Rostock. Math. Kolloq. 68, [3](#page-0-0)-[12](#page-9-0) (2013) Subject Classification (MSC)

Ian Schindler, Cyril Tintarev

The limiting Dirac-Sobolev inequality

ABSTRACT. We prove the critical Dirac-Sobolev inequality for $p \in (1,3)$. It follows that the Dirac Sobolev spaces are equivalent to classical Sobolev spaces if and only if $p \in (1,3)$. We prove the cocompactness of $L^{p^*}(\mathbb{R}^3)$ in $\dot{\mathbf{H}}^{1,p}(\mathbb{R}^3)$. As an application, we prove the existence of minimizers to a class of isoperimetric problems.

KEY WORDS AND PHRASES. cocompact imbeddings, concentration compactness, Dirac operator, minimizers, Sobolev imbeddings, critical exponent

1 Introduction

In [\[1\]](#page-7-0), Balinsky, Evans and Saito introduced an L^p -seminorm $\|(\alpha \cdot \mathbf{p})u\|_{p,\Omega}$ of a \mathbb{C}^4 -valued function on an open subset of Ω of \mathbb{R}^3 relevant to a massless Dirac operator

$$
\alpha \cdot \mathbf{p} = \sum_{j=1}^{3} \alpha_j (-i\partial_j).
$$
 (1.1)

Here $\mathbf{p} = -\mathbf{i}\nabla$, and $\alpha = (\alpha_1, \alpha_2, \alpha_3)$ is the triple of 4×4 Dirac matrices

$$
\alpha_j = \left(\begin{array}{cc} 0_2 & \sigma_j \\ \sigma_j & 0_2 \end{array}\right) \quad j = 1, 2, 3
$$

that use the 2×2 zero matrix 0_2 and the triple of 2×2 Pauli matrices

$$
\sigma_1 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad \sigma_2 = \left(\begin{array}{cc} 0 & -1 \\ i & 0 \end{array}\right), \quad \sigma_3 = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right).
$$

They proved a family of inequalities for this seminorm, called Dirac-Sobolev inequalities, in order to obtain L^p -estimates of the *zero modes*, i.e. generalized eigenfunctions associated with the eigenvalue 0 of the Dirac operator $(\alpha \cdot \mathbf{p}) + \mathbf{Q}$, where $Q(x)$ is a 4×4 Hermitian matrix-valued potential decaying at infinity.

Let Ω be an open subset of \mathbb{R}^3 . The first order Dirac-Sobolev space $\mathbf{H}_0^{1,p}$ $\mathbf{H}^{1,p}_0(\Omega;\mathbb{C}^4)=\mathbf{H}^{1,p}_0$ $\cdot_0^{1,p}(\Omega),$ $1 \leq p < \infty$, is the completion of $C_0^{\infty}(\Omega; \mathbb{C}^4)$ with respect to the norm

$$
||u||_{D,1,p,\Omega} := \int_{\Omega} (|u(x)|_p^p + |(\alpha \cdot \mathbf{p})u(x)|_p^p) dx
$$
\n(1.2)

where the *p*-norm of a vector $a = (a_1, a_2, a_3, a_4)^T \in \mathbb{C}^4$ is defined as

$$
|a|_p = \left(\sum_{i=1}^4 |a_i|^p\right)^{1/p},
$$

 $u(x) = (u_1(x), u_2(x), u_3(x), u_4(x))^T$, and

$$
(\alpha \cdot \mathbf{p})u(x) := \sum_{j=1}^{3} \alpha_j p_j u(x) = \sum_{j=1}^{3} (-i\alpha_j \partial_j u(x)).
$$

