IAN SCHINDLER, CYRIL TINTAREV

The limiting Dirac-Sobolev inequality

ABSTRACT. We prove the critical Dirac-Sobolev inequality for \(p \in (1, 3) \). It follows that the Dirac Sobolev spaces are equivalent to classical Sobolev spaces if and only if \(p \in (1, 3) \). We prove the cocompactness of \(L^p(\mathbb{R}^3) \) in \(\dot{H}^{1,p}(\mathbb{R}^3) \). As an application, we prove the existence of minimizers to a class of isoperimetric problems.

KEY WORDS AND PHRASES. cocompact imbeddings, concentration compactness, Dirac operator, minimizers, Sobolev imbeddings, critical exponent

1 Introduction

In [1], Balinsky, Evans and Saito introduced an \(L^p \)-seminorm \(\Vert (\alpha \cdot p)u \Vert_{p,\Omega} \) of a \(\mathbb{C}^4 \)-valued function on an open subset of \(\Omega \) of \(\mathbb{R}^3 \) relevant to a massless Dirac operator

\[
\alpha \cdot p = \sum_{j=1}^{3} \alpha_j (-i\partial_j).
\]

(1.1)

Here \(p = -i\nabla \), and \(\alpha = (\alpha_1, \alpha_2, \alpha_3) \) is the triple of \(4 \times 4 \) Dirac matrices

\[
\alpha_j = \begin{pmatrix} 0_2 & \sigma_j \\ \sigma_j & 0_2 \end{pmatrix} \quad j = 1, 2, 3
\]

that use the \(2 \times 2 \) zero matrix \(0_2 \) and the triple of \(2 \times 2 \) Pauli matrices

\[
\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -1 \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\]

They proved a family of inequalities for this seminorm, called Dirac-Sobolev inequalities, in order to obtain \(L^p \)-estimates of the zero modes, i.e. generalized eigenfunctions associated with the eigenvalue 0 of the Dirac operator \((\alpha \cdot p) + Q \), where \(Q(x) \) is a \(4 \times 4 \) Hermitian matrix-valued potential decaying at infinity.
Let Ω be an open subset of \mathbb{R}^3. The first order Dirac-Sobolev space $H^{1,p}_0(\Omega; \mathbb{C}^4) = H^{1,p}_0(\Omega)$, $1 \leq p < \infty$, is the completion of $C^\infty(\Omega; \mathbb{C}^4)$ with respect to the norm

$$\|u\|_{D,1,p,\Omega} := \int_\Omega \left(|u(x)|^p_p + |(\alpha \cdot p) u(x)|^p_p\right) dx,$$

where the p-norm of a vector $a = (a_1, a_2, a_3, a_4)^T \in \mathbb{C}^4$ is defined as

$$|a|^p_p = \left(\sum_{i=1}^4 |a_i|^p\right)^{1/p},$$

and $u(x) = (u_1(x), u_2(x), u_3(x), u_4(x))^T$, and

$$(\alpha \cdot p) u(x) := \sum_{j=1}^3 \alpha_j p_j u(x) = \sum_{j=1}^3 (-i\alpha_j \partial_j u(x)).$$

A completion of $C^\infty(\Omega; \mathbb{C})^4$ with respect to the same norm will be denoted $H^{1,p}(\Omega)$.

Let β be the fourth Dirac matrix given by

$$\beta = \begin{pmatrix} 1_2 & 0_2 \\ 0_2 & -1_2 \end{pmatrix},$$

where 1_2 is the 2×2 identity matrix. It is known that the free massless Dirac operator $\alpha \cdot p$ as well as the free Dirac operator $\alpha \cdot p + m\beta$ with positive mass m and the relativistic Schrödinger operator $\sqrt{m^2 - \Delta}$ have similar embedding properties in L^2 but not necessarily in L^p for $p \neq 2$. It is also known that for $1 < p < \infty$, the usual $W^{1,p}(\Omega)$ Sobolev norm $(||\psi||^p_p + ||\nabla \psi||^p_p)^{1/p}$ is equivalent to the norm $||\sqrt{1-\Delta}\psi||_p$, where $\psi : \mathbb{R}^3 \mapsto \mathbb{C}$ [14].

