Nesrine BENYAHIA TANI, Zahra YAHI, Sadek BOUROUBI

Ordered and non-ordered non-congruent convex quadrilaterals inscribed in a regular n-gon

ABSTRACT. Using several arguments, some authors showed that the number of noncongruent triangles inscribed in a regular *n*-gon equals $\{n^2/12\}$, where $\{x\}$ is the nearest integer to x. In this paper, we revisit the same problem, but study the number of ordered and non-ordered non-congruent convex quadrilaterals, for which we give simple closed formulas using Partition Theory. The paper is complemented by a study of two further kinds of quadrilaterals called proper and improper non-congruent convex quadrilaterals, which allows to give a formula that connects the number of triangles and ordered quadrilaterals. This formula can be considered as a new combinatorial interpretation of a certain identity in Partition Theory.

KEY WORDS. Congruent triangles; Congruent quadrilaterals; Ordered quadrilaterals; proper quadrilaterals; Integer partitions.

1 Introduction

In 1938, Anning proposed the following problem $[6]$: "From the vertices of a regular n-gon three are chosen to be the vertices of a triangle. How many essentially different possible *triangles are there* ?". For any given positive integer $n \geq 3$, let $\Delta(n)$ denote the number of such triangles.

Using a geometric argument, Frame showed that $\Delta(n) = \{n^2/12\}$, where $\{x\}$ is the nearest integer to x. After that, other solutions were proposed by some authors, such as Auluck $[2]$.

In 1978, Reis posed the following natural general problem: From the vertices of a regular n -gon k are chosen to be the vertices of a k-gon. How many incongruent convex k-gons are there ?

Let us first specify that two k -gons are called congruent if one k -gon can be moved to the other by rotation or reflection.

For any given positive integers $2 \leq k \leq n$, let $R(n, k)$ denotes the number of such k-gons. In 1979 Gupta [\[5\]](#page-7-2) gave the solution of Reis's problem, using the Möbius inversion formula.

Theorem 1

$$
R(n,k) = \frac{1}{2} \begin{pmatrix} \left\lfloor \frac{n-h_k}{2} \right\rfloor \\ \left\lfloor \frac{k}{2} \right\rfloor \end{pmatrix} + \frac{1}{2k} \sum_{d/\gcd(n,k)} \varphi(d) \begin{pmatrix} \frac{n}{d} - 1 \\ \frac{k}{d} - 1 \end{pmatrix},
$$

where $h_k \equiv k \pmod{2}$ and $\varphi(n)$ is the Euler function.

One can find the first values of $R(n, k)$ in the Online Encyclopedia of Integer Sequences (OEIS) [\[7\]](#page-7-3) as $\underline{A004526}$ $\underline{A004526}$ $\underline{A004526}$ for $k = 2$, $\underline{A001399}$ $\underline{A001399}$ $\underline{A001399}$ for $k = 3$, $\underline{A005232}$ $\underline{A005232}$ $\underline{A005232}$ for $k = 4$ and $\underline{A032279}$ $\underline{A032279}$ $\underline{A032279}$ for $k=5$.

The immediate consequence of both Gupta's and Frame's Theorems is the following identity:

$$
\left\{\frac{n^2}{12}\right\} = \frac{1}{2} \left\lfloor \frac{n-1}{2} \right\rfloor + \frac{1}{6} {n-1 \choose 2} + \frac{\chi(3/n)}{3},
$$

where $\chi(3/n) = 1$ if $n \equiv 0 \pmod{3}$, 0 otherwise.

In 2004, Shevelev gave a short proof of Theorem 1, using a bijection between the set of convex polygons with the tops in the *n*-gon splitting points and the set of all $(0,1)$ -configurations with the elements in these points $[8]$.

