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ABSTRACT. This paper uncovers a connection between two-scale difference equations and
the representation of sums of sequences which satisfy a certain multiplicative recurrence
formula. For certain digital power sums related with such a sequence we derive a formula
which in case of usual power sums yields the known representation of power sums by means
of Bernoulli polynomials.
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1 Introduction

Let p > 1 be an integer and Cn the sequence which is given by the p initial values C0 = 1,

C1, . . . , Cp−1 such that
C := C0 + · · ·+ Cp−1 > 0 (1.1)

and which satisfies the recurrence formula

Ckp+r = CkCr (k ∈ N, r = 0, . . . , p− 1). (1.2)

In this paper we derive a formula for the sum

Sm(N) =
N−1∑

n=0

Cnn
m (1.3)

where m ∈ N0. In the simple case Cn = 1 for all n we have the usual power sum which can
be expressed by means of the Bernoulli polynomials Bm(t) in the form

N−1∑

n=0

nm = B̃m(N) (1.4)

where
B̃m(t) =

1

m+ 1
{Bm+1(t)−Bm+1}. (1.5)

Digital sums were investigated by many authors, cf. e.g. [4], [13], [3], [12], [5], [6], [10].
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Under the condition
|Cr| < C for r = 0, 1, . . . , p− 1 (1.6)

we show that for the digital sum (1.3) it holds

N−1∑

n=0

Cnn
m = Nα

m∑

µ=0

NµFm,µ
(
logpN

)
(1.7)

with α = logpC and 1-periodic continuous functions Fm,µ which can be expressed by means
of the solutions of certain two-scale difference equations (Theorem 4.1).

In order to derive formula (1.7) we quote some facts on the two-scale difference equation

λϕ

(
t

p

)
=

p−1∑

r=0

crϕ(t− r) (t ∈ R) (1.8)

with λ 6= 0 and complex coefficients cr where c0 6= 0 and

p−1∑

r=0

cr = 1, (1.9)

cf. [11] where equation (1.8) with λ = 1 was studied in detail. In [7] and [8] it was investigated
a system of simple functional equations which is equivalent to equation (1.8) with λ = 1, cf.
[11, p. 60]. It is known that under the condition |cr| < 1 equation (1.8) with λ = 1 has a
continuous solution ϕ0 satisfying

ϕ0(t) = 0 for t < 0, ϕ0(t) = 1 for t > 1 (1.10)

and that ϕ0 is even Hölder continuous cf. [11, Theorem 3.6]. The solution ϕ = ϕ0 has the
Laplace transform

L{ϕ0} =
1

z
Φ(z) (1.11)

where

Φ(z) =
∞∏

j=1

P
(
e−z/p

j
)

(1.12)

with the polynomial

P (w) =

p−1∑

r=0

crw
r, (1.13)

cf. [1], [2].

The iterated integrals ϕn (n ∈ N) of ϕ0, defined recursively by

ϕn(t) =

∫ t

0

ϕn−1(τ)dτ
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are solutions of (1.8) with λ = pn. For t > 1 the solution ϕn is a polynomial

ϕn(t) = pn(t) (t > 1) (1.14)

of degree n with the main term 1
n!
tn. We remark that the polynomials pn have the property

p′n(t) = pn−1(t), i.e. they are Appell polynomials, cf. [1], [2]. The generating function reads

etzΦ(z) =
∞∑

n=0

pn(t)zn (t ∈ R) (1.15)

with Φ from (1.12). The coefficients of the power series

Φ(z) =
∞∑

n=0

anz
n (1.16)

can be calculated recursively by a0 = Φ(0) = 1 and

an =
1

pn − 1

n∑

k=1

(−1)k
an−k
k!

p−1∑

r=1

rkcr (n ∈ N) (1.17)

cf. [2, Proposition 2.6] where p = 2, and the polynomials pn in (1.15) have the representation

pn(t) =
n∑

k=0

an−k
k!

tk. (1.18)

We also need the power series
1

Φ(z)
=
∞∑

n=0

bnz
n (1.19)

where the coefficients bn are determined by b0 = 1 and the equations

anb0 + an−1b1 + · · ·+ a0bn = 0 (n > 1). (1.20)

The corresponding Appell polynomials

qn(t) =
n∑

k=0

bn−k
k!

tk (1.21)

have the generating function
etz

Φ(z)
=
∞∑

n=0

qn(t)zn. (1.22)

This paper is organized as follows: At first we show that the solution ϕ = ϕn of the two-scale
difference equation (1.8) with λ = pn has for k ≤ p` the representation

ϕn

(
k

p`

)
=

c`0
pn`

k∑

j=1

Ck−jpn(j) (1.23)
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where pn are the polynomials (1.18), (Theorem 2.1). This formula is the start point for the
representation (1.7) of digital power sums. In Section 3 we prove (1.7) in the case m = 0,
i.e.