In [5] the authors explore the relationship of $H^{1,p}_0(\Omega)$ with the classical Sobolev spaces $W^{1,p}_0(\Omega; \mathbb{C}^4)$ when Ω is a bounded domain. In particular, it is shown that $W^{1,p}_0(\Omega)$ and $W^{1,p}(\Omega)$ are dense subspaces of $H^{1,p}_0(\Omega)$ and $H^{1,p}(\Omega)$ respectively. The maps

$$\begin{cases} J_{\Omega,0} : W^{1,p}_0(\Omega) \ni u \mapsto u \in H^{1,p}_0(\Omega) \\ J_{\Omega} : W^{1,p}(\Omega) \ni u \mapsto u \in H^{1,p}(\Omega) \end{cases}$$

are one to one and continuous for $1 \leq p < \infty$. They showed that the map $J_{\Omega,0}$ is onto with continuous inverse if $1 < p < \infty$ so that the spaces $W^{1,p}_0(\Omega)$ and the space $H^{1,p}_0(\Omega)$ are the same. If $p = 1$, the map $J_{\Omega,0}$ is not onto.

In this paper we prove the limiting Dirac-Sobolev inequality on the whole space,

$$\int_{\mathbb{R}^3} |u|^p dx \leq C_p \left(\int_{\mathbb{R}^3} |(\alpha \cdot p) u|^p dx \right)^{p/2},$$

(1.3)
where C_p is a positive constant, $p \in (1, 3)$, and $p^* = \frac{3p}{3-p}$. It follows that the map J_Ω is onto for $p \in (1, 3)$ if Ω is an extension domain. An extension domain is a domain for which every $u \in \mathcal{H}^{1,p}(\Omega)$ there is a $\tilde{u} \in \mathcal{H}^0_0(\Omega')$ such that $u = \tilde{u}|_\Omega$ where $\Omega \subset \Omega'$. We then prove cocompactness of the embedding $L^p(\mathbb{R}^3) \subset \mathcal{H}^{1,p}(\mathbb{R}^3)$, where $\mathcal{H}^{1,p}(\mathbb{R}^3)$ is the completion of $C_0^\infty(\mathbb{R}^3; \mathbb{C}^4)$ with respect to the norm

$$
\|u\| = \left(\int_{\mathbb{R}^3} |(\alpha \cdot \mathbf{p})u|^p dx\right)^{\frac{1}{p}}.
$$

(1.4)

See Remark 2.2. We apply this result to show existence of minimizers to isoperimetric problems involving oscillatory nonlinearities with critical growth.

2 A Dirac-Sobolev inequality and the space $\mathcal{H}^{1,p}(\mathbb{R}^3)$

In this section we prove inequality (1.3).

Theorem 2.1 Let $p \in (1, 3)$. Then there exists a constant $C_p > 0$ such that for every $u \in C_0^\infty(\mathbb{R}^3; \mathbb{C}^4)$, (1.3) holds.

Proof. Let us use the inequality (3.10) of [1], with the choice of parameters $k = p$, $r = 1$ and $\theta = \frac{3p-3}{4p-3}$.

$$
\|u\|^p_{p,B_1} \leq C\|((\alpha \cdot \mathbf{p})u\|^p_{p,B_1} \|u\|^p_{1,B_1}, \quad u \in C_0^\infty(B_1; \mathbb{C}^4).\quad (2.1)
$$

Using an elementary inequality $s^{\theta t^{(1-\theta)}} \leq C(\lambda s + \lambda^{-\gamma}t)$, $\frac{1}{\gamma} = 1 - \frac{3}{4p} - 1$, that holds for all positive t, s, and λ, and setting $\lambda = \rho^p$, $s = \|u\|^p_{p,B_1}$, and $t = \|u\|^p_{1,B_1}$, one deduces from (2.1), for all positive ρ,

$$
\|u\|^p_{p,B_1} \leq C(\rho^p\|((\alpha \cdot \mathbf{p})u\|^p_{p,B_1} + \rho^{3-3p}\|u\|^p_{1,B_1}), \quad u \in C_0^\infty(B_1; \mathbb{C}^4).\quad (2.2)
$$

By choosing $\rho' = R^p \rho$ and rescaling the integration domain we will have, for any positive ρ', renamed ρ,

$$
\|u\|^p_{p,B_R} \leq C(\rho'\|((\alpha \cdot \mathbf{p})u\|^p_{p,B_R} + \rho'^{3-3p}\|u\|^p_{1,B_R}), \quad u \in C_0^\infty(B_R; \mathbb{C}^4),\quad (2.3)
$$

for any $R > 0$. We conclude that for any positive ρ,

$$
\|u\|^p_{p,\mathbb{R}^3} \leq C(\rho^p\|((\alpha \cdot \mathbf{p})u\|^p_{p,\mathbb{R}^3} + \rho^{3-3p}\|u\|^p_{1,\mathbb{R}^3}), \quad u \in C_0^\infty(\mathbb{R}^3; \mathbb{C}^4).\quad (2.4)
$$

