Rostock. Math. Kolloq. 68, 65-69 (2013)

 $\begin{array}{l} \mbox{Subject Classification (AMS)} \\ \mbox{46A20, 46B50} \end{array}$

HARRY POPPE

An abstract Alaoglu theorem

1 Introduction

We start with the paper [6] and repeat the definition of the dual space X^d of the space X w.r.t. another space Y. By Corollary 3.3 of this paper was given a (strong) generalization of the Alaoglu theorem for normed spaces. The Alaoglu theorem concerns the compactness of subsets $H \subseteq X^d$, where for H the pointwise topology τ_p is considered. Of course for the classical Alaoglu theorem we have:

 $(X, \|\cdot\|)$ is a Banachspace, $Y = \mathbb{K}$, $X^d = X'$, $H = B(X') \subseteq X'$,

the norm-closed ball, and the topology τ_p here is nothing else than the weak-star topology.

What is the aim of this paper? We prove a general τ_p -compactness theorem for special subsets $H \subseteq X^d$ (Theorem 2.3). This theorem includes both the generalized Alaoglu theorem of [6], Corollary 3.3 and the Alaoglu theorem for locally convex topological vector spaces (see for instance [5]).

2 The τ_p -compactness theorem

Definition 2.1 Let (X, τ) , (Y, σ) be topological spaces. Moreover let X, Y be spaces with finitely many algebraic operations such that X, Y belong to the same class of such spaces. We assume that we can assign to each algebraic operation in X an algebraic operation in Y (in a naturel manner).

 $X^d = \{h : X \to Y | h \text{ is continuous and } h \text{ is a homomorphism with respect to each pair of corresponding algebraic operations in X and in Y respectively}; X^d \text{ is called the (first) dual space of X with respect to Y or the Y-dual of X.}$

Remark 2.2 1. A theory of this general concept of duality is developed in [6], [2], [3] (definitions of X^d and of the second Y-dual space X^{dd} together with the corresponding toolbox).

Hereby in [2] the definition of X^d and that of the other notions (definitions, propositions and theorems occuring in [2]) is presented very precisely using the language of universal algebra.

- 2. Clearly, a closed subset of a compact topological space is compact too. Hence, we not only look for the τ_p -compactness of some sets $H \subseteq X^d$ but also for the τ_p -closedness of H.
- 3. We still provide a notion of relative compactness we need:

if X is a topological space, $A \subseteq X$ is called relatively compact in X iff holds: each open cover of X has a finite subcover which covers A, or equivalently:

for each ultrafilter π on X:

$$A \in \pi \Longrightarrow \exists x \in X, \ \pi \longrightarrow x$$

For the definition and especially the properties of this notion see [8], [1]. Sometimes one defines: A is relatively compact iff the closure \overline{A} is compact, a notion somewhat stronger than the first one.

For regular spaces the two notions coincide.

Theorem 2.3 Let (X, τ) , (Y, σ) be topological spaces with algebraic structure according to definition 2.1 and let us consider X^d . We assume that (Y, σ) is Hausdorff such that all algebraic operations in Y are continuous with respect to σ . Moreover there is a bornology <u>B</u> in Y.

We assume that there exists a family $(K_x)_{x \in X}$ such that $\forall x \in X$, $K_x \in \underline{B}$ and $K_x \neq \emptyset$; for the product $\Pi\{K_x | x \in X\}$ we consider the Tychonoff-topology; thus $\Pi\{K_x | x \in X\}$ is a subspace of $(Y^X; \tau_p)$.

$$H = \{h \in X^d | \forall x \in X : h(x) \in K_x\};$$

identifying

$$h \equiv (h(x))_{x \in X}$$
 we get $H \subseteq \Pi\{K_x | x \in X\}.$

Finally, we assume

- 1. For $(Y; \underline{B})$ holds: $\forall B \in \underline{B}$: B is relatively compact in Y.
- 2. Either
 - (a) H is τ_p -closed in Y^X , or

(b) $\forall x \in X: K_x \text{ is closed and } H \text{ is closed in } \Pi\{K_x | x \in X\}.$

Then H is compact and Hausdorff in (Y^X, τ_p) and hence in (X^d, τ_p) too.

