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ABSTRACT. In the study of iterative methods used to solve linear operator equations
sequences of linear iteration operators (Tk) occur which have a nontrivial projection kernel,
that is a linear projector P 6= O satisfying P = TkP = PTk for all natural k. The convergence
proof for (Tk) or some related operator sequences is simplified if such P is known. It is
investigated when projection kernels exist and how they can be determined. Besides, special
types of projection kernels are considered.
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1 Introduction

It is remarkable that sequences (Tk) of linear (bounded) operators occuring in iterative
methods for linear operator equations or in ergodic theory often have the following property:

(*) There is a projector P 6= O with TkP = PTk = P for all k ∈ N.

Such a projector P is called a (nontrivial) projection kernel of (Tk). E.g., if a linear bounded
operator T acting on a (real) Banach space X is asymptotically convergent, that is, if the
power sequence (T k) is convergent (to a linear bounded operator T∞ 6= O), then (*) is
fulfilled for P = T∞ and Tk = T k. If T∞ = O, then only the trivial projection kernel P = O

exists. In both cases the decomposition

X = N(I − T )⊕ R(I − T ), R(P ) = N(I − T ), N(P ) = R(I − T )

holds, where I is the identity operator. Reversely, if such a projection kernel P is known,
the convergence investigation of (T k) can be reduced to the invariant subspace N(P ), while
R(P ) is the fixed point set of T . More generally the knowledge of a projection kernel P
simplifies the convergence proof for (Tk) or for other related sequences. In this section we
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investigate, when sequences or sets of operators possess projection kernels and how they can
be determined. Later we specify also orthogonal, maximal, optimal and attainable projection
kernels. The starting point of these investigations is my paper [11]. In the mean time some
new aspects, examples and results can be presented.

For motivation we state some results concerning the iterative solution of linear equations
with operators acting in Banach spaces X and Y . Let L(X, Y ) be the algebra of linear
bounded operators from X into Y , let

Ax = b, A ∈ L(X, Y ), b ∈ Y (1.1)

be an equation with unknowns x ∈ X and let (Dk) be a given operator sequence with
Dk ∈ L(Y,X). Then linear iterative methods

xk+1 := Tkxk +Dkb, Tk := I −DkA, x0 ∈ X arbitrary (1.2)

for the solution of (1.1) can be constructed. The defects rk := b− Axk are obtained by

rk+1 := Skrk, Sk := I − ADk, r0 := b− Ax0 ∈ Y. (1.3)

Explicitly we have the representations

xk+1 = Tk,0x0 +Bkb, Bk :=
k∑
i=0

Tk,i+1Di, rk+1 = Sk,0r0, (1.4)

where the product notation Ui,j := Ui . . . Uj+1Uj for i ≥ j is used (see e.g. [1], [12]). If
Dk = D is constant for all k, then we get from (1.2) and (1.3) the stationary method

xk+1 := Txk +Db = T k+1x0 +
k∑
i=0

T iDb, rk+1 := Srk = Sk+1r0 (1.5)

with T := I −DA and S := I − AD. If (Dk) is cyclic and iteration is considered in cycles,
then again stationary methods of type (1.5) arise.

We state now some examples for X = Rn and Y = Rm (finite-dimensional case). Then
equation (1.1) is a system of m linear equations with n scalar unknowns. Further, the
operator A can be identified with a matrix A ∈ Rm,n. The adjoint operator A∗ is realized
by the transpose At of the corresponding matrix A.

Example 1.1 (Stationary iteration) If the method (1.5) is investigated, the conver-
gence of the power sequences (T k) and (Sk) as well as of the Neumann series (

∑k
i=0 T

i) is
of interest.
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Example 1.2 (PSH method) see [8] and [6]: p. 53f. We start with matrices Ek which
select one or more linearly independent rows of the matrix A in steps k in such a way that
each (non-vanishing) row is selected at least once in certain step sections uniformly bounded
for all k (as cycles if (Ek) is cyclic). Defining matrices

Dk := A∗E∗k(EkAA
∗E∗k)

−1Ek

the corresponding iterative method (1.2) projects in each step k orthogonally onto subspaces
of Rn formed by intersection of the hyperplanes corresponding to the rows in EkA. Further,
the following can be shown:

a) The sequence (Tk) of orthoprojectors Tk := I − DkA has the orthogonal projection
kernel P with R(P ) = N(A) and N(P ) = R(A∗). The product sequence (Tk,0) converges
to this P .

b) The sequence (Sk) of operators Sk := I −ADk has a projection kernel Q with N(Q) =

R(A). The product sequence (Sk,0) converges to this Q.

Example 1.3 (SPA method) see [7] and [6]: p. 38f. We start with matrices Fk which
select one or more linearly independent columns of the matrix A in steps k in such a way
that each (non-vanishing) column is selected at least once in certain step sections uniformly
bounded for all k. Defining matrices

Dk := Fk(F
∗
kA
∗AFk)

−1F ∗kA
∗

the corresponding iterative method (1.3) projects in each step k orthogonally onto subspaces
of Rm spanned by the rows in AFk. Further, the following can be shown:

a) The sequence (Sk) of orthoprojectors Sk := I − ADk has the orthogonal projection
kernelQ with R(Q) = N(A∗) and N(Q) = R(A). The product sequence (Sk,0) converges
to this Q.

b) The sequence (Tk) of operators Tk := I −DkA has a projection kernel P with R(P ) =

N(A). The product sequence (Tk,0) converges to this P .

The methods described in Example 1.2 and Example 1.3 can be generalized in various ways
by conservation of the main results (see [16]).

Example 1.4 (A gradient method for regular systems) see [2]. Let A be a regular
quadratic matrix (m = n). We consider row vectors Hk containing the signs of the k-th
columns ~ak of A, i.e. Hk := (sign ~ak)

∗. Now we define matrices

Dk := A∗H∗k(HkAA
∗H∗k)−1Hk.

Then the operators of the iterative methods (1.2) and (1.3) have the following properties:
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a) The sequences (Tk) and (Sk) have only the trivial projection kernel O.

b) The product sequences (Tk,0) and (Sk,0) converge to O.

Example 1.5 (A general case with operator relations) see [6]: p. 32 and [1]. We
consider the general iterative method described in (1.2) and (1.3). If the operator sequence
(Bk) occurring in (1.4) converges, say limk→∞Bk = B∞, and if moreover

DkAB∞ = B∞ADk = Dk for all k,

then the following holds:

a) (Tk) has the projection kernel P = I −B∞A and (Tk,0) converges to P .

b) (Sk) has the projection kernel Q = I − AB∞ and (Sk,0) converges to Q.

2 Projection kernels of operator sets

Let X be a (real) Banach space. In the following we consider projectors P ∈ L(X), that
means P 2 = P , and sets T of operators T ∈ L(X). We start with a well-known fact.

Proposition 2.1 A linear projector P is bounded (continuous) and induces the space
decomposition

X = R(P )⊕ N(P ) = N(I − P )⊕ R(I − P ),

where ranges and nullspaces are (closed) linear subspaces of X. Moreover, P is uniquely
determined by this decomposition. The operator I − P is a projector, too, with analogue
properties.
A projector P is an orthoprojector (R(P ) ⊥ N(P )) iff P is self-adjoint (P = P ∗). An
orthoprojector P is uniquely determined by its range R(P ) (see e.g. [10], section 5.6).

Now the main concept of the paper is introduced.

Definition 2.1 The projector P is said to be a

• left projection kernel of T if P = PT for all T ∈ T (P ∈ Kl(T )).