S0(N) =
N−1∑

n=0

Cn = NαF0(logpN) (1.24)

(Theorem 3.2), and give some properties of the 1-periodic continuous function F0 under the
condition (1.6), for instance that F0 is Hölder continuous and that F0 is differentiable almost
everywhere if p|C0C1 · · ·Cp−1|1/p < C, (Proposition 3.5). By means of a Toeplitz theorem
we prove the convergence of the arithmetical mean

1

pn

pn∑

N=1

1

Nα
S0(N) (1.25)

as n → ∞ (Proposition 3.7). In Section 4 we prove the main result of this paper, namely
the representation (1.7), (Theorem 4.1). In the simple case Cn = 1 for all n formula (1.7)
turns over into the known representation (1.4) for the usual power sums, cf. Remark 4.2.
For the specific power sums (1.3) where N is a power of p we have the representation

Sm(pk) = (−1)mm!pαk
m∑

µ=0

pµkaµbm−µ (1.26)

with α = logpC and the coefficients an from (1.16) and bn from (1.19), (Proposition 5.2),
and we prove for positive integers k, `

Sm(pk+`) =
m∑

µ=0

(
m

µ

)
pkµSµ(p`)Sm−µ(pk) (1.27)

(Proposition 5.6).

2 Functional relations

For given coefficients c0, c1, . . . , cp−1 of the two-scale difference equation (1.8) we define a
sequence Cn by Cn = cn

c0
for n = 0, 1, . . . , p− 1 and for n ≥ p by the recursion

Ckp+r = CkCr (k ≥ 1, r ∈ {0, 1, . . . , p− 1}). (2.1)

If n has the p -adic representation

n =
∑

nip
i, (ni ∈ {0, 1, . . . , p− 1}) (2.2)

then we have

Cn =

p−1∏

r=1

Csr(n)
r (2.3)
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where sr(n) denotes the total number of occurrences of the digit r in the representation (2.2)

of n, cf. [11, p. 63].

The numbers Cn have the generating function

G(z) =
∞∏

j=0

1

c0

P
(
zp

j
)

=
∞∑

n=0

Cnz
n (2.4)

which converges for |z| < 1, cf. [11, Remark 2.2.1.].

In the following we want to generalize Proposition 2.3 from [11] for ϕn.

Theorem 2.1 For ` ∈ N and non-negative integers k < p` the solution ϕ = ϕn of (1.8)

with λ = pn satisfies the equations

ϕn

(
k + t

p`

)
=

c`0
pn`

k∑

j=0

Cjϕn(t+ k − j) (0 ≤ t ≤ 1). (2.5)

Moreover, for k ≤ p` we have

ϕn

(
k

p`

)
=

c`0
pn`

k∑

j=1

Ck−jpn(j) (2.6)

where pn are the polynomials (1.18).

Proof: In (1.8) with λ = pn we replace t by k + t with 0 ≤ k ≤ p − 1 and get in view of
Cr = cr

c0
for 0 ≤ r ≤ p− 1

ϕn

(
k + t

p

)
=

1

pn

p−1∑

r=0

crϕn(k + t− r)

=
c0

pn

p−1∑

r=0

Crϕn(k + t− r)

=
c0

pn

k∑

j=0

Cjϕn(k + t− j)

since ϕn(t) = 0 for t ≤ 0. So (2.5) is true for ` = 1. Assume that (2.5) is valid for a fixed `.
Replace t by s+t

p
with 0 ≤ s ≤ p− 1 we get

ϕn

(
kp+ s+ t

p`+1

)
=

c`0
pn`

k∑

j=0

Cjϕn

(
p(k − j) + s+ t

p

)

=
c`0

pn`+n

k∑

j=0

p−1∑

r=0

Cjcrϕn(pk + s− pj − r + t)

