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ABSTRACT. This paper uncovers a connection between two-scale difference equations and
the representation of sums of sequences which satisfy a certain multiplicative recurrence
formula. For certain digital power sums related with such a sequence we derive a formula
which in case of usual power sums yields the known representation of power sums by means

of Bernoulli polynomials.
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1 Introduction

Let p > 1 be an integer and (), the sequence which is given by the p initial values Cy = 1,
C4,...,Cp—1 such that
CIZOo+"'+Cp_1>O (1.1)

and which satisfies the recurrence formula
Ckarr:CkCr (kEN, T:O,...,p—l). (12)
In this paper we derive a formula for the sum

Sm(N) =" Cn™ (1.3)

where m € Ny. In the simple case C,, = 1 for all n we have the usual power sum which can

be expressed by means of the Bernoulli polynomials B,,(t) in the form

QI B,.(N) (1.4)
where .
Bnlt) = ——{Buis(t) — Buia}. (1.5)

Digital sums were investigated by many authors, cf. e.g. [1], [13], [3], [12], [5], [6], [10]
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Under the condition
IC| < C for r=0,1,...,p—1 (1.6)

we show that for the digital sum (1.3) it holds

=z

Con™ = N> N"F,, (log, N) (1.7)
n=0

Il
=)

n

with o = log, C' and 1-periodic continuous functions Fy, , which can be expressed by means

of the solutions of certain two-scale difference equations (Theorem 4.1).

In order to derive formula (1.7) we quote some facts on the two-scale difference equation

£\
Ap (Z_?) = ;crw(t — ) (t € R) (1.8)

with A # 0 and complex coefficients ¢, where ¢y # 0 and

p—1
Y e=1, (1.9)
r=0

cf. [11] where equation (1.8) with A = 1 was studied in detail. In [7] and [3] it was investigated
a system of simple functional equations which is equivalent to equation (1.8) with A = 1, cf.
[11, p.60]. It is known that under the condition |¢,| < 1 equation (1.8) with A = 1 has a

continuous solution ¢, satisfying
wo(t) =0 for t <0, wo(t)=1 for t>1 (1.10)

and that ¢g is even Holder continuous cf. [I1, Theorem 3.6]. The solution ¢ = ¢ has the

Laplace transform
1
Ligo} = 8(2) (1.11)

where

o) =[P <e—z/1ﬂ') (1.12)
j=1
with the polynomial

P(w) = Zcrwr, (1.13)
cf. [1], [2].

The iterated integrals ¢, (n € N) of (g, defined recursively by

onlt) = [ pus(r)i



Two-Scale Difference Equations and . . . 47

are solutions of (1.8) with A = p". For ¢ > 1 the solution ¢, is a polynomial

pn(t) = pu(t)  (E>1) (1.14)

of degree n with the main term %t”. We remark that the polynomials p,, have the property

Pl (t) = pp_1(t), i.e. they are Appell polynomials, cf. [1], [2]. The generating function reads
" B(z) = pa(t)e"  (tER) (1.15)
n=0

with ® from (1.12). The coefficients of the power series
O(2) = Z anz" (1.16)
n=0

can be calculated recursively by ag = ®(0) = 1 and

n p—1

1 .
a, = z:(—l)ka—'lC Zrkcr (n € N) (1.17)
- A
cf. [2, Proposition 2.6] where p = 2, and the polynomials p,, in (1.15) have the representation
Pult) = %t’? (1.18)
k=0

We also need the power series

1 o0
= b, z" 1.19
5 = 2 b (1.19)
n=0
where the coefficients b, are determined by by = 1 and the equations
CLnbO + an,1b1 + -+ aobn =0 (n > 1) (120)

The corresponding Appell polynomials

an(t) =) b’;g_!kt'“ (1.21)

have the generating function
et? 0
—— =) q.(t)". (1.22)
o0 %

This paper is organized as follows: At first we show that the solution ¢ = ¢, of the two-scale

difference equation (1.8) with A\ = p™ has for k < p® the representation

k ct i )
on (—) = 5 i) (1.23)
r) s
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where p,, are the polynomials (1.18), (Theorem 2.1). This formula is the start point for the
representation (1.7) of digital power sums. In Section 3 we prove (1.7) in the case m = 0,

