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[AN SCHINDLER, CYRIL TINTAREV

The limiting Dirac-Sobolev inequality

ABSTRACT. We prove the critical Dirac-Sobolev inequality for p € (1,3). It follows that the
Dirac Sobolev spaces are equivalent to classical Sobolev spaces if and only if p € (1,3). We
prove the cocompactness of LP"(R?) in H"P(R?). As an application, we prove the existence

of minimizers to a class of isoperimetric problems.
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1 Introduction

In [1], Balinsky, Evans and Saito introduced an LP-seminorm |[(« - p)ul/, 0 of a C*-valued

function on an open subset of Q of R3 relevant to a massless Dirac operator
3
a-p:Zaj(—iGj). (1.1)
j=1

Here p = —iV, and o = (a, g, cvg) is the triple of 4 x 4 Dirac matrices

O .
=27 j=123
0 02

that use the 2 x 2 zero matrix 0y and the triple of 2 x 2 Pauli matrices

01 0 —1 1 0
o1 = , oo =1 , O .
! 10 2 i 0 S\lo -1

They proved a family of inequalities for this seminorm, called Dirac-Sobolev inequalities, in
order to obtain LP-estimates of the zero modes, i.e. generalized eigenfunctions associated
with the eigenvalue 0 of the Dirac operator (« - p) + Q, where Q(z) is a 4 x 4 Hermitian

matrix-valued potential decaying at infinity:.
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Let Q be an open subset of R3. The first order Dirac-Sobolev space Hy?(Q; C) = Hy?(Q),
1 < p < oo, is the completion of C5° (£2; C*) with respect to the norm

lullppe = / (u(@)[E + (e - p)u(x)[)dz (1.2)

where the p-norm of a vector a = (ay, as, a3 as)” € C* is defined as

4
jaly = (Y lail™)"?,
i=1

u(r) = (u1(x), us(z), uz(x), us(z))”, and

3

(- plu(z) = Z%W(fv) = _(~iadpu(z)).

J=1
A completion of C*°(£2; C)* with respect to the same norm will be denoted H*?((2).

Let 8 be the fourth Dirac matrix given by

s=( 2 ")
0, —19

where 15 is the 2 x 2 identity matrix. It is known that the free massless Dirac operator
« - p as well as the free Dirac operator « - p + mf with positive mass m and the relativistic
Schrodinger operator v/m2 — A have similar embedding properties in L? but not necessarily
in LP for p # 2. Tt is also known that for 1 < p < oo, the usual WP(Q) Sobolev norm
(l]|2 + |Ve|[2)Y/? is equivalent to the norm [|v/1 — Av||,, where ¢ : R® — C [14].

In [5] the authors explore the relationship of Hy”(Q) with the classical Sobolev spaces
WyP(Q;C*) when Q is a bounded domain. In particular, it is shown that W,”(Q) and
W(Q) are dense subspaces of Hy?(Q) and H'P(Q) respectively. The maps

Jao: WyeP(Q) 3 ur ue HyP(Q)
Jo:  W(Q)3u—ueHY"PQ)

are one to one and continuous for 1 < p < co. They showed that the map Jg o is onto with
continuous inverse if 1 < p < 0o so that the spaces W, ?(Q) and the space Hy"() are the

same. If p =1, the map Jg is not onto.

In this paper we prove the limiting Dirac-Sobolev inequality on the whole space,

g lulP"dz < C, (/RB (- p)u]pdx) ’ ) (1.3)
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where C), is a positive constant, p € (1,3), and p* = ;’T’;. It follows that the map Jg is
onto for p € (1,3) if Q is an extension domain. An extension domain is a domain for which
every u € HYP(Q) there is a @ € HyP (') such that u = ii|q where Q € . We then prove
cocompactness of the embedding L*" (R?) ¢ H"?(R?), where H'?(R?) is the completion of

Cg°(R3; C*) with respect to the norm

full = ( [ lta- p)u\pdx)’l’ | (1.4

See Remark 2.2. We apply this result to show existance of minimizers to isoperimetric

problems involving oscillatory nonlinearities with critical growth.

2 A Dirac-Sobolev inequality and the space H'?(R?)

In this section we prove inequality (1.3).

Theorem 2.1 Let p € (1,3). Then there exists a constant C, > 0 such that for every
u € C§(R3;CY), (1.3) holds.

Proof. Let us use the inequality (3.10) of [1]|, with the choice of parameters k = p, r = 1 and
g — 3p=3.

