

V (t, s) =



V0(t, s), tn < s, t ≤ tn+1

V0(t, tn)

(
k+1∏
j=n

QjV0(tj, tj−1)

)
QkV0(tk, s),

tk−1 < s ≤ tk < tn < t ≤ tn+1

V0(t, tn)

(
k−1∏
j=n

Q−1j V0(tj, tj+1)

)
Q−1k V0(tk, s),

tn−1 < t ≤ tn < tk < s ≤ tk+1
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where V0(t, s) (0 ≤ s, t <∞) is the evolutionary operator of the equation (3).

If the conditions of Lemma 2 are satisfied, then the following equalities hold:

V (t, s) = V −1(s, t), V (t, s) = V (t, τ)V (τ, s) (0 ≤ s, τ, t <∞), (9)

V (tn + 0, s) = QnV (tn, s) (0 ≤ s, tn <∞). (10)

Let RL(X) be the subspace of all invertible operators in LB(X) whose inverse operators are
bounded, too. Let ψ(t) : R+ → RL(X) be a continuous operator-function with respect to
t ∈ R+.

Definition 2 A function u(.) : R+ → X is said to be ψ-bounded on R+ if ψ(t)u(t) is
bounded on R+.

Definition 3 A function f(.) : R+ → X is said to be ψ-integrally bounded on R+ if it
is measurable and there exists a positive constant m such that

∫ t+1

t
|ψ(τ)f(τ)|dτ ≤ m for all

t ∈ R+.

Definition 4 A sequence of points h = {hn}∞n=1 is said to be ψ-bounded on R+ if
sup

n=1,2,3,...
|ψ(tn)hn| <∞, hn ∈ X, tn ∈ T (n = 1, 2, 3, . . . ).

Let Cψ(X,T ) denote the space of all functions with values in X and ψ-bounded on R+ which
are continuous for t 6= tn, have discontinuities of the first kind for t = tn and are continuous
from the left which is a Banach space with the norm

|||f |||Cψ = sup
t∈R+

|ψ(t)f(t)|.

Let Mψ(X,T ) denote the Banach space of all functions with values in X and ψ-integrally
bounded which are continuous for t 6= tn, have discontinuities of the first kind for t = tn and
are continuous from the left for t = tn with the norm

|||f |||Mψ
= sup

t∈R+

∫ t+1

t

|ψ(s)f(s)|ds.

Let Hψ(X,T ) denote the space of all ψ-bounded sequences h = {hn}∞n=1 in X, i.e.

Hψ(X,T ) = {h : sup
n=1,2,3,...

|ψ(tn)hn| <∞, hn ∈ X, tn ∈ T, n = 1, 2, 3, . . . }

with the norm
|||h|||Hψ = sup

n=1,2,3,...
|ψ(tn)hn|.
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Definition 5 The homogeneous impulsive equation (3), (4) is said to be ψ-exponential
dichotomous on R+ if there exist a pair P1 and P2 = I − P1 of mutually complementary
projections in X and numbers M, δ > 0 for which the inequalities

||ψ(t)V (t)P1V
−1(s)ψ−1(s)|| ≤Me−δ(t−s) (0 ≤ s ≤ t <∞), (11)

||ψ(t)V (t)P2V
−1(s)ψ−1(s)|| ≤Me−δ(s−t) (0 ≤ t ≤ s <∞) (12)

hold, where V (t) = V (t, 0) and V (t, s) (0 ≤ s, t < ∞) is the Cauchy evolutionary operator
of the impulsive equation (3), (4).

The equation (3), (4) is said to have a ψ-ordinary dichotomy on R+ if (11) and (12) hold
with δ = 0.

Lemma 3 Equation (3), (4) has a ψ-exponential dichotomy on R+ with positive constants
ν1 and ν2 if and only if there exist a pair of mutually complementary projections P1 and
P2 = I − P1 and positive constants M, Ñ1, Ñ2 such that following inequalities are fulfilled:

|ψ(t)V (t)P1ξ| ≤ Ñ1e
−ν1(t−s)|ψ(s)V (s)P1ξ| (ξ ∈ X, 0 ≤ s ≤ t), (13)

|ψ(t)V (t)P2ξ| ≤ Ñ2e
−ν2(s−t)|ψ(s)V (s)P2ξ| (ξ ∈ X, 0 ≤ t ≤ s), (14)

‖ψ(t)V (t)P1V
−1(t)ψ−1(t)‖ ≤M (t ≥ 0). (15)

The proof of the lemma is similar as the proof of Lemma 3.1 in [11] for equations without
impulses and will be omitted.