1.e.
N-1

So(N) =Y C, = N*Fy(log, N) (1.24)

n=0
(Theorem 3.2), and give some properties of the 1-periodic continuous function Fy under the
condition (1.6), for instance that Fj is Holder continuous and that Fj is differentiable almost
everywhere if p|CyC) - - - Cp_1|Y/? < C, (Proposition 3.5). By means of a Toeplitz theorem

we prove the convergence of the arithmetical mean
— —So(N) (1.25)

as n — oo (Proposition 3.7). In Section 4 we prove the main result of this paper, namely
the representation (1.7), (Theorem 4.1). In the simple case C,, = 1 for all n formula (1.7)
turns over into the known representation (1.4) for the usual power sums, cf. Remark 4.2.

For the specific power sums (1.3) where N is a power of p we have the representation

Sm(P*) = (=1)"mlp*™* >~ p"* by, (1.26)

n=0

with o = log, C' and the coefficients a,, from (1.16) and b, from (1.19), (Proposition 5.2),

and we prove for positive integers k, ¢

L /m
549 = 3 ()5, (1.27)
o \H
o
(Proposition 5.6).
2 Functional relations
For given coefficients co, ¢y, ..., cp,—1 of the two-scale difference equation (1.8) we define a

sequence C,, by (), = = forn=0,1,...,p— 1 and for n > p by the recursion
Ckp-i-r:CkCr (kz Lre {071a7p_1}) (21)
If n has the p-adic representation

n=> np, ({01, .. p-1} (2.2)

then we have
p—1

C, = H Cﬁr(n) (2.3)

r=1
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where s,.(n) denotes the total number of occurrences of the digit r in the representation (2.2)
of n, cf. [I1, p.63].

The numbers C,, have the generating function

G(z) = ﬁ CloP (ij> = i Cp2" (2.4)

=0 n=0
which converges for |z| < 1, cf. [I1, Remark 2.2.1.].
In the following we want to generalize Proposition 2.3 from [11] for ¢,.

Theorem 2.1 For ¢ € N and non-negative integers k < p* the solution ¢ = ¢, of (1.8)

with X = p™ satisfies the equations

k4t e &
‘Pn( o >=p—fe > Crpult+k—j)  (0<t<1). (2.5)
=0

Moreover, for k < p® we have

k ct k )
on (—) S ANt (2.6)
I

where p, are the polynomials (1.18).

Proof: In (1.8) with A = p"™ we replace t by k +¢ with 0 < k < p — 1 and get in view of
C’rzz—gforogrgp—l

p—1

“n (w) = in Cr@n<k+t_7ﬂ)
p p r=0

OS2

p"; enllr )

Co b .

= — ) Cion(k+1t—7)
P

since ¢, (t) =0 for t < 0. So (2.5) is true for £ = 1. Assume that (2.5) is valid for a fixed /.
Replace t by 2 with 0 < s < p — 1 we get

P

0 <M) _dy . (p(k:—j)+s+t>
" £+1 - nt Jrn
p D = P
CZ k p—1
= S S etk s b 4)
j=0 r=0

C£+1 kE p-1
- WZZC’jZ,M@n(t—l—kp—i-s—pj—r).

j=0 r=0
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So (2.5) is proved by induction. Formula (2.6) follows by summation in view of ¢,(0) = 0
and (1.14) for the polynomials p,(t) from (1.18). O

Remark 2.2 Formula (2.6) yields in case n = 0 the known representations

oo () = (5) + i <<y 2.7)

and

for the solution ¢ = g of equation (1.8) with A =1, cf. [L1].
From (2.5) and (2.6) we get in view of (1.14) the following result.