• right projection kernel of T if P = TP for all T ∈ T (P ∈ Kr(T )).

• projection kernel of T if P = PT = TP for all T ∈ T (P ∈ K(T )).

In brackets the short notations are given. Another expression for P ∈ K(T ) is that T has
the projection kernel P .

Remark 2.1 If sequences (Tk) are involved, we write simply (Tk) instead of the set notation
T = {Tk : k ∈ N}. If T = {T} contains only one operator T we often write simply T instead.
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Trivially, O is a projection kernel of all operator sets T (O ∈ K(T )). For completion we
define that P is a projection kernel of ∅, the empty set in L(X). Although the identity P = I

is a projector, it is no projection kernel of T if T contains operators T 6= I.

By definition P is a projection kernel of T iff it is both a left and a right projection kernel
of T . The following example shows that indeed left or right projection kernels need not to
be projection kernels.

Example 2.1 Consider the matrices

T =

1 0 0

0 1 0

1 0 1

 , P =

0 0 0

0 1 0

0 0 0

 , Q =

0 0 0

0 1 0

0 0 1


in R3,3. Then the following relations are satisfied:

P 2 = P = PT = TP = T ∗P = PT ∗,

Q2 = Q = TQ = QT ∗, Q 6= QT, Q 6= QT ∗.

Hence, P is a projection kernel of T and T ∗, while Q is neither a projection kernel of T nor
of T ∗. But Q is a right projection kernel of T and a left projection kernel of T ∗.

Now we list some simple statements about projection kernels. If a proof is missing it is either
obvious or it is a simple consequence of more general statements given later.

Proposition 2.2 Let T \ {I} 6= ∅. If P is a projection kernel of T , then I − P is not.

Proof: We assume P ∈ K(T ). Then the projector I − P satisfies

(I − P )T = T (I − P ) = T − P 6= I − P

for T 6= I. But such T are supposed to be in T by assumption. �

Proposition 2.3

a) If P is a projection kernel of T1, then also of T2 ⊆ T1.

b) If P is a projection kernel of both T1 and T2, then also of T1 ∪ T2.

c) Each projector P is a projection kernel of itself (P ∈ K(P )).

d) Each projector P is a projection kernel of I (P ∈ K(I)).

e) If P is a projection kernel of T , then also of T ∪ {I}.

f) If P 6= O is a projection kernel of T , then O /∈ T .
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The next statements refer to operations conserving projection kernels.

Lemma 2.1 If P is a (left, right) projection kernel of both T1 and T2, then P is also
a (left, right) projection kernel of the products T1 · T2 and T2 · T1 as well as of the linear
combinations λ1T1 + λ2T2 with λ1 + λ2 = 1.

Proof: We assume that P ∈ K({T1, T2}). By the way, the proofs for P ∈ Kl({T1, T2}) and
P ∈ Kr({T1, T2}) are included as parts. Since

P = PTi = TiP (i = 1, 2)

holds, we have for T := T1T2:

PT = PT1T2 = PT2 = P, TP = T1T2P = T1P = P.

Hence T is a projection kernel of P . Analogously this can be shown for T := T2T1. If
T := λ1T1 + λ2T2 and λ1 + λ2 = 1, then

PT = P (λ1T1 + λ2T2) = λ1PT1 + λ2PT2 = λ1P + λ2P = P.

Analogously TP = P is proven for this T . �

Corollary 2.1 If P is a projection kernel of T , then P is the projection kernel of the
generated multiplicative semi-group [T ](I) with identity I and of the affine hull aff(T ).

The next statement considers the aspect of regular (invertible) transformations in L(X).

Proposition 2.4 Let S be regular. If P is a (left, right) projection kernel of T , then
PS is a (left, right) projection kernel of TS, where PS := S−1PS and TS := S−1T S.

Proof: Under the given assumptions it is

PSTS = S−1PS · S−1TS = S−1PTS = S−1PS = PS,

TSPS = S−1TS · S−1PS = S−1TPS = S−1PS = PS

for all TS ∈ TS. �

Proposition 2.5 If P is a (left, right) projection kernel of T , then the dual (adjoint)
P ∗ is a (right, left) projection kernel of T ∗.

Proof: The assertion follows from the equations

(P 2)∗ = (P ∗)2, (PT )∗ = T ∗P ∗, (TP )∗ = P ∗T ∗. �

Now examples for projection kernels of operator sets are given.
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Example 2.2 We consider X = Rn and the sets

Tm =

{(
Im,m Om,n−m

On−m,m Tn−m,n−m

)}
, Pl =

{(
Il,l Ol,n−l

On−l,l On−l,n−l

)}

of matrices in Rn,n, where l,m, n are natural numbers with 1 ≤ l ≤ m ≤ n and m, n fixed.
The indices indicate the size of the submatrices. Further, indexed I stands for identity
submatrices and indexed O for zero submatrices. The matrices act as linear operators on
Rn. The set Tm is a subring and a subalgebra of Rn,n containing the identity (matrix).
It is easy to check that each operator Pl ∈ Pl is a projection kernel of the set Tm. Hence,
there are different projection kernels for the same operator set.
Let us fix an operator Tm = T ∈ Tm. Then each Pl ∈ Pl is also a projection kernel of the
power sequence (T k), where obviously T k ∈ Tm for all k ∈ N.

The example presents matrices in a canonical form. We can produce many other examples
applying a regular matrix S ∈ Rn,n and its inverse, namely

PSl = S−1PlS, T Sm = S−1TmS

(see Proposition 2.4). Reversely, for an operator set T and a projection kernel P we can
look for regular matrices S transforming the operators into a canonical form.

Example 2.3 Let us consider the matrices

P =
(
~e1 ~e1 . . . ~e1

)
=


1 1 . . . 1

0 0 . . . 0
...

...
...

...
0 0 . . . 0

 ∈ Rn,n,

T =
(
~e1 ~t2 . . . ~tn

)
=


1 t12 . . . t1n

0 t22 . . . t2n
...

...
...

...
0 tn2 . . . tnn

 ∈ Rn,n :

n∑
i=1

tij = 1 (1 < j ≤ n),

where ~e1 is the first column of the identity matrix I ∈ Rn,n and the sums of the columns
~tj = (tij) are equal to 1. Then P is a projection kernel and also an element of the set T of
all such operators T . By the way, T is a noncommutative semi-group with respect to matrix
multiplication. Further, P ∗ = P t, the matrix with first row elements 1 and other elements 0,
is a projection kernel of T ∗ whose operators T ∗ have the same first row as I and the (other)
row sums are always equal to 1.
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Example 2.4 Let X be a (real) Hilbert space and T ∈ L(X) nonexpansive. Then the
orthoprojector P defined by R(P ) = N(I − T ) is a projection kernel of T , its powers T k

(k ∈ N) and their affine combinations (see Section 6 and Corollary 2.1).

3 Properties of projection kernels

Now we look for simple conditions to determine projection kernels. Obviously the relation
P ∈ K(T ) can be characterized by the behavior of operators T ∈ T on R(P ) and N(P ). We
introduce the abbreviations

N(I − T ) :=
⋂
T∈T

N(I − T ), R(I − T ) := span
⋃
T∈T

R(I − T ). (3.1)

Both defined sets are (closed) linear subspaces. The set N(I − T ) is the common fixed
point set F(T ) of T . The span operation contains the closure of the corresponding set. In
finite-dimensional spaces the closure operation can be omitted.