Definition 6 The homogeneous impulsive equation (3), (4) is said to have a ψ-bounded
growth on R+ if for some fixed l > 0 there exists a constant c ≥ 1 such that every solution
x(t) of (3), (4) satisfies

|ψ(t)x(t)| ≤ c|ψ(s)x(s)| (0 ≤ s ≤ t ≤ s+ l). (16)

Lemma 4 Equation (3), (4) has ψ-bounded growth on R+ if and only if there exist pos-
itive constants K ≥ 1 and α > 0 such that

‖ψ(t)V (t)V −1(s)ψ−1(s)‖ ≤ Keα(t−s) (0 ≤ s ≤ t). (17)

The proof of the lemma is similar as the proof of Lemma 3.2 in [11] for equations without
impulses and will be omitted.

Remark 1 It is easy to see that the condition for ψ-bounded growth (and for bounded
growth) of (3), (4) is independent of the choice of l. Hence we will use the Definition 6 with
fixed l = 1.
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Lemma 5 If (3), (4) has ψ-bounded growth on R+, then (15) is a consequence of (13)
and (14).

The proof of the lemma is similar as the proof of Lemma 3.5 in [11] for equations without
impulses and will be omitted.

3. Main results

We shall say that condition (H) is satisfied if the following conditions hold:

H1. A(t), Qn ∈ LB(X), where t ∈ R+(n = 1, 2, 3, . . . ).

H2. Qn ∈ RL(X) (n = 1, 2, 3, . . . ).

H3. ψ(t) : R+ → RL(X) is a continuous operator-function with respect to t ∈ R+.

Theorem 2 Let us assume the following:

1. Condition (H) is satisfied.

2. Equation (3), (4) is ψ-exponential dichotomous.

3. There exist a number l > 0 and a positive integer λ such that each interval on R+ with
length l contains not more than λ points of the sequence T .

Then for any function f ∈ Cψ(X,T ) and any sequence h ∈ Hψ(X,T ) there exists a solution
of the nonhomogeneous equation (1), (2) which is ψ-bounded on R+.

Proof. Consider the function

x̃(t) =

∫ t

0

ψ(t)V (t)P1V
−1(s)f(s)ds−

∫ ∞
t

ψ(t)V (t)P2V
−1(s)f(s)ds

+
∑
tj<t

ψ(t)V (t)P1V
−1(tj + 0)hj −

∑
tj≥t

ψ(t)V (t)P2V
−1(tj + 0)hj

(18)

In order to prove the boundedness of x̃(t) we shall estimate the norms of the summands in
(18). By (11) and (12) we have

|
∫ t

0

ψ(t)V (t)P1V
−1(s)f(s)ds| =

= |
∫ t

0

ψ(t)V (t)P1V
−1(s)ψ−1(s)ψ(s)f(s)ds|

≤
∫ t

0

||ψ(t)V (t)P1V
−1(s)ψ−1(s)|| |ψ(s)f(s)|ds

≤Me−δt
∫ t

0

eδsds |||f |||Cψ ≤
M

δ
|||f |||Cψ

(19)
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and

|
∫ ∞
t

ψ(t)V (t)P2V
−1(s)f(s)ds|

= |
∫ ∞
t

ψ(t)V (t)P2V
−1(s)ψ−1(s)ψ(s)f(s)ds|

≤
∫ ∞
t

||ψ(t)V (t)P2V
−1(s)ψ−1(s)|| |ψ(s)f(s)|ds

≤Meδt
∫ ∞
t

e−δsds |||f |||Cψ ≤
M

δ
|||f |||Cψ .