The aim of this paper is to enumerate two kinds of non-congruent convex quadrilaterals, inscribed in a regular n -gon, the ordered ones which have the sequence of their sides's sizes ordered, denoted by $R_O(n, 4)$ and those which are non-ordered denoted by $R_{\overline{O}}(n, 4)$, using the Partition Theory. As an example, let us consider Figure [1](#page-1-0) showing three quadrilaterals inscribed in a regular 12-gon, the first is not convex, the second is ordered while the third is not. Observe that the second quadrilateral generates $1+1+3+3$ as a partition of 8 into four parts, that is why it is called ordered.

Figure 1

2 Notations and preliminaries

We denote by G_n a regular *n*-gon and by N the set of nonnegative integers. The partition of $n \in \mathbb{N}$ into k parts is a tuple $\pi = (\pi_1, \dots, \pi_k) \in \mathbb{N}^k, k \in \mathbb{N}$, such that

$$
n = \pi_1 + \cdots + \pi_k, \ 1 \leq \pi_1 \leq \cdots \leq \pi_k,
$$

where the nonnegative integers π_i are called parts. We denote the number of partitions of n into k parts by $p(n, k)$, the number of partitions of n into parts less than or equal to k by $P(n, k)$ and by $q(n, k)$ we denote the number of partitions of n into k distinct parts. We sometimes write a partition of n into k parts $\pi = (\pi_1^{f_1}, \ldots, \pi_s^{f_s})$, where $\sum_{i=1}^s f_i = k$, the value of f_i is termed as frequency of the part π_i . For $m \in \mathbb{N}, m \leq k$, we denote the number of partitions of *n* into k parts $\pi = (\pi_1^{f_1}, \ldots, \pi_s^{f_s})$ for which $1 \leq f_i \leq m$ and $f_j = m$ for at least one $j \in \{1, \ldots, s\}$ by $c_m(n, k)$. For example $c_2(12, 4) = 10$, since such partitions are exactly 1128, 1137, 1146, 1155, 1227, 1335, 1344, 2235, 2244, 2334. Let $\delta(n) \equiv n \pmod{2}$, so that $\delta(n) = 1$ or 0, |x| the integer part of x and finally $\{x\}$ the nearest integer to x.

3 Main results

In this section, we give the explicit formulas of $R_O(n, 4)$ and $R_{\overline{O}}(n, 4)$.

Theorem 2 For $n \geq 4$,

$$
R_O(n, 4) = \left\{ \frac{n^3}{144} + \frac{n^2}{48} - \frac{n\delta(n)}{16} \right\}.
$$

Proof: First of all, notice that

$$
R_O(n, 4) = p(n, 4). \tag{1}
$$

Indeed, each ordered convex quadrilateral $ABCD$ inscribed in G_n can be viewed as a quadruple of integers (x, y, z, t) , abbreviated for convenience as a word $xyzt$, such that:

$$
\begin{cases}\n n - 4 = x + y + z + t; \\
 0 \le x \le y \le z \le t,\n\end{cases}
$$
\n(2)

where x, y, z and t represent the number of vertices between A and B, B and C, C and D and finally between D and A , respectively. It should be noted, that the number of solutions of System [\(2\)](#page-2-0) equals $p(n, 4)$, by setting $x' = x + 1$, $y' = y + 1$, $z' = z + 1$ and $t' = t + 1$.

Now, let $q(z)$ be the known generating function of $p(n, 4)$ [\[3\]](#page-7-5):

$$
g(z) = \frac{z^4}{(1-z)(1-z^2)(1-z^3)(1-z^4)}.
$$

From expanding $g(z)$ into partial fractions, we obtain

$$
g(z) = \frac{1}{32\left(1+z\right)^2} - \frac{13}{288\left(1-z\right)^2} - \frac{1}{24\left(1-z\right)^3} + \frac{1}{24\left(1-z\right)^4} + \frac{1-z^2}{8\left(1-z^4\right)} - \frac{1-z}{9\left(1-z^3\right)}.
$$