A completion of $C^{\infty}(\Omega; \mathbb{C})^4$ with respect to the same norm will be denoted $\mathbf{H}^{1,p}(\Omega)$. Let β be the fourth Dirac matrix given by

$$
\beta = \left(\begin{array}{cc} 1_2 & 0_2 \\ 0_2 & -1_2 \end{array}\right),
$$

where 1_2 is the 2×2 identity matrix. It is known that the free massless Dirac operator $\alpha \cdot \mathbf{p}$ as well as the free Dirac operator $\alpha \cdot \mathbf{p} + m\beta$ with positive mass m and the relativistic Schrodinger operator $\sqrt{m^2 - \Delta}$ have similar embedding properties in L^2 but not necessarily in L^p for $p \neq 2$. It is also known that for $1 < p < \infty$, the usual $W^{1,p}(\Omega)$ Sobolev norm $(\|\psi\|_p^p + \|\nabla \psi\|_p^p)^{1/p}$ is equivalent to the norm $\|$ $\sqrt{1-\Delta}\psi\|_p$, where $\psi: \mathbb{R}^3 \mapsto \mathbb{C}$ [\[14\]](#page-8-0).

In [\[5\]](#page-8-1) the authors explore the relationship of $H_0^{1,p}$ $_{0}^{1,p}(\Omega)$ with the classical Sobolev spaces $W_0^{1,p}$ $U_0^{1,p}(\Omega;\mathbb{C}^4)$ when Ω is a bounded domain. In particular, it is shown that $W_0^{1,p}$ $\binom{1,p}{0}$ and $W^{1,p}(\Omega)$ are dense subspaces of $H_0^{1,p}$ $_{0}^{1,p}(\Omega)$ and $H^{1,p}(\Omega)$ respectively. The maps

$$
\begin{cases}\nJ_{\Omega,0}: & W_0^{1,p}(\Omega) \ni u \mapsto u \in \mathbf{H}_0^{1,p}(\Omega) \\
J_{\Omega}: & W^{1,p}(\Omega) \ni u \mapsto u \in \mathbf{H}^{1,p}(\Omega)\n\end{cases}
$$

are one to one and continuous for $1 \leq p < \infty$. They showed that the map $J_{\Omega,0}$ is onto with continuous inverse if $1 < p < \infty$ so that the spaces $W_0^{1,p}$ $U_0^{1,p}(\Omega)$ and the space $H_0^{1,p}$ $\mathcal{O}^{1,p}(\Omega)$ are the same. If $p = 1$, the map $J_{\Omega,0}$ is not onto.

In this paper we prove the limiting Dirac-Sobolev inequality on the whole space,

$$
\int_{\mathbb{R}^3} |u|^{p^*} dx \le C_p \left(\int_{\mathbb{R}^3} |(\alpha \cdot \mathbf{p})u|^p dx \right)^{\frac{p^*}{p}},\tag{1.3}
$$

where C_p is a positive constant, $p \in (1,3)$, and $p^* = \frac{3p}{3-p}$ $\frac{3p}{3-p}$. It follows that the map J_{Ω} is onto for $p \in (1,3)$ if Ω is an extension domain. An extension domain is a domain for which every $u \in H^{1,p}(\Omega)$ there is a $\tilde{u} \in H^{1,p}_0$ $\mathcal{L}_{0}^{1,p}(\Omega')$ such that $u = \tilde{u}|_{\Omega}$ where $\Omega \subset \Omega'$. We then prove cocompactness of the embedding $L^{p^*}(\mathbb{R}^3) \subset \dot{H}^{1,p}(\mathbb{R}^3)$, where $\dot{H}^{1,p}(\mathbb{R}^3)$ is the completion of $C_0^\infty({\mathbb R}^3;{\mathbb C}^4)$ with respect to the norm

$$
||u|| = \left(\int_{\mathbb{R}^3} |(\alpha \cdot \mathbf{p})u|^p dx\right)^{\frac{1}{p}}.
$$
\n(1.4)

See Remark [2.2.](#page-3-0) We apply this result to show existance of minimizers to isoperimetric problems involving oscillatory nonlinearities with critical growth.

2 A Dirac-Sobolev inequality and the space $\dot{\mathbf{H}}^{1,p}(\mathbb{R}^3)$

In this section we prove inequality [\(1.3\)](#page-1-0).