Lemma 3.1 The following conditions are equivalent for an operator P and operators in
a set T :

a1) P = TP for all T ∈ T ,

b1) T = P + T (I − P ) for all T ∈ T ,

c1) T |R(P ) = I |R(P ) for all T ∈ T ,

d1) R(P ) ⊆ N(I − T ).

Proof: The equivalence of a1), b1) and c1) is obvious. Besides, a1) is fulfilled iff the equation
(I − T )P = O, that means R(P ) ⊆ N(I − T ), holds for all T ∈ T . Hence also a1) and d1)
are equivalent. �

Lemma 3.2 The following conditions are equivalent for an operator P and operators in
a set T :

a2) P = PT for all T ∈ T ,

b2) T = P + (I − P )T for all T ∈ T ,

d2) N(P ) ⊇ R(I − T ).

From each of these conditions follows

c2) T N(P ) ⊆ N(P ) for all T ∈ T .
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Proof: The equivalence of a2) and b2) is obvious. Further a2) is fulfilled iff P (I − T ) = O,
that is N(P ) ⊇ R(I − T ), holds for all T ∈ T . Since N(P ) is a closed linear subspace, also
a2) and d2) are equivalent. Finally, supposing a2), Px = 0 supplies PTx = 0 for all x ∈ X.
But this is c2). �

Theorem 3.1 The following conditions are equivalent for a projector P and operators
in a set T :

a) P = TP = TP for all T ∈ T , that is P ∈ K(T ),

a’) (I − T )P = P (I − T ) = O for all T ∈ T ,

b) T = I |R(P )⊕ T |N(P ) for all T ∈ T ,

c) T |R(P ) = I |R(P ), T N(P ) ⊆ N(P ) for all T ∈ T ,

d) R(P ) ⊆ N(I − T ) and N(P ) ⊇ R(I − T ).

Proof: A great part of the assertions is obtained by combination of Lemma 3.1 and Lemma
3.2. Thus a) and d) are equivalent. Further a) and a’) are equivalent because a’) can be
written as P − TP = P −PT = O. Since P is a projector T (I −P ) = (I −P )T means that
R(P ) and N(P ) are invariant linear subspaces of T . Now the equivalence of a), b) and c) is
obvious. �

The conditions b) and c) play an important part for considering convergence of operators.
The condition d) is especially useful for determining suitable projection kernels.

Corollary 3.1 If P is a projection kernel of T , then all operators T ∈ T map for all
x ∈ X the affine subspaces x + N(P ) into itself and the affine subspaces x + R(P ) onto the
affine subspaces Tx+ R(P ).

Proof: Let be P ∈ K(T ). First (I − P )x ∈ N(P ) because of P 2 = P . Hence

x+ N(P ) = Px+ (I − P )x+ N(P ) = Px+ N(P ).

Having also Theorem 3.1 in mind, we get

T (x+ N(P )) = T (Px+ N(P )) = TPx+ T N(P )

⊆ Px+ N(P ) = x+ N(P ),

T (x+ R(P )) = Tx+ T R(P ) = Tx+ TP R(P )

= Tx+ P R(P ) = Tx+ R(P ). �

The corollary shows that the operators T map affine subspaces which are parallel to R(P )

again into such subspaces. Further, all images Tx of x remain in the affine subspace x+N(P ).
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Relations between ranges and nullspaces of projectors can be used to define a semi-order
between projectors.

Definition 3.1 We write P ≤ Q for two projectors P and Q, if R(P ) ⊆ R(Q) and
N(P ) ⊇ N(Q). We write P < Q if P ≤ Q and P 6= Q.

Proposition 3.1 If P is a projection kernel of the projector Q, then P ≤ Q holds.

Proof: The assumption P ∈ K(Q) implies by Theorem 3.1 the relations R(P ) ⊆ R(Q) and
N(P ) ⊇ N(Q). By Definition 3.1 this is P ≤ Q. �

In Example 2.2 the projectors Pl fulfil the relations Pl < Pl+1 for 1 ≤ l ≤ n − 1. The
following statement shows how we can construct ’smaller’ and ’bigger’ projection kernels.

Proposition 3.2 If P1 and P2 are commutable projection kernels of T , then P = P1P2

and P̃ = P1 + P2 − P1P2 are projection kernels of T satisfying

R(P ) = R(P1) ∩ R(P2), N(P ) = span (N(P1) ∪ N(P2))

R(P̃ ) = span (R(P1) ∪ R(P2)) , N(P̃ ) = N(P1) ∩ N(P2).

This means P ≤ P1, P2 ≤ P̃ and P < P̃ for P1 6= P2.

Proof: The first part is shown in [11], p. 33. The relations between ranges and nullspaces
supply

R(P ) ⊆ R(Pi) ⊆ R(P̃ ), N(P ) ⊇ N(Pi) ⊇ N(P̃ ) (i = 1, 2).

Hence, the relations P ≤ P1, P2 ≤ P̃ follow by Definition 3.1. Finally we suppose P1 6= P2.
In contrary to the assertion we assume P = P̃ . By the above relations we get R(P1) = R(P2)

and N(P1) = N(P2). Proposition 2.1 shows that P1 = P2. This is a contradiction. Hence,
P < P̃ is true. �

4 Special kinds of projection kernels

If we investigate the convergence behavior of a operator sequence (Tk), we are interested in
projection kernels P with maximal range R(P ), where the operators Tk are the identity (see
Theorem 3.1). Further, if the limit of (Tk) is P , then P is in the closure of {Tk : k ∈ N}.

Definition 4.1 Let P be a (left, right) projection kernel of T . Then P is called

• nontrivial iff P 6= O,

• maximal iff there is no other projection kernel Q of T with R(Q) ⊃ R(P ),
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• orthogonal iff P is an orthoprojector (in a Hilbert space X),

• attainable (r.t. operator topology τ), iff P is in the (τ -) closure of T .

Proposition 4.1 Generally projection kernels P of an operator set T are neither uni-
quely determined nor maximal, orthogonal or attainable.

This can be seen by the examples. The next example also exposes that the method of
projection kernels has limitations.

Example 4.1 For X = R3 we investigate operators

T (c) =

1 0 0

0 1 0

c 0 1

 : c ∈ R.

The matrices T (c) have the determinant 1 and inverses T (−c). Further, it holds

N(I − T (c)) = N(I − T (1)) = span


0

1

0

 ,

0

0

1


 (c 6= 0),

N(I − T (0)) = N(O) = R3,

R(I − T (c)) = R(I − T (1)) = span


0

0

1


 (c 6= 0),

R(I − T (0)) = R(O) = {0}.

The set T0 of all such operators T (c) is a multiplicative commutative group. Now we consider
subsets T only assuming T \ {I} 6= ∅. Hence, T contains at least one operator T (c) with
c 6= 0. Then we get

N(I − T ) =
⋂

T (c)∈T

N(I − T (c)) = N(I − T (1)),

R(I − T ) = span
⋃

T (c)∈T

R(I − T (c)) = R(I − T (1)).

It is easy to check that the set P = K(T ) of all projection kernels consists of the matrices

P (a, b) =

 0 0 0

a 1 0

ab b 0

 : a, b ∈ R.
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The ranges and nullspaces are

R(P (a, b)) = span


0

1

b


 , N(P (a, b)) = span


 1

−a
0

 ,

0

0

1


 .