=
c`+1

0

pn(`+1)

k∑

j=0

p−1∑

r=0

Cjp+rϕn(t+ kp+ s− pj − r).
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So (2.5) is proved by induction. Formula (2.6) follows by summation in view of ϕn(0) = 0

and (1.14) for the polynomials pn(t) from (1.18). �

Remark 2.2 Formula (2.6) yields in case n = 0 the known representations

ϕ0

(
k + t

p`

)
= ϕ0

(
k

p`

)
+ c`0Ckϕ0(t) (0 ≤ t ≤ 1) (2.7)

and

ϕ0

(
k

p`

)
= c`0

k−1∑

j=0

Cj (2.8)

for the solution ϕ = ϕ0 of equation (1.8) with λ = 1, cf. [11].

From (2.5) and (2.6) we get in view of (1.14) the following result.

Corollary 2.3 For ` ∈ N0 and non-negative integers k < p` the solution ϕ = ϕn of (1.8)

with λ = pn satisfies

ϕn

(
k + t

p`

)
=
c`0Ck
pn`

ϕn(t) +
c`0
pn`

pnk(t) (0 ≤ t ≤ 1) (2.9)

with the polynomials

pnk(t) =
k∑

j=1

Ck−jpn(j + t) (2.10)

and pn(t) from (1.18).

We remark that (2.9) with (2.10) is already known for the iterated integrals of de Rham’s
function, cf. [2, (3.16) and Theorem 3.1].

3 Digital sums

Let Cn be an arbitrary sequence with the properties C0 = 1, (1.1) and (1.2). In order to
obtain a formula for the sum (1.3) with m = 0, i.e.

S0(N) =
N−1∑

n=0

Cn (3.1)

we consider the two-scale difference equation

ϕ

(
t

p

)
=

1

C

p−1∑

r=0

Crϕ(t− r) (3.2)
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with C from (1.1). In the following we assume that (1.6) is satisfies so that equation (3.2)
has a continuous solution ϕ = ϕ0 satisfying (1.10) since the quotients cr = Cr

C
satisfy (1.9)

and |cr| < 1. For 0 ≤ t ≤ 1 we have in view of C0 = 1 and (1.10)

ϕ0

(
t

p

)
=

1

C
ϕ0(t) (0 ≤ t ≤ 1).

We put
α := logpC (3.3)

so that pα = C and
ϕ0( t

p
)

( t
p
)α

=
ϕ0(t)

tα
(0 < t ≤ 1). (3.4)

Hence, the function

f0(t) :=
ϕ0(t)

tα
(0 < t ≤ 1) (3.5)

has the property: f0( t
p
) = f0(t) so that it can be extended for all t > 0 by

f0(pt) = f0(t) (3.6)

where f0(t) is continuous for t > 0.

Proposition 3.1 If (1.6) is satisfies then for N ∈ N the sum S0(N) from (3.1) can be
represented as

S0(N) = Nαf0(N) (3.7)

with α from (3.3) and the continuous function f0 from (3.5) and (3.6).

Proof: Because of (1.6) equation (3.2) has a continuous solution ϕ0 satisfying (1.10). For
N ≤ p` we have by (2.8) the formula

S0(N) = C`ϕ0

(
N

p`

)
. (3.8)

For arbitrary N we choose ` so large that p` > N . In view of (3.8), (3.3) and (3.5) we have

S0(N) = C`ϕ0

(
N

p`

)
= Nα

(
p`

N

)α
ϕ0

(
N

p`

)
= Nαf0

(
N

p`

)
.

Owing to (3.6) it follows (3.7). �

According to (3.6) the function

F0(u) := f0(pu) (u ∈ R) (3.9)

has the period 1 and in virtue of (3.5) we have by Proposition 3.1 :
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Theorem 3.2 If (1.6) is satisfies then for N ∈ N the sum S0(N) from (3.1) can be
represented as

S0(N) = NαF0(logpN) (3.10)

with α from (3.3) and an −1 periodic continuous function F0 which is given by

F0(u) =
ϕ0(pu)

pαu
= C−uϕ0(pu) (u ≤ 0) (3.11)

where ϕ0 is the solution of (3.2) satisfying (1.10).

Remark 3.3 Note that from (3.10) and (3.11) for N = pk we get in view of F0(k) =

F0(0) = 1 that

S0(pk) =

pk−1∑

n=0

Cn = pkα = Ck (3.12)

with C from (1.1).