Proof: $\forall x \in X, K_x \subseteq Y$ is relatively compact in $Y \Longrightarrow \Pi\{K_x | x \in X\}$ is relatively compact in $(Y^X; \tau_p)$ by the Tychonoff theorem. Y Hausdorff $\Longrightarrow \forall x \in X : K_x$ is Hausdorff $\Longrightarrow \Pi\{K_x | x \in X\}$ is Hausdorff. By 2. (a) H is τ_p -closed in Y^X and since $H \subseteq \Pi\{K_x | x \in X\}$, H is relatively compact in $(Y^X; \tau_p)$ too and hence H is compact and Hausdorff in (Y^X, τ_p) .

We have $H \subseteq X^d \subseteq Y^X$ and hence H is Hausdorff and compact in $(X^d; \tau_p)$, too.

By 2. (b) each K_x is relatively compact and closed yielding that K_x is compact and thus $\Pi\{K_x|x \in X\}$ is a Hausdorff and compact topological space again by Tychonoff. Then H being closed in $\Pi\{K_x|x \in X\}$, is compact in $\Pi\{K_x|x \in X\}$ and hence H is Hausdorff and compact in (Y^X, τ_p) and in (X^d, τ_p) respectively.

Corollary 2.4 Let X, Y be Hausdorff locally convex topological vector spaces (shortly: l. c. s.); $\underline{B} = \{B \subseteq Y | B \text{ is bounded}\}$; clearly \underline{B} is a bornology. Only the vector space operations are the algebraic operations in X and Y and these operations are continuous w. r. t. the topologies of X and Y. Now let Y be a Montel space, which means a Hausdorff barreled l. c. s. such that $\forall B \subseteq Y : B$ bounded $\Longrightarrow B$ is relatively compact.

With these spaces X, Y, their properties and with the other assumptions from Theorem 2.3 the assertions of Theorem 2.3 hold here.

3 Application

We will deduce from Theorem 2.3 or Corollary 2.4 respectively the classical Alaoglu theorem for l. c. s. (sometimes called Alaoglu-Bourbaki theorem) and the generalized τ_p -theorem in Corollary 3.3 of [6].

A. Let X be a Hausdorff l. c. s. and $Y = \mathbb{K}$; \mathbb{R} and \mathbb{C} are Montel spaces (as normed Euclidian spaces) and thus the vector space operations in \mathbb{K} are continuous. $X^d = \{h : X \to \mathbb{K} \mid h \text{ linear and continuous}\} = X'$. Now let U be a neighborhood of $o \in X$ and $U^o = \{h \in X^d \mid \forall x \in U : |h(x)| \le 1\}$ the polar of U; let $H = U^o$; $\forall x \in U$,

$$K_x = \{ y \in \mathbb{K} \mid |y| \le 1 \},\$$

where $|\cdot|$ is the K-norm; $\forall z \in X \setminus U$, $\{z\}$ is bounded in X and hence there exists $\lambda_z > 0$: $z \in \lambda_z U$.

Hence $\forall z \in X \setminus U$, $\{\lambda > 0 \mid z \in \lambda U\} \neq \emptyset$; by the axiom of choice there exists a vector $(\lambda_z)_{z \in X \setminus U} : \forall z \in X \setminus U : z \in \lambda_z U$.

$$\forall x \in U : \lambda_x := 1; \ \forall x \in X : \ K_x = \{ y \in \mathbb{K} \mid |y| \le \lambda_x \};$$

each K_x is bounded and closed in \mathbb{K} and hence compact implying that K_x is relatively compact too, of course each K_x is Hausdorff.

We show:

- 1. $H = U^o \subseteq \prod \{ K_x \mid x \in X \}.$
- 2. U^o is closed in $(\mathbb{K}^X; \tau_p)$.

Then Corollary 2.4 shows:

 U^o is τ_p -compact and Hausdorff in \mathbb{K}^X and in X^d too, thus showing the assertion of the Alaoglu-Bourbaki theorem.