These results show the relations

R(P (a, b)) ⊂ N(I − T ), N(P (a, b)) ⊃ R(I − T )

such that condition d) in Theorem 3.1 is fulfilled properly, not reaching set equality. For
all operators P (a, b) the range is one-dimensional. Hence all these projection kernels are
nontrivial and even maximal. Since T is a set whose closure does not contain operators
of P , all projection kernels are not attainable. The power sequence (T (1)k) = (T (k)) is
divergent, but (Tk) = (T (0.5k)) tends to I, which is no projection kernel. The constant
sequence (Tk) = (T (1)) tends to T (1) which is even no projector (T (1)2 = T (2) 6= T (1)).
Further, only the projection kernel P (0, 0) is orthogonal (self-adjoint).

We turn to the question if always maximal projection kernels exist.

Theorem 4.1 Each set T of operators with finite-dimensional subspace N(I−T ) has at
least one maximal projection kernel.

Proof: Because of O ∈ K(T ) it is K(T ) 6= ∅. For P ∈ K(T ) it holds R(P ) ⊆ N(I − T )

and therefore dim R(P ) ≤ dim N(I − T ) =: n < ∞. Hence, there is a P̃ ∈ K(T ) with
n ≥ k := dim R(P̃ ) ≥ dim R(P ) for all P ∈ K(T ). This P̃ is maximal, since the assumption
R(P ) ⊃ R(P̃ ) leads to the contradiction dim R(P ) > dim R(P̃ ). �

Condition d) of Theorem 3.1 is of special importance for convergence, if equality of the sets
is reached in the subset relation. Remember that this was not the case in Example 4.1.

Definition 4.2

• A (right) projection kernel P of T is said to be right optimal if R(P ) = N(I − T ).

• A (left) projection kernel P of T is said to be left optimal if N(P ) = R(I − T ).

• A projection kernel P of T is said to be optimal if R(P ) = N(I − T ) as well as
N(P ) = R(I − T ).

Theorem 4.2 If Ps is a (left, right) optimal projection kernel of T , then Ps is maximal.

Proof: a) Let us assume that Ps ∈ K(T ) is right optimal. Then R(Ps) = N(I − T ). Since
R(P ) ⊆ N(I − T ) for all P ∈ K(T ) by Theorem 3.1, this Ps is maximal.
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b) Let us assume that Ps ∈ K(T ) is left optimal. Then N(Ps) = R(I − T ). Supposing that
Ps is not maximal there is a P̃ ∈ K(T ) with R(P̃ ) ⊃ R(Ps). Considering again Theorem 3.1
it is also N(P̃ ) ⊇ N(Ps). Since both P̃ and Ps are projectors we get

R(P̃ )⊕ N(P̃ ) ⊃ X = R(Ps)⊕ N(Ps).

This is a contradiction. �

Theorem 4.3 The operator set T has an optimal projection kernel iff

X = N(I − T )⊕ R(I − T ).

In this case the projector P with R(P ) = N(I−T ) and N(P ) = R(I − T ) is the optimal and
also the unique maximal projection kernel of T .

Proof: a) Let P be an optimal projection kernel of T . Then R(P ) = N(I − T ) and
N(P ) = R(I − T ) by definition. Hence

X = R(P )⊕ N(P ) = N(I − T )⊕ R(I − T ).

b) Let be X = N(I−T )⊕R(I−T ). Then we consider the projector P with R(P ) = N(I−T )

and N(P ) = R(I − T ). Consequently, P is an optimal projection kernel of T by definition.
By Theorem 4.2 this P is also maximal. Assuming another optimal or maximal projection
kernel P̃ 6= P we would get R(P̃ ) = R(P ) and N(P̃ ) = N(P ). For projectors this means
P̃ = P by Proposition 2.1 in contradiction with the assumption. �

Remark 4.1 The optimal projection kernel P of T is shortly denoted by P = Ko(T ).
If T has more than one maximal projection kernel, then T has no optimal projection kernel
(Ko(T ) = ∅). This shows that the set T in Example 4.1 has no optimal projection kernel.
If P is the optimal projection kernel of T , where T \ {I} 6= ∅, then I − P is the projector
with R(I −P ) = R(I − T ) and N(I −P ) = N(I −T ). This projector is no projection kernel
of T (see Proposition 2.2).

5 Optimal projection kernels

Now we consider optimal projection kernels of an operator set in more detail.

Lemma 5.1 If P is the optimal projection kernel of T1 and a projection kernel of T2,
then P is the optimal projection kernel of T := T1 ∪ T2.

Proof: By Theorem 3.1 we have

R(P ) = N(I − T1) ⊆ N(I − T2), N(P ) = R(I − T1) ⊇ R(I − T2).
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It follows

N(I − T ) = N(I − T1) ∩ N(I − T2) = N(I − T1) = R(P ),

R(I − T ) = span(R(I − T1) ∪ R(I − T2)) = R(I − T1) = N(P ).

This is the assertion. �

Corollary 5.1 If P is a projection kernel of T and P ∈ T , then P is the optimal
projection kernel of T .

Proof: By Proposition 2.1 it holds

X = R(P )⊕ N(P ) = N(I − P )⊕ R(I − P ).

Hence P is the optimal projection kernel of itself. Since P is a projection kernel of T , then
P is the optimal projection kernel of T ∪ {P} = T by Lemma 5.1. �

Lemma 5.2 If P is the optimal projection kernel of T , then P is the optimal projection
kernel of the generated semi-group [T ](I) with identity I and of the affine hull aff(T ).

Proof: Let P = Ko(T ). Consequently P ∈ K(T ). By Corollary 2.1 we have P ∈ K([T ](I))

and P ∈ K(aff(T )). Since T1 := T is a subset of both T2 := [T ](I) and T3 := aff(T ) the
assertion follows now by Lemma 5.1. �

Corollary 5.2 An operator T as well as the corresponding sets T := {T k : k ∈ N} and
S := aff(T ) have an optimal projection kernel iff

X = N(I − T )⊕ R(I − T ).

In this case the projector P with R(P ) = N(I − T ) and N(P ) = R(I − T ) is the optimal
projection kernel of T , T and S.

Proof: The operators S ∈ S have the representations

S = Sk(T ) =
k∑
i=0

αiT
i,

k∑
i=0

αi = 1.

Considering the coefficient relation of the αi, each polynomial Pk(λ) := 1 − Sk(λ) has the
zero 1. Hence, in each operator I − S a factor I − T can be separated. This implies

N(I − T ) ⊆ N(I − S), R(I − T ) ⊇ R(I − S)

for all S ∈ S. Observing {T} ⊆ T ⊆ S we obtain

N(I − T ) = N(I − T ) = N(I − S), R(I − T ) = R(I − T ) = R(I − S).

Now Theorem 4.3 shows the assertions. �
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Remark 5.1 In Corollary 5.2 the space decomposition

X = N(I − T )⊕ R(I − T )

occurs. Operators I−T with this property are called decomposition regular (short: d-regular)
in [14]. This paper contains more material about such operators. The given decomposition
of X is also necessary for the convergence of (T k) (see Section 9).

Example 5.1 Now we come back to Example 2.2 discussing matrices

Tm =

(
Im,m Om,n−m

On−m,m Tn−m,n−m

)
, Pl =

(
Il,l Ol,n−l

On−l,l On−l,n−l

)
,

1 ≤ l ≤ m ≤ n

in Rn,n, where the corresponding operators Pl are stated to be projection kernels of the
corresponding operators Tm. Let us choose m < n. Further let T be a set of matrices
Tm, where at least one Tm = T̂m has rank n. Then, using the coordinate unit vectors ~ei
(i = 1, 2, . . . , n), in other words the columns of the identity In,n, and the linear subspaces

Vi,j := span {~ei, . . . , ~ej}, 1 ≤ i ≤ j ≤ n,

we get for Tm the relations

R(I − Tm) ⊆ R(I − T̂m) = Vm+1,n, N(I − Tm) ⊇ N(I − T̂m) = V1,m

and finally for the set T the result

R(I − T ) = Vm+1,n, N(I − T ) = V1,m.

