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ABSTRACT. In this paper we define and study BN-proximity, B-nearness, B-farness, B-
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1 Introduction

Nearness on space introduced by Herrlich on 1974. Topics developed in this paper are based
on the work of Banaschewski and Dube. We define and study BN-proximity, B-nearness, B-
farness, B-smallness and B-covering on Boolean frames and we investigate relation between
them.

Also we investigate some properties of B-nearness on frames and subframes. Then we have
shown that by given B-Nearness frame we can define a complete nearness space.

2 Background

Definition 1 Let X be a set and let ξ be a subset of P 2X. Consider the following
axioms:

(N1) If A << B and B ∈ ξ then A ∈ ξ. Where A << B iff ∀A ∈ A∃B ∈ B, A ⊇ B;

(N2) If
⋂
A 6= ∅ then A ∈ ξ;

(N3) ∅ 6= ξ 6= P 2X;

(N4) If (A
∨
B) ∈ ξ then A ∈ ξ or B ∈ ξ, where A

∨
B := {A ∪B : A ∈ A, B ∈ B};
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(N5) If {clξA|A ∈ A} ∈ ξ then A ∈ ξ, where clξA := {x ∈ X| {A, {x}} ∈ ξ}.

ξ is called nearness structure on X iff ξ satisfying to above conditions, and the pair (X, ξ) is
called a nearness space -shortly a N-space- iff ξ is a nearness structure on X.

If (X, ξ) and (Y, η) are N-spaces then a function f : X −→ Y is called a nearness preserving
map from (X, ξ) to (Y, η) iff A ∈ ξ implies fA ∈ η, where fA := {f [A] : A ∈ A}.

Let (X, ξ) be a N-space, then a subset A of PX is called a ξ-cluster iff A is maximal element
of the set ξ\ {∅}, ordered by inclusion. We call (X, ξ) complete iff every ξ-cluster contains
an element {x} for some x ∈ X.

(X∗, ξ∗) is a completion of (X, ξ) where ξ∗ = {Ω ⊂ PX∗| ∪ {∩ω|ω ∈ Ω} ∈ ξ} and X∗ denotes
the set of all ξ-clusters.

Definition 2 A frame is a complete lattice satisfying the special distribution law,

(IFD1) ∀ a ∈ L, ∀ S ⊆ L, a ∧
∨
S =

∨
{a ∧ x|x ∈ S};

and it is called a Boolean frame if it is complementary.

Note, that in this case each element has unique complement, i.e.

∀ a ∈ L ∃! a′ ∈ L s.t. a ∧ a′ = 0 and a ∨ a′ = 1

Therefore Boolean frame satisfying in

(IFD2) ∀ a ∈ L, ∀ S ⊆ L, a ∨
∧
S =

∧
{a ∨ x|x ∈ S}.

Frame homomorphisms between Boolean frames preserve top, bottom (denoted by 1 and 0
respectively) meets, joins and complementary.

3 B-Nearness and BN-proximity on frames

Definition 3 Let L be a Boolean frame and A, B are subsets of L.

secA = {x ∈ L|∀a ∈ A, x ∧ a 6= 0} ;

stackA = {x ∈ L|∃a ∈ A s.t. a ≤ x} ;

A
∨

B = {a ∨ b|a ∈ A, b ∈ B} ;

A
∧

B = {a ∧ b|a ∈ A, b ∈ B} ;

A′ = {a′|a ∈ A} ;

st(x,A) =
∨
{a ∈ A|a ∧ x 6= 0} ;

st(x,A)d =
∧
{a ∈ A|a ∨ x 6= 1} ;
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The partial order defined by setting a ≤ b iff b = a ∨ b;

A << B iff ∀a ∈ A ∃b ∈ B s.t. b ≤ a; (A corefines B)

A ≺ B iff ∀a ∈ A ∃b ∈ B s.t. a ≤ b. (A refines B)

Proposition 1 Let L be a Boolean frame and A, B are subsets of L. Then we have
following statements:

(1) A << B iff A′ ≺ B′;

(2) stack(A ∪B) = stackA ∪ stackB;

(3) stack∅ = ∅;

(4) stackA = sec2A;

(5) sec3A = secA;

Proof:

(1) A << B iff ∀a ∈ A, ∃b ∈ B s.t. b ≤ a so a′ ≤ b′ i.e. ∀a′ ∈ A′, ∃b′ ∈ B′ s.t. a′ ≤ b′ iff
A′ ≺ B′.