Remark 3.4 In the case Cr = 1 for all r = 0, 1, . . . , p − 1 we have C = p and α = 1.
Equation (3.2) has the trivial solution ϕ0(t) = t for 0 ≤ t ≤ 1, f0(t) = 1 for t > 0, F0(u) = 1

for all u ∈ R and we get S0(N) = N for the sum (3.1).

In the following we exclude the trivial case Cn = 1 for all n.

Proposition 3.5 If (1.6) is satisfies then the 1-periodic continuous function F0(u) from
(3.11) has the following properties:

1. F0 is Hölder continuous.

2. If pM0 < C where M0 = |C0C1 · · ·Cp−1|1/p then F0 is differentiable almost everywhere
and if pM0 ≥ C then it is almost nowhere differentiable.

3. F0 has finite total variation on [0, 1] if and only if Cr ≥ 0 for r = 0, 1, . . . , p − 1. In
this case we have

1∨

0

(F0) ≤ 2C − 2. (3.13)

Proof: It is known that in case |cr| < 1 the solution ϕ = ϕ0 of (1.8) with λ = 1 is Hölder
continuous, cf. [11, Theorem 3.6]. This implies in view of cr = Cr

C
with C from (1.1), (3.5)

and (3.9) the first property of F0. Analogously, the second property is a consequence of [11,
Theorem 4.12].

In order to prove the third property first we consider the case Cr ≥ 0 where the solution
ϕ = ϕ0 of (3.2) is increasing, cf. [11, Proposition 5.1]. We show that for f0 from (3.5) it
holds

1∨

1/p

(f0) ≤ 2C − 2. (3.14)
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Let 1
p

= t0 < t1 < . . . < tn = 1 be some decomposition of [1
p
, 1]. Because of the identity

2(aA− bB) = (a+ b)(A−B) + (A+B)(a− b) (3.15)

it holds
2|aA− bB| ≤ |a+ b||A−B|+ |A+B||a− b|.

Using this inequality with a = 1
tαi
, b = 1

tαi+1
, A = ϕ0(ti) and B = ϕ0(ti+1) we have in view of

max |ϕ0(t)| = ϕ0(1) = 1 and (3.5)

2|f0(ti)− f0(ti+1)| ≤
∣∣∣∣

1

tαi
+

1

tαi+1

∣∣∣∣ |ϕ0(ti)− ϕ0(ti+1)|+ 2

∣∣∣∣
1

tαi
− 1

tαi+1

∣∣∣∣

≤ 2 max {pα, 1}|ϕ0(ti)− ϕ0(ti+1)|+ 2

∣∣∣∣
1

tαi
− 1

tαi+1

∣∣∣∣ .

Since pα = C > 1 and ϕ0(.) is increasing we get by summation

1∨

1/p

(f0) ≤ C

(
ϕ0(1)− ϕ0

(
1

p

))
+ |pα − 1| = C

(
1− 1

C

)
+ (C − 1)

where we have used ϕ0(1) = 1, ϕ0(1
p
) = 1

pα
= 1

C
, cf. (3.4) with t = 1, and (3.3). So we have

proved (3.14) which implies (3.13) in virtue of (3.9).

Now we consider the case that Cr ≥ 0 is not true for all r = 0, 1, . . . , p − 1. Then by [11,
Proposition 2.6] the solution ϕ = ϕ0 of (3.2) does not have finite total variation on [0, 1].
According to (2.7) this is true also for the subinterval [k

p
, k+1

p
] if Ck 6= 0. This implies

1∨

1/p

(ϕ0) =∞ (3.16)

since in view of (1.6) it is impossible that Cr = 0 for all r = 1, 2, . . . , p− 1.

From (3.15) we get

2|aA− bB| ≥ |a+ b||A−B| − |A+B||a− b|

and with the same notations as before

2|f0(ti)− f0(ti+1)| ≥ 2 min {pα, 1}|ϕ0(ti)− ϕ0(ti+1)| − 2M

∣∣∣∣
1

tαi
− 1

tαi+1

∣∣∣∣

where M = max{|ϕ0(t)|} for 1
p
≤ t ≤ 1. In view of pα > 1 it follows

n−1∑

i=0

|f0(ti)− f0(ti+1)| ≥
n−1∑

i=0

|ϕ0(ti)− ϕ0(ti+1)| −M(pα − 1)
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which implies
1∨

1/p

(f0) =∞

according to (3.16). Finally, (3.9) yields that F0 does not have finite total variation on [0,1].
�

Remark 3.6 Note that according to (2.7) the solution ϕ0 is constant on [k
p
, k+1

p
] if Ck = 0

for some k ≤ p − 1. We remark that the suppositions of Proposition 2.6 in [11] are to add
by cj 6= 0 for all j = 0, 1, . . . , p− 1.

