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Estimate of the validity interval for the Antimaximum
Principle and application to a non-cooperative system

ABSTRACT. We are concerned with the sign of the solutions of non-cooperative systems
when the parameter varies near a Principal eigenvalue of the system. With this aim we give
precise estimates of the validity interval for the Antimaximum Principle for an equation and
an example. We apply these results to a non-cooperative system. Finally a counterexample
shows that our hypotheses are necessary. The Maximum Principle remains true only for a
restricted positive cone.
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1 Introduction

In this paper we use ideas concerning the Anti-Maximum Principle due to Clement and
Peletier [5] and later to Arcoya Gámez [3] to obtain in Section 2 precise estimates concerning
the validity interval for the Antimaximum Principle for one equation. An example shows
that this estimate is sharp.

The Maximum Principle and then the Antimaximum Principle for the case of a single equa-
tion have been extensively studied later for cooperative elliptic systems (see the references
([1],[6],[7],[8],[10],[12]). The results in [10], are still valid for systems(with constant coeffi-
cients) involving the p-Laplacian. Some results for non-cooperative systems can be found
e.g. in [4],[11]. Very general results concerning the Maximum Principle for equations and co-
operative systems for different classes (classical, weak, very weak) of solutions were given by
Amann in a long paper [2], in particular the Maximum Principle was shown to be equivalent
to the positivity of the principal eigenvalue.

Here in Section 3, we consider a non-cooperative 2 × 2 system with constant coefficients
depending on a real parameter µ having two real principal eigenvalues µ−1 < µ+

1 . We obtain
some theorems of Antimaximum Principle type concerning the behavior of different cones of
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couples of functions having positivity (or negativity) properties. We give several results of
this type for values of µ−1 < µ but close to µ−1 by combining the usual Maximum Principle
and the results for the Antimaximum Principle in Section 2.

Finally a counterexample is given showing that the Maximum Principle does not hold in gen-
eral for non cooperative systems, but a (partial, under an additional assumption) Maximum
Principle for µ < µ−1 is also obtained.

2 Estimate of the validity interval for the Anti-maximum Principle

Let Ω be a smooth bounded domain in IRN . We consider the following Dirichlet boundary
value problem

−∆z = µz + h in Ω , z = 0 on ∂Ω, (2.1)

where µ is a real parameter. We associate to (2.1) the eigenvalue problem

−∆ϕ = λϕ in Ω , ϕ = 0 on ∂Ω. (2.2)

We denote by λk, k ∈ IN∗ the eigenvalues (0 < λ1 < λ2 ≤ ...) and by ϕk a set of orthonormal
associated eigenfunctions. We choose ϕ1 > 0.

Hypothesis (H0): We write
h = αϕ1 + h⊥ (2.3)

where
∫

Ω
h⊥ϕ1 = 0 and we assume α > 0 and h ∈ Lq, q > N if N ≥ 2 and q = 2 if N = 1.

Theorem 1 We assume (H0) and λ1 < µ ≤ Λ < λ2. There exists a constant K depend-
ing only on Ω, Λ and q such that, for λ1 < µ < λ1 + δ(h) with

δ(h) =
Kα

‖h⊥‖Lq
, (2.4)

the solution z to (2.1) satisfies the Antimaximum Principle, that is

z < 0 in Ω; ∂z/∂ν > 0 on ∂Ω, (2.5)

where ∂/∂ν denotes the outward normal derivative.

Remark 2.1 The Antimaximum Principle of Theorem 1, assuming α > 0, is in the line of
the version given by Arcoya- Gámez [3].

Lemma 2.1 We assume λ1 < µ ≤ Λ < λ2 and h ∈ Lq, q > N ≥ 2. We suppose that
there exists a constant C1 depending only on Ω, q, and Λ such that z satisfying (2.1) is such
that

‖z‖L2 ≤ C1‖h‖L2 . (2.6)
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Then there exist constants C2 and C3, depending only on Ω, q and Λ such that

‖z‖C1 ≤ C2‖h‖Lq and ‖z‖Lq ≤ C3‖h‖Lq . (2.7)

Remark 2.2 Hypothesis (2.6) cannot hold, unless h is orthogonal to ϕ1. Indeed, letting
µ go to λ1, (2.6) implies the existence of a solution to (2.1) with µ = λ1. Note that in the
proof of Theorem 1, Lemma 2.1 is used for h (and hence z) orthogonal to ϕ1 .