(2) and (3) obviously hold.

(4) Let b ∈ stackA i.e. ∃a ∈ A s.t. a ≤ b. Let c be arbitrary member of secA so ∀a ∈ A,
c ∧ a 6= 0 and since a ≤ b, it implies c ∧ b 6= 0 therefore we have ∀c ∈ secA, b ∧ c 6= 0

i.e. b ∈ sec2A so stackA ⊆ sec2A.
Now let b ∈ sec2A, if b /∈ stackA, then ∀a ∈ A, a � b so ∀a ∈ A, b′ ∧ a 6= 0 i.e.
b′ ∈ secA so b /∈ sec2A which is contradiction so b ∈ stackA i.e. sec2A ⊆ stackA.
Therefore stackA = sec2A.

(5) Let c ∈ sec3A = stack(secA) so ∃d ∈ secA s.t. d ≤ c but ∀a ∈ A, d ∧ a 6= 0 therefore
∀a ∈ A, c ∧ a 6= 0 i.e. c ∈ secA so sec3A ⊆ secA. And obviously, secA ⊆ stack(secA)

so sec3A = secA.

Definition 4 Let L be a Boolean frame. The relation δ satisfying in the following
conditions:

(BP0) xδy implies yδx;

(BP1) x ≤ y and xδz imply yδz;

(BP2) x ∧ y 6= 0 implies xδy;

(BP3) xδy implies x 6= 0;

(BP4) xδ(y ∨ z) implies xδy or xδz;
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(BP5) For every x ∈ L we have x =
∧{

y ∈ L|x ≤ y, xδy′
}
.

Relation δ is called BN-proximity on L and (L, δ) is BN-proximal frame.
If additionally δ satisfies in (BP6),

(BP6) xδy implies there exist z ∈ L such that xδz and z′δy; (xδy means x and y are not
in relation.)
Then δ is called B-proximity on L and (L, δ) is B-proximal frame.

Let (L, δ1) and (M, δ2) be two B-proximal frames.

A frame homomorphism f : L→M is called frame B-proximal homomorphism iff

xδ1y implies f(x)δ2f(y)

We denote the corresponding category by BProxFrm.

Definition 5 Let L be a Boolean frame and ξ be a subset of PL:

(BN1) If A << B and B ∈ ξ then A ∈ ξ;

(BN2) If
∧
A 6= 0 then A ∈ ξ;

(BN3) ∅ 6= ξ 6= PL;

(BN4) If (A
∨
B) ∈ ξ then A ∈ ξ or B ∈ ξ;

Then ξ is called preB-nearness on L, and the pair (L, ξ) is called preB-nearness
frame iff it satisfies in (BN1)-(BN3).
ξ is called semiB-nearness on L, and the pair (L, ξ) is called semiB-nearness frame
iff it satisfies in (BN1)-(BN4).
ξ is called B-nearness on L, and the pair (L, ξ) is called B-nearness frame iff it
additionally satisfies:

(BN5) For each x ∈ L, x =
∧{

y ∈ L|x ≤ st(y, A)d, for some A /∈ ξ
}
.

Let (L, ξ) and (M, η) be two B-nearness frames.
A frame homomorphism f : L→M is called B-nearness homomorphism iff
A ∈ η ⇒ f−1(A) ∈ ξ.

The corresponding category denoted by BNFrm.

Proposition 2 Let L be a Boolean frame, y ∈ L and A ⊆ L where
∧
A = 0 then

st(y, A)d ≤ y.

Proof: We know for every y ∈ L

y = y ∨ 0 = y ∨ (
∧
{z|z ∈ A}) =

∧
{y ∨ z|z ∈ A} .
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And since L is Boolean if for all z ∈ A, y∨ z = 1 then ∀z ∈ A, y′ ≤ z so y′ ≤
∧
A i.e. y′ = 0

so y = 1 and then y = ∧∅ so we have

y =
∧
{y ∨ z|y ∨ z 6= 1, z ∈ A}

= y ∨ (
∧
{z ∈ A|z ∨ y 6= 1})

= y ∨ st(y, A)d ⇒ st(y, A)d ≤ y

Proposition 3 Let L be a Boolean frame and ξ is a preB-nearness on L then
x ≤ st(y, A)d for some A /∈ ξ iff x ≤ y and {y′, x} /∈ ξ.