Corollary 2.3 For ¢ € Ny and non-negative integers k < p* the solution o = @, of (1.8)
with A = p™ satisfies

k +1 Ck Cﬁ
%( o ) T sDn(t)+p—£€pnk(t) (0<t<1) (2.9)

with the polynomaials
Par(t) =Y Chjpn(j +1) (2.10)

and py(t) from (1.18).

We remark that (2.9) with (2.10) is already known for the iterated integrals of de Rham’s
function, cf. |2, (3.16) and Theorem 3.1].
3 Digital sums

Let C,, be an arbitrary sequence with the properties Cy = 1, (1.1) and (1.2). In order to

obtain a formula for the sum (1.3) with m =0, i.e.

N—-1
Cr (3.1)
n=0
we consider the two-scale difference equation
£\ 1%
(7) = a2 cete—) 32)
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with C' from (1.1). In the following we assume that (1.6) is satisfies so that equation (3.2)
has a continuous solution ¢ = ¢q satisfying (1.10) since the quotients ¢, = % satisfy (1.9)
and |c,| < 1. For 0 <t <1 we have in view of Cy = 1 and (1.10)

40 <3> = Zel)  (0<t<1)

p
We put
o= log, C (3.3)
so that p* = C' and
‘D(ff;) L ) (3.4)
(%) t
Hence, the function
t
ﬁ@y:¢i) 0<t<1) (3.5)
has the property: fo(fg) = fo(t) so that it can be extended for all ¢ > 0 by
fo(pt) = fo(t) (3.6)

where fy(t) is continuous for ¢ > 0.

Proposition 3.1 [f (1.6) is satisfies then for N € N the sum So(N) from (3.1) can be
represented as
So(N) = N fo(N) (3.7)

with o from (3.3) and the continuous function fo from (3.5) and (3.6).

Proof: Because of (1.6) equation (3.2) has a continuous solution ¢, satisfying (1.10). For
N < p* we have by (2.8) the formula

So(N) = Ctyy (g) . (3.8)

For arbitrary N we choose £ so large that p* > N. In view of (3.8), (3.3) and (3.5) we have

N (" (N (N
) = (57) = () 0 (7) =8 (7).
Owing to (3.6) it follows (3.7). O

According to (3.6) the function

Fo(u) == fo(p*)  (ueR) (3.9)

has the period 1 and in virtue of (3.5) we have by Proposition 3.1 :
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Theorem 3.2 If (1.6) is satisfies then for N € N the sum So(N) from (3.1) can be

represented as

SQ(N) = NaFo(Ing N) (310)
with a from (3.3) and an —1 periodic continuous function Fy which is given by
Fo(u) = 9”;&2 ) o oo) (w<0) (3.11)

where @q 1s the solution of (3.2) satisfying (1.10).

Remark 3.3 Note that from (3.10) and (3.11) for N = p* we get in view of Fy(k) =

pF—1

So(p*) =Y C, =pr*=C* (3.12)
n=0

with C from (1.1).

Remark 3.4 In the case C, = 1 for all r = 0,1,...,p — 1 we have C = p and a = 1.
Equation (3.2) has the trivial solution ¢o(t) =t for 0 <t <1, fo(t) =1 for t > 0, Fy(u) =1
for all uw € R and we get Sp(N) = N for the sum (3.1).

In the following we exclude the trivial case C,, = 1 for all n.

Proposition 3.5 If(1.6) is satisfies then the 1-periodic continuous function Fy(u) from
(3.11) has the following properties:

1. Fj is Holder continuous.

2. If pMy < C where My = |CoCh - - - Cp_1|1/p then Iy s differentiable almost everywhere
and if pMy > C' then it is almost nowhere differentiable.

3. Fy has finite total variation on [0,1] if and only if C. > 0 forr =0,1,...,p— 1. In

this case we have
1

V() <20 -2 (3.13)
0
Proof: It is known that in case |¢,| < 1 the solution ¢ = ¢ of (1.8) with A = 1 is Holder
continuous, cf. [11, Theorem 3.6]. This implies in view of ¢, = & with C from (1.1), (3.5)
and (3.9) the first property of Fy. Analogously, the second property is a consequence of |11,
Theorem 4.12].

