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The limiting Dirac-Sobolev inequality

ABSTRACT. We prove the critical Dirac-Sobolev inequality for p ∈ (1, 3). It follows that the
Dirac Sobolev spaces are equivalent to classical Sobolev spaces if and only if p ∈ (1, 3). We
prove the cocompactness of Lp∗(R3) in Ḣ1,p(R3). As an application, we prove the existence
of minimizers to a class of isoperimetric problems.
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1 Introduction

In [1], Balinsky, Evans and Saito introduced an Lp-seminorm ‖(α · p)u‖p,Ω of a C4-valued
function on an open subset of Ω of R3 relevant to a massless Dirac operator

α · p =
3∑
j=1

αj(−i∂j). (1.1)

Here p = −i∇, and α = (α1, α2, α3) is the triple of 4× 4 Dirac matrices

αj =

(
02 σj

σj 02

)
j = 1, 2, 3

that use the 2× 2 zero matrix 02 and the triple of 2× 2 Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −1

i 0

)
, σ3

(
1 0

0 −1

)
.

They proved a family of inequalities for this seminorm, called Dirac-Sobolev inequalities, in
order to obtain Lp-estimates of the zero modes, i.e. generalized eigenfunctions associated
with the eigenvalue 0 of the Dirac operator (α · p) + Q, where Q(x) is a 4 × 4 Hermitian
matrix-valued potential decaying at infinity.
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Let Ω be an open subset of R3. The first order Dirac-Sobolev space H1,p
0 (Ω;C4) = H1,p

0 (Ω),
1 ≤ p <∞, is the completion of C∞0 (Ω;C4) with respect to the norm

‖u‖D,1,p,Ω :=

∫
Ω

(|u(x)|pp + |(α · p)u(x)|pp)dx (1.2)

where the p-norm of a vector a = (a1, a2, a3,a4)T ∈ C4 is defined as

|a|p = (
4∑
i=1

|ai|p)1/p,

u(x) = (u1(x), u2(x), u3(x), u4(x))T , and

(α · p)u(x) :=
3∑
j=1

αjpju(x) =
3∑
j=1

(−iαj∂ju(x)).

A completion of C∞(Ω;C)4 with respect to the same norm will be denoted H1,p(Ω).

Let β be the fourth Dirac matrix given by

β =

(
12 02

02 −12

)
,

where 12 is the 2 × 2 identity matrix. It is known that the free massless Dirac operator
α · p as well as the free Dirac operator α · p +mβ with positive mass m and the relativistic
Schrodinger operator

√
m2 −∆ have similar embedding properties in L2 but not necessarily

in Lp for p 6= 2. It is also known that for 1 < p < ∞, the usual W 1,p(Ω) Sobolev norm
(‖ψ‖pp + ‖∇ψ‖pp)1/p is equivalent to the norm ‖

√
1−∆ψ‖p, where ψ : R3 7→ C [14].

In [5] the authors explore the relationship of H1,p
0 (Ω) with the classical Sobolev spaces

W 1,p
0 (Ω;C4) when Ω is a bounded domain. In particular, it is shown that W 1,p

0 (Ω) and
W 1,p(Ω) are dense subspaces of H1,p

0 (Ω) and H1,p(Ω) respectively. The mapsJΩ,0 : W 1,p
0 (Ω) 3 u 7→ u ∈ H1,p

0 (Ω)

JΩ : W 1,p(Ω) 3 u 7→ u ∈ H1,p(Ω)

are one to one and continuous for 1 ≤ p <∞. They showed that the map JΩ,0 is onto with
continuous inverse if 1 < p < ∞ so that the spaces W 1,p

0 (Ω) and the space H1,p
0 (Ω) are the

same. If p = 1, the map JΩ,0 is not onto.

In this paper we prove the limiting Dirac-Sobolev inequality on the whole space,

∫
R3

|u|p∗dx ≤ Cp

(∫
R3

|(α · p)u|pdx
) p∗

p

, (1.3)
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where Cp is a positive constant, p ∈ (1, 3), and p∗ = 3p
3−p . It follows that the map JΩ is

onto for p ∈ (1, 3) if Ω is an extension domain. An extension domain is a domain for which
every u ∈ H1,p(Ω) there is a ũ ∈ H1,p

0 (Ω′) such that u = ũ|Ω where Ω ⊂ Ω′. We then prove
cocompactness of the embedding Lp∗(R3) ⊂ Ḣ1,p(R3), where Ḣ1,p(R3) is the completion of
C∞0 (R3;C4) with respect to the norm

‖u‖ =

(∫
R3

|(α · p)u|pdx
) 1

p

. (1.4)

See Remark 2.2. We apply this result to show existance of minimizers to isoperimetric
problems involving oscillatory nonlinearities with critical growth.