2.1 Proof of Lemma 2.1

All constants in this proof depend only on Ω, Λ and q.

Claim: ‖z‖Lq ≤ C3‖h‖Lq .

If the claim is verified then, by regularity results for the Laplace operator combined with
Sobolev imbeddings

‖z‖C1 ≤ C4‖z‖W 2,q ≤ C5(Λ‖z‖Lq + ‖h‖Lq). (2.8)

From the claim and regularity results we deduce (2.7).

Proof of the claim:

- Step 1 We consider the sequence pj = 2 + 8j
N

for j ∈ IN . Observe that for any j,
W 2,pj ↪→ Lpj+1 and that there exists a constant H(j) such that

∀v ∈ W 2,pj , ‖v‖Lpj+1 ≤ H(j)‖v‖W 2,pj . (2.9)

The relation (2.9) is obvious if 2pj ≥ N and for 2pj < N we have

Npj
N − 2pj

− pj+1 =
2pjpj+1 − 8

N − 2pj
> 0

and the result follows by classical Sobolev imbedding.

- Step 2 We consider z satisfying (2.1). For j = 0, we derive from (2.6) and Hölder
inequality that

‖z‖L2 ≤ C5‖h‖Lq . (2.10)

By induction we assume that z ∈ Lpj with pj < q and that

‖z‖Lpj ≤ K(j)‖h‖Lq . (2.11)

By Hölder inequality,

‖µz + h‖Lpj ≤ Λ‖z‖Lpj + |Ω|
q−pj
qpj ‖h‖Lq .
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By regularity results for the Laplace operator:

‖z‖W 2,pj ≤ C(j)(Λ‖z‖Lpj + |Ω|
q−pj
qpj ‖h‖Lq) ≤ C(j)(ΛK(j) + |Ω|

q−pj
qpj )‖h‖Lq .

Using (2.9) the relation (2.11) holds for j + 1 and the induction is proved.

- Step 3 Let J be such that pJ+1 ≥ q > pJ . After J iterations we get by (2.11)

‖z‖Lq ≤ C6‖z‖LpJ+1 ≤ C6K(J + 1)‖z‖W 2,p ≤

C7K(J + 1)‖µz + h‖LpJ ≤ C8(Λ‖h‖Lq + ‖h‖LpJ ) ≤ C9‖h‖Lq ,

which is the claim.

2.2 Proof of Theorem 1

- Step 1: We prove the following inequality:

‖z⊥‖C1 ≤ C2‖h⊥‖Lq . (2.12)

We derive from (2.3)
z =

α

λ1 − µ
ϕ1 + z⊥, (2.13)

with z⊥ solution of
−∆z⊥ = µz⊥ + h⊥ in Ω ; z⊥ = 0 on ∂Ω. (2.14)

By the variational characterization of λ2:

λ2

∫
Ω

|z⊥|2 ≤
∫

Ω

|∇z⊥|2 = µ

∫
Ω

|z⊥|2 +

∫
Ω

z⊥h⊥.

Hence
‖z⊥‖L2 ≤ 1

λ2 − Λ
‖h⊥‖L2 .

By Lemma 2.1, we derive (2.12).

- Step 2: Close to the boundary:

We show now that on the boundary ∂z
∂ν

(x) > 0. and near the boundary z < 0.