(20)

Analogously having in mind also the conditions 3 and H3 we obtain for the next summands

|
∑
tj<t

ψ(t)V (t)P1V
−1(tj + 0)hj|

= |
∑
tj<t

ψ(t)V (t)P1V
−1(tj + 0)ψ−1(tj + 0)ψ(tj + 0)hj|

= |
∑
tj<t

ψ(t)V (t)P1V
−1(tj + 0)ψ−1(tj + 0)ψ(tj)hj|

≤
∑
tj<t

||ψ(t)V (t)P1V
−1(tj + 0)ψ−1(tj + 0)|| |ψ(tj)hj|

≤M

∑
tj<t

eδ(tj−t)

 |||h|||Hψ ≤ Mλ

1− e−δl
|||h|||Hψ

(21)

and

|
∑
t≤tj

ψ(t)V (t)P2V
−1(tj + 0)hj|

= |
∑
t≤tj

ψ(t)V (t)P2V
−1(tj + 0)ψ−1(tj + 0)ψ(tj + 0)hj|

= |
∑
t≤tj

ψ(t)V (t)P2V
−1(tj + 0)ψ−1(tj + 0)ψ(tj)hj|

≤
∑
t≤tj

||ψ(t)V (t)P2V
−1(tj + 0)ψ−1(tj + 0)|| |ψ(tj)hj|

≤M

∑
t≤tj

eδ(t−tj)

 |||h|||Hψ ≤ Mλ

1− e−δl
|||h|||Hψ .

(22)

From (18) - (22) it follows that x̃(t) is bounded on R+ and satisfies for t ∈ R+ the inequality

|x̃(t)| ≤ 2M

δ
|||f |||Cψ +

2Mλ

1− e−δl
|||h|||Hψ

Let be x(t) = ψ−1(t)x̃(t). Obviously x(t) is ψ-bounded on R+. It is immediately verified
that the function x(t) is continuous for t 6= tn and that the limit values x(tn+0) (n = 1, 2, ...)
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exist. We shall show that the function x(t) satisfies the impulsive equation (1), (2) using the
equalities (7) and (10).

We differentiate x(t) by t 6= tn and get

dx

dt
= A(t)

∫ t

0

V (t)P1V
−1(s)f(s)ds+ V (t)P1V

−1(t)f(t)

+ V (t)P2V
−1(t)f(t)− A(t)

∫ ∞
t

V (t)P2V
−1(s)f(s)ds

+
∑
tj<t

A(t)V (t)P1V
−1(tj + 0)hj −

∑
tj≥t

A(t)V (t)P2V
−1(tj + 0)hj

= A(t)x(t) + V (t)P1V
−1(t)f(t) + V (t)P2V

−1(t)f(t)

= A(t)x(t) + f(t).

Analogously we obtain for t = tn (n = 1, 2, ...) taking into account (10)

x(tn + 0)

=

∫ tn

0

V (tn + 0)P1V
−1(s)f(s)ds−

∫ ∞
tn

V (tn + 0)P2V
−1(s)f(s)ds

+
∑
tj≤tn

V (tn + 0)P1V
−1(tj + 0)hj −

∑
tj>tn

V (tn + 0)P2V
−1(tj + 0)hj

= Qn

∫ tn

0

V (tn)P1V
−1(s)f(s)ds−Qn

∫ ∞
tn

V (tn)P2V
−1(s)f(s)ds

+Qn

∑
tj<tn

V (tn)P1V
−1(tj + 0)hj −Qn

∑
tj≥tn

V (tn)P1V
−1(tj + 0)hj

+ V (tn + 0)P1V
−1(tn + 0)hn + V (tn + 0)P2V

−1(tn + 0)hn

= Qnx(tn) + hn.

Hence the function x(t) is a ψ-bounded solution of the nonhomogeneous impulsive equation
(1), (2) on R+. Theorem 2 is proved.

Remark 3 Theorem 2 still holds, if the condition f ∈ Cψ(X,T ) is replaced by the weaker
condition f ∈Mψ(X,T ).

Proof. In the case f ∈Mψ(X,T ) the estimates (19) and (20) can be replaced by the following
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estimates

|
∫ t

0

ψ(t)V (t)P1V
−1(s)f(s)ds|

= |
∫ t

0

ψ(t)V (t)P1V
−1(s)ψ−1(s)ψ(s)f(s)ds|

≤
∫ t

0

||ψ(t)V (t)P1V
−1(s)ψ−1(s)|| |ψ(s)f(s)|ds

≤M

∫ t

0

e−δ(t−s) |ψ(s)f(s)|ds ≤M |||f |||Mψ

∞∑
k=0

e−δk

≤ M

1− e−δ
|||f |||Mψ

,

(23)

|
∫ ∞
t

ψ(t)V (t)P2V
−1(s)f(s)ds|

= |
∫ ∞
t

ψ(t)V (t)P2V
−1(s)ψ−1(s)ψ(s)f(s)ds|

≤
∫ ∞
t

||ψ(t)V (t)P2V
−1(s)ψ−1(s)|| |ψ(s)f(s)|ds

≤M

∫ ∞
t

e−δ(s−t) |ψ(s)f(s)|ds ≤M |||f |||Mψ

∞∑
k=0

e−δk

≤ M

1− e−δ
|||f |||Mψ

.