2 A Dirac-Sobolev inequality and the space Ḣ1,p(R3)

In this section we prove inequality (1.3).

Theorem 2.1 Let p ∈ (1, 3). Then there exists a constant Cp > 0 such that for every
u ∈ C∞0 (R3;C4), (1.3) holds.

Proof. Let us use the inequality (3.10) of [1], with the choice of parameters k = p, r = 1 and
θ = 3p−3

4p−3
:

‖u‖pp,B1
≤ C‖(α · p)u‖pθp,B1

‖u‖p(1−θ)1,B1
, u ∈ C∞0 (B1;C4). (2.1)

Using an elementary inequality sθt(1−θ) ≤ C(λs + λ−γt), 1
γ

= 1
θ
− 1, that holds for all

positive t, s, and λ, and setting λ = ρp, s = ‖u‖pp,B1
, and t = ‖u‖p1,B1

, one deduces from
(2.1), for all positive ρ,

‖u‖pp,B1
≤ C

(
ρp‖(α · p)u‖pp,B1

+ ρ3−3p‖u‖p1,B1

)
u ∈ C∞0 (B1;C4). (2.2)

By choosing ρ′ = Rρ and rescaling the integration domain we will have, for any positive ρ′,
renamed ρ,

‖u‖pp,BR
≤ C

(
ρp‖(α · p)u‖pp,BR

+ ρ3−3p‖u‖p1,BR

)
, u ∈ C∞0 (BR;C4), (2.3)

for any R > 0. We conclude that for any positive ρ,

‖u‖pp,R3 ≤ C
(
ρp‖(α · p)u‖pp,R3 + ρ3−3p‖u‖p1,R3

)
, u ∈ C∞0 (R3;C4). (2.4)

Let us apply (2.4) to functions χj(|u|), where χj(t) = 2−jχ(2jt), j ∈ Z and χ ∈ C∞0 ((1
2
, 4),

[0, 3]), such that χ(t) = t whenever t ∈ [1, 2] and |χ′| ≤ 2. Then we obtain, with the values
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ρ = ρj to be determined,∫
|u|∈[2j ,2j+1]

|u|pdx ≤
∫
χj(u)pdx

≤ C

(
ρpj

∫
|u|∈[2j−1,2j+2]

|(α · p)u|pdx+

ρ3−3p
j

(∫
|u|∈[2j−1,2j+2]

|u|dx
)p)

.

Taking into account the upper and lower bounds of |u| on the respective sets of integration,
we have

2(p−p∗)j

∫
|u|∈[2j ,2j+1]

|u|p∗dx ≤ Cρpj

∫
|u|∈[2j−1,2j+2]

|(α · p)u|pdx+

C2p(1−p
∗)(j−1)ρ3−3p

j

(∫
|u|∈[2j−1,2j+2]

|u|p∗dx

)p
.

If we substitute ρj = 2−
p3(1−p)j+pp∗−p

3−3p ρ, take the sum over j ∈ Z, and note that each of the
intervals [2j−1, 2j+2], j ∈ Z, overlaps with the others not more than four times, we get

∫
|u|p∗dx ≤ C

(
ρp
∫
R3

|(α · p)u|pdx+ ρ3−3p

(∫
R3

|u|p∗dx

)p)
Setting ρ =

(
1

2C

) 1
3−3p (

∫
up

∗
)
1
3 and collecting similar terms we arrive at (1.3).

Inequality (1.3) defines a continuous imbedding of Lp∗(R3;C4) into Ḣ1,p
D (R3).

Remark 2.2 Note that (1.4) does indeed define a norm on C∞0 (R3;C4), since (α · p)u = 0

implies |∇u|2 = 0 which yields u = const. Since u = 0 outside of a compact set, the value
of this constant is zero. We have therefore a Banach space Ḣ1,p

D (R3) into which Lp∗(R3) is
continuously imbedded. It should be noted, however, that the space Ḣ1,p

D (R3) is equivalent
to the usual gradient-norm space D1,p(R3;C4) if and only if p ∈ (1, 3). If p > 1, consider
the gradient norm and the Dirac-gradient norm (1.4) on C∞0 (BR;C4), which are equivalent
Sobolev norms in W 1,p