Theorem 2.1 Let $p \in (1,3)$. Then there exists a constant $C_p > 0$ such that for every $u \in C_0^{\infty}(\mathbb{R}^3; \mathbb{C}^4)$, [\(1.3\)](#page-1-0) holds.

Proof. Let us use the inequality (3.10) of [\[1\]](#page-7-0), with the choice of parameters $k = p$, $r = 1$ and $\theta = \frac{3p-3}{4p-3}$ $\frac{3p-3}{4p-3}$:

$$
||u||_{p,B_1}^p \le C ||(\alpha \cdot \mathbf{p})u||_{p,B_1}^{p\theta} ||u||_{1,B_1}^{p(1-\theta)}, \ u \in C_0^{\infty}(B_1; \mathbb{C}^4). \tag{2.1}
$$

Using an elementary inequality $s^{\theta}t^{(1-\theta)} \leq C(\lambda s + \lambda^{-\gamma}t), \quad \frac{1}{\gamma} = \frac{1}{\theta} - 1$, that holds for all positive t, s, and λ , and setting $\lambda = \rho^p$, $s = ||u||_p^p$ $_{p,B_1}^p$, and $t = ||u||_1^p$ $_{1,B_1}^p$, one deduces from (2.1) , for all positive ρ ,

$$
||u||_{p,B_1}^p \le C \left(\rho^p ||(\alpha \cdot \mathbf{p})u||_{p,B_1}^p + \rho^{3-3p} ||u||_{1,B_1}^p \right) \ u \in C_0^{\infty}(B_1; \mathbb{C}^4). \tag{2.2}
$$

By choosing $\rho' = R\rho$ and rescaling the integration domain we will have, for any positive ρ' , renamed ρ ,

$$
||u||_{p,B_R}^p \le C \left(\rho^p ||(\alpha \cdot \mathbf{p})u||_{p,B_R}^p + \rho^{3-3p} ||u||_{1,B_R}^p \right), \ u \in C_0^{\infty}(B_R; \mathbb{C}^4), \tag{2.3}
$$

for any $R > 0$. We conclude that for any positive ρ ,

$$
||u||_{p,\mathbb{R}^3}^p \le C\left(\rho^p || (\alpha \cdot \mathbf{p})u||_{p,\mathbb{R}^3}^p + \rho^{3-3p} ||u||_{1,\mathbb{R}^3}^p\right), \ u \in C_0^{\infty}(\mathbb{R}^3; \mathbb{C}^4). \tag{2.4}
$$

Let us apply [\(2.4\)](#page-2-1) to functions $\chi_j(|u|)$, where $\chi_j(t) = 2^{-j}\chi(2^{j}t)$, $j \in \mathbb{Z}$ and $\chi \in C_0^{\infty}((\frac{1}{2}, 4)$, $[0,3]$, such that $\chi(t) = t$ whenever $t \in [1,2]$ and $|\chi'| \leq 2$. Then we obtain, with the values

 \Box

 $\rho = \rho_i$ to be determined,

$$
\int_{|u| \in [2^j, 2^{j+1}]} |u|^p dx \leq \int \chi_j(u)^p dx
$$

\n
$$
\leq C \left(\rho_j^p \int_{|u| \in [2^{j-1}, 2^{j+2}]} |(\alpha \cdot \mathbf{p})u|^p dx +
$$

\n
$$
\rho_j^{3-3p} \left(\int_{|u| \in [2^{j-1}, 2^{j+2}]} |u| dx \right)^p \right).
$$

Taking into account the upper and lower bounds of $|u|$ on the respective sets of integration, we have

$$
2^{(p-p^*)j} \int_{|u|\in[2^j,2^{j+1}]} |u|^{p^*} dx \leq C \rho_j^p \int_{|u|\in[2^{j-1},2^{j+2}]} |(\alpha \cdot \mathbf{p})u|^p dx + C 2^{p(1-p^*)(j-1)} \rho_j^{3-3p} \left(\int_{|u|\in[2^{j-1},2^{j+2}]} |u|^{p^*} dx \right)^p.
$$