Proposition 3.7 If (1.6) is satisfies then for the sums S0(N) from (3.1) we have

1

pn

pn∑

N=1

1

Nα
S0(N)→ c (n→∞) (3.17)

where

c =

∫ 1

1/p

f0(t)dt (3.18)

with f0 from (3.5) and (3.6).

Proof: The sum in (3.17) can be written as

1

pn

pn∑

N=1

1

Nα
S0(N) =

n∑

m=0

tn,mAm (3.19)

with
tn,0 :=

1

pn
, tn,m :=

pm − pm−1

pn
(1 ≤ m ≤ n)

and

A0 := 1, Am :=
1

pm − pm−1

pm∑

N=pm−1+1

1

Nα
S0(N) (1 ≤ m ≤ n).

For the numbers tn,m we have tn,m > 0, tn,0 + tn,1 + · · ·+ tn,n = 1 and tn,m → 0 as n→∞ for
fixed m, so that by a known Toeplitz theorem the sum (3.19) converges to c from (3.18) if

Am →
∫ 1

1/p

f0(t)dt (m→∞). (3.20)

According to (3.7) with the continuous function f0 from (3.5) and (3.6) we have for m ≥ 1

Am =
1

pm − pm−1

pm∑

N=pm−1+1

f0(N)

=
1

pm − pm−1

pm∑

N=pm−1+1

f0

(
N

pm

)



Two-Scale Difference Equations and . . . 55

where we have used (3.6). With the substitution k = N − pm−1 we get

Am =
1

pm − pm−1

pm−pm−1∑

k=1

f0

(
1

p
+

k

pm

)

and in view of the continuity of f0 it follows (3.20). �

Example 3.8 (Digital exponential sums) We consider the sequence Cn = qs(n) with q > 0,
where s(n) denotes the number of ones in the binary representation of n. This sequence
satisfies relation (1.2) with p = 2, C0 = 1 and C1 = q. The corresponding two-scale
difference equation (3.2) reads

ϕ

(
t

2

)
= aϕ(t) + (1− a)ϕ(t− 1) (t ∈ R) (3.21)

with a = 1
1+q

and the solution ϕ = ϕ0 satisfying (1.10) which clearly depend on the parameter
a. (cf. de Rham’s function [10]). By Theorem 3.2 we have for the sum

S0(N) =
N−1∑

n=0

qs(n) (3.22)

the exact formula
S0(N) = NαF0(log2N)

where α = log2(1+q) and where F0(u) is a continuous, 1-periodic function which is connected
with de Rham’s function ϕ0, i.e. the solution of (3.21), by

F0(u) = auϕ0(2u) (u ≤ 0),

cf. also [10, Theorem 2.1]. Let us mention that in case q = 2 the sum (3.22) is equal to the
number of odd binomial coefficients in the first N rows of Pascal’s triangle and that the sum
(3.22) was already investigated by many authors, cf. e.g. [12], [6], [10].

Example 3.9 (Cantor’s function) We consider the sequence Cn where Cn = 0 if the triadic
representation of n contains the digit 1, elsewhere Cn = 0. This sequence satisfies relation
(1.2) with p = 3, C0 = 1, C1 = 0 and C2 = 1. Note that for the generating function (2.4) we
have

G(z) =
∞∑

n=0

Cnz
n =

∞∑

k=0

zγk = 1 + z2 + z6 + z8 + z18 + z20 + z24 + z26 + · · ·

with strictly increasing exponents γ0 = 0, γ1 = 2, γ2 = 6, γ3 = 8 and so on, where it holds
with εµ ∈ {0, 1}:

n =
m∑

µ=0

εµ2µ =⇒ γn = 2
m∑

µ=0

εµ3µ, (3.23)
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cf. [11, Formula (5.9)]. For the sum (3.1) it follows

S0(N) =
N−1∑

n=0

Cn = k + 1 for γk + 1 ≤ N < γk+1. (3.24)