0 (BR;C4) and H1,p
0 (BR) respectively. Since these norms are scale-

invariant, they are equivalent (by Theorem 1.3 (ii) of [5]) on the balls BR with bounds
independent of R and thus, these norms are equivalent on C∞0 (R3;C4), and, consequently
D(R3;C4) = Ḣ1,p(R3). As a further consequence, the map JΩ defined in the introduction is
onto if p ∈ (1, 3) and Ω is an extension domain. From this observation, we obtain

Corollary 2.3 Let p ∈ (1, 3), Ω ⊂ R3 be and extension domain, and q ∈ [p, p∗] then

‖u‖q,Ω ≤ Cp,q

(∫
Ω

(|(α · p)u|p + |u|p)dx
)1/p

. (2.5)
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Remark 2.4 If p = 1, by Proposition 4.4 of [5] Ḣ1,1(R3;C4) is strictly smaller than
Ḣ1,1(R3).

3 Cocompactness of Dirac-Sobolev imbeddings

We recall the following definitions:

Definition 3.1 Let uk be a sequence in a Banach space E and D be a set of linear
isometries acting on E. We say that uk converges D−weakly to u, which we denote

uk
D
⇀ u,

if for all φ in E ′,
lim
k→∞

sup
g∈D

(gφ, uk − u) = 0.

Remark 3.2 It follows immediately from 3.1 that if a bounded sequence uk is not D−
weakly convergent to 0, then there exists a sequence gk ∈ D and a w 6= 0 ∈ E such that
g∗kuk ⇀ w.

Definition 3.3 Let B be a Banach space continuously embedded in E. We say that B
is cocompact in E with respect to D if uk

D
⇀ u in E implies uk → u in B.

Let δR be the group of dilations,

hsu(x) = p
3−p
p
su(psx),

let DG be the group of translations,

gyu = u(· − y), y ∈ R3,

and let
D := δR ×DG.

We will denote by DZ the subgroup, s ∈ Z, y ∈ Z3. Note that both ‖u‖p∗and ‖u‖Ḣare
invariant under D and DZ. Furthermore, cocompactness with respect to D is equivalent to
cocompactness with respect to DZ (Lemma 5.3, [15]).

Theorem 3.4 Let p ∈ (1, 3). Then Lp
∗
(R3)is cocompactly embedded in Ḣ1,p(R3) with

respect to D.

Proof. Assume uk is D-weakly convergent to zero in Ḣ1,p(R3). Since C∞0 (R3;C4) is dense in
Ḣ1,p(R3) and the latter is continuously imbedded into Lp∗(R3), we may assume without loss
of generality that uk ∈ C∞0 (R3). Let χ ∈ C∞0 ((1

p
, p2); [0, p2 − 1]), be such that χ(t) = t for

t ∈ [1, p] and |χ′| ≤ p
p−1

. By the Dirac-Sobolev inequality (2.5), for every y ∈ Z3,
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(∫
(0,1)3+y

χ(|uk|)p
∗
dx
)p/p∗

≤ C
∫

(0,1)3+y
(|(α · p)uk|p + χ(uk)

p)dx.

Since χ(t)p
∗ ≤ Ctp, this gives∫

(0,1)3+y

χ(|uk|)p
∗
dx

≤ C

(∫
(0,1)3+y

(|(α · p)uk|p + χ(uk)
p)dx

)(∫
(0,1)3+y

χ(|uk|)p
∗
dx

)1−p/p∗

≤ C

(∫
(0,1)3+y

(|(α · p)uk|p + χ(uk)
p)dx

)(∫
(0,1)3+y

upkdx

)1−p/p∗

.

Summing the above inequalities over all y ∈ Z3, and noting that by (1.3) ‖uk‖p∗ ≤ C,
therefore |

{
uk ≥ 1

p

}
| ≤ C from which we can conclude

∫
R3 χ(uk)

p ≤ C, we obtain

∫
R3

χ(|uk|)p
∗ ≤ C sup

y∈Z3

(∫
(0,1)3+y

|uk|p
)1−p/p∗

. (3.1)

Let yk ∈ Z3 be such that

sup
y∈Z3

(∫
(0,1)3+y

|uk|p
)1−p/p∗

≤ 2

(∫
(0,1)3+yk

|uk|p
)1−p/p∗

.

Since uk converges to zero D-weakly, uk(· − yk) ⇀ 0 in Ḣ1,p(R3), and thus it follows from
Theorem 1.3 (ii) in [5] and the fact that (0, 1)3 is an extension domain that uk(· − y)→ 0 in
Lp((0, 1)3;C4). Therefore,∫

(0,1)3+yk

|uk|p =

∫
(0,1)3

|uk(· − yk)|p → 0.