Via straightforward calculations, it can be proved that

$$
g(z) = \sum_{n\geq 0} \left(\frac{(-1)^n (n+1)}{32} - \frac{13(n+1)}{288} - \frac{(n+1)(n+2)}{48} + \frac{(1 + \frac{11}{6}n + n^2 + \frac{1}{6}n^3)}{24} + \epsilon(n) \right) z^n,
$$

where $\epsilon(n) \in \left\{ -\frac{17}{72}, -\frac{1}{8}, -\frac{1}{9}, -\frac{1}{72}, 0, \frac{1}{72}, \frac{1}{9}, \frac{1}{8}, \frac{17}{72} \right\}.$

Thus, we have

$$
g(z) = \sum_{n\geq 0} \left(\frac{n^3}{144} + \frac{n^2}{48} + \frac{((-1)^n - 1)n}{32} + \beta(n) \right) z^n,
$$

where

$$
\beta(n) \in \left\{ -\frac{5}{16}, -\frac{1}{4}, -\frac{29}{144}, -\frac{3}{16}, -\frac{5}{36}, -\frac{1}{8}, -\frac{13}{144}, -\frac{11}{144}, -\frac{1}{16}, -\frac{1}{36}, -\frac{1}{72}, 0, \frac{5}{144}, \frac{7}{144}, \frac{1}{9}, \frac{23}{144}, \frac{2}{9}, \frac{7}{72} \right\}.
$$

Since $p(n, 4)$ is an integer and $|\beta(n)| < 1/2$, we get

$$
p(n,4) = \left\{ \frac{n^3}{144} + \frac{n^2}{48} + \frac{((-1)^n - 1)n}{32} \right\}.
$$
 (3)

Hence, the result follows.

Remark 3 Andrews and Eriksson said that the method used in the proof above dates back to Cayley and MacMahon $[1, p. 58]$ $[1, p. 58]$. Using the same method $[1, p. 60]$, they proved the following formula for $P(n, 4)$:

$$
P(n, 4) = \left\{ \frac{(n+1) (n^2 + 23n + 85)}{144} - \frac{(n+4) \left\lfloor \frac{n+1}{2} \right\rfloor}{8} \right\}.
$$

Because $p(n, k) = P(n - k, k)$ (see for example [\[4\]](#page-7-7)), it follows:

$$
p(n, 4) = \left\{ \frac{n^3}{144} + \frac{n^2}{12} - \frac{n}{8} - \frac{n \left\lfloor \frac{n-1}{2} \right\rfloor}{8} \right\}.
$$
 (4)

Note that the formula [\(3\)](#page-3-0) seems a little bit simpler than [\(4\)](#page-3-1).

To give an explicit formula for $R_{\overline{O}}(n, 4)$, we need the following lemma.

Lemma 4 For $n \geq 4$,

$$
c_2(n, 4) = p(n, 4) - q(n, 4) - \left\lfloor \frac{n-1}{3} \right\rfloor.
$$

$$
\Box
$$

Proof: By definition of $c_m(n, k)$ in Section [2,](#page-2-1) it easily follows that

$$
c_2(n, 4) = p(n, 4) - (q(n, 4) + c_3(n, 4) + \chi(4/n)),
$$

where $\chi(4/n) = 1$ if $n \equiv 0 \pmod{4}$, 0 otherwise.

Furthermore, $c_3(n, 4)$ can be considered as the number of integer solutions of the equation

$$
3x + y = n, \text{ with } 1 \le y \ne x \ge 1.
$$

Since $x \neq y$, the solution $x = y = n/4$, when 4 divides n, must be removed. Then, by taking $y = 1$, one can get $c_3(n, 4) = \left\lfloor \frac{n-1}{3} \right\rfloor - \chi(4|n)$. This completes the proof. \Box

Now we can derive the following theorem.