In order to prove the third property first we consider the case C, > 0 where the solution
@ = o of (3.2) is increasing, cf. |11, Proposition 5.1]. We show that for fy from (3.5) it
holds

1

\(fo) <20 2. (3.14)

1/p
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Let }D =ty <t; <...<t,=1besome decomposition of [%, 1]. Because of the identity
2(aA—bB)=(a+b)(A—B)+ (A+ B)(a—1) (3.15)

it holds
2|laA —bB| < |a+b||A— B|+ |A+ Blla — b|.

Using this inequality with a = &, b= =, A = ¢o(t;) and B = ¢o(t;+1) we have in view of
7 i+1
max |po(t)| = ¢o(1) =1 and (3.5)

1 1 1 1
2[fo(t:) = fotira)] < e lo(ti) — woltiv1)] + 2 R
i b P
a 1 1
< 2max {p*, 1}|wo(t:) — po(tiv1)| +2 | — |-
t5 (2B

Since p* = C' > 1 and y(.) is increasing we get by summation

\(h < (w0 =0 (5)) 1 —11= (1) + =)

1/p

where we have used ¢y(1) = 1, gao(]%) = z% = &, cf. (3.4) with ¢ = 1, and (3.3). So we have

proved (3.14) which implies (3.13) in virtue of (3.9).
Now we consider the case that C,. > 0 is not true for all » = 0,1,...,p — 1. Then by |11,
Proposition 2.6] the solution ¢ = ¢y of (3.2) does not have finite total variation on [0, 1].

According to (2.7) this is true also for the subinterval [%, %] if Cy, # 0. This implies

1

\/ (o) = 0 (3.16)

1/p
since in view of (1.6) it is impossible that C, =0 for all r =1,2,...,p — 1.

From (3.15) we get
2laA —bB| > |a+b||A — B| — |A+ Blla — b

and with the same notations as before

1 1

a o'
ti ti+1

2| fo(ti) = fo(tivs)| = 2min {p®, 1}|po(ti) — @o(tiv1)| — 2M

where M = max{|po(t)|} for % <t < 1. In view of p* > 1 it follows

—_

n—

S Ut — oltisn)| 2 Y leult) — olticn) = MG 1)

%

Il
=)
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which implies
1

\/(fo) =X

1/p
according to (3.16). Finally, (3.9) yields that Fy does not have finite total variation on [0,1].
]

Remark 3.6 Note that according to (2.7) the solution ¢q is constant on [%, %] ifCp,=0

for some &k < p — 1. We remark that the suppositions of Proposition 2.6 in |1 1] are to add
by ¢; #0 forall j =0,1,...,p— 1.

Proposition 3.7 If (1.6) is satisfies then for the sums So(N) from (3.1) we have

1 &1
— —S5y(N) — ¢ n — 00 3.17
o 2 S (n— o0) (317

where

c= [ fo(t)dt (3.18)
with fo from (3.5) and (3.6).

Proof: The sum in (3.17) can be written as

11 .
ﬁ Z WSO(N) = Z tn,mAm (319)
N=1 m=0
with . .
p p
and .
1 4 1
i A

For the numbers ¢, ,,, we have t,,,,, >0, t, 0 +t,1+---+1t,, =1 and t,,, — 0 asn — oo for
fixed m, so that by a known Toeplitz theorem the sum (3.19) converges to ¢ from (3.18) if

A, — 1 fo(t)dt (m — o0). (3.20)
1/p

According to (3.7) with the continuous function f; from (3.5) and (3.6) we have for m > 1

Ay = L S

m _ poym—1
S N

1 > N
e, 2 ()

m
p N=pm—141
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where we have used (3.6). With the substitution &k = N — p™~! we get