Since ∂ϕ1/∂ν < 0 on ∂Ω, we set

A := min∂Ω|∂ϕ1/∂ν| > 0. (2.15)

By a continuity argument there exists ε > 0 such that

dist(x, ∂Ω) < ε ⇒ ∂ϕ1/∂ν(x) ≤ −A/2. (2.16)
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Hence by (2.12) to (2.16) , for any x ∈ Ω such that dist(x, ∂Ω) < ε, and if

0 < µ− λ1 <
αA

4C2‖h⊥‖Lq
,

we have
∂z

∂ν
(x) =

α

λ1 − µ
∂ϕ1

∂ν
(x) +

∂z⊥

∂ν
(x) ≥ α

λ1 − µ
∂ϕ1

∂ν
(x)− C2‖h⊥‖Lq ,

hence
∂z

∂ν
(x) ≥ α

2(λ1 − µ)

∂ϕ1

∂ν
(x) > 0. (2.17)

Therefore ∂z
∂ν

(x) > 0 on ∂Ω. Moreover since z = ϕ1 = 0 on ∂Ω, we deduce from (2.17) that,
for x ∈ Ω with dist(x, ∂Ω) < ε′ ≤ ε/2 (ε′ small enough),

z(x) ≤ α

2(λ1 − µ)
ϕ1(x) < 0,

where ε′ does not depend on µ.

- Step 3: Inside Ω:

We consider now Ωε′ := {x ∈ Ω, dist(x, ∂Ω) > ε′}. Set

B := min
Ωε′

ϕ1(x) > 0.

We have in Ωε′ by (2.12) and (2.13)

z(x) =
α

λ1 − µ
ϕ1(x) + z⊥(x) ≤ α

λ1 − µ
B + C2‖h⊥‖Lq < 0

if we choose
µ− λ1 <

αmin(B,A/2)

C2‖h⊥‖Lq
.

We derive now Theorem 1.

2.3 An example

Let N = 1, Ω =]0, 1[ and h = h1ϕ1 + h2ϕ2 with h1 > 0, h2 > 0. We note that

ϕ1(x)− sϕ2(x) = sinπx(1− 2scosπx) > 0 (2.18)

in Ω implies s ≤ 1/2. For this example, taking µ = λ1 + ε, ε > 0, we have:

z =
h1

λ1 − µ
ϕ1 +

h2

λ2 − µ
ϕ2 = −h1

ε

(
ϕ1 −

εh2

h1(λ2 − λ1 − ε)
ϕ2

)
.

If the Antimaximum Principle holds, z < 0 in Ω, and by (2.18), we have
εh2

h1(λ2 − λ1 − ε)
≤ 1

2
,

hence
ε ≤ h1(λ2 − λ1)

2h2(1 + h1
2h2

)
≤ h1(λ2 − λ1)

2h2

.

We obtain an estimate of δ(h) similar to that in Theorem 1.
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3 A non-cooperative system

Now we will consider the 2× 2 non-cooperative system depending on a real parameter µ:

−∆u = au + bv + µu + f in Ω, (S1)

−∆v = cu + dv + µv + g in Ω, (S2)

u = v = 0 on ∂Ω. (S3)

or shortly
−∆U = AU + µU + F in Ω , U = 0 on ∂Ω. (S)

Hypothesis (H1) We assume b > 0 , c < 0, and

D := (a− d)2 + 4bc > 0. (3.1)

3.1 Eigenvalues of the system

As usual we say that µ is an eigenvalue of System (S) if (S1)− (S3) has a non trivial solution
U = (u, v) 6= 0 for F ≡ 0 and we say that µ is a principal eigenvalue of System (S) if there
exists U = (u, v) with u > 0, v > 0 solution to (S) with F ≡ 0.

Notice that, since (S) is not cooperative, it is not necessarily true that there is a lowest prin-
cipal eigenvalue µ1 and that the Maximum Principle holds if and only if µ1 > 0 (Amann [2]).

We seek solutions u = pϕ1, v = qϕ1 to the eigenvalue problem where, as above, (λ1, ϕ1) is
the principal eigenpair for −∆ with Dirichlet boundary conditions.