Let us apply (2.4) to functions $\chi_j(|u|)$, where $\chi_j(t) = 2^{-j}\chi(2^jt)$, $j \in \mathbb{Z}$ and $\chi \in C_0^\infty(\frac{1}{2}, 4)$, $[0, 3])$, such that $\chi(t) = t$ whenever $t \in [1, 2]$ and $|\chi'| \leq 2$. Then we obtain, with the values
\(\rho = \rho_j \) to be determined,

\[
\int_{|u| \in [2^{j-1}, 2^j]} |u|^p \, dx \leq \int \chi_j(u)^p \, dx \\
\leq C \left(\rho_j^p \int_{|u| \in [2^{j-1}, 2^j]} |(\alpha \cdot p)u|^p \, dx + \rho_j^{3-3p} \left(\int_{|u| \in [2^{j-1}, 2^j]} |u| \, dx \right)^p \right).
\]

Taking into account the upper and lower bounds of \(|u|\) on the respective sets of integration, we have

\[
2^{(p-p^*)j} \int_{|u| \in [2^{j-1}, 2^j]} |u|^{p^*} \, dx \leq C \rho_j^p \int_{|u| \in [2^{j-1}, 2^j]} |(\alpha \cdot p)u|^p \, dx + C 2^{p(1-p^*)j} \rho_j^{3-3p} \left(\int_{|u| \in [2^{j-1}, 2^j]} |u|^{p^*} \, dx \right)^p.
\]

If we substitute \(\rho_j = 2 \frac{\rho_j^{3-3p} \left(\int_\Omega |u|^{p^*} \, dx \right) \rho_j^{p^*} \rho_j^{3-3p}}{\rho_j^{3-3p}} \), take the sum over \(j \in \mathbb{Z} \), and note that each of the intervals \([2^{j-1}, 2^j], j \in \mathbb{Z}\), overlaps with the others not more than four times, we get

\[
\int |u|^{p^*} \, dx \leq C \left(\rho_j^p \int_\mathbb{R}^3 |(\alpha \cdot p)u|^p \, dx + \rho_j^{3-3p} \left(\int_{\mathbb{R}^3} |u|^{p^*} \, dx \right)^p \right)
\]

Setting \(\rho = \left(\frac{1}{2^{j+3}} \right)^{\frac{1}{3-3p}} \left(\int u^{p^*} \right)^{\frac{1}{4}} \) and collecting similar terms we arrive at (1.3).

Inequality (1.3) defines a continuous imbedding of \(L^{p^*}(\mathbb{R}^3; \mathbb{C}^4) \) into \(\dot{H}_D^{1,p}(\mathbb{R}^3) \).

Remark 2.2 Note that (1.4) does indeed define a norm on \(C_0^\infty(\mathbb{R}^3; \mathbb{C}^4) \), since \((\alpha \cdot p)u = 0\) implies \(|\nabla u|^2 = 0\) which yields \(u = \text{const} \). Since \(u = 0 \) outside of a compact set, the value of this constant is zero. We have therefore a Banach space \(\dot{H}_D^{1,p}(\mathbb{R}^3) \) into which \(L^{p^*}(\mathbb{R}^3) \) is continuously imbedded. It should be noted, however, that the space \(\dot{H}_D^{1,p}(\mathbb{R}^3) \) is equivalent to the usual gradient-norm space \(\mathcal{D}^{1,p}(\mathbb{R}^3; \mathbb{C}^4) \) if and only if \(p \in (1, 3) \). If \(p > 1 \), consider the gradient norm and the Dirac-gradient norm (1.4) on \(C_0^\infty(B_R; \mathbb{C}^4) \), which are equivalent Sobolev norms in \(W_0^{1,p}(B_R; \mathbb{C}^4) \) and \(H_0^{1,p}(B_R) \) respectively. Since these norms are scale-invariant, they are equivalent (by Theorem 1.3 (ii) of [3]) on the balls \(B_R \) with bounds independent of \(R \) and thus, these norms are equivalent on \(C_0^\infty(\mathbb{R}^3; \mathbb{C}^4) \), and, consequently \(\mathcal{D}(\mathbb{R}^3; \mathbb{C}^4) = \dot{H}_D^{1,p}(\mathbb{R}^3) \). As a further consequence, the map \(J_\Omega \) defined in the introduction is onto if \(p \in (1, 3) \) and \(\Omega \) is an extension domain. From this observation, we obtain