Proof: Let x ≤ st(y, A)d for some A /∈ ξ. Since A /∈ ξ by (BN2),
∧
A = 0 and by

Proposition 2, st(y, A)d ≤ y so x ≤
∧
{z|z ∨ y 6= 1, z ∈ A} ≤ y. Now for every z ∈ A either

z ∨ y 6= 1 or z ∨ y = 1. If z ∨ y 6= 1 then x ≤ z and if z ∨ y = 1 then y′ ≤ z i.e. A << {y′, x}
and since A /∈ ξ by (BN1), {y′, x} /∈ ξ.

Conversely, let x ≤ y and {y′, x} /∈ ξ. For A = {y′, x}, if y = 1 then st(y, A)d = 1 and if
y 6= 1 then st(y, A)d = x. In any case x ≤ st(y, A)d for some A /∈ ξ.

Remark 1 Let (L, ξ) be a semiB-nearness frame then ξ is B-nearness frame iff it satisfies
in the following condition:

(BN5′) For each x ∈ L, x =
∧
{y ∈ L|x ≤ y, and {y′, x} /∈ ξ}.

Theorem 1 Let L be a Boolean frame. Set of all preB-nearness on L ordered by set
inclusion is a lattice when its bottom is {A ⊂ L|

∧
A 6= 0} and its top is {A ⊂ L|0 /∈ A} .

Remark 2 If (X, ξ) is a B-nearness frame then the relation δ on L defined by

xδy iff {x, y} ∈ ξ

is a BN-proximity.

Proof: We show that δ satisfying in the (BP0)-(BP5).

To (BP0): Let xδy then {x, y} ∈ ξ and equivalently {y, x} ∈ ξ i.e. yδx.

To (BP1): Let x ≤ y and xδz i.e. {x, z} ∈ ξ since {y, z} << {x, z} by (BN1) we have
{y, z} ∈ ξ i.e. yδz.

To (BP2): Let x ∧ y 6= 0 so by (BN2), {x, y} ∈ ξ i.e. xδy.

To (BP3): Let xδy i.e. {x, y} ∈ ξ. If x = 0 then for every A ⊂ L, A << {x, y} and by
(BN1), A ∈ ξ i.e. ξ = L which is contradiction to (BN3). So x 6= 0.

To (BP4): Let xδ(y ∨ z) i.e. {x, (y ∨ z)} ∈ ξ but we have
{x, y}∨{x, z} = {x, x ∨ z, y ∨ x, y ∨ z} << {x, (y ∨ z)} so by (BN1), {x, y}∨{x, z} ∈ ξ and
by (BN4), {x, y} ∈ ξ or {x, z} ∈ ξ i.e. xδy or xδz.
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To (BP5): By (BN5′) we have for every x ∈ L, x =
∧
{y ∈ L|x ≤ y, and {y′, x} /∈ ξ} i.e.

x =
∧{

y ∈ L|x ≤ y, and xδy′
}
.

Therefore δ is an BN-proximity on L.

4 B-Farness, B-Smallness and B-Covering on frames

Definition 6 Let L be a Boolean frame let ξ be a subset of PL satisfying the following
conditions:

(BF1) If A << B and A ∈ ξ then B ∈ ξ;

(BF2) If A ∈ ξ then
∧
A = 0 ;

(BF3) ∅ 6= ξ 6= PL;

(BF4) If A ∈ ξ and B ∈ ξ then (A
∨
B) ∈ ξ;

Then ξ is called B-farness on L, and the pair (L, ξ) is called a B-farness frame iff
it additionally satisfies:

(BF5) For each x ∈ L, x =
∧{

y ∈ L|x ≤ st(y, A)d, for some A ∈ ξ
}
.