Principal eigenvalues correspond to solutions with p, q > 0. The associated linear system is

(a+ µ− λ1)p + bq = 0,

cp + (d+ µ− λ1)q = 0,

and it follows from (H1) that (a+ µ− λ1) and (d+ µ− λ1) should have opposite signs. We
should have

Det(A+ (µ− λ1)I) = (a+ µ− λ1)(d+ µ− λ1)− bc = 0,

which implies by (H1) that the condition on signs is satisfied and this whatever the sign of
µ could be. (Notice that D > 0 implies that both roots are real and that D = 0 gives a real
double root).
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We have then shown directly that our system has (at least) two principal eigenvalues. Their
signs will depend on the coefficients. If, for example, a < λ1, d < λ1, the largest one is
positive. We will denote the two principal eigenvalues by µ−1 and µ+

1 where

µ−1 := λ1 − ξ1 < µ+
1 := λ1 − ξ2, (3.2)

where the eigenvalues of Matrix A are:

ξ1 =
a+ d+

√
D

2
> ξ2 =

a+ d−
√
D

2
.

Remark 3.1 Usually the Maximum Principle holds if and only if the first eigenvalue is
positive. Here by replacing −∆ by −∆ + K with K > 0 large enough we may get µ−1 > 0.
Nevertheless the Maximum Principle needs an additional condition (see Theorem 4 and its
remark).

3.2 Main Theorems

3.2.1 The case µ−
1 < µ < µ+

1

We assume in this subsection that the parameter µ satisfies:

(H2) µ−1 < µ < µ+
1 .

Theorem 2 Assume (H1), (H2), and

(H3) d < a,

(H4) f ≥ 0, g ≥ 0, f, g 6≡ 0, f, g ∈ Lq, q > N if N ≥ 2 ; q = 2 if N = 1.

Then there exists δ > 0, independent of µ, such that if

(H5) µ < µ−1 + δ,

we get

u < 0, v > 0 in Ω;
∂u

∂ν
> 0,

∂v

∂ν
< 0 on ∂Ω.

Remark 3.2 If in the theorem above we reverse signs of f, g, u, v that is f ≤ 0, g ≤
0, f, g 6≡ 0, then for µ satisfying (H5), we get

u > 0, v < 0 in Ω;
∂u

∂ν
< 0,

∂v

∂ν
> 0 on ∂Ω.

Note that the counterexample in subsection (3.3) shows that for f, g of opposite sign( fg < 0),
u or v may change sign.
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Theorem 3 Assume (H1), (H2), and

(H ′3) a < d,

(H ′4) f ≤ 0, g ≥ 0, f, g 6≡ 0 , f, g ∈ Lq, q > N if N ≥ 2 ; q = 2 if N = 1.

Then there exists δ > 0, independent of µ, such that if

(H5) µ < µ−1 + δ,

we obtain
u < 0, v < 0 in Ω;

∂u

∂ν
> 0,

∂v

∂ν
> 0 on ∂Ω.

Remark 3.3 If in the theorem above we reverse signs of f, g, u, v that is f ≥ 0, g ≤
0, f, g 6≡ 0, then for µ satisfying (H5), we get

u > 0, v > 0 in Ω;
∂u

∂ν
< 0,

∂v

∂ν
< 0 on ∂Ω.

Note that, by the changes used in the proof of the theorem above, the counterexample in
subsection (3.3) shows that for f, g with same sign (fg > 0), u or v may change sign.

3.2.2 The case µ < µ−
1

We assume in this Section that the parameter µ satisfies:

(H ′2) µ < µ−1 .

Theorem 4 Assume (H1), (H ′2), and

(H ′3) a < d,

(H ′′4 ) f ≥ 0, g ≥ 0, f, g 6≡ 0, f, g ∈ L2.

Assume also t∗g − f ≥ 0, t∗g − f 6≡ 0 with

t∗ =
d− a+

√
D

−2c
.

Then
u > 0, v > 0 in Ω;

∂u

∂ν
< 0,

∂v

∂ν
< 0 on ∂Ω.

