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Ordered and non-ordered non-congruent convex
quadrilaterals inscribed in a regular nnn-gon

ABSTRACT. Using several arguments, some authors showed that the number of non-
congruent triangles inscribed in a regular n-gon equals {n2/12}, where {x} is the nearest
integer to x. In this paper, we revisit the same problem, but study the number of ordered and
non-ordered non-congruent convex quadrilaterals, for which we give simple closed formulas
using Partition Theory. The paper is complemented by a study of two further kinds of
quadrilaterals called proper and improper non-congruent convex quadrilaterals, which allows
to give a formula that connects the number of triangles and ordered quadrilaterals. This
formula can be considered as a new combinatorial interpretation of a certain identity in
Partition Theory.
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1 Introduction

In 1938, Anning proposed the following problem [6]: “From the vertices of a regular n-gon
three are chosen to be the vertices of a triangle. How many essentially different possible
triangles are there ? ”. For any given positive integer n ≥ 3, let ∆ (n) denote the number of
such triangles.

Using a geometric argument, Frame showed that ∆ (n) = {n2/12}, where {x} is the nearest
integer to x. After that, other solutions were proposed by some authors, such as Auluck [2].

In 1978, Reis posed the following natural general problem: From the vertices of a regular
n-gon k are chosen to be the vertices of a k-gon. How many incongruent convex k-gons are
there ?

Let us first specify that two k-gons are called congruent if one k-gon can be moved to the
other by rotation or reflection.
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For any given positive integers 2 ≤ k ≤ n, let R (n, k) denotes the number of such k-gons.
In 1979 Gupta [5] gave the solution of Reis’s problem, using the Möbius inversion formula.
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where hk ≡ k (mod 2) and ϕ(n) is the Euler function.

One can find the first values of R(n, k) in the Online Encyclopedia of Integer Sequences
(OEIS) [7] as A004526 for k = 2, A001399 for k = 3, A005232 for k = 4 and A032279 for
k = 5.

The immediate consequence of both Gupta’s and Frame’s Theorems is the following identity:
{
n2

12

}
=

1

2

⌊
n− 1

2

⌋
+

1

6

(
n− 1

2

)
+
χ(3/n)

3
,

where χ(3/n) = 1 if n ≡ 0 (mod 3), 0 otherwise.

In 2004, Shevelev gave a short proof of Theorem 1, using a bijection between the set of convex
polygons with the tops in the n-gon splitting points and the set of all (0,1)-configurations
with the elements in these points [8].

The aim of this paper is to enumerate two kinds of non-congruent convex quadrilaterals,
inscribed in a regular n-gon, the ordered ones which have the sequence of their sides’s sizes
ordered, denoted by RO (n, 4) and those which are non-ordered denoted by RO (n, 4), using
the Partition Theory. As an example, let us consider Figure 1 showing three quadrilaterals
inscribed in a regular 12-gon, the first is not convex, the second is ordered while the third is
not. Observe that the second quadrilateral generates 1+1+3+3 as a partition of 8 into four
parts, that is why it is called ordered.
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http://oeis.org/eisA.cgi?Anum=A004526
http://oeis.org/eisA.cgi?Anum=A001399
http://oeis.org/eisA.cgi?Anum=A005232
http://oeis.org/eisA.cgi?Anum=A032279
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2 Notations and preliminaries

We denote by Gn a regular n-gon and by N the set of nonnegative integers. The partition
of n ∈ N into k parts is a tuple π = (π1, . . . , πk) ∈ Nk, k ∈ N, such that

n = π1 + · · ·+ πk, 1 ≤ π1 ≤ · · · ≤ πk,

where the nonnegative integers πi are called parts. We denote the number of partitions of
n into k parts by p(n, k), the number of partitions of n into parts less than or equal to k
by P (n, k) and by q(n, k) we denote the number of partitions of n into k distinct parts. We
sometimes write a partition of n into k parts π = (πf11 , . . . , π