If we substitute $\rho_j = 2^{-\frac{p^3(1-p)j+pp^*-\bar{p}}{3-3p}} \rho$, take the sum over $j \in \mathbb{Z}$, and note that each of the intervals $[2^{j-1}, 2^{j+2}]$, $j \in \mathbb{Z}$, overlaps with the others not more than four times, we get

$$
\int |u|^{p^*} \mathrm{d}x \le C \left(\rho^p \int_{\mathbb{R}^3} |(\alpha \cdot \mathbf{p})u|^p \mathrm{d}x + \rho^{3-3p} \left(\int_{\mathbb{R}^3} |u|^{p^*} \mathrm{d}x \right)^p \right)
$$

Setting $\rho = \left(\frac{1}{2\epsilon}\right)$ $\frac{1}{2C}$)^{$\frac{1}{3-3p}$} ($\int u^{p^*}$)^{$\frac{1}{3}$} and collecting similar terms we arrive at [\(1.3\)](#page-1-0).

Inequality [\(1.3\)](#page-1-0) defines a continuous imbedding of $L^{p^*}(\mathbb{R}^3; \mathbb{C}^4)$ into $\dot{H}^{1,p}_D(\mathbb{R}^3)$.

Remark 2.2 Note that [\(1.4\)](#page-2-2) does indeed define a norm on $C_0^{\infty}(\mathbb{R}^3; \mathbb{C}^4)$, since $(\alpha \cdot \mathbf{p})u = 0$ implies $|\nabla u|^2 = 0$ which yields $u = \text{const.}$ Since $u = 0$ outside of a compact set, the value of this constant is zero. We have therefore a Banach space $\dot{H}_{D}^{1,p}(\mathbb{R}^{3})$ into which $L^{p^{*}}(\mathbb{R}^{3})$ is continuously imbedded. It should be noted, however, that the space $\dot{H}^{1,p}_D(\mathbb{R}^3)$ is equivalent to the usual gradient-norm space $\mathcal{D}^{1,p}(\mathbb{R}^3;\mathbb{C}^4)$ if and only if $p \in (1,3)$. If $p > 1$, consider the gradient norm and the Dirac-gradient norm (1.4) on $C_0^{\infty}(B_R; \mathbb{C}^4)$, which are equivalent Sobolev norms in $W_0^{1,p}$ $\mathcal{F}_0^{1,p}(B_R; \mathbb{C}^4)$ and $\mathbf{H}_0^{1,p}$ $_{0}^{1,p}(B_{R})$ respectively. Since these norms are scaleinvariant, they are equivalent (by Theorem 1.3 (ii) of $[5]$) on the balls B_R with bounds independent of R and thus, these norms are equivalent on $C_0^{\infty}(\mathbb{R}^3;\mathbb{C}^4)$, and, consequently $\mathcal{D}(\mathbb{R}^3;\mathbb{C}^4) = \dot{\mathbf{H}}^{1,p}(\mathbb{R}^3)$. As a further consequence, the map J_{Ω} defined in the introduction is onto if $p \in (1,3)$ and Ω is an extension domain. From this observation, we obtain

Corollary 2.3 Let $p \in (1,3)$, $\Omega \subset \mathbb{R}^3$ be and extension domain, and $q \in [p, p^*]$ then

$$
||u||_{q,\Omega} \leq C_{p,q} \left(\int_{\Omega} (|(\alpha \cdot \mathbf{p})u|^p + |u|^p) dx \right)^{1/p}.
$$
 (2.5)

Remark 2.4 If $p = 1$, by Proposition 4.4 of $[5]$ $\dot{H}^{1,1}(\mathbb{R}^3; \mathbb{C}^4)$ is strictly smaller than $\dot{\mathbf{H}}^{1,1}(\mathbb{R}^{3}).$