Remark 3.4 As above we can reverse signs of f, g, u, v .
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3.3 Counterexample: a > d

We consider the system in 1 dimension

−u′′ = 4u + v + µu + f in I :=]0;π[,

−v′′ = −u + v + µv + g in I,

u(0) = u(π) = v(0) = v(π) = 0.

λ1 = 1 and λ2 = 4; ϕ1 = sinx, ϕ2 = sin 2x. We compute µ−1 = 1 − 5+
√

5
2

. Choose
f = ϕ1 − 1

2
ϕ2 ≥ 0 and g = kf with k 6= 0 to be determined later. We obtain

u = u1ϕ1 + u2ϕ2 and v = v1ϕ1 + v2ϕ2,

where
u1 =

k − µ
µ2 + 3µ+ 1

, u2 =
µ− k − 3

2(µ2 − 3µ+ 1)
,

1/ Choosing µ = −3 < µ−1 , we get v1 = −1 and v2 = 1−3k
38

. Therefore

−v = ϕ1 +
3k − 1

38
ϕ2,

and for 3k−1
38

> 1
2
, v changes sign. Hence Maximum Principle does not hold.

2/ Choosing µ−1 < µ = µ−1 + ε, k = µ−1 + ε2, we have

u2

u1

=

(
µ− k − 3

k − µ

)(
µ2 + 3µ+ 1

2(µ2 − 3µ+ 1)

)
=

(
3 + ε

ε

)( √
5− ε

(9 + 3
√

5)− (6 +
√

5)ε+ ε2

)
.

So that u2
u1
→∞ as ε→ 0. Hence for these f > 0, g < 0, u changes sign.

3.4 Proofs of the main results

3.4.1 Some computations and associate equation
In the following we introduce

γ1 =
1

2
(a+ d+ 2µ−

√
D) = λ1 + µ− µ+

1 ; (3.3)

γ2 =
1

2
(a+ d+ 2µ+

√
D) = λ1 + µ− µ−1 , (3.4)

and some auxiliary results used in the proofs of our results.
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Lemma 3.1 We have

(L1) µ < µ+
1 ⇔ γ1 < λ1.

(L2) µ−1 < µ ⇔ λ1 < γ2.

(L3)
√
D < a− d ⇔ d+ µ < γ1 < γ2 < a+ µ.

(L4)
√
D < d− a ⇔ a+ µ < γ1 < γ2 < d+ µ.

(L5) µ < µ+
1 + δ ⇔ γ1 < λ1 + δ.

(L6) µ < µ−1 + δ ⇔ γ2 < λ1 + δ.

3.4.2 Proofs of Theorems 2 and 3

Proof of Theorem 2, a > d:

We introduce now
w = u+ tv, (3.5)

with

t =
a− d+

√
D

−2c
=

2b

a− d−
√
D

(3.6)

so that
−∆w = γ1w + f + tg inΩ; (3.7)

w|∂Ω = 0.

We remark that

t =
b

γ1 − d− µ
=

b

a+ µ− γ2

=
γ1 − a− µ

c
=
d+ µ− γ2

c
. (3.8)

Note first that Hypothesis (H3) implies t > 0 and a − d >
√
D. By (H2), (H4), and (L1)

in Lemma 3.1, γ1 < λ1, and we apply the Maximum Principle which gives w > 0 on Ω and
∂w
∂ν
< 0 on ∂Ω. We compute

a+ µ− b

t
= a+ d+ 2µ− γ1 = γ2, (3.9)

and since v = (w − u)/t, we derive

−∆u = (a+ µ− b

t
)u+

b

t
w + f = γ2u+

b

t
w + f,
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where b
t
w + f > 0. From (H5) and (L6), γ2 ≤ λ1 + δ1, where

δ1 := δ(
b

t
w + f), (3.10)

we deduce from the Antimaximum Principle that u < 0 on Ω and ∂u
∂ν

> 0 on ∂Ω. Hence
cu+ g > 0.

Now (H2), (L1) and (L3) imply d+µ < γ1 < λ1 and the Maximum Principle applied to (S2)

gives v > 0 on Ω and ∂v
∂ν
< 0 on ∂Ω.