4p—-3°
0 1-6 0o
lull? g, < Cll(e- p)ull?y, ulltG ", u € CF(By;CY). (2.1)

Using an elementary inequality s%t(1=9 < C(As + A7), % = 4 — 1, that holds for all

p

positive ¢, s, and A, and setting A = pP, s = |[ull} 5, and ¢ = [[ull{ 5, one deduces from

(2.1), for all positive p,
lullp 5, < C ("l - plully 5, + p° Fllulli p,) u € C5°(By; CY). (2.2)

By choosing p’ = Rp and rescaling the integration domain we will have, for any positive p/,

renamed p,

lull} 5, < C (P p)ully g, + 2> *llullf 5,) . u € C5°(Br; CY), (2.3)

for any R > 0. We conclude that for any positive p,

[ulls o < C (Il PIull g + 6Nl o) w € CFF (R CY), (2.4)

Let us apply (2.4) to functions x;(|ul), where x;(t) = 277x(27t), j € Z and x € C5°((5,4),
0,3]), such that x(¢) =t whenever ¢ € [1,2] and |x’| < 2. Then we obtain, with the values
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p = p; to be determined,

/ lulPdx < /Xj(u)pda:
fule[2i 2+1]
<c(nf (o puPdt
lule[27-1,2742]

p
pi % (/ |u]dx) ) :
lule27—1,27+2]

Taking into account the upper and lower bounds of |u| on the respective sets of integration,
we have

2(pp*>j/|| . ulP'de < Cpl (o~ p)ulPdz +
u|€(27,27

lul€[29—1,25+2]
p
g ([ e
|ul€[20—1,27+2]
> (1—p)it+pp* —p

If we substitute p; = 2~ 3-3p p, take the sum over j € Z, and note that each of the

intervals [2771 27%2] " j € 7Z, overlaps with the others not more than four times, we get

fursesels foomies (| e

Setting p = (55)*% ([ v )3 and collecting similar terms we arrive at (1.3). O

Inequality (1.3) defines a continuous imbedding of LP" (R?; C*) into H 57 (R?).

Remark 2.2 Note that (1.4) does indeed define a norm on C§°(R3; C*), since (a - p)u = 0
implies |[Vu|? = 0 which yields u = const. Since u = 0 outside of a compact set, the value
of this constant is zero. We have therefore a Banach space HpP(R?) into which L (R?) is
continuously imbedded. It should be noted, however, that the space H})’p (R3) is equivalent
to the usual gradient-norm space DYP(R3; C*) if and only if p € (1,3). If p > 1, consider
the gradient norm and the Dirac-gradient norm (1.4) on C5°(Bg; C*), which are equivalent
Sobolev norms in Wy*(Bg;C!) and Hy”(Bg) respectively. Since these norms are scale-
invariant, they are equivalent (by Theorem 1.3 (ii) of [5]) on the balls Br with bounds
independent of R and thus, these norms are equivalent on C§°(R3;C*), and, consequently
D(R?; C*) = H'?(R?). As a further consequence, the map Jg, defined in the introduction is

onto if p € (1,3) and €2 is an extension domain. From this observation, we obtain

Corollary 2.3 Letp € (1,3), Q C R? be and extension domain, and q € [p, p*] then

e < Cpa ([ (e D) + fup)i v (25)
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Remark 2.4 If p = 1, by Proposition 4.4 of [5] H"'(R? C*) is strictly smaller than
Hl’l(R?’).

3 Cocompactness of Dirac-Sobolev imbeddings

We recall the following definitions:

Definition 3.1 Let u, be a sequence in a Banach space E and D be a set of linear

1sometries acting on E. We say that uy, converges D—weakly to w, which we denote

2
U u,

if for all ¢ in F',
lim sup(g¢, ur, —u) = 0.

k—o0 geD

Remark 3.2 It follows immediately from 3.1 that if a bounded sequence wuy is not D—
weakly convergent to 0, then there exists a sequence g, € D and a w # 0 € E such that
Jrug — w.

Definition 3.3 Let B be a Banach space continuously embedded in E. We say that B
1s cocompact in E with respect to D if uy LuinE implies u, — u in B.

Let g be the group of dilations,

3—p

P

heu(z) =p 7 “u(p’x),

let Dg be the group of translations,

gu=u(-—y), y € R’

and let
D .= 5R X D(;.

We will denote by Dz the subgroup, s € Z, y € Z3. Note that both ||u

invariant under D and Dz. Furthermore, cocompactness with respect to D is equivalent to

pand |jul|gare

cocompactness with respect to Dz (Lemma 5.3, [15]).

Theorem 3.4 Let p € (1,3). Then L” (R%)is cocompactly embedded in H'"?(R?) with
respect to D.

Proof. Assume uy, is D-weakly convergent to zero in H'?(R?). Since C5°(R3; C*) is dense in
H'?(R?) and the latter is continuously imbedded into L”"(R?), we may assume without loss
of generality that u, € C3°(R?). Let x € C5°((5,p%); [0,p? — 1]), be such that x(t) = ¢ for
t € [1,p] and [X'| < ;2. By the Dirac-Sobolev inequality (2.5), for every y € 73,
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) p/p*
(Siomye g X dz) ™ < C fig 0, (- DYusl? + x(up)?)dz.