1 TE T 1k
pr—pmt ,; “\p pm
and in view of the continuity of f; it follows (3.20). O

Example 3.8 (Digital exponential sums) We consider the sequence C,, = ¢°™ with ¢ > 0,
where s(n) denotes the number of ones in the binary representation of n. This sequence
satisfies relation (1.2) with p = 2, Cp = 1 and C; = ¢. The corresponding two-scale

difference equation (3.2) reads

© (%) =ap(t)+ (1 —a)p(t —1) (t € R) (3.21)

with a = 1—J1rq and the solution ¢ = g satisfying (1.10) which clearly depend on the parameter

a. (cf. de Rham’s function [10]). By Theorem 3.2 we have for the sum

N-1
So(N) =) ¢°™ (3.22)
n=0

the exact formula

So(V) = N Fy(log, N)
where o = log,(1+¢) and where Fy(u) is a continuous, 1-periodic function which is connected
with de Rham’s function ¢, i.e. the solution of (3.21), by

Fo(u) = a"po(2")  (u<0),

cf. also [10, Theorem 2.1]. Let us mention that in case ¢ = 2 the sum (3.22) is equal to the
number of odd binomial coefficients in the first N rows of Pascal’s triangle and that the sum

(3.22) was already investigated by many authors, cf. e.g. [12], [6], [10].
Example 3.9 (Cantor’s function) We consider the sequence C,, where C,, = 0 if the triadic

representation of n contains the digit 1, elsewhere C,, = 0. This sequence satisfies relation
(1.2) with p =3, Cy = 1, C; = 0 and Cy = 1. Note that for the generating function (2.4) we
have

G(2) :chznzzzw =142+ 254842 20 2 2
n=0 k=0
with strictly increasing exponents 79 = 0,71 = 2,72 = 6,73 = 8 and so on, where it holds

with £, € {0,1}:

n=>Y g2 = 7,=2) 3" (3.23)
n=0 n=0
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cf. [11, Formula (5.9)]. For the sum (3.1) it follows
N-1
So(N)=> Co=k+1 for 3+1<N <y (3.24)
n=0

By means of Theorem 3.2 this sum can also represented by means of Cantor’s function.
Cantor’s function is the solution ¢q of (3.2) restricted to [0,1] with p = 3, Cy = 1, C} = 0,
Cy=1and C =2, ie. ¢ =y is solution of

o(5)=3o0+30¢-2  @e®)

satisfying (1.10), cf. [9, Section 5|, |11, Example 5.6]. By Theorem 3.2 the sum (3.24) can
be expressed as follows:
So(N) = NYFy(logs N) (3.25)

where o = log; 2 and where Fj is a continuous periodic function with period 1 which is given

by .
Fo(u) = o00(2%) - (u=0) (3.26)

with Cantor’s function .

It is remarkable that the intervals .J,,,, where Cantor’s function ¢, is constant, have the

form .
Ty = (dmttl Om (n=1,2,3,..., m=12...,2"
’ 3" 3n
with oo(t) = g% for t € Jpp, cf. |11, Formula (5.11)]. Let us mention that in [0, Section 5|

it was considered a sequence h(n), defined by

(5)-5-

with strictly increasing exponents ¢;, and in virtue of (3.23) we see that h(n) = 1v,. In
[6] it was mentioned that h(1) < h(2) < --- < h(n) is the “minimal” sequence of n positive
integers not containing an arithmetic progression. By means of the Mellin transformation it

was shown [0, Theorem 5.1]:
1
H(N) := h(n) = NP*'F(log, N) — =N
(V)= 3 hm) (logy N) —

where p = log, 3 and where F'(u) is an 1-periodic function which has the Fourier series

1 e27riku

)= 31082 %C(/H AP ES RSy

with x, = 2mik/log 2 and Riemann’s zeta function ((.).
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4 Power sums related to digital sequences