(24)

Remark 4 Theorem 2 obviously holds without condition 3 if we consider inhomogeneous
equations with h = 0. In this case the ψ-bounded solutions lie in the subspace C0

ψ(X,T ) of
the space Cψ(X,T ) which consists of the functions satisfying the condition

x(tn + 0) = Qnx(tn) (n = 1, 2, 3, . . . ). (25)

Let X1 be the linear manifold of all ξ ∈ X for which the functions V (t)ξ (t ∈ R+) are
ψ-bounded.

For our next main result we will need the following lemma.

Lemma 6 ([20]) Assume the following:

1. Condition (H) is satisfied.

2. Bψ(X) is an arbitrary Banach space of functions f(.) : R+ → X and for any function
f ∈ Bψ(X) the nonhomogeneous equation (1), (2) has at least one ψ-bounded on R+ solution
x ∈ Cψ(X,T ).
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3. The set X1 is a complementary subspace of X and X2 is a complement of it (X1+X2 = X).

Then to each function f(t) ∈ Bψ(X) there corresponds a unique solution x(t) which is ψ-
bounded on R+ and starts from X2, i.e. x(0) ∈ X2.

This solution satisfies the estimate

|||x|||Cψ ≤ k|||f |||Bψ , (26)

where k > 0 is a constant not depending on f .

Now we are ready for our second main result - a theorem, which is like an inverse of Theorem
2.

Theorem 5 Let us assume the following:

1. Condition (H) is satisfied.

2. The homogeneous impulsive equation (3), (4) has a ψ-bounded growth on R+.

3. The linear manifold

X1 = {ξ ∈ X : sup
0≤t<∞

|ψ(t)V (t)ξ| <∞} (27)

is a complementary subspace ( i.e. there exists a subspace X2 of X for which X = X1 +X2).

4. For each function f ∈ Cψ(X,T ) the nonhomogeneous impulsive equation (1), (2) for
h = {hn}∞n=1 = 0 has at least one solution belonging to the subspace C0

ψ(X,T ).

Then the impulsive equation (3), (4) is ψ-exponential dichotomous.

Proof. Let x(t) be a nontrivial ψ-bounded solution of the impulsive equation (3), (4) with
initial value x(0) ∈ X1. Set

y(t) = x(t)

∫ t

0

χ(τ)|ψ(τ)x(τ)|−1dτ,

where

χ(t) =


1 : 0 ≤ t ≤ t0 + τ

1− (t− t0 − τ) : t0 + τ < t ≤ t0 + τ + 1

0 : t0 + τ + 1 ≤ t

It is not hard to check that the function y(t) is a solution of the nonhomogeneous impulsive
equation (1), (2) for h = 0 and for

f(t) = χ(t)
x(t)

|ψ(t)x(t)|
.
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Obviously f ∈ Cψ(X,T ) and |||f |||Cψ = 1. But y(0) = 0 ∈ X2, and applying Lemma 6 it
follows

|||y|||Cψ = sup
t∈R+

|ψ(t)y(t)| ≤ k|||f |||Cψ = k

from (26). Hence

|ψ(t)y(t)| = |ψ(t)x(t)|
∫ t

0

χ(s)|ψ(s)x(s)|−1ds ≤ k (t ∈ R+).

By t = t0 + τ we obtain the inequality

|ψ(t0 + τ)y(t0 + τ)| = |ψ(t0 + τ)x(t0 + τ)|
∫ t0+τ

0

|ψ(s)x(s)|−1ds ≤ k. (28)

Let consider the function

ϕ(t) =

∫ t

0

|ψ(s)x(s)|−1ds.

From (28) it follows
ϕ′(t0 + τ)

ϕ(t0 + τ)
≥ 1

k
.