By means of Theorem 3.2 this sum can also represented by means of Cantor’s function.
Cantor’s function is the solution ϕ0 of (3.2) restricted to [0,1] with p = 3, C0 = 1, C1 = 0,
C2 = 1 and C = 2, i.e. ϕ = ϕ0 is solution of

ϕ

(
t

3

)
=

1

2
ϕ(t) +

1

2
ϕ(t− 2) (t ∈ R)

satisfying (1.10), cf. [9, Section 5], [11, Example 5.6]. By Theorem 3.2 the sum (3.24) can
be expressed as follows :

S0(N) = NαF0(log3N) (3.25)

where α = log3 2 and where F0 is a continuous periodic function with period 1 which is given
by

F0(u) =
1

2u
ϕ0(2u) (u ≤ 0) (3.26)

with Cantor’s function ϕ0.

It is remarkable that the intervals Jm,n, where Cantor’s function ϕ0 is constant, have the
form

Jm,n =

(
γm−1 + 1

3n
,
γm
3n

)
(n = 1, 2, 3, . . . , m = 1, 2, . . . , 2n)

with ϕ0(t) = m
2n

for t ∈ Jm,n, cf. [11, Formula (5.11)]. Let us mention that in [6, Section 5]
it was considered a sequence h(n), defined by

h

(∑

i

2ei

)
=
∑

i

3ei

with strictly increasing exponents ei, and in virtue of (3.23) we see that h(n) = 1
2
γn. In

[6] it was mentioned that h(1) < h(2) < · · · < h(n) is the “minimal” sequence of n positive
integers not containing an arithmetic progression. By means of the Mellin transformation it
was shown [6, Theorem 5.1] :

H(N) :=
∑

n<N

h(n) = Nρ+1F (log2N)− 1

4
N

where ρ = log2 3 and where F (u) is an 1-periodic function which has the Fourier series

F (u) =
1

3 log 2

∑

k∈Z
ζ(ρ+ χk)

e2πiku

(ρ+ χk)(ρ+ χk + 1)

with χk = 2πik/ log 2 and Riemann’s zeta function ζ(.).



Two-Scale Difference Equations and . . . 57

4 Power sums related to digital sequences

Now we investigate the sum

Sm(N) =
N−1∑

n=0

Cnn
m (4.1)

with m ∈ N0, where Cn is an arbitrary sequence with C0 = 1 and (1.1) satisfying (1.2). For
this we consider the two-scale difference equations (1.8) with λ = pn (n ∈ N0) and cr = Cr

C

with C from (1.1). By Theorem 2.1 we have for the solutions ϕ(t) = ϕn(t) that

ϕn

(
t

p

)
=

1

Cpn
ϕn(t) (0 ≤ t ≤ 1)

since ϕn(t) = 0 for t < 0. Choosing αn so that pαn = Cpn i.e.

αn = n+ logpC (4.2)

then
ϕn( t

p
)

( t
p
)αn

=
ϕn(t)

tαn
(0 < t ≤ 1).

Hence, the functions

fn(t) :=
ϕn(t)

tαn
(0 < t ≤ 1) (4.3)

have the property fn( t
p
) = fn(t) so that they can be extended for all t > 0 by

fn(pt) = fn(t) (t > 0). (4.4)

Theorem 4.1 If (1.6) is satisfies then for N ∈ N the sum Sm(N) from (4.1) can be
represented as

Sm(N) = Nα

m∑

µ=0

NµFm,µ(logpN) (4.5)

where α = logpC and where Fm,µ(u) are 1-periodic continuous functions which have the
representations

Fm,µ(u) = (−1)mm! bm−µ

µ∑

ν=0

(−1)ν

ν!
fµ−ν(p

u) (4.6)

with the coefficients bn from (1.19) and fn(.) from (4.3) and (4.4).

Proof: For given N ∈ N we choose ` such that p` ≥ N . From (2.6) with n = m and k = N

we get

ϕm

(
N

p`

)
=

c`0
pm`

N∑

j=1

CN−jpm(j)
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where ϕm is the continuous solution of (1.8) with λ = pm satisfying (1.10). With j = N − n
it follows in view of c0 = 1

C
and pmC = pαm

N−1∑

n=0

Cnpm(N − n) =
pm`

c`0
ϕm

(
N

p`

)
= Nαm

(
p`

N

)αm
ϕm

(
N

p`

)
.