Theorem 5 For $n \geq 4$,

$$
R_{\overline{O}}(n,4) = \left\{ \frac{n^3}{144} + \frac{n^2}{48} - \frac{n\delta(n)}{16} \right\} + \left\{ \frac{(n-6)^3}{144} + \frac{(n-6)^2}{48} - \frac{(n-6)\delta(n)}{16} \right\} - \left\lfloor \frac{n-1}{3} \right\rfloor.
$$

Proof: First of all, notice that $q(n, k) = p(n - k(k-1)/2, k)$ $q(n, k) = p(n - k(k-1)/2, k)$ $q(n, k) = p(n - k(k-1)/2, k)$ [\[1\]](#page-7-6). Then from Theorem 2 we get

$$
q(n,4) = p(n-6,4) = \left\{ \frac{(n-6)^3}{144} + \frac{(n-6)^2}{48} - \frac{(n-6)\delta(n)}{16} \right\}
$$

Therefore, it is enough to prove that

$$
R_{\overline{O}}(n, 4) = p(n, 4) + q(n, 4) - \left\lfloor \frac{n-1}{3} \right\rfloor.
$$
 (5)

.

In fact, each non-ordered convex quadrilateral may be obtained by permuting exactly two parts of some partition of n into four parts, which is associated from System (2) to a unique ordered convex quadrilateral. For example, in Figure 1 above, the ordered convex quadrilateral (b) assimilated to the solution 1133 of 8 or to the partition 2244 of 12, generates the non-ordered convex quadrilateral (c) via the permutation 1313. Obviously, not every partition of n can generate a non-ordered convex quadrilateral, those having three equal parts or four equal parts cannot. Also, each partition of n into four distinct parts $xyzt$ generates two non-ordered convex quadrilaterals, each one corresponds to one of the two following permutations xytz and xzyt. On the other hand, each partition of n into two equal parts, like xxyz, with y and z both of them $\neq x$, generates only one non-ordered convex quadrilateral, corresponding to the unique permutation $xyxz$. Thus,

$$
R_{\overline{O}}(n,4) = 2q(n,4) + c_2(n,4).
$$
 (6)

Hence, from Lemma [4](#page-3-2) the assertion follows.

 \Box

Remark 6 By substituting $k = 4$ in Theorem [1,](#page-1-1) we get

$$
R(n,4) = \frac{1}{2} \binom{\left\lfloor \frac{n}{2} \right\rfloor}{2} + \frac{1}{8} \binom{n-1}{3} + \frac{n(1-\delta(n))}{16} + \alpha,
$$

where

$$
\alpha = \begin{cases}\n\frac{1}{8} & if n \equiv 0 \ (mod \ 4), \\
-\frac{1}{8} & if n \equiv 2 \ (mod \ 4), \\
0 & otherwise.\n\end{cases}
$$

Knowing furthermore that

$$
R(n, 4) = R_O(n, 4) + R_{\overline{O}}(n, 4),
$$

the following identity follows according to Theorem [1](#page-1-1) and Theorem [5](#page-4-0) :

$$
\frac{1}{2} \left(\frac{\lfloor \frac{n}{2} \rfloor}{2} \right) + \frac{1}{8} \binom{n-1}{3} + \frac{n(1 - \delta(n))}{16} + \alpha = 2 \left\{ \frac{n^3}{144} + \frac{n^2}{48} - \frac{n\delta(n)}{16} \right\} + \left\{ \frac{(n-6)^3}{144} + \frac{(n-6)^2}{48} - \frac{(n-6)\delta(n)}{16} \right\} - \left\lfloor \frac{n-1}{3} \right\rfloor.
$$

4 Connecting formula between $\Delta(n)$ and $R_O(n, 4)$

There are two further kinds of quadrilaterals inscribed in G_n , the proper ones, those which do not use the sides of G_n and the improper ones, those using them. In Figure [2](#page-5-0) below, two quadrilaterals inscribed in G_{12} are shown, the first one is proper while the second is not.

Figure 2

Let denote the number of these two kinds of quadrilaterals by $R_O^P(n, 4)$ and $R_O^P(n, 4)$, respectively. The goal of this section is to prove the following theorem.