Corollary 2.3 Let \(p \in (1, 3), \Omega \subset \mathbb{R}^3 \) be and extension domain, and \(q \in [p, p^*] \) then

\[
\|u\|_{q, \Omega} \leq C_{p,q} \left(\int_\Omega \left(|(\alpha \cdot p)u|^p + |u|^p \right) \, dx \right)^{1/p}.
\] (2.5)
Remark 2.4 If \(p = 1 \), by Proposition 4.4 of [5] \(\dot{H}^{1,1}(\mathbb{R}^3; \mathbb{C}^4) \) is strictly smaller than \(\dot{H}^{1,1}(\mathbb{R}^3) \).

3 Cocompactness of Dirac-Sobolev imbeddings

We recall the following definitions:

Definition 3.1 Let \(u_k \) be a sequence in a Banach space \(E \) and \(D \) be a set of linear isometries acting on \(E \). We say that \(u_k \) converges \(D \)-weakly to \(u \), which we denote \(u_k \xrightarrow{D} u \), if for all \(\phi \) in \(E' \),

\[
\lim_{k \to \infty} \sup_{g \in D} (g\phi, u_k - u) = 0.
\]

Remark 3.2 It follows immediately from 3.1 that if a bounded sequence \(u_k \) is not \(D \)-weakly convergent to 0, then there exists a sequence \(g_k \in D \) and a \(w \neq 0 \in E \) such that \(g_k u_k \rightharpoonup w \).

Definition 3.3 Let \(B \) be a Banach space continuously embedded in \(E \). We say that \(B \) is cocompact in \(E \) with respect to \(D \) if \(u_k \xrightarrow{D} u \) in \(E \) implies \(u_k \to u \) in \(B \).

Let \(\delta_{\mathbb{R}} \) be the group of dilations,

\[
h_s u(x) = p^{\frac{3-p}{p}} s^{p} u(p^s x),
\]

let \(D_G \) be the group of translations,

\[
g_y u = u(\cdot - y), \quad y \in \mathbb{R}^3,
\]

and let

\[
D := \delta_{\mathbb{R}} \times D_G.
\]

We will denote by \(D_Z \) the subgroup, \(s \in \mathbb{Z}, y \in \mathbb{Z}^3 \). Note that both \(\|u\|_{p'} \) and \(\|u\|_{\dot{H}^s} \) are invariant under \(D \) and \(D_Z \). Furthermore, cocompactness with respect to \(D \) is equivalent to cocompactness with respect to \(D_Z \) (Lemma 5.3, [15]).

Theorem 3.4 Let \(p \in (1, 3) \). Then \(L^p(\mathbb{R}^3) \) is cocompactly embedded in \(\dot{H}^{1,p}(\mathbb{R}^3) \) with respect to \(D \).

Proof. Assume \(u_k \) is \(D \)-weakly convergent to zero in \(\dot{H}^{1,p}(\mathbb{R}^3) \). Since \(C_0^\infty(\mathbb{R}^3; \mathbb{C}^4) \) is dense in \(\dot{H}^{1,p}(\mathbb{R}^3) \) and the latter is continuously imbedded into \(L^p(\mathbb{R}^3) \), we may assume without loss of generality that \(u_k \in C_0^\infty(\mathbb{R}^3) \). Let \(\chi \in C_0^\infty((\frac{1}{p}, p^2); [0, p^2 - 1]) \), be such that \(\chi(t) = t \) for \(t \in [1, p] \) and \(|\chi'| \leq \frac{p}{p-1} \). By the Dirac-Sobolev inequality (2.5), for every \(y \in \mathbb{Z}^3 \),
\[\left(\int_{(0,1)^3+y} \chi(|u_k|)^p \right)^{p/p^*} \leq C \int_{(0,1)^3+y} |(\alpha \cdot p) u_k|^p + \chi(u_k)^p \, dx. \]

Since \(\chi(t)^{p^*} \leq C\|t\|_{p^*} \), this gives
\[
\int_{(0,1)^3+y} \chi(|u_k|)^{p^*} \, dx \\
\leq C \left(\int_{(0,1)^3+y} |(\alpha \cdot p) u_k|^p + \chi(u_k)^p \, dx \right) \left(\int_{(0,1)^3+y} \chi(|u_k|)^{p^*} \, dx \right)^{1-p/p^*} \\
\leq C \left(\int_{(0,1)^3+y} |(\alpha \cdot p) u_k|^p + \chi(u_k)^p \, dx \right) \left(\int_{(0,1)^3+y} u_k^p \, dx \right)^{1-p/p^*}.
\]