In virtue of (4.2) and (4.4) it follows

N−1∑

n=0

Cnpm(N − n) = Nα+mfm(N) . (4.7)

Next we write pm(N − n) as polynomial with respect to n. By Taylor’s formula

pm(N − n) =
m∑

µ=0

p(µ)
m (N)

(−n)µ

µ!
=

m∑

µ=0

(−1)µ

µ!
pm−µ(N)nν

where we have used that pm(t) are Appell polynomials. It follows

N−1∑

n=0

Cnpm(N − n) =
m∑

µ=0

(−1)µ

µ!
pm−µ(N)

N−1∑

n=0

Cnn
µ

and comparison with (4.7) yields in view of (4.1) that

Nα+mfm(N) =
m∑

µ=0

(−1)µ

µ!
pm−µ(N)Sµ(N).

Multiplication by zm and summation over m we get in view of the Cauchy product and
(1.15)

∞∑

m=0

Nα+mfm(N)zm =
∞∑

n=0

pn(N)zn
∞∑

m=0

(−1)m

m!
Sm(N)zm

= eNzΦ(z)
∞∑

m=0

(−1)m

m!
Sm(N)zm.

Therefore
∞∑

m=0

(−1)m

m!
Sm(N)zm =

e−Nz

Φ(z)

∞∑

m=0

Nα+mfm(N)zm

=
∞∑

n=0

qn(−N)zn
∞∑

m=0

Nα+mfm(N)zm

where we have used (1.22) with t = −N . Comparison of coefficients implies in view of the
Cauchy product

(−1)m

m!
Sm(N) =

m∑

n=0

qm−n(−N)Nα+nfn(N).



Two-Scale Difference Equations and . . . 59

Moreover, for the Appell polynomials qn(t) we have by (1.21) the representation

qm−n(−N) =
m−n∑

k=0

bm−n−k
k!

(−1)kNk

so that with the substitution µ = n+ k we get

(−1)m

m!
Sm(N) = Nα

m∑

n=0

m−n∑

k=0

bm−n−k
k!

(−1)kNn+kfn(N)

= Nα

m∑

µ=0

µ∑

n=0

(−1)µ−n
bm−µ

(µ− n)!
Nµfn(N)

= Nα

m∑

µ=0

bm−µN
µ

µ∑

n=0

(−1)µ−n
1

(µ− n)!
fn(N)

and it follows (4.5) with (4.6). �

Remark 4.2 In the simple case Cn = 1 for all n ∈ N0 the sum (4.1) is the usual power
sum. In this case equation (1.8) with λ = 1 has the solution ϕ0(t) = t for 0 ≤ t ≤ 1 so that
the iterated integrals are ϕn(t) = 1

(n+1)!
tn+1 in [0, 1]. From (4.2) we get αn = n + 1 so that

fn(t) = 1
(n+1)!

for all t > 0. Hence, the functions Fm,µ from (4.6) are constant and it easy to
see that (4.5) yields the known representation (1.4) with the Bernoulli polynomials.

In the following we again exclude the trivial case Cn = 1 for all n.

Proposition 4.3 If (1.6) is satisfies then the 1-periodic continuous functions Fm,µ(u)

from (4.6) have the following properties:

1. Each of the functions Fm,µ is Hölder continuous.

2. If pM0 < C where M0 = |C0C1 · · ·Cp−1|1/p then each Fm,µ is differentiable almost
everywhere and if pM0 ≥ C then each Fm,µ is almost nowhere differentiable.

3. Each of the functions Fm,µ has finite total variation on [0, 1] if and only if Cr ≥ 0 for
all r = 0, 1, . . . , p− 1.

Proof: Owing to (4.6) and (4.3) we see in view of the fact that ϕn are the iterated integrals
of ϕ0, that the analytic properties as differentiability of Fm,µ are determined by the function
f0. So the assertions are consequences of Proposition 3.5. �

5 Specific power sums

We consider the sum (4.1) for N = pk, i.e.

Sm(pk) =

pk−1∑

n=0

Cnn
m. (5.1)
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In order to get a simple formula for this sum we need the following lemma.

Lemma 5.1 For the 1-periodic function Fm,µ(.) from (4.6) we have

Fm,µ(0) = (−1)mm! bm−µaµ (5.2)

with the coefficients an from (1.16) and bn from (1.19).