Further, it is
R(Pl) = V1,l, N(Pl) = Vl+1,n, l ≤ m.

Hence, we have a chain of orthogonal projection kernels Pl, where the maximal one, namely
Pm, is the optimal one. Moreover, Pm is attainable iff On−m,n−m is in the closure of the set
of submatrices Tn−m,n−m belonging to the matrices Tm ∈ T . For instance, this is the case if
T consists of all possible Tm, because On−m,n−m is a submatrix of Pm ∈ T .

Example 5.2 It is interesting to discuss Example 2.3 in more detail. There is stated that
the multiplicative semi-group T of all matrices

T =
(
~e1 ~t2 . . . ~tn

)
∈ Rn,n :

n∑
i=1

tij = 1 (1 < j ≤ n)

has the projection kernel
P =

(
~e1 ~e1 . . . ~e1

)
∈ T .
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It can be shown that

R(P ) = span{~e1}, N(P ) = span{~e2 − ~e1, ~e3 − ~e1, . . . , ~en − ~e1}.

The nullspace of P contains all vectors with coordinate sums 0. Further, each vector ~x ∈
N(P ) has the basis representation

~x = x2 (~e2 − ~e1) + x3 (~e3 − ~e1) + . . .+ xn (~en − ~e1).

The matrices S := I − T have the form(
~0 ~s2 . . . ~sn

)
∈ Rn,n :

n∑
i=1

sij = 0 (1 < j ≤ n).

Since P is a projection kernel of all operators T , we have by Theorem 3.1

R(I − T ) = R(S) ⊆ N(P ), N(I − T ) = N(S) ⊇ R(P ).

Indeed, these relations are also a consequence of the above results. Now we consider a subset
Ts of T . If

dim R(I − Ts) = n− 1,

then it holds
R(P ) = N(I − Ts), N(P ) = R(I − Ts).

Hence, P is the optimal projection kernel of Ts. Especially this is the case if there is a matrix
T̂ ∈ Ts with rank (I − T̂ ) = n− 1. Such a matrix is

T̂ =
(
~e1 2~e2 − ~e1 2~e3 − ~e1 . . . 2~en − ~e1

)
∈ T

with full rank n since

I − T̂ =
(
~0 ~e1 − ~e2 ~e1 − ~e3 . . . ~e1 − ~en

)
has indeed rank n − 1. This means also that P is the optimal projection kernel of T .
Additionally P is then attainable, because P ∈ T . The operator T̂ has interesting properties,
for instance

(I − T̂ )2 = −(I − T̂ ) = I − P.

Hence T̂ − I is a projector. But observe that I − T̂ and I − P are not in T and are no
projection kernels of T . A simple consideration shows

T̂ n = P − 2n(I − T̂ ) ∈ T

for all integers n. Hence, the sequence (T̂ n) is divergent (for natural n) while the sequence
(T̂−n) of the inverses converges to P . Since

I − T̂−1 = −1

2
(I − T̂ )

has also rank n− 1, the sequence (T̂−n) has the optimal and attainable projection kernel P .
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Example 5.3 Let us investigate a more general approach to the set T of all matrices

T =
(
~e1 ~t2 . . . ~tn

)
∈ Rn,n :

n∑
i=1

tij = 1 (1 < j ≤ n)

just investigated in Example 5.2. If subsets Ts of T are considered, then possibly P is not
the optimal projection kernel. On the other hand, if Q ∈ T is any projector, then we can
find subsets with Q as an optimal projection kernel. Let us look at the special projectors

Pk =
(
~e1 ~e2 . . . ~ek ~e1 . . . ~e1

)
∈ T (1 ≤ k < n).

For k = 1 we have Pk = P (see Example 5.2). The case k = n supplies Pn = I which is not
of interest. For arbitrary k we get

R(Pk) = span {~e1, ~e2, . . . , ~ek},
N(Pk) = span {~e1 − ~ek+1, ~e1 − ~ek+2, . . . , ~e1 − ~en}.

The sets Tk of matrices

Tk =
(
~e1 ~e2 . . . ~ek ~tk+1 . . . ~tn

)
,

~ei − ~ti ∈ N(Pk) (1 ≤ k < n, k + 1 ≤ i ≤ n)

are again semi-groups of operators containing Pk. Now Tk has the projection kernel Pk
because of

I − Tk =
(
~0 ~0 . . . ~0 ~ek+1 − ~tk+1 . . . ~en − ~tn

)
and

R(Pk) ⊆ N(I − Tk), N(Pk) ⊇ R(I − Tk).

There are special matrices

T̂k =
(
~e1 ~e2 . . . ~ek 2~ek+1 − ~e1 . . . 2~en − ~e1

)
with

I − T̂k =
(
~0 ~0 . . . ~0 ~e1 − ~ek+1 . . . ~e1 − ~en

)
and

R(Pk) = N(I − T̂k), N(Pk) = R(I − T̂k).

Hence, Pk is the optimal projection kernel of Tk. Besides, the relations

T ⊇ Tk ⊃ Tk+1, R(P ) ⊆ R(Pk) ⊂ R(Pk+1), N(P ) ⊇ N(Pk) ⊃ N(Pk+1)

are fulfilled.



30 D. Schott

Let X be a (real) Hilbert space. We turn to optimal projection kernels which are orthog-
onal.

Proposition 5.1 Let T possess the optimal projection kernel P . Then the following
conditions are equivalent:

a) P is orthogonal (P = P ∗), b) N(P ) = R(I − T ∗), c) R(P ) = N(I − T ∗).

Proof: Using Theorem 4.3 the assumption P ∈ Ko(T ) implies

R(P ) = N(I − T ), N(P ) = R(I − T ).

Then it follows

N(P ∗) = R(P )⊥ = N(I − T )⊥ = R(I − T ∗),

R(P ∗) = N(P )⊥ = R(I − T )
⊥

= N(I − T ∗).

Because of the equivalences

P = P ∗ ⇔ N(P ) = N(P ∗) ⇔ R(P ) = R(P ∗)

the assertion is true. �

Self-adjoint operators T = T ∗ trivially satisfy N(I −T ) = N(I −T ∗). But all operators with
this property have an outstanding property.

Theorem 5.1 If the operators T in T have the property N(I − T ) = N(I − T ∗), then T
has an orthogonal optimal projection kernel, namely the orthoprojector P with

R(P ) = N(I − T ), N(P ) = R(I − T ) = R(I − T ∗).

Proof: It is known that the linear subspaces

N := N(I − T ), R := R(I − T ∗)

are orthogonal complements (see e.g. [13]). Hence an orthogonal projector P is defined by
R(P ) = N and N(P ) = R. The property N(I − T ) = N(I − T ∗) implies

R(I − T ) = N(I − T ∗)⊥ = N(I − T )⊥ = R(I − T ∗).

This means also
R(I − T ∗) = R(I − T ).