Now we investigate the sum

N-1
Sm(N) =" Cn™ (4.1)
n=0
with m € Ny, where C), is an arbitrary sequence with Cy = 1 and (1.1) satisfying (1.2). For
this we consider the two-scale difference equations (1.8) with A = p" (n € Np) and ¢, = &
with C from (1.1). By Theorem 2.1 we have for the solutions ¢(t) = ¢, (t) that
t 1
on | = | = menll 0<t<L1
()i v
since ¢, (t) = 0 for t < 0. Choosing «,, so that p*» = Cp™ i.e.
an =n +log,C (4.2)
then )
¥nl;, n(l
AYS :@a() 0<t<1).
(5)on ton
Hence, the functions
_ #alt)
falt) := o (0<t<1) (4.3)
have the property fn(é) = fn(t) so that they can be extended for all ¢ > 0 by
fulpt) = fult) (> 0). (4.4)

Theorem 4.1 If (1.6) is satisfies then for N € N the sum S,,(N) from (4.1) can be

represented as
m

Sm(N) = N*Y " N"F,, ,(log, N) (4.5)
n=0
where o = log, C' and where F,, ,(u) are 1-periodic continuous functions which have the

representations
m, | . (_1)1/ u
Fm,#(u) = (_1) m. bm—# § : ' f,u—u(p ) (46>

14
v=0

with the coefficients b, from (1.19) and f,(.) from (4.3) and (4.4).

Proof: For given N € N we choose £ such that p* > N. From (2.6) withn = m and k = N
we get

N ch Y ,
om | =) =5 D OniPm(J
(pz> pmejzl N-iPm(J)
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where ,, is the continuous solution of (1.8) with A\ = p™ satisfying (1.10). With j = N —n
it follows in view of ¢y = % and p"C = p*m

N-1 mé 7\ am
P N P N
E Copm(N — =—w,|—= ] =N = m | — ] .

In virtue of (4.2) and (4.4) it follows

chpm —n)=N**"f (N) . (4.7)

Next we write p,,,(N — n) as polynomial with respect to n. By Taylor’s formula

m

ZP -

u=0

v

N)n

where we have used that p,,(t) are Appell polynomials. It follows

- m (_]_>M N-1 )
pICTREEHED o LOSI)
n=0 ’ n=0

Multiplication by z™ and summation over m we get in view of the Cauchy product and
(1.15)

Z Netmf (N an N)z" Z (_ni!)msm(]\f)zm

m=0

= N 0(2) Z (_1)m5m(N)zm.

— m!
Therefore
C (_1)m m e—Nz - at+m m
D SN = e > N (N)
m=0 m=0
= ) qu(=N)Z" Y N (N) "
n=0 m=0
where we have used (1.22) with ¢ = —N. Comparison of coefficients implies in view of the

Cauchy product

E50) = Y NN (),
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Moreover, for the Appell polynomials g, (t) we have by (1.21) the representation

3

—n

. bm—n—k k atk
k=0
so that with the substitution u =n + k we get
SR 9) S-S EIEETARY
m! m - n
n=0 k=0
EONIE ‘”—m N ()
pn=0 n=0

"
1
= N© Z b uN* Y (=1)F " fu(N)
= — (1 —n)!
and it follows (4.5) with (4.6). O

Remark 4.2 In the simple case C,, = 1 for all n € Ny the sum (4.1) is the usual power
sum. In this case equation (1.8) With A = 1 has the solution @y(t) =t for 0 <t <1 so that
(n+1) "1 in [0,1]. From (4.2) we get a,, = n + 1 so that

fn(t) = @ +1 for all ¢ > 0. Hence, the functions F,, , from (4.6) are constant and it easy to

the iterated integrals are @, (t) =

see that (4.5) yields the known representation (1.4) with the Bernoulli polynomials.
In the following we again exclude the trivial case C,, = 1 for all n.

Proposition 4.3 If (1.6) is satisfies then the 1-periodic continuous functions F, ,(u)
from (4.6) have the following properties:

1. Each of the functions F,, ,, is Holder continuous.

2. If pMy < C where My = |COC’1---Cp_1]1/p then each F,,, is differentiable almost

everywhere and if pMy > C' then each F,, , is almost nowhere differentiable.