3 Cocompactness of Dirac-Sobolev imbeddings

We recall the following definitions:

Definition 3.1 Let u_k be a sequence in a Banach space E and D be a set of linear isometries acting on E. We say that u_k converges D-weakly to u, which we denote

$$
u_k \stackrel{D}{\rightharpoonup} u,
$$

if for all ϕ in E' ,

$$
\lim_{k \to \infty} \sup_{g \in D} (g\phi, u_k - u) = 0.
$$

Remark 3.2 It follows immediately from [3.1](#page-4-0) that if a bounded sequence u_k is not D− weakly convergent to 0, then there exists a sequence $g_k \in D$ and a $w \neq 0 \in E$ such that $g_k^* u_k \rightharpoonup w.$

Definition 3.3 Let B be a Banach space continuously embedded in E. We say that B is cocompact in E with respect to D if $u_k \stackrel{D}{\rightharpoonup} u$ in E implies $u_k \to u$ in B.

Let $\delta_{\mathbb{R}}$ be the group of dilations,

$$
h_s u(x) = p^{\frac{3-p}{p}s} u(p^s x),
$$

let D_G be the group of translations,

$$
g_y u = u(\cdot - y), \ y \in \mathbb{R}^3,
$$

and let

$$
D:=\delta_{\mathbb{R}}\times D_G.
$$

We will denote by $D_{\mathbb{Z}}$ the subgroup, $s \in \mathbb{Z}$, $y \in \mathbb{Z}^3$. Note that both $||u||_{p^*}$ and $||u||_{\dot{H}}$ are invariant under D and $D_{\mathbb{Z}}$. Furthermore, cocompactness with respect to D is equivalent to cocompactness with respect to $D_{\mathbb{Z}}$ (Lemma 5.3, [\[15\]](#page-8-2)).

Theorem 3.4 Let $p \in (1,3)$. Then $L^{p^*}(\mathbb{R}^3)$ is cocompactly embedded in $\dot{H}^{1,p}(\mathbb{R}^3)$ with respect to D.

Proof. Assume u_k is D-weakly convergent to zero in $\dot{H}^{1,p}(\mathbb{R}^3)$. Since $C_0^{\infty}(\mathbb{R}^3;\mathbb{C}^4)$ is dense in $\dot{H}^{1,p}(\mathbb{R}^3)$ and the latter is continuously imbedded into $L^{p^*}(\mathbb{R}^3)$, we may assume without loss of generality that $u_k \in C_0^{\infty}(\mathbb{R}^3)$. Let $\chi \in C_0^{\infty}((\frac{1}{p}, p^2); [0, p^2 - 1])$, be such that $\chi(t) = t$ for $t \in [1, p]$ and $|\chi'| \leq \frac{p}{p-1}$. By the Dirac-Sobolev inequality (2.5) , for every $y \in \mathbb{Z}^3$,

$$
\left(\int_{(0,1)^3+y} \chi(|u_k|)^{p^*} dx\right)^{p/p^*} \le C \int_{(0,1)^3+y} (|(\alpha \cdot \mathbf{p})u_k|^p + \chi(u_k)^p) dx.
$$

Since $\chi(t)^{p^*} \le Ct^p$, this gives

$$
\int_{(0,1)^3+y} \chi(|u_k|)^{p^*} dx
$$
\n
$$
\leq C \left(\int_{(0,1)^3+y} (|(\alpha \cdot \mathbf{p})u_k|^p + \chi(u_k)^p) dx \right) \left(\int_{(0,1)^3+y} \chi(|u_k|)^{p^*} dx \right)^{1-p/p^*}
$$
\n
$$
\leq C \left(\int_{(0,1)^3+y} (|(\alpha \cdot \mathbf{p})u_k|^p + \chi(u_k)^p) dx \right) \left(\int_{(0,1)^3+y} u_k^p dx \right)^{1-p/p^*}.
$$