Now Theorem 4.3 shows that P is the optimal projection kernel of T . �
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Remark 5.2 The property N(I − T ) = N(I − T ∗) is equivalent to the orthogonal decom-
position

X = N(I − T )⊕ R(I − T ), R(I − T ) = N(I − T )⊥,

considering the orthogonality relation N(I − T ∗)⊥ = R(I − T ) (see e.g. [13]). Not only
self-adjoint, but also normal operators T , defined by the commutation relation TT ∗ = T ∗T ,
have the property N(I − T ) = N(I − T ∗) (see e.g. [21], p. 331 – 332). Moreover all products
T = PkPk−1 . . . P1 of orthoprojectors Pi (i = 1, 2, . . . , k) fulfil this condition. Here it is

N(I − T ) = N(I − PkPk−1 . . . P1) =
k⋂
i=1

R(Pi) =
k⋂
i=1

R(P ∗i )

= N(I − P ∗1 . . . P ∗k−1P ∗k ) = N(I − T ∗).

Moreover, T is nonexpansive. In [17], p. 183f. a more general result is proven, namely if so-
called relaxations Ti of orthoprojectors Pi replace Pi. In section 6 we will see that arbitrary
nonexpansive operators T satisfy N(I − T ) = N(I − T ∗) (see Remark 6.1 and the text after
it).

Finally, the operators T ∈ T itself can be orthoprojectors.

Corollary 5.3 If the operators T ∈ T are orthoprojectors (T 2 = T = T ∗), then T has
an orthogonal optimal projection kernel, namely the orthoprojector P with

R(P ) =
⋂
T∈T

R(T ), N(P ) = span
⋃
T∈T

N(T ).

Proof: If the operators T are orthoprojectors, then we get

R(T ) = N(I − T ) = N(I − T ∗), N(T ) = R(I − T ) = R(I − T ∗),

where both R(T ) and N(T ) are closed. This means also

N(I − T ) =
⋂
T∈T

R(T ), R(I − T ) = span
⋃
T∈T

N(T ).

Now the assertion follows if we take Theorem 5.1 into account. �

The assumptions and hence the assertions of Corollary 5.3 are fulfilled in Example 1.2 for
the set T of sequence members Tk and in Example 1.3 for the set T of sequence members Sk.
It turns out that these assertions also hold for a bigger class than that of orthoprojectors.
We follow this topic in Section 6.

Proposition 5.2 Let T be a set of orthoprojectors and P be a further orthoprojector.
Then the following conditions are equivalent:
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a) P is a projection kernel of T .

b) P is a left projection kernel of T .

c) P is a right projection kernel of T .

Proof: Obviously the conditions b) and c) follow from condition a). Now we want to show
the reversions. Starting with the relations

P 2 = P, P = PT, P = TP for all T ∈ T

the transition to the adjoint operators supplies

(P ∗)2 = P ∗, P ∗ = T ∗P ∗, P ∗ = P ∗T ∗ for all T ∈ T .

Observing the assumptions P ∗ = P and T ∗ = T for all T ∈ T we get correspondingly

P 2 = P, P = TP, P = PT for all T ∈ T .

Hence, a left (right) projection kernel of T is also a right (left) projection kernel of T and
consequently also a projection kernel of T . �

6 Nonexpansive operators and projection kernels

Let X be a (real) Hilbert space. Nonexpansive operators play an important part in the
fixed point theory. Here we study the linear case.

Definition 6.1 A linear operator T is called

a) nonexpansive, if ‖Tx‖ ≤ ‖x‖ for all x.

b) isometric, if ‖Tx‖ = ‖x‖ for all x.

c) contractive, if ‖Tx‖ ≤ k ‖x‖ for all x and a number k < 1.

d) Fejér monotone, if ‖Tx‖ < ‖x‖ for all x /∈ N(I − T ).

e) strongly Fejér monotone, if ‖Tx‖ ≤ k ‖x‖ for all x ∈ N(I−T )⊥ and a number k < 1.

These concepts are also defined for nonlinear operators (see e.g. [4], [24], [22]). In my papers
[17] and [18] linear (strongly) Fejér monotone operators are called (strong) relaxations.
The concepts are renamed to get a better coordination between linear and nonlinear theory.
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Remark 6.1 Nonexpansive operators T are characterized by ‖T‖ ≤ 1. They induce via
I − T the orthoprojector P = P (T ), where

X = R(P )⊕ N(P ), R(P ) ⊥ N(P ),

R(P ) = N(I − T ) = R(I − T )
⊥

= N(I − T ∗),
N(P ) = R(I − T ) = N(I − T )⊥ = R(I − T ∗)

is the corresponding decomposition of X (see [17]: p. 182). By Corollary 5.2 and the property
R(P ) ⊥ N(P ) the projector P is the orthogonal optimal projection kernel of T . Moreover,
N(P ) = N(I−T )⊥ is an invariant linear subspace under T (for another proof see [17]: p. 180).
Further

‖T − P‖ = ‖T (I − P )‖ = ‖T |R(I − P )‖ = ‖T |N(P )‖ =: ν ≤ 1,

where the number ν measures the deviation of T from P . We call P = P (T ) also the
eigenprojection of T .

Theorem 6.1 If T consists of nonexpansive operators T , then T has an orthogonal
optimal projection kernel, namely the orthoprojector P with

R(P ) = N(I − T ), N(P ) = R(I − T ) = R(I − T ∗).

Proof: By Remark 6.1 nonexpansive operators T satisfy N(I−T ) = N(I−T ∗). Hence, the
assertion follows immediately from Theorem 5.1. �

The set of all nonexpansive operators is a multiplicative semi-group with identity. This set
can be divided again into semi-groups of nonexpansive operators with the same eigenprojec-
tion P .
Isometric operators T satisfy ‖T‖ = 1. Contractive operators T are norm reducing for x 6= 0

and fulfil ‖T‖ ≤ k < 1.
Fejér monotone operators T are nonexpansive, but not isometric, since they are norm re-
ducing outside their fixed point sets N(I − T ). Strongly Fejér monotone operators T are
contractive on the invariant subspace N(I − T )⊥ (see Definition 6.1). Here it is

ν = ν(T ) := ‖T |N(I − T )⊥‖ ≤ k < 1.

For N(I−T ) = {0} strongly Fejér monotone operators and contractive operators coincide.
In [17] and [18] a (strongly) Fejér monotone T with eigenprojection P is said to be a
(strong) relaxation of its carrier P . In [18] you can find an example of T which is Fejér
monotone, but not strong.

Since Fejér monotone operators play an important part in a certain class of iterative solu-
tion methods (see [16]), we mention some further facts about them.
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Example 6.1 Let P 6= I be an orthoprojector. Then the operators

T = (1− λ)I + λP, |1− λ| < 1

are self-adjoint strongly Fejér monotone operators with the same eigenprojection P (scalar
relaxations). Here it is ν(T ) = |1− λ|.

If T is in one of the operator classes of Definition 6.1, then the same is true for T ∗. We state
this for one class.

Proposition 6.1 ([17]: p. 182, [18]: p. 33, p. 37) T is (strongly) Fejér monotone iff
T ∗ is (strongly) Fejér monotone. Thereby both have the same eigenprojection.

Proposition 6.2 ([17]: p. 184, [18]: p. 40) If T is (strongly) Fejér monotone, then
T k, TT ∗ and T ∗T are (strongly) Fejér monotone with the same eigenprojection as T .

Theorem 6.2 ([17]: p. 183) Let T be a set of Fejér monotone operators T with
eigenprojections P = P (T ). Then each projection kernel of T is a projection kernel of
P := {P = P (T ) : T ∈ T } and vice versa.

This statement also holds if T is a set of nonexpansive operators. The proof is the same as
in the paper [17].