Proof: From (4.6) with u = 0 we get

Fm,µ(0) = (−1)mm! bm−µdµ

with

dµ =

µ∑

ν=0

(−1)ν

ν!
fµ−ν(1). (5.3)

Multiplication by tµ and summation over µ yields in view of the Cauchy product

∞∑

µ=0

dµz
µ =

∞∑

ν=0

(−1)ν

ν!
zν

∞∑

µ=0

fµ(1)zµ

= e−z
∞∑

µ=0

fµ(1)zµ.

Further, by (4.3) we have fn(1) = ϕn(1) and by (1.14) also ϕn(1) = pn(1). Hence, in view of
(1.15) with t = 1 we get

∞∑

µ=0

fµ(1)zµ =
∞∑

n=0

pn(1)zn = ezΦ(z).

It follows
∞∑

µ=0

dµz
µ = Φ(z)

so that dµ = aµ according to (1.16). �

Theorem 4.1 and Lemma 5.1 imply

Proposition 5.2 The sum (4.1) for N = pk with k ∈ N reads

Sm(pk) = (−1)mm!pαk
m∑

µ=0

pµkaµbm−µ (5.4)

where α = logpC with C from (1.1), an from (1.16) and bn from (1.19).
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Remark 5.3 Formula (5.4) for m = 0 yields

S0(pk) =

pk−1∑

n=0

Cn = pαk = Ck

in accordance with (3.12).

If we introduce the polynomials

Pm(t) :=
m∑

µ=0

tµaµbm−µ (5.5)

then in virtue of (5.4) we have

Sm(pk) = (−1)mm!pαkPm(pk). (5.6)

Lemma 5.4 The polynomials Pm(t) have the generating function
∞∑

m=0

Pm(t)zm =
Φ(tz)

Φ(z)
. (5.7)

with Φ from (1.16), cf. also (1.12).

Proof: By multiplication of the power series (1.16) with tz in place of z and (1.19) we get
by means of the Cauchy product

Φ(tz)
1

Φ(z)
=

∞∑

n=0

an(tz)n
∞∑

n=0

bnz
n

=
∞∑

m=0

(
m∑

µ=0

tµaµbm−µ

)
zm

and in view of (5.5) it follows (5.7). �

Proposition 5.5 The polynomials Pm from (5.5) satisfy the relation

Pm(st) =
m∑

µ=0

sµPµ(t)Pm−µ(s). (5.8)

Proof: By repeated application of (5.7) we get
∞∑

m=0

Pm(st)zm =
Φ(stz)

Φ(z)
=

Φ(stz)

Φ(sz)
· Φ(sz)

Φ(z)

=
∞∑

m=0

Pm(t)(sz)m
∞∑

m=0

Pm(s)zm

=
∞∑

m=0

(
m∑

µ=0

sµPµ(t)Pm−µ(s)

)
zm

where we have used the Cauchy product. Comparison of coefficients yields (5.8). �
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Proposition 5.6 For positive integers k, ` the sums (5.1) satisfy the relation

Sm(pk+`) =
m∑

µ=0

(
m

µ

)
pkµSµ(p`)Sm−µ(pk). (5.9)

Proof: Applying (5.6) and (5.8) we get

(−1)m

m!
Sm(pk+`) = pα(k+`)Pm(pk+`)

= pα(k+`)

m∑

µ=0

pkµPµ(p`)Pm−µ(pk)

=
m∑

µ=0

pµ
(−1)µ

µ!
Sµ(p`)

(−1)m−µ

(m− µ)!
Sm−µ(pk)

which implies (5.9). �

Remark 5.7 Let us mention that in the simple case Cn = 1 for all n the polynomials (5.5)
can be represented as

Pm(t) =
(−1)m

m!
· 1

t
B̃m(t) (5.10)

with the polynomials B̃m(t) from (1.5) which as is known have the generating function

etz − 1

ez − 1
=

∞∑

m=0

B̃m(t)

m!
zm (|z| < 2π). (5.11)

In order to see (5.10) we note that in case Cn = 1 for all n the polynomial (1.13) has the
form

P (w) =
1

p
(1 + w + · · ·+ wp−1) =

1− wp
p(1− w)

so that for Φ from (1.12) we obtain

Φ(z) =
1− e−z

z
.

Therefore
Φ(−tz)

Φ(−z)
=

etz − 1

t(ez − 1)

and in virtue of (5.11) and Lemma 5.4 it follows (5.10).
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