Summing the above inequalities over all $y \in \mathbb{Z}^3$, and noting that by $(1.3) \|u_k\|_{p^*} \leq C$ $(1.3) \|u_k\|_{p^*} \leq C$, therefore $\left|\left\{u_k\geq \frac{1}{n}\right\}\right|$ $\left\{\frac{1}{p}\right\}$ | $\leq C$ from which we can conclude $\int_{\mathbb{R}^3} \chi(u_k)^p \leq C$, we obtain

$$
\int_{\mathbb{R}^3} \chi(|u_k|)^{p^*} \le C \sup_{y \in \mathbb{Z}^3} \left(\int_{(0,1)^3 + y} |u_k|^p \right)^{1 - p/p^*}.
$$
\n(3.1)

.

Let $y_k \in \mathbb{Z}^3$ be such that

$$
\sup_{y\in\mathbb{Z}^3}\left(\int_{(0,1)^3+y}|u_k|^p\right)^{1-p/p^*}\leq 2\left(\int_{(0,1)^3+y_k}|u_k|^p\right)^{1-p/p^*}
$$

Since u_k converges to zero D-weakly, $u_k(\cdot - y_k) \rightharpoonup 0$ in $\dot{H}^{1,p}(\mathbb{R}^3)$, and thus it follows from Theorem 1.3 (ii) in [\[5\]](#page-8-1) and the fact that $(0, 1)^3$ is an extension domain that $u_k(\cdot - y) \to 0$ in $L^p((0,1)^3;\mathbb{C}^4)$. Therefore,

$$
\int_{(0,1)^3+y_k} |u_k|^p = \int_{(0,1)^3} |u_k(\cdot - y_k)|^p \to 0.
$$

Substituting into (3.1) , we obtain

$$
\int_{\mathbb{R}^3} \chi(|u_k|)^{p^*} \mathrm{d}x \to 0.
$$

Let

$$
\chi_j(t) = p^j \chi(p^{-j}t)), \ \ j \in \mathbb{Z}.
$$

Since for any sequence $j \in \mathbb{Z}$, $h_{j_k} u_k$ converges to zero D-weakly, we have also, with arbitrary $j_k \in \mathbb{Z}$,

$$
\int_{\mathbb{R}^3} \chi_{j_k}(|u_k|)^{p^*} \mathrm{d}x \to 0. \tag{3.2}
$$

For $j \in \mathbb{Z}$, we have

Interpolation of cocompact imbeddings 9

$$
\left(\int_{\mathbb{R}^3} \chi_j(|u_k|)^{p^*} \mathrm{d}x\right)^{p/p^*} \leq C \int_{\{p^{j-1} \leq |u_k| \leq p^{j+2}\}} |(\alpha \cdot \mathbf{p}) u_k|^p \mathrm{d}x,
$$

which can be rewritten as

$$
\int_{\mathbb{R}^3} \chi_j(|u_k|)^{p^*} dx \le C \int_{\{p^{j-1} \le |u_k| \le p^{j+2}\}} |(\alpha \cdot \mathbf{p})u_k|^p dx \left(\int_{\mathbb{R}^3} \chi_j(|u_k|)^{p^*} dx \right)^{1-\frac{p}{p^*}}.
$$
 (3.3)

Adding the inequalities [\(3.3\)](#page-6-0) over $j \in \mathbb{Z}$ and taking into account that the sets $\{x \in \mathbb{R}^3 :$ $2^{j-1} \leq |u_k| \leq 2^{j+2}$ cover \mathbb{R}^3 with uniformly finite multiplicity, we obtain

$$
\int_{\mathbb{R}^3} |u_k|^{p^*} dx \le C \int_{\mathbb{R}^3} |(\alpha \cdot \mathbf{p}) u_k|^p dx \sup_{j \in \mathbb{Z}} \left(\int_{\mathbb{R}^3} \chi_j(|u_k|)^{p^*} \right)^{1 - p/p^*}.
$$
 (3.4)