3. Each of the functions F,, , has finite total variation on [0, 1] if and only if C,. > 0 for
allr=0,1,...,p—1.

Proof: Owing to (4.6) and (4.3) we see in view of the fact that ¢, are the iterated integrals
of g, that the analytic properties as differentiability of 7, , are determined by the function

fo. So the assertions are consequences of Proposition 3.5. O

5 Specific power sums

We consider the sum (4.1) for N = p, i.e.

Sp(p®) = Z Cyn™. (5.1)
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In order to get a simple formula for this sum we need the following lemma.
Lemma 5.1 For the 1-periodic function F,, ,(.) from (4.6) we have

Finn(0) = (=1)"m! by, (5.2)

with the coefficients a,, from (1.16) and b, from (1.19).

Proof: From (4.6) with u = 0 we get
Fnu(0) = (=1)"ml by,
with

=35

v=0

(5.3)

Multiplication by t* and summation over p yields in view of the Cauchy product

iduz“ = i <_1|)Vz”ifu(1)z“
©n=0 v=0 v: n=0
= e % Z fu(1)2"
n=0

Further, by (4.3) we have f,,(1) = ¢, (1) and by (1.14) also ¢,(1) = p,(1). Hence, in view of
(1.15) with t = 1 we get

S LD =D pa(1)2" = e*0(2).
#=0 n=0
It follows
Z d,2" = (2
n=0
so that d, = a, according to (1.16). O

Theorem 4.1 and Lemma 5.1 imply

Proposition 5.2 The sum (4.1) for N = p* with k € N reads

Sm(P") = (=1)"mIp™ > " p"a by, (5.4)

pu=0

where a = log, C with C' from (1.1), a,, from (1.16) and b, from (1.19).
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Remark 5.3 Formula (5.4) for m = 0 yields

pF-1
So(p*) =) Cu=p"=C"
n=0
in accordance with (3.12).
If we introduce the polynomials
P(t) = t"aubpy (5.5)
©n=0
then in virtue of (5.4) we have
Sm(p") = (=1)"mp™* Py (p"). (5.6)
Lemma 5.4 The polynomials P,,(t) have the generating function

= m P(t2)
mZ:OPm(t)z =30 (5.7)

with ® from (1.16), cf. also (1.12).

Proof: By multiplication of the power series (1.16) with ¢z in place of z and (1.19) we get
by means of the Cauchy product

1 o0 [e.9]
D(tz) = an(tz)" Yy by2"
ow T LM
- > (S )
m=0 \p=0
and in view of (5.5) it follows (5.7). O

Proposition 5.5 The polynomials P,, from (5.5) satisfy the relation
Pp(st) =Y s"Bu(t) Pu_y(s). (5.8)
pn=0

Proof: By repeated application of (5.7) we get

= m . D(stz)  P(stz) P(s2)
PR El
= > Pu(t)(s2)™ ) Pu(s)2"
= Z < s“PM(t)Pm_M(S)) z™

where we have used the Cauchy product. Comparison of coefficients yields (5.8). O
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Proposition 5.6 For positive integers k,{ the sums (5.1) satisfy the relation

m

S =) (f)?k“su(pf)smu(pk)- (5.9)

pu=0

Proof: Applying (5.6) and (5.8) we get

—1)m
( ) Sm(pk+€) _ pa(k+€)Pm(pk+£)

m!
_ pa(k+£) Zpkup,u(pé)Pm—u (plc)
n=0

Zp“(_ ) (=pm

o oul T (m—p)!

Sm—u(P")

which implies (5.9). O

Remark 5.7 Let us mention that in the simple case C,, = 1 for all n the polynomials (5.5)
can be represented as
-1)m™ 1~
Pult) = 2B (5.10)

m) t

with the polynomials B,,(t) from (1.5) which as is known have the generating function

tz

=y B;fb('t (2| < 2n). (5.11)

In order to see (5.10) we note that in case C,, = 1 for all n the polynomial (1.13) has the
form

P(w):%(1+w+...+wp 1) %

so that for ® from (1.12) we obtain

Therefore
O(—tz) e —1

d(—z)  tler—1)

and in virtue of (5.11) and Lemma 5.4 it follows (5.10).
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