Definition 7 Let L be a Boolean frame let γ be a subset of PL satisfying the following
conditions:

(BS1) If A << B and A ∈ γ then B ∈ γ;

(BS2) For 0 ∈ L, {0} ∈ γ;

(BS3) ∅ 6= γ 6= PL;

(BS4) If A ∪B ∈ γ then A ∈ γ or A ∈ γ;

Then γ is called B-smallness on L, and the pair (L, γ) is called a B-smallness frame
iff it additionally satisfies:

(BS5) For each x ∈ L, x =
∧{

y ∈ L|x ≤ st(y, A)d, for some secA /∈ γ
}
.

Definition 8 [2] Let L be a Boolean frame let µ be a subset of PL satisfying the
following conditions:

(BC1) If A ≺ B and A ∈ µ then B ∈ µ;

(BC2) If A ∈ µ then
∨
A = 1 ;

(BC3) ∅ 6= µ 6= PL;

(BC4) If A ∈ µ and B ∈ µ then(A
∧
B) ∈ µ;

Then µ is called B-covering on L, and the pair (L, µ) is called a B-covering frame
iff it additionally satisfies:
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(BC5) For each x ∈ L, x =
∨
{y ∈ L|st(y, A) ≤ x, for some A ∈ µ}.

Let (L, µ1) and (M,µ2) be two B-covering frames, a frame homomorphism f : L → M is
called B-covering homomorphism iff A ∈ µ1 ⇒ {f(a) : a ∈ A} =: f(A) ∈ µ2.

We denote the corresponding category with BCFrm.

Proposition 4 Let L be a Boolean frame and ξ be a B-nearness on L. Then

(i) ξ = {A ⊆ L|A /∈ ξ} is the B-farness structure on L induced by ξ;

(ii) µ =
{
A ⊆ L|A′ ∈ ξ

}
is the B-covering structure on L induced by ξ;

(iii) γ = {A ⊂ L|∀B ∈ µ,B ∩ stackA 6= ∅} is the B-smallness structure on L induced by ξ.

Proof:

(i) We prove that ξ is a B-farness on L.

To (BF1): Let A << B and A ∈ ξ then A /∈ ξ so by (BN1), B /∈ ξ i.e. B ∈ ξ.

To (BF2): If A ∈ ξ i.e. A /∈ ξ so ∧A = 0.

To (BF3): Since ξ 6= ∅, ξ 6= PL. And since ξ 6= PL, ξ 6= ∅.

To (BF4): Let A ∈ ξ and B ∈ ξ i.e. A /∈ ξ and B /∈ ξ so by (BN4), A ∨ B /∈ ξ i.e.
A ∨B ∈ ξ.

To (BF5): Let x ∈ L, we know x =
∧{

y ∈ L|x ≤ st(y, A)d, for some A /∈ ξ
}

i.e.
x =

∧{
y ∈ L|x ≤ st(y, A)d, for some A ∈ ξ

}
.

So ξ is a B-farness on L which induced by ξ.

(ii) We prove that µ is a B-covering on L.

To (BC1): Let A ≺ B and A ∈ µ i.e. A′ << B′ and A′ ∈ ξ so by (BF1), B′ ∈ ξ i.e.
B ∈ µ.

To (BC2): Let A ∈ µ i.e. A′ ∈ ξ so by (BF2), ∧A′ = 0 so ∨A = 1.

To (BC3): Since ξ 6= ∅, µ 6= ∅ and since ξ 6= PL, µ 6= PL.

To (BC4): Let A ∈ µ and B ∈ µ i.e. A′ ∈ ξ and B′ ∈ ξ so by (BF4), A′ ∨ B′ ∈ ξ i.e.
(A ∧B)′ ∈ ξ so A ∧B ∈ µ.

To (BC5): Let x ∈ L, we know x′ =
∧{

y′ ∈ L|x′ ≤ st(y′, A′)d, for some A′ ∈ ξ
}

so
x =

∨{
y ∈ L|x′ ≤ st(y′, A′)d, for some A′ ∈ ξ

}
.

But x′ ≤ st(y′, A′)d means x′ ≤
∧
{a′ ∈ A′|a′ ∨ y′ 6= 1} i.e.∨

{a ∈ A|a ∧ y 6= 0} ≤ x i.e. st(y, A) ≤ x so

x =
∨{

y ∈ L|st(y, A) ≤ x, for some A′ ∈ ξ
}
i.e.
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x =
∨
{y ∈ L|st(y, A) ≤ x, for some A ∈ µ}.