We apply now Section 1 to estimate δ1.

h :=
b

t
w + f = (γ1 − d− µ)w + f = σϕ1 + h⊥. (3.11)

First we compute σ:

Set f = αϕ1 + f⊥, g = βϕ1 + g⊥, w = κϕ1 + w⊥. Since

−∆w = γ1w + f +
b

γ1 − d− µ
g,

we calculate:
σ = α + (γ1 − d− µ)κ = α

λ1 − d− µ
λ1 − γ1

+ β
b

λ1 − γ1

.

Now we estimate ‖h⊥‖L2 .

−∆w⊥ = γ1w
⊥ + f⊥ +

b

γ1 − d− µ
g⊥.

The variational characterization of λ2 gives

(λ2 − γ1)‖w⊥‖L2 ≤ ‖f⊥‖L2 +
b

γ1 − d− µ
‖g⊥‖L2 .

We derive from ( 3.11)

‖h⊥‖L2 ≤ ‖f⊥‖L2 + (γ1 − d− µ)‖w⊥‖L2 ≤ λ2 − d− µ
λ2 − γ1

‖f⊥‖L2 +
b

λ2 − γ1

‖g⊥‖L2 .

Reasoning as in Lemma 2.1, we show that there exists a constant C3 such that

‖h⊥‖Lq ≤ C3

(
λ2 − d− µ
λ2 − γ1

‖f⊥‖Lq +
b

λ2 − γ1

‖g⊥‖Lq
)
. (3.12)

In fact for proving (3.12) we use the same sequence than that in Lemma 2.1 and we show
by induction that

‖z⊥‖Lpj ≤ K(j)
(
‖f⊥‖Lq + ‖g⊥‖Lq

)
.



30 J. Fleckinger, J. Hernández, F. de Thélin

Now we apply the Antimaximum Principle to the equation

−∆u = γ2u+ h.

This is possible since by (L6) in Lemma 3.1, λ1 < γ2 < λ1 + δ2 = λ1 + δ(h) where, as in
Theorem 1, δ(h) = Kσ

‖h⊥‖Lq
.

Moreover we notice that λ1 − γ1 = µ+
1 − µ ≤ µ+

1 − µ−1 and therefore, since α > 0 and β > 0

by (H4),

σ = α
λ1 − d− µ
λ1 − γ1

+ β
b

λ1 − γ1

≥ A := α
λ1 − d− µ+

1

µ+
1 − µ−1

+ β
b

µ+
1 − µ−1

,

and from (3.12), we obtain

‖h⊥‖Lq ≤ B := C3

(
λ2 − d− µ−1
λ2 − λ1

‖f⊥‖Lq +
b

λ2 − λ1

‖g⊥‖Lq
)
.

From the computation above we can choose δ2 = KA
B which does not depend on µ, and the

result follows.

Proof of Theorem 3, a < d:
We deduce this theorem from Theorem 2 by change of variables. Set â = d, d̂ = a , û = v,
v̂ = −u and f̂ = g , ĝ = −f . f̂ ≥ 0, ĝ ≥ 0, imply û < 0, v̂ > 0. We get Theorem 3.

3.4.3 Proof of Theorem 4
Since a < d, we have t∗ = d−a+

√
D

−2c
> 0. With now the change of variable w = −u+ t∗v, as

in [4] (see also [11]) , we can write the system as

−∆u = γ1u+ (b/t∗)w + f inΩ, (3.13)

−∆v = γ1v − cw + g inΩ (3.14)

−∆w = γ2w + (t∗g − f) inΩ, (3.15)

u = v = w = 0 on ∂Ω.

Now µ < µ−1 , and it follows from (L2) in Lemma 3.1 that γ1 < γ2 < λ1. From (3.15) it
follows from the Maximum Principle that w > 0. Then in (3.14) −cw + g > 0, and again
by the Maximum Principle v > 0. Finally, since (b/t∗)w + f > 0 in (3.13), again by the
Maximum Principle u > 0.
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