7 Attainable projection kernels

For simplicity we use in L(X) the strong operator topology τs. Then L(X) becomes a local
convex topological vector space (see e.g. [23]: p. 110). But, corresponding results can also
be obtained for the uniform and the weak operator topology.
First we investigate the relation between attainable and optimal projection kernels. In this
section we use generalized sequences (Tα)α∈J of operators, where α is an element of an index
set J . Shortly we write (Tα). Such sequences are also called Moore-Smith sequences.
Further, we use the notation TJ := {Tα : α ∈ J} for the set of sequence members.

Lemma 7.1 If T ⊆ L(X) and S ∈ T , then

N(S) ⊆ R(I − S) ⊆ R(I − T ), R(S) ⊇ N(I − S) ⊇ N(I − T ).

Proof: Since S belongs to T , there is a generalized sequence (Tα) in T with limit S (see
e.g. [24]: p. 205). Further, we have for arbitrary x ∈ X and all α ∈ J

(I − Tα)x ∈ R := R(I − T ).
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Hence, it holds also
(I − S)x = lim

α
(I − Tα)x ∈ R

because R is closed. Moreover, we get

(I − S)x = lim
α

(I − Tα)x = 0 for all x ∈ N := N(I − T ).

This implies R(I − S) ⊆ R and N(I − S) ⊇ N. The relations N(S) ⊆ R(I − S) and
R(S) ⊇ N(I − S) are obvious. �

Theorem 7.1 Each attainable (left, right) projection kernel P of T is a (left, right)
optimal (left, right) projection kernel of T .

Proof: According to Lemma 3.2 and Lemma 3.1, respectively, we have

N(P ) ⊇ R(I − T ), R(P ) ⊆ N(I − T )

for a left (right) projection kernel P of T , respectively. Lemma 7.1 supplies for S = P the
relations

N(P ) ⊆ R(I − T ), R(P ) ⊇ N(I − T ),

respectively. This shows

N(P ) = R(I − T ), R(P ) = N(I − T ),

respectively. Hence, the assertions hold by Definition 4.2. �

Remark 7.1 Theorem 7.1 shows that an operator set T has at most one attainable pro-
jection kernel P , because there is at least one optimal projection kernel.

Now we turn to the question under which conditions the limits T∞ of generalized sequences
(Tα) are projection kernels of these sequences.

Proposition 7.1 If the limit T∞ of (Tα) exists, then the following equivalences hold:

a) TαT∞ = T∞ for all α ∈ J ⇔ T∞ ∈ K+(TJ) ⇔ R(T∞) = N(I − TJ),

b) T∞Tα = T∞ for all α ∈ J ⇔ T∞ ∈ K−(TJ) ⇔ N(T∞) = R(I − TJ).

Proof: a) We start with the first part and conclude cyclically. The relation TαT∞ = T∞

implies T 2
∞ = T∞ by limit transition. Hence T∞ is a right projection kernel of TJ , that is

T∞ ∈ K+(TJ). Since T∞ is attainable by assumption, Theorem 7.1 shows that T∞ is right
optimal, that is R(T∞) = N(I−TJ) by Definition 4.2. This relation implies again TαT∞ = T∞

for all α by Lemma 3.1. Hence, the cycle is closed.
b) This part can be obtained analogously. �
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Theorem 7.2 If the limit T∞ of (Tα) exists, then the following statements are equivalent:

1) TαT∞ = T∞Tα = T∞ for all α ∈ J ,

2) T∞ ∈ K(TJ),

3) R(T∞) = N(I − TJ) , N(T∞) = R(I − TJ).

Proof: Combining a) and b) in Proposition 7.1 we arrive at the assertion. �

Theorem 7.2 shows: if the limit T∞ of (Tα) is a projection kernel, then it is an optimal one.

Example 7.1 (Semi-group of operators) Let T be a semi-group of operators T ∈ L(X)

with identity I. Further, let exist a generalized sequence (Tα) of operators Tα ∈ L(X) with
the following properties:

a) (Tα) is (uniformly) bounded,

b) Tαx ∈ co({Tx : T ∈ T }) for all α and for all x ∈ X,

c) limα Tαx exists for all x ∈ X,

d) limα(I − T )Tαx = limα Tα(I − T )x = 0 for all x ∈ X and for all T ∈ T .

Then the limit operator P defined by Px := limα Tαx is a projection kernel of co(T ). This
result can be derived from [5], p. 220 – 222. In our context, P is moreover the attainable and
optimal projection kernel of co(T ).

Theorem 7.3 Let P be a projection kernel of TJ = {Tα : α ∈ J}. Then the following
conditions are equivalent:

a) (Tα) converges to P .

b) (Tα) converges on N(P ) to the null operator O.

In both cases P is the optimal projection kernel of TJ , that means

R(P ) = N(I − TJ), N(P ) = R(I − TJ).

Proof: It is supposed that P ∈ K(TJ). According to Theorem 3.1 the operators Tα have
the direct sum representation

Tα = I |R(P )⊕ Tα |N(P ) = P |R(P )⊕ Tα |N(P ).

Hence, a) and b) are equivalent. Under the condition a) P is attainable. Consequently P
is by Theorem 7.1 the optimal projection kernel of TJ , where the given range and nullspace
follow by Definition 4.2. �



Projection kernels of linear operators . . . 37

8 Projection kernels of operator products

Considering iterative methods, beside operators Tk also product operators

Tk,0 := Tk . . . T1T0

occur. Hence, especially the limit behavior of (Tk,0) is of interest. Finally, we introduce the
set notations

TN := {Tk : k ∈ N}, TN,0 := {Tk,0 : k ∈ N}

for the corresponding sequences (Tk) and (Tk,0).

Theorem 8.1 If the product sequence (Tk,0) converges to a (left, right) projection kernel
P of (Tk), then P is a (left, right) optimal (left, right) projection kernel of (Tk) and (Tk,0).

Proof: Let P be a (left, right) projection kernel of (Tk) with limk→∞ Tk,0 = P . Let us
consider the identities

I − Tk,0 =
k∑
i=0

Tk . . . Ti+1(I − Ti) =
k∑
i=0

(I − Ti)Ti−1 . . . T0.

Since x ∈ N(I − TN) implies (I − Tk)x = 0 for all k, it implies also (I − Tk,0)x = 0 for all k.
Hence, by limit transition it is (I − P )x = 0. This shows

R(P ) = N(I − P ) ⊇ N(I − TN,0) ⊇ N(I − TN).

On the other hand the identities verify R(I − Tk,0) ⊆ R(I − TN) for all k and by limit
transition also R(I − P ) ⊆ R(I − TN). In more detail, we have even

N(P ) = R(I − P ) ⊆ R(I − TN,0) ⊆ R(I − TN).

But, by Lemma 3.1 and Lemma 3.2 it holds

R(P ) ⊆ N(I − TN), N(P ) ⊇ R(I − TN)

for a left and right projection kernel of TN , respectively.
Consequently, the assertion is true. �

Proposition 8.1 If the limit T∞,0 of (Tk,0) exists, then it follows

a) TkT∞,0 = T∞,0 for all k ⇔ T∞,0 ∈ K+(TN) ⇔ R(T∞,0) = N(I − TN),

b) T∞,0Tk = T∞,0 for all k ⇔ T∞,0 ∈ K−(TN) ⇔ N(T∞,0) = R(I − TN).
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Proof: a) The relation TkT∞,0 = T∞,0 for all k implies Tk,0T∞,0 = T∞,0 for all k. By limit
transition we get T 2

∞,0 = T∞,0. This means T∞,0 ∈ K+(TN) considering the first relation.
Since T∞,0 is attainable, Theorem 7.1 shows that T∞,0 is right optimal. By Definition 4.2
the relation R(T∞,0) = N(I − TN) holds in this case.
Assertion b) is shown analogously. �

Theorem 8.2 If the limit T∞,0 of (Tk,0) exists, then the following conditions are equiv-
alent:

1) TkT∞,0 = T∞,0Tk = T∞,0 for all k,

2) T∞,0 ∈ K(TN),

3) R(T∞,0) = N(I − TN), N(T∞,0) = R(I − TN).