Let j_k be such that

$$
\sup_{j\in\mathbb{Z}}\left(\int_{\mathbb{R}^3}\chi_j(|u_k|)^{p^*}\right)^{1-p/p^*}\leq 2\left(\int_{\mathbb{R}^3}\chi_{j_k}(|u_k|)^{p^*}\right)^{1-p/p^*}.
$$

Using the previous estimate and (3.2) we see that the right hand side of (3.4) converges to zero. Thus $u_k \to 0$ in L^{p^*} . \Box

4 Existence of minimizers

We consider the class of functions $F \in C_{loc}(\mathbb{R})$ satisfying

$$
F(p^{\frac{3-p}{p}j}s) = p^{3j}F(s), \ s \in \mathbb{R}, j \in \mathbb{Z}.
$$
 (4.1)

This class is characterized by continuous functions on the intervals $[1, p^{\frac{3-p}{p}}]$ and $[-p^{\frac{3-p}{p}}, -1]$ satisfying $F(p^{\frac{3-p}{p}}) = p^3 F(1)$ and $F(-p^{\frac{3-p}{p}}) = p^3 F(-1)$, extended to $(0, \infty)$ and $(-\infty, 0)$ by (4.1) . It is immediate that there exists positive constants C_1 and C_2 such that

$$
C_1|s|^{p^*} \le |F(s)| \le C_2|s|^{p^*}.\tag{4.2}
$$

It also follows from [\(4.1\)](#page-6-2) that for $h_j \in \delta_{\mathbb{Z}}$,

$$
\int_{\mathbb{R}^3} F(h_j u) dx = \int_{\mathbb{R}^3} F(u) dx, \text{ for } j \in \mathbb{Z}, u \in \mathcal{L}^{p^*}(\mathbb{R}^3).
$$

The functional

$$
G(u) = \int_{\mathbb{R}^3} F(u) \mathrm{d} x
$$

is continuous on $L^{p^*}(\mathbb{R}^3)$ and thus on $\dot{\mathbf{H}}^{1,p}(\mathbb{R}^3)$.

Theorem 4.1 There exists a minimizer to the following isoperimetric problem.

$$
\inf_{G(u)=1} \int_{\mathbb{R}^3} |(\alpha \cdot \mathbf{p})u|^p dx \tag{4.3}
$$

in $\dot{H}^{1,p}(\mathbb{R}^3)$.

Proof. Let u_k be a minimizing sequence. By [\(4.2\)](#page-6-3) and [\(2.5\)](#page-3-1), u_k is bounded. By Theorem [3.4](#page-4-1) and (4.2) , u_k cannot converge D–weakly to 0. By Theorem 2 in [\[13\]](#page-8-3) (see also [\[12\]](#page-8-4)), (4.2), and using the facts: $||gw||_{\dot{\mathbf{H}}}^p = ||w||_{\dot{\mathbf{F}}}^p$ $H_{\mathbf{H}_n}$ and $G(gw) = G(w)$, we may write (in our notation) $||u_k - \sum_{n \in \mathbb{N}} g_k^{(n)} w^{(n)}||_{L^{p^*}} \to 0 \text{ with } g_k^{(n)} \in D_{\mathbb{Z}}, w^{(n)} \in \dot{\mathbf{H}}^{1,p}(\mathbb{R}^3),$

$$
||u_k||_{\dot{\mathbf{H}}}^p \ge \sum_{n \in \mathbb{N}} ||w^{(n)}||_H^p, \text{ and } \qquad (4.4)
$$

$$
1 = G(u_k) = \sum_{n \in \mathbb{N}} G(w^{(n)}) + o(1).
$$
 (4.5)

Since $G(u_k) = 1$, [\(4.5\)](#page-7-1) implies that at least one $w^{(n)} \neq 0$. We will denote this $w^{(n)}$ by w. From the proof of Theorem 2 in [\[13\]](#page-8-3) it is immediate that

$$
||u_k||_H^p = ||w||_H^p + ||u_k - w||_H^p + o(1).
$$
\n(4.6)