So µ is a B-covering on L which induced by ξ.

(iii) We prove that γ is a B-smallness on L.

To (BS1): If A << B and A ∈ γ then for every D ∈ µ, D ∩ stackA 6= ∅ i.e. for
arbitrary D ∈ µ, there exists d ∈ D s.t. a ≤ d for some a ∈ A. Also we know A << B

so there exists b ∈ B s.t. b ≤ a therefore b ≤ a ≤ d i.e. d ∈ stackB so D ∩ stackB 6= ∅
i.e. B ∈ γ.

To (BS2): We know stack {0} = {x ∈ L|0 ≤ x} = L and obviously for everyB ∈ µ,
B ∩ L 6= ∅. So {0} ∈ γ.

To (BS3): Since {0} ∈ γ so γ 6= ∅.

We know stack∅ = ∅ and for every B ∈ µ, B ∩ ∅ = ∅ so ∅ /∈ γ i.e. γ 6= PL.

To (BS4): Let A∪B ∈ γ so for every D ∈ µ, D∩ stack(A∪B) 6= ∅ i.e. D∩ (stackA∪
stackB) 6= ∅ so (D ∩ stackA) ∪ (D ∩ stackB) 6= ∅ i.e. either D ∩ stackA 6= ∅ or
D ∩ stackB 6= ∅.

Let for D1 ∈ µ, D1 ∩ stackA = ∅ and D1 ∩ stackB 6= ∅ (1)

Let for D2 ∈ µ, D2 ∩ stackA 6= ∅ and D2 ∩ stackB = ∅ (2)

Since D1 ∈ µ and D2 ∈ µ, by (BC4), D1 ∧D2 ∈ µ.

So either (D1 ∧D2) ∩ stackA 6= ∅ or (D1 ∧D2) ∩ stackB 6= ∅.

If (D1 ∧ D2) ∩ stackA 6= ∅, there exists d1 ∧ d2 where d1 ∈ D1 and d2 ∈ D2 s.t.
a ≤ (d1 ∧ d2) for some a ∈ A therefore a ≤ d1 and a ≤ d2, i.e. D1 ∩ stackA 6= ∅ and
D2 ∩ stackA 6= ∅ which is contradiction to (1). Similarly if (D1 ∧D2) ∩ stackB 6= ∅,
we have D1 ∩ stackB 6= ∅ and D2 ∩ stackB 6= ∅ which is contradiction to (2).

So either for all D ∈ µ, D ∩ stackA 6= ∅ or for all D ∈ µ, D ∩ stackB 6= ∅ i.e. either
A ∈ γ or B ∈ γ.

To (BS5): Let x ∈ L so x =
∧{

y ∈ L|x ≤ st(y, A)d, for some A ∈ ξ
}
i.e.

x =
∧{

y ∈ L|x ≤ st(y, A)d, for some A′ ∈ µ
}
.

If A′ ∈ µ then secA /∈ γ since A′ ∩ stack(secA) = A′ ∩ secA = ∅.

And if secA /∈ γ then there is B ∈ µ s.t. B ∩ stack(secA) = ∅, i.e. B ∩ secA = ∅, i.e.
for every b ∈ B there is a ∈ A s.t. b ∧ a = 0 so b ≤ a′ therefore we have B ≺ A′ and
by (BC1) it implies A′ ∈ µ.

So equivalently we have x =
∧{

y ∈ L|x ≤ st(y, A)d, for some secA /∈ γ
}
.

Therefore γ is a B-smallness on L which induced by ξ.
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Proposition 5 Let L be a Boolean frame and ξ, ξ, γ and µ be respectively B-nearness,
B-farness, B-smallness and B-covering structures induced by each other on L. Then following
relations are hold

(1) A ∈ ξ iff A /∈ ξ;

(2) A ∈ ξ iff A /∈ ξ;

(3) A ∈ ξ iff A′ ∈ µ;

(4) A ∈ µ iff A′ ∈ ξ;

(5) A ∈ µ iff ∀ B ∈ ξ A ∩ secB 6= ∅;

(6) A ∈ ξ iff ∀ B ∈ µ, B ∩ secA 6= ∅;

(7) A ∈ γ iff ∀ B ∈ µ, B ∩ stackA 6= ∅;

(8) A ∈ µ iff ∀B ∈ γ, A ∩ stackB 6= ∅;

(9) A ∈ ξ iff secA ∈ γ;

(10) A ∈ γ iff secA ∈ ξ;

(11) A ∈ γ iff ∀B ∈ ξ ∃a ∈ A ∃b ∈ B, a ∧ b = 0;

(12) A ∈ ξ iff ∀B ∈ γ, ∃a ∈ A ∃b ∈ B, a ∧ b = 0.