Summing the above inequalities over all \(y \in \mathbb{Z}^3 \), and noting that by (1.3) \(\|u_k\|_{p^*} \leq C \), therefore \(\left\{ \{ u_k \geq \frac{1}{p} \} \right\} \leq C \) from which we can conclude \(\int_{\mathbb{R}^3} \chi(u_k)^p \leq C \), we obtain
\[
\int_{\mathbb{R}^3} \chi(|u_k|)^{p^*} \leq C \sup_{y \in \mathbb{Z}^3} \left(\int_{(0,1)^3+y} u_k^p \right)^{1-p/p^*}.
\]

Let \(y_k \in \mathbb{Z}^3 \) be such that
\[
\sup_{y \in \mathbb{Z}^3} \left(\int_{(0,1)^3+y} u_k^p \right)^{1-p/p^*} \leq 2 \left(\int_{(0,1)^3+y_k} u_k^p \right)^{1-p/p^*}.
\]

Since \(u_k \) converges to zero \(D \)-weakly, \(u_k(\cdot - y_k) \to 0 \) in \(H^{1,p}(\mathbb{R}^3) \), and thus it follows from Theorem 1.3 (ii) in \([5]\) and the fact that \((0,1)^3\) is an extension domain that \(u_k(\cdot - y) \to 0 \) in \(L^p((0,1)^3; \mathbb{C}^4) \). Therefore,
\[
\int_{(0,1)^3+y_k} u_k^p = \int_{(0,1)^3} |u_k(\cdot - y_k)|^p \to 0.
\]

Substituting into (3.1), we obtain
\[
\int_{\mathbb{R}^3} \chi(|u_k|)^{p^*} \, dx \to 0.
\]

Let
\[
\chi_j(t) = t^j \chi(p^{-j}t), \quad j \in \mathbb{Z}.
\]

Since for any sequence \(j \in \mathbb{Z} \), \(h_j u_k \) converges to zero \(D \)-weakly, we have also, with arbitrary \(j_k \in \mathbb{Z} \),
\[
\int_{\mathbb{R}^3} \chi_{j_k}(|u_k|)^{p^*} \, dx \to 0.
\]

For \(j \in \mathbb{Z} \), we have
Interpolation of cocompact imbeddings

\[
\left(\int_{\mathbb{R}^3} \chi_j(|u_k|)^p \, dx \right)^{p/p^*} \leq C \int_{\{p^{j-1} \leq |u_k| \leq p^{j+2}\}} |(\alpha \cdot p)u_k|^p \, dx,
\]

which can be rewritten as

\[
\int_{\mathbb{R}^3} \chi_j(|u_k|)^p \, dx \leq C \int_{\{p^{j-1} \leq |u_k| \leq p^{j+2}\}} |(\alpha \cdot p)u_k|^p \, dx \left(\int_{\mathbb{R}^3} \chi_j(|u_k|)^p \, dx \right)^{1-\frac{p}{p^*}}. \tag{3.3}
\]

Adding the inequalities (3.3) over \(j \in \mathbb{Z} \) and taking into account that the sets \(\{ x \in \mathbb{R}^3 : 2^{j-1} \leq |u_k| \leq 2^{j+2} \} \) cover \(\mathbb{R}^3 \) with uniformly finite multiplicity, we obtain

\[
\int_{\mathbb{R}^3} |u_k|^p \, dx \leq C \int_{\mathbb{R}^3} |(\alpha \cdot p)u_k|^p \, dx \sup_{j \in \mathbb{Z}} \left(\int_{\mathbb{R}^3} \chi_j(|u_k|)^p \, dx \right)^{1-\frac{p}{p^*}}. \tag{3.4}
\]

Let \(j_k \) be such that

\[
\sup_{j \in \mathbb{Z}} \left(\int_{\mathbb{R}^3} \chi_j(|u_k|)^p \, dx \right)^{1-\frac{p}{p^*}} \leq 2 \left(\int_{\mathbb{R}^3} \chi_{j_k}(|u_k|)^p \, dx \right)^{1-\frac{p}{p^*}}.
\]

Using the previous estimate and (3.2) we see that the right hand side of (3.4) converges to zero. Thus \(u_k \to 0 \) in \(L^{p^*} \).