fs
s ), where

∑s
i=1 fi = k, the value

of fi is termed as frequency of the part πi. For m ∈ N,m ≤ k, we denote the number of
partitions of n into k parts π = (πf11 , . . . , π

fs
s ) for which 1 ≤ fi ≤ m and fj = m for at least

one j ∈ {1, . . . , s} by cm(n, k). For example c2(12, 4) = 10, since such partitions are exactly
1128, 1137, 1146, 1155, 1227, 1335, 1344, 2235, 2244, 2334. Let δ(n) ≡ n (mod 2), so
that δ(n) = 1 or 0, bxc the integer part of x and finally {x} the nearest integer to x.

3 Main results

In this section, we give the explicit formulas of RO (n, 4) and RO (n, 4).

Theorem 2 For n ≥ 4,

RO (n, 4) =

{
n3

144
+
n2

48
− nδ(n)

16

}
·

Proof: First of all, notice that

RO (n, 4) = p(n, 4). (1)

Indeed, each ordered convex quadrilateral ABCD inscribed in Gn can be viewed as a quadru-
ple of integers (x, y, z, t), abbreviated for convenience as a word xyzt, such that:





n− 4 = x+ y + z + t;

0 ≤ x ≤ y ≤ z ≤ t,
(2)

where x, y, z and t represent the number of vertices between A and B, B and C, C and D
and finally between D and A, respectively. It should be noted, that the number of solutions
of System (2) equals p(n, 4), by setting x′ = x+ 1, y′ = y + 1, z′ = z + 1 and t′ = t+ 1.

Now, let g(z) be the known generating function of p(n, 4) [3]:

g (z) =
z4

(1− z) (1− z2) (1− z3) (1− z4)
·
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From expanding g(z) into partial fractions, we obtain

g(z) =
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·

Via straightforward calculations, it can be proved that
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Thus, we have
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Since p (n, 4) is an integer and |β (n)| < 1/2, we get

p (n, 4) =

{
n3

144
+
n2

48
+

((−1)n − 1)n

32

}
· (3)

Hence, the result follows.

Remark 3 Andrews and Eriksson said that the method used in the proof above dates
back to Cayley and MacMahon [1, p. 58]. Using the same method [1, p. 60], they proved the
following formula for P (n, 4):

P (n, 4) =

{
(n+ 1) (n2 + 23n+ 85)
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⌊
n+1

2

⌋

8

}
·

Because p(n, k) = P (n− k, k) (see for example [4]), it follows:

p (n, 4) =

{
n3

144
+
n2
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− n

8
− n

⌊
n−1

2

⌋

8

}
· (4)

Note that the formula (3) seems a little bit simpler than (4).

To give an explicit formula for RO (n, 4), we need the following lemma.

Lemma 4 For n ≥ 4,

c2 (n, 4) = p (n, 4)− q (n, 4)−
⌊
n− 1

3

⌋
.
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Proof: By definition of cm (n, k) in Section 2, it easily follows that

c2 (n, 4) = p (n, 4)− (q (n, 4) + c3 (n, 4) + χ(4/n)) ,

where χ(4/n) = 1 if n ≡ 0 (mod 4), 0 otherwise.

Furthermore, c3(n, 4) can be considered as the number of integer solutions of the equation

3x+ y = n, with 1 ≤ y 6= x ≥ 1.

Since x 6= y, the solution x = y = n/4, when 4 divides n, must be removed. Then, by taking
y = 1, one can get c3(n, 4) =

⌊
n−1

3

⌋
− χ(4|n). This completes the proof.

Now we can derive the following theorem.

Theorem 5 For n ≥ 4,

RO (n, 4) =

{
n3

144
+
n2

48
− nδ(n)

16

}
+

{
(n− 6)3

144
+

(n− 6)2

48
− (n− 6)δ(n)

16

}
−
⌊
n− 1

3

⌋
.