Proof: The assertion follows by combination of a) and b) in Proposition 8.1. �

Theorem 8.3 Let P be a projection kernel of TN . Then the following conditions are
equivalent:

a) (Tk,0) converges to P .

b) (Tk,0) converges on N(P ) to the null operator O.

In both cases P is the optimal projection kernel of TN , that means

R(P ) = N(I − TN), N(P ) = R(I − TN).

Proof: By assumption it is P ∈ K(TN). Then P ∈ K(TN,0) follows using Lemma 2.1 or
Corollary 2.1. Applying Theorem 7.3 with (Tk,0) instead of (Tα), the statements a) and b) are
shown to be equivalent. If a) or b) are supposed, Theorem 8.1 supplies that the projection
kernel P is optimal. By definition P has the stated range and nullspace. �

Remark 8.1 If (Tk,0) converges to O, then there is only the trivial projection kernel P = O.
Further, it is

N(I − TN) = R(O) = {0}, R(I − TN) = N(O) = X.

Reversely, if these space conditions hold for (Tk), then (Tk,0) converges to O.

Theorem 8.4 If the operators Tk are Fejér monotone with eigenprojections Pk (k =

1, . . . ,m), then the product Tm,1 = Tm . . . T2T1 is Fejér monotone with eigenprojection P

defined by

R(P ) =
m⋂
k=1

R(Pk), N(P ) = span
m⋃
k=1

N(Pk).

Thereby P is the orthogonal optimal projection kernel of both (Pk) and (Tk).
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Proof: The first part is shown in [17], p. 183. The last part follows by Theorem 5.1, if the
relations

N(I − Tk) = N(I − T ∗k ) = R(Pk) = N(I − Pk) = N(I − P ∗k ), R(I − Pk) = N(Pk)

are observed (see also Corollary 5.3). �

9 Power sequences and related series

Now we turn to the special case Tk = T for all k. Then Tk,0 = T k+1. Thus we arrive at
power sequences (T k) and their convergence properties.

Lemma 9.1 The following statements are equivalent:

a) (T k) converges strongly (to an operator T∞ ∈ L(X)).

b) (T k) converges strongly to the projector P given by R(P ) = N(I − T ) and N(P ) =

R(I − T ).

c) There is a projector P with R(P ) = N(I − T ) such that T̃ := T |N(P ) ∈ L(N(P )) and
(T̃ k) converges strongly to O ∈ N(P ).

Proof: The equivalence of b) and c) is a consequence of Theorem 8.3. It remains to show
that the limit operator of (T k) is a projector in L(X) with given range and nullspace. This
is done e.g. in [15], pp. 6 – 8. �

Remark 9.1 Several authors have proven in different ways and in different spaces that the
limit of a convergent power sequence (T k) is a projector P (see e.g. [1]: p. 367, [3]: p. 567,
[9], [19]: p. 179, [20]: p. 351). This projector P in the above lemma is the optimal projection
kernel of T . Hence, the existence of an optimal projection kernel for T is necessary for the
convergence of (T k). In other words, I − T has to be decomposition regular (see [14]):

X = N(I − T )⊕ R(I − T ).

Proposition 9.1 ([18], p. 35 – 36) Let T be a strongly Fejér monotone operator. Then
the sequence (T k) converges (uniformly, r.t. the operator norm) to the eigenprojection P (T )

of T .

Lemma 9.1 shows that powers sequences (T k) of strongly Fejér monotone operators con-
verge uniformly to O on N(P ) = R(I − T ), where the range of I − T is closed in this case.
If R(I − T ) = X, then (T k) converges uniformly to O. The latter statement fits to the
following well-known facts.
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Proposition 9.2 These conditions are equivalent:

a) The sequence (T k) converges uniformly to O.

b) There is a natural n such that ‖T n‖ < 1.

c) The Neumann series
(∑k

i=0 T
i
)
converges uniformly.

Theorem 9.1 The following two statements are equivalent:

a) The sequence (T k) converges.

b) The sequence (T nk) converges for a fixed n and all n-th roots of unity which are different
from 1 are no eigenvalues of T .

Under one of these conditions a) or b) both sequences converge to their optimal projection
kernel P with R(P ) = N(I − T ) and N(P ) = R(I − T ).

Proof: The equivalence of a) and b) is given in [15]: p. 11 and in [3]: p. 568 for the special
case n = 2. The consequence is shown by Lemma 9.1. �

Corollary 9.1 If the natural power of an operator T is a projector P , say T n = P , and
all n-th roots of unity which are different from 1 are no eigenvalues of T , then it holds also
T k = P for all members of (T k) with k ≥ n. Thereby P is the optimal projection kernel of
(T k).

Proof: By assumption we have T n = P . Considering T nk = P for all k and Theorem 9.1
both sequences (T k) and (T nk) converge to the common optimal projection kernel P such
that also PT = TP = P holds. Hence,

T n+1 = T · T n = T · P = P.

By induction we get T k = P for all k ≥ n. �

Example 9.1 Let us choose

T =


1 1 1 1

0 1 1 1

0 −1 1 1

0 0 −2 −2

 , P =


1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

 ,

where P is a projector. Then it is T 3 = P . The eigenvalues 0, 1, i and −i of T are no
third roots of unity except for 1. Thus Corollary 9.1 can be applied for n = 3. This implies
T k = P for k ≥ 3. Direct computation also confirms the result. Further P is the optimal
projection kernel of (T k), i.e.

R(P ) = N(I − T ), N(P ) = R(I − T ) = R(I − T ).
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This can also be shown directly. Observe that the given matrices fits Example 5.2. The
matrix

I − T =


0 −1 −1 −1

0 0 −1 −1

0 1 0 −1

0 0 2 3


has rank 3. This again proves the optimality of P in the referred context.

Example 9.2 We consider an operator

T := I +B, B ∈ Rn,n, B 6= O, B2 = O.

Then we get
T k = I + kB.

Hence, the limit T∞ of (T k) does not exist. Therefore I − T and B are not decomposition
regular (see Remark 9.1). A projector P ∈ Rn,n is a projection kernel of (T k) iff PB =

BP = O. But such a projector cannot be optimal (see again Remark 9.1). Example 4.1
shows that the conditions for B given above can be fulfilled. We choose

B := c

0 0 0

0 0 0

1 0 0

 .

Then T (c) := I + B, where B2 = O and BP (a, b) = P (a, b)B = O holds for the projection
kernels P (a, b) of operators T (c).

The following example shows that the optimal projection kernel of T are sometimes obtained
by limits of more general sequences which can converge if (T k) diverges.

Example 9.3 (Means of operator powers) Let X be a reflexive Banach space and
T ∈ L(X) an operator with a (uniformly) bounded sequence (T k) of powers. Then the
sequence of Cesàro means

Tk :=
1

k + 1

k∑
i=0

T i

converges strongly to the optimal projection kernel P of (T k) (see also [23]: p. 214).

Similar results can be obtained also by other means of operator powers.
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