After integrating the inequality with respect to τ on [1, τ ] this implies the estimate

ϕ(t0 + τ) ≥ ϕ(t0 + 1)e
(τ−1)
k (τ ≥ 1). (29)

From condition 2 of the theorem it follows for s ∈ [t0, t0 + 1] that there exists a constant
c > 1 such that

|ψ(s)x(s)| ≤ c|ψ(t0)x(t0)|

and that is why

ϕ(t0 + 1) =

∫ t0+1

t0

|ψ(s)x(s)|−1ds ≥ c−1|ψ(t0)x(t0)|−1.

From here, taking into account the estimates (28) and (29) we obtain for τ ≥ 1 the relation

|ψ(t0 + τ)x(t0 + τ)| ≤ k

ϕ(t0 + τ)
≤ ke−

τ−1
k

ϕ(t0 + 1)
≤ kce

1
k e−

τ
k |ψ(t0)x(t0)|.

For τ ≤ 1 we have

|ψ(t0 + τ)x(t0 + τ)| ≤ c|ψ(t0)x(t0)| ≤ ce
1−τ
k |ψ(t0)x(t0)|.

Hence we obtain the estimate

|ψ(t)x(t)| ≤ Ne−ν(t−t0)|ψ(t0)x(t0)|, (30)

where ν = 1
k
and N = max{ce 1

k , kce
1
k }, i.e. the inequality (13).
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Analogously we consider the case if the solution x(t) of the impulsive equation (3), (4) has
an initial value x(0) ∈ X2. Then we will consider the function

ỹ(t) = x(t)

∫ ∞
t

χ(s)|ψ(s)x(s)|−1ds

instead of y(t). It is easy to check that the function ỹ(t) is a solution of the nonhomogeneous
impulsive equation (1), (2) for h = 0 and for

f̃(t) = −χ(t)
x(t)

|ψ(t)x(t)|
.

The solution ỹ(t) is ψ-bounded because ỹ(t) = 0 for t ≥ t0 + τ + 1. But ỹ(0) ∈ X2 and
obviously f̃ ∈ Cψ(X,T ). Now we can apply Lemma 6, and from (26), taking into account
that |||f̃ |||Cψ = 1, it follows

|ψ(t)ỹ(t)| = |ψ(t)x(t)|
∫ ∞
t

χ(s)|ψ(s)x(s)|−1ds ≤ k|||f̃ |||Cψ = k.

By τ →∞ we find the inequality∫ ∞
t

|ψ(s)x(s)|−1ds ≤ k|ψ(t)x(t)|−1. (31)

Setting

ϕ̃(t) =

∫ ∞
t

|ψ(s)x(s)|−1ds

we obtain
ϕ̃′(t) ≤ 1

k
ϕ̃(t).

By integration the estimate
ϕ̃(t) ≤ ϕ̃(t0)e

t−t0
k (32)

follows. Now let τ ≥ t. From x(τ) = V (τ)V −1x(t) it arises

ψ(τ)x(τ) = ψ(τ)V (τ)V −1ψ−1(t)ψ(t)x(t)

and
|ψ(τ)x(τ)| = ||ψ(τ)V (τ)V −1ψ−1(t)|| |ψ(t)x(t)|.

Condition 2 of the theorem and Lemma 4 imply that there exist constants K ≥ 1, α > 0

such that
|ψ(τ)x(τ)| = Keα(τ−t)|ψ(t)x(t)|.

Then

|ψ(t)x(t)|ϕ̃(t) = |ψ(t)x(t)|
∫ ∞
t

|ψ(s)x(s)|−1ds

≥
∫ ∞
t

|ψ(s)x(s)|e
−α(s−t)

K
|ψ(s)x(s)|−1ds =

1

K

∫ ∞
t

e−α(s−t)ds =
1

Kα
.
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Having in mind (31) and (32) it follows

|ψ(t)x(t)| ≥ (Kα)−1

ϕ̃(t)
≥ (Kα)−1

ϕ̃(t0)
e

1
k
(t−t0) ≥ (Kα)−1

k
e

1
k
(t−t0)|ψ(t0)x(t0)|.

This inequality is from the same type as the desired estimate (14). From condition 2 of
the theorem and Lemma 5 and Lemma 3 it follows that the impulsive equation (3), (4) is
ψ-exponential dichotomous. Hence Theorem 5 is proved.

Remark 6 Theorem 5 holds without condition 3 if the space X is finite dimensional.
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