4 Existence of minimizers

We consider the class of functions \(F \in C_{\text{loc}}(\mathbb{R}) \) satisfying

\[
F(p^{\frac{3}{2^j}}s) = p^{3j}F(s), \quad s \in \mathbb{R}, j \in \mathbb{Z}. \tag{4.1}
\]

This class is characterized by continuous functions on the intervals \([1, p^{\frac{3}{2^j}}] \) and \([-p^{\frac{3}{2^j}}, -1]\) satisfying \(F(p^{\frac{3}{2^j}}) = p^3F(1) \) and \(F(-p^{\frac{3}{2^j}}) = p^3F(-1) \), extended to \((0, \infty)\) and \((-\infty, 0)\) by (4.1). It is immediate that there exists positive constants \(C_1 \) and \(C_2 \) such that

\[
C_1|s|^{p^*} \leq |F(s)| \leq C_2|s|^{p^*}. \tag{4.2}
\]

It also follows from (4.1) that for \(h_j \in \delta_{\mathbb{Z}} \),

\[
\int_{\mathbb{R}^3} F(h_j u) \, dx = \int_{\mathbb{R}^3} F(u) \, dx, \quad \text{for } j \in \mathbb{Z}, \quad u \in L^{p^*}(\mathbb{R}^3).
\]

The functional

\[
G(u) = \int_{\mathbb{R}^3} F(u) \, dx
\]

is continuous on \(L^{p^*}(\mathbb{R}^3) \) and thus on \(\dot{H}^{1,p}(\mathbb{R}^3) \).
Theorem 4.1. There exists a minimizer to the following isoperimetric problem.

$$\inf_{G(u)=1} \int_{\mathbb{R}^3} |(\alpha \cdot \mathbf{p})u|^p \, dx$$ \hspace{1cm} (4.3)

in $\tilde{H}^{1,p}(\mathbb{R}^3)$.

Proof. Let u_k be a minimizing sequence. By (4.2) and (2.5), u_k is bounded. By Theorem 3.4 and (4.2), u_k cannot converge $D-$weakly to 0. By Theorem 2 in [13] (see also [12]), (4.2), and using the facts: $\|gw\|^p_{\tilde{H}} = \|w\|^p_{\tilde{H}}$, and $G(gw) = G(w)$, we may write (in our notation)

$$\|u_k\|^p_{\tilde{H}} \geq \sum_{n \in \mathbb{N}} \|w^{(n)}\|^p_{\tilde{H}}, \text{ and}$$

$$1 = G(u_k) = \sum_{n \in \mathbb{N}} G(w^{(n)}) + o(1).$$ \hspace{1cm} (4.5)

Since $G(u_k) = 1$, (4.5) implies that at least one $w^{(n)} \neq 0$. We will denote this $w^{(n)}$ by w. From the proof of Theorem 2 in [13] it is immediate that

$$\|u_k\|^p_{\tilde{H}} = \|w\|^p_{\tilde{H}} + \|u_k - w\|^p_{\tilde{H}} + o(1).$$ \hspace{1cm} (4.6)

From (4.5) we deduce that

$$G(u_k) = G(w) + G(u_k - w) + o(1).$$ \hspace{1cm} (4.7)

Assume $G(w) = \lambda$. We imbed problem (4.3) in the continuous family of problems

$$\alpha(t) := \inf_{G(u)=t} \int_{\mathbb{R}^3} |(\alpha \cdot \mathbf{p})u|^p \, dx.$$

From the change of variables $u(t^{1/3})$, we see that $\alpha(t) = \inf_{G(u)=1} t^{(1-p/3)} \int_{\mathbb{R}^3} |(\alpha \cdot \mathbf{p})u|^p \, dx = t^{(1-p/3)} \alpha(1)$, so $\alpha(t)$ is a strictly concave function. From (4.6), we deduce that $\alpha(1) = \alpha(\lambda) + \alpha(1 - \lambda)$. Since $\alpha(t)$ is strictly concave, this is only possible if $\lambda = 1$. Therefore $G(w) = 1$ and w solves problem (4.3). \hfill \Box

References

Interpolation of cocompact imbeddings

I. Schindler, C. Tintarev

received: January 28, 2014

Authors:

Ian Schindler
MIP-Ceremath UMR 5219,
University of Toulouse 1,
21 allee de Brienne,
31000 Toulouse,
France

e-mail: ian.schindler@univ-tse1.fr

Cyril Tintarev
Department of Mathematics,
Uppsala University,
P.O.Box 480,
75 106 Uppsala,
Sweden

e-mail: tintarev@math.uu.se