- 1. $\forall h \in U^o : \forall x \in U, |h(x)| \leq 1 = \lambda_x \Longrightarrow h(x) \in K_x; x \in X \setminus U \Longrightarrow x \in \lambda_x U \Longrightarrow x = \lambda_x u, u \in U \Longrightarrow h(x) = \lambda_x h(u) \Longrightarrow |h(x)| = \lambda_x |h(u)| \leq \lambda_x \Longrightarrow h(x) \in K_x.$ Hence $U^o \subseteq \prod\{K_x | x \in X\}.$
- 2. We know that the polar set U^o is equicontinuous and hence U^o is evenly continuous; let (h_i) be a net from U^o , $h_i \xrightarrow{\tau_p} h \in \mathbb{K}^X$; $\forall i, h_i$ is linear $\Longrightarrow h$ is linear by proposition 3.1 of [6]. Since U^o is evenly continuous and $h_i \xrightarrow{\tau_p} h$ we get $h_i \xrightarrow{c} h$ (continuous convergence) by Theorem 31 of [4] (see also [7]).

Now \mathbb{K} is a regular topological space and thus h is continuous by Theorem 30 of [4].

Hence $h \in X^d$; $\forall x \in U$, $h_i(x) \longrightarrow h(x)$, $\forall i, |h_i(x)| \le 1 \implies |h(x)| \le 1$, meaning that $h \in U^o$ and thus U^o is closed in (\mathbb{K}^X, τ_p) .

B. Now let our l. c. s. X, Y be Banach spaces.

But that means that $Y = (Y, \|\cdot\|)$ is a finite-dimensional normed space because Y is a Montel space.

In [6] there was defined:

$$\forall c \in \mathbb{R}, \ c > 0 : H_c = \{h \in X^d \mid ||h|| \le c\},\$$

where $\|\cdot\|$ is the operator norm,

$$\forall c > 0, \ \forall x \in X : K_{x,c} = \{ y \in Y | \|y\| \le c \|x\| \}.$$

Then $H_c \subseteq \Pi\{K_{x,c} | x \in X\}$ and in Theorem 3.2 of [6] was shown that H_c is closed w.r.t. the Tychonoff-topology in $\Pi\{K_{x,c} | x \in X\}$. For a fixed c > o, $K_{x,c}$ is bounded and closed in Y and hence compact too, because Y is finite-dimensional.

Theorem 2.3 then shows that H_c is τ_p -compact in Y^X and in X^d respectively. But this is the assertion of Corollary 3.3 of [6].

References

- [1] Bartsch, R.: Allgemeine Topologie. Oldenburg Wissenschaftsverlag GmbH (2007)
- [2] Bartsch, R., and Poppe, H. : An abstract algebraic-topological approach to the notions of a first and a second dual space I. in Guiseppe Di Maio and Somashekhar Naimpally (Ed.), Theory and Applications of Proximity, Nearness and Uniformity, Quaderni di Matematica, 22, Palermo (2009), 275–297
- [3] Bartsch, R., and Poppe, H. : An abstract algebraic-topological approach to the notions of a first and a second dual space II. International Journal of Pure and Applied Mathematics, 84, No 5 (2013), 651–667
- [4] Bartsch, R., Denker, P., and Poppe, H. : Ascoli-Arzela-Theory based on continuous convergence in an (almost) non-Hausdorff setting. in Categorical Topology, Dordrecht (1996)
- [5] Meise, R., and Vogt, D.: Introduction to Functional Analysis. Clarendon Press · Oxford (1997)
- [6] Poppe, H.: A closededness theorem for normed spaces. Demonstratio Matematica 41, No 1 (2008), 123-127
- [7] Poppe, H. : Compactness in General Function Spaces. Deutscher Verlag der Wissenschaften Berlin (1974)
- [8] Poppe, H. : On locally defined topological notions. Questions and Answers in General Topology 13 (1995), 39-53

received: March 25, 2014

Author:

Harry Poppe Universität Rostock Institut für Mathematik 18051 Rostock Germany e-mail: harry.poppe@uni-rostock.de