Since x(t)?" < Ct?, this gives

| s
(0,1)3+y

o( [ e ppur+ wmpyis) ( [ e -

1—p/p*
([ e exora) ([ war)
(0,1)3+4y (0,1)3+y

Summing the above inequalities over all y € Z3, and noting that by (1.3) |lugl|,-

IN

IN

IN
Q

therefore | {uk > %} | < C from which we can conclude fR3 X(ug)? < C, we obtain

. 1-p/p*
/ X(lug))P < Csup </ |uk|p> ) (3.1)
R3 yeZ3 (0,1)34y

Let y;, € Z3 be such that

1-p/p* 1-p/p*
sup (/ ]uk|p> <2 (/ |uk]p) )
yGZS (071)3+y (071)3+yk

Since uj, converges to zero D-weakly, (- — 1) — 0 in H"?(R?), and thus it follows from
Theorem 1.3 (ii) in [5] and the fact that (0,1)3 is an extension domain that u(- —y) — 0 in
Lr((0,1)3;C*). Therefore,

[ tal= [ ut-wp o
(071)3+yk (071)3

Substituting into (3.1), we obtain

/ X(|uk|)p*dx — 0.
R3

Let
x;(t) =p'x(p7t)), j €L

Since for any sequence j € Z, hj, u, converges to zero D-weakly, we have also, with arbitrary
jk € Z7

/RB X (Jure)”" dz — 0. (3.2)

For j € Z, we have
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p/p*
([ otmras) ™ <c [ (- P,
R3 {7~ <|ug|<pi*2}

which can be rewritten as

-
[ utturas<c [ (- plulds ( / xj<|uk|>p*dx) 33
R3 {pI=1<|ug|<pi+2} R3

Adding the inequalities (3.3) over j € Z and taking into account that the sets {z € R? :

2771 < |ug| < 2772} cover R? with uniformly finite multiplicity, we obtain

[
RS

Let ji be such that

. 1-p/p* . 1—-p/p*
sop ([t ) <2 ([ adw)
_]GZ R3 R3

Using the previous estimate and (3.2) we see that the right hand side of (3.4) converges to
zero. Thus u; — 0 in LP". ]

1—p/p*
Pdr < C’/ |(a - p)ug|Pdx sup (/ Xj(]uk|)p*) . (3.4)
R3 R3

JEZ

4 Existence of minimizers

We consider the class of functions F' € Cj,.(R)satisfying
F(p%js) =pYF(s), seR,j€Z. (4.1)

This class is characterized by continuous functions on the intervals [1, pgﬁp] and [—p3$, —1]
3— 3—

satisfying F(p 7 ) = p*F(1) and F(—p » ) = p*F(—1), extended to (0, 00) and (—o0,0) by

(4.1). It is immediate that there exists positive constants C; and Cy such that

Culs|P” < |F(s)] < Cals]". (4.2)

It also follows from (4.1) that for h; € dz,

/ F(hju)dx = / F(u)dz, forj € Z, u e LP (R?).
R3 R3
The functional

G(u) = /]R Flu)da

is continuous on L (R?) and thus on H'P(RR3).
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Theorem 4.1 There exists a minimizer to the following isoperimetric problem.

inf

. P 4.
ot [ e pupd (43)

in H'?(R?).

Proof. Let uy, be a minimizing sequence. By (4.2) and (2.5), uy, is bounded. By Theorem 3.4
and (4.2), uy cannot converge D—weakly to 0. By Theorem 2 in [13] (see also [12]), (4.2),
and using the facts: [[gwl|y, = [Jw[|}; and G(gw) = G(w), we may write (in our notation)
ke = S en g5 w™ | e — 0 with g;”) € Dy, w™ € H'»(R?),

luelfy = D w1, and (4.4)

neN

1=G(w) = Y Gw™)+o(1). (4.5)

neN

Since G(uy) = 1, (4.5) implies that at least one w™ # 0. We will denote this w™ by w.

From the proof of Theorem 2 in [13] it is immediate that
el = llwlle + lux — wllf + o(1). (4.6)
From (4.5) we deduce that

G(ux) = G(w) + G(uy — w) + o(1). (4.7)
Assume G(w) = A\. We imbed problem (4.3) in the continuous family of problems

a(t) == inf

: Pdx.
ot [l ppular

From the change of variables u(t'/3.), we see that a(t) = infg=1 t" 7/ [o|(a- p)uffde =
t1=7/3)q(1), so a(t) is a strictly concave function. From (4.6), we deduce that a(1) =
a(N) + a(l — ). Since a(t) is strictly concave, this is only possible if A = 1. Therefore
G(w) = 1 and w solves problem (4.3). O
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