Ordered and non-ordered ... 77

Theorem 7 For $n \geq 4$,

$$
\Delta(n) = R_O(n + 1, 4) - R_O(n - 3, 4).
$$

Proof: Note first that an improper ordered quadrilateral is formed by at least one side of G_n , hence the concatenation of the vertices of one of such sides gives a triangle inscribed in G_{n-1} , as shown in Figure [3.](#page-6-0)

Figure 3

Thus we have

$$
R_O^{\overline{P}}(n,4) = \Delta (n-1).
$$

On the other hand, it is obvious to see that

$$
R_O^P(n,4) = p(n-4,4).
$$

Then from (1) , we get

$$
R_O^P(n,4) = R_O(n-4,4).
$$

Since

$$
R_O(n, 4) = R_O^P(n, 4) + R_O^{\overline{P}}(n, 4),
$$

we obtain

$$
R_O(n, 4) = R_O(n - 4, 4) + \Delta (n - 1).
$$

So, the theorem has been proved by substituting n by $n + 1$.

Remark 8 The well-known recurrence relation [\[4,](#page-7-7) p. 373],

$$
p(n,k) = p(n+1,k+1) - p(n-k,k+1),
$$
\n(7)

implies by setting $k = 3$,

$$
p(n,3) = p(n+1,4) - p(n-3,4).
$$
 (8)

Thus, as we can see, the formula of Theorem [7](#page-5-1) can be considered as a combinatorial interpretation of identity [\(8\)](#page-6-1).

$$
\sqcup
$$

For $k \leq n$, we have the following generalization, using the same arguments to prove Theorem [7.](#page-5-1)

Theorem 9 For $n \geq k$,

$$
R_O(n,k) = R_O(n+1,k+1) - R_O(n-k,k+1).
$$

The formula of Theorem [9](#page-7-8) can be considered as a combinatorial interpretation of the recurrence formula [\(7\)](#page-6-2).

References

- [1] Andrews, G. E., and Eriksson, K. : Integer Partitions. Cambridge University Press, Cambridge, United Kingdom, (2004)
- [2] Anning, N., Frame, J.S., and Auluck, F.C. : Problems for Solution: 3874 – 3899. The American Mathematical Monthly, Vol. 47, No. 9, (Nov., 1940), 664 – 666
- [3] Charalambides, A. Charalambos : Enumerative Combinatorics. Chapman & Hall /CRC, (2002)
- [4] Comtet, L. : Advanced Combinatorics. D. Reidel Publishing Company, Dordrecht-Holland, Boston, 1974, 133 – 175
- [5] Gupta, H.: *Enumeration of incongruent cyclic k-gons.* Indian J. Pure Appl. Math. 10 (1979) , No. 8, $964 - 999$
- [6] Musselman, J. R., Rutledge, G., Anning, N., Leighton, W., and Thebault, V. : Problems for Solution: 3891 – 3895. The American Mathematical Monthly, Vol. 45, No. 9 $(Nov., 1938), 631-632$
- [7] OEIS : The online Encyclopedia of Integer sequences. Published electronically at [http://oeis.org,](http://oeis.org) 2008
- [8] Shevelev, V. S. : Necklaces and convex k-gons. Indian J. Pure Appl. Math. 35, no. $5(2004)$, $629-638$

received: January 19, 2014

Ordered and non-ordered ... 79

Authors:

Nesrine BENYAHIA TANI Algiers 3 University 2 Ahmed Waked Street, Dely Brahim, Algiers, Algeria. benyahiatani@yahoo.fr or tani.nesrine@univ-alger3.dz

Zahra YAHI Abderahmane Mira University, Bejaia, Algeria. zahrayahi@yahoo.fr

Sadek BOUROUBI^{[1](#page-8-1)} USTHB, Faculty of Mathematics P.B. 32 El-Alia, 16111, Bab Ezzouar, Algiers, Algeria.

[sbouroubi@usthb.dz](mailto: sbouroubi@usthb.dz) or <bouroubis@yahoo.fr>

¹Corresponding author