Proof: First of all, notice that q(n, k) = p(n− k(k− 1)/2, k) [1]. Then from Theorem 2 we
get

q(n, 4) = p(n− 6, 4) =

{
(n− 6)3

144
+

(n− 6)2

48
− (n− 6)δ(n)

16

}
.

Therefore, it is enough to prove that

RO (n, 4) = p (n, 4) + q (n, 4)−
⌊
n− 1

3

⌋
. (5)

In fact, each non-ordered convex quadrilateral may be obtained by permuting exactly two
parts of some partition of n into four parts, which is associated from System (2) to a unique
ordered convex quadrilateral. For example, in Figure 1 above, the ordered convex quadri-
lateral (b) assimilated to the solution 1133 of 8 or to the partition 2244 of 12, generates the
non-ordered convex quadrilateral (c) via the permutation 1313. Obviously, not every par-
tition of n can generate a non-ordered convex quadrilateral, those having three equal parts
or four equal parts cannot. Also, each partition of n into four distinct parts xyzt generates
two non-ordered convex quadrilaterals, each one corresponds to one of the two following per-
mutations xytz and xzyt. On the other hand, each partition of n into two equal parts, like
xxyz, with y and z both of them 6= x, generates only one non-ordered convex quadrilateral,
corresponding to the unique permutation xyxz. Thus,

RO (n, 4) = 2q (n, 4) + c2(n, 4). (6)

Hence, from Lemma 4 the assertion follows.



76 N.B.TANI, Z.YAHI, S. BOUROUBI

Remark 6 By substituting k = 4 in Theorem 1, we get

R (n, 4) =
1

2

(⌊
n
2

⌋

2

)
+

1

8

(
n− 1

3

)
+
n(1− δ(n))

16
+ α,

where

α =





1

8

−1

8

0

if n ≡ 0 (mod 4),
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otherwise.

Knowing furthermore that

R(n, 4) = RO (n, 4) +RO (n, 4) ,

the following identity follows according to Theorem 1 and Theorem 5 :
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4 Connecting formula between ∆ (n) and RO(n, 4)

There are two further kinds of quadrilaterals inscribed in Gn, the proper ones, those which
do not use the sides of Gn and the improper ones, those using them. In Figure 2 below, two
quadrilaterals inscribed in G12 are shown, the first one is proper while the second is not.
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Let denote the number of these two kinds of quadrilaterals by RP
O(n, 4) and RP

O(n, 4), re-
spectively. The goal of this section is to prove the following theorem.
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Theorem 7 For n ≥ 4,

∆ (n) = RO(n+ 1, 4)−RO(n− 3, 4).

Proof: Note first that an improper ordered quadrilateral is formed by at least one side of
Gn, hence the concatenation of the vertices of one of such sides gives a triangle inscribed in
Gn−1, as shown in Figure 3.
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Thus we have
RP
O(n, 4) = ∆ (n− 1) .

On the other hand, it is obvious to see that

RP
O(n, 4) = p(n− 4, 4).

Then from (1), we get
RP
O(n, 4) = RO(n− 4, 4).

Since
RO(n, 4) = RP

O(n, 4) +RP
O(n, 4),

we obtain
RO(n, 4) = RO(n− 4, 4) + ∆ (n− 1) .

So, the theorem has been proved by substituting n by n+ 1.

Remark 8 The well-known recurrence relation [4, p. 373],

p(n, k) = p(n+ 1, k + 1)− p(n− k, k + 1), (7)

implies by setting k = 3,

p(n, 3) = p(n+ 1, 4)− p(n− 3, 4). (8)

Thus, as we can see, the formula of Theorem 7 can be considered as a combinatorial inter-
pretation of identity (8).
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For k ≤ n, we have the following generalization, using the same arguments to prove Theo-
rem 7.

Theorem 9 For n ≥ k,

RO(n, k) = RO(n+ 1, k + 1)−RO(n− k, k + 1).

The formula of Theorem 9 can be considered as a combinatorial interpretation of the recur-
rence formula (7).
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