Substituting into (3.1), we obtain

∫
R3

χ(|uk|)p
∗
dx→ 0.

Let
χj(t) = pjχ(p−jt)), j ∈ Z.

Since for any sequence j ∈ Z, hjkuk converges to zero D-weakly, we have also, with arbitrary
jk ∈ Z,

∫
R3

χjk(|uk|)p
∗
dx→ 0. (3.2)

For j ∈ Z, we have
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(∫
R3

χj(|uk|)p
∗
dx

)p/p∗
≤ C

∫
{pj−1≤|uk|≤pj+2}

|(α · p)uk|pdx,

which can be rewritten as

∫
R3

χj(|uk|)p
∗
dx ≤ C

∫
{pj−1≤|uk|≤pj+2}

|(α · p)uk|pdx
(∫

R3

χj(|uk|)p
∗
dx

)1− p
p∗

. (3.3)

Adding the inequalities (3.3) over j ∈ Z and taking into account that the sets {x ∈ R3 :

2j−1 ≤ |uk| ≤ 2j+2} cover R3 with uniformly finite multiplicity, we obtain

∫
R3

|uk|p
∗
dx ≤ C

∫
R3

|(α · p)uk|pdx sup
j∈Z

(∫
R3

χj(|uk|)p
∗
)1−p/p∗

. (3.4)

Let jk be such that

sup
j∈Z

(∫
R3

χj(|uk|)p
∗
)1−p/p∗

≤ 2

(∫
R3

χjk(|uk|)p
∗
)1−p/p∗

.

Using the previous estimate and (3.2) we see that the right hand side of (3.4) converges to
zero. Thus uk → 0 in Lp∗ .

4 Existence of minimizers

We consider the class of functions F ∈ Cloc(R)satisfying

F (p
3−p
p
js) = p3jF (s), s ∈ R, j ∈ Z. (4.1)

This class is characterized by continuous functions on the intervals [1, p
3−p
p ] and [−p

3−p
p ,−1]

satisfying F (p
3−p
p ) = p3F (1) and F (−p

3−p
p ) = p3F (−1), extended to (0,∞) and (−∞, 0) by

(4.1). It is immediate that there exists positive constants C1 and C2 such that

C1|s|p
∗ ≤ |F (s)| ≤ C2|s|p

∗
. (4.2)

It also follows from (4.1) that for hj ∈ δZ,∫
R3

F (hju)dx =

∫
R3

F (u)dx, for j ∈ Z, u ∈ Lp∗
(R3).

The functional
G(u) =

∫
R3

F (u)dx

is continuous on Lp∗(R3) and thus on Ḣ1,p(R3).
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Theorem 4.1 There exists a minimizer to the following isoperimetric problem.

inf
G(u)=1

∫
R3

|(α · p)u|pdx (4.3)

in Ḣ1,p(R3).

Proof. Let uk be a minimizing sequence. By (4.2) and (2.5), uk is bounded. By Theorem 3.4
and (4.2), uk cannot converge D−weakly to 0. By Theorem 2 in [13] (see also [12]), (4.2),
and using the facts: ‖gw‖p

Ḣ
= ‖w‖p

Ḣ
and G(gw) = G(w), we may write (in our notation)

‖uk −
∑

n∈N g
(n)
k w(n)‖Lp∗ → 0 with g(n)

k ∈ DZ, w(n) ∈ Ḣ1,p(R3),

‖uk‖pḢ ≥
∑
n∈N

‖w(n)‖pH , and (4.4)

1 = G(uk) =
∑
n∈N

G(w(n)) + o(1). (4.5)

Since G(uk) = 1, (4.5) implies that at least one w(n) 6= 0. We will denote this w(n) by w.
From the proof of Theorem 2 in [13] it is immediate that

‖uk‖pH = ‖w‖pH + ‖uk − w‖pH + o(1). (4.6)

From (4.5) we deduce that

G(uk) = G(w) +G(uk − w) + o(1). (4.7)

Assume G(w) = λ. We imbed problem (4.3) in the continuous family of problems

α(t) := inf
G(u)=t

∫
R3

|(α · p)u|pdx.

From the change of variables u(t1/3·), we see that α(t) = infG(u)=1 t
(1−p/3)

∫
R3 |(α · p)u|pdx =

t(1−p/3)α(1), so α(t) is a strictly concave function. From (4.6), we deduce that α(1) =

α(λ) + α(1 − λ). Since α(t) is strictly concave, this is only possible if λ = 1. Therefore
G(w) = 1 and w solves problem (4.3).
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