From [\(4.5\)](#page-7-1) we deduce that

$$
G(u_k) = G(w) + G(u_k - w) + o(1).
$$
\n(4.7)

Assume $G(w) = \lambda$. We imbed problem [\(4.3\)](#page-7-2) in the continuous family of problems

$$
\alpha(t) := \inf_{G(u)=t} \int_{\mathbb{R}^3} |(\alpha \cdot \mathbf{p})u|^p dx.
$$

From the change of variables $u(t^{1/3})$, we see that $\alpha(t) = \inf_{G(u)=1} t^{(1-p/3)} \int_{\mathbb{R}^3} |(\alpha \cdot \mathbf{p})u|^p dx =$ $t^{(1-p/3)}\alpha(1)$, so $\alpha(t)$ is a strictly concave function. From (4.6) , we deduce that $\alpha(1)$ $\alpha(\lambda) + \alpha(1 - \lambda)$. Since $\alpha(t)$ is strictly concave, this is only possible if $\lambda = 1$. Therefore $G(w) = 1$ and w solves problem (4.3) . \Box

References

- [1] Balinsky, A., Evans, W. D., and Saito, Y. : Dirac-Sobolev inequalities and estimates for the zero modes of massless Dirac operators. J. Math. Physics 49, 043514 10 pp. (2008)
- [2] Berestycki, H., and Lions, P.-L. : Nonlinear scalar field equations I. Existence of a ground state. Arch. Rational Mech. Anal. 82, 313 – 345 (1983)
- [3] **Brezis, H., and Lieb, E.**: A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88, 486 – 490 (1983)
- [4] Gérard, P. : Description du défaut de compacité de l'injection de Sobolev. ESAIM: Control, Optimzation and Calculus of Variations, 3, 213 – 233 (1998)
- [5] Ichinose, T., and Saito, Y. : Dirac-Sobolev spaces and Sobolev spaces. Funkcialaj Ekvacioj 53, 291 – 310 (2010)
- [6] Jaffard, S. : Analysis of the lack of compactness in the critical Sobolev embeddings. J. Funct. Analysis. 161, 384–396 (1999)
- [7] Lieb, E. : On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent. Math. 74, 441 – 448 (1983)
- [8] Lions, P.-L. : The concentration-compactness principle in the calculus of variations. The locally compact case, part 1. Ann. Inst. H. Poincaré, Analyse non linéaire 1, 109 – 153 (1984)
- [9] Lions, P.-L. : The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Ann. Inst. H. Poincaré, Analyse non linéaire 1, 223 – 283 (1984)
- [10] Lions, P.-L. : The concentration-compactness principle in the calculus of variations. The Limit Case, Part 1, Revista Matematica Iberoamericana 1.1, 145 –201 (1985)
- [11] Lions, P.-L. : The concentration-compactness principle in the calculus of variations. The Limit Case, Part 2, Revista Matematica Iberoamericana 1.2 , $45-121$ (1985)
- [12] Schindler, I., and Tintarev, K. : An abstract version of the concentration compactness principle. Revista Mat. Complutense 15, 1 – 20 (2002)
- [13] Solimini, S. : A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev Space. Ann. Inst. H. Poincaré, Section C, 12, 319 – 337 (1995)
- [14] Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970
- [15] Tintarev, K., and Fieseler, K.-H. : Concentration Compactness, functional-analytic grounds and applications. Imperial College Press, 2007
- [16] Tao, T. : A pseudoconformal compactification of the nonlinear Schrödinger equation and applications. New York J. Math. $15, 265 - 282$ (2009)

received: January 28, 2014

Authors:

Ian Schindler MIP-Ceremath UMR 5219, University of Toulouse 1, 21 allee de Brienne, 31000 Toulouse, France [e-mail: ian.schindler@univ-tse1.fr](mailto:ian.schindler@univ-tse1.fr) Cyril Tintarev Department of Mathematics, Uppsala University, P.O.Box 480, 75 106 Uppsala, Sweden e-mail: tintarev@math.uu.se