Proof:

By Proposition 4, (1) - (4) is clear.

(5) Let A ∈ µ then A′ ∈ ξ and let B ∈ ξ we prove that A ∩ secB 6= ∅ i.e. ∃ a ∈ A s.t.
a ∈ secB i.e. ∃ a ∈ A s.t. ∀ b ∈ B, a ∧ b 6= 0. If not so ∀a ∈ A ∃ b ∈ B s.t. a ∧ b = 0 i.e.
b ≤ a′ therefore ∀a′ ∈ A′ ∃ b ∈ B s.t. b ≤ a′ i.e. A′ << B and since A′ ∈ ξ by (BF1) B ∈ ξ
which is a contradiction.

Conversely, let ∀ B ∈ ξ A ∩ secB 6= ∅. If A /∈ µ then A′ ∈ ξ. But we have A ∩ secA′ = ∅
since for every a ∈ A, a ∧ a′ = 0 and a′ ∈ A′ so a /∈ secA′ which is contradiction so A ∈ µ.

(6) Similar to (5). And by Proposition 4, (7) is clear.

(9) Let A /∈ ξ i.e. A′ ∈ µ then we have A′ ∩ secA = ∅ i.e. A′ ∩ stack(secA) = ∅ so secA /∈ γ.

Conversely, let secA /∈ γ i.e. there exists B ∈ µ s.t. B ∩ stack(secA) = ∅ so B ∩ secA = ∅
i.e. ∀b ∈ B, ∃a ∈ A s.t. a∧ b = 0 so b ≤ a′ therefore B ≺ A′ and by (BC1) it implies A′ ∈ µ
so A /∈ ξ.

(10) Let A ∈ γ i.e. ∀B ∈ µ, B ∩ stackA 6= ∅.
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We consider B = {d′ ∈ L|∀a ∈ A, d ∧ a 6= 0}. For every d′ ∈ B, there is not any a ∈ A

s.t. a ≤ d′ i.e. for every d′ ∈ B, d′ /∈ stackA so {d′ ∈ L|∀a ∈ A, d ∧ a 6= 0} /∈ µ therefore
{d ∈ L|∀a ∈ A, d ∧ a 6= 0} ∈ ξ i.e. secA ∈ ξ.

Conversely, secA ∈ ξ by (9), sec2A ∈ γ i.e. stackA ∈ γ and since stackA << A by (BS1) it
implies A ∈ γ.

(8) Let A ∈ µ and B ∈ γ then by (7) we have A ∩ stackB 6= ∅.

Conversely, let ∀B ∈ γ, A ∩ stackB 6= ∅, if A /∈ µ then A′ ∈ ξ and by (9) secA′ ∈ γ and by
assumption A ∩ stack(secA′) 6= ∅ i.e. A ∩ secA′ 6= ∅ which is contradiction so A ∈ µ.

(11) By (7) is clear. And (12) by (8) is clear.

Proposition 6 If (L, ξ) is a B-nearness frame and ξ and µ are respectively corresponding
B-farness and B-covering then the following conditions are equivalent:

(C) If every finite corefinement of A belongs to ξ then A belongs to ξ;

(C ′) If A ∈ ξ then there exists a finite corefinement B of A with B ∈ ξ;

(C ′′) If A ∈ µ then there exists a finite refinements B of A with B ∈ µ.

Proof: (C) ⇔ (C ′): Obviously.

(C ′) ⇒ (C ′′) : Let A ∈ µ then A′ ∈ ξ so by (C ′) there exists a finite B′ ∈ ξ s.t. B′ << A′

i.e. B ≺ A and since B′ is finite B-farness so B is finite B-covering. So there exists a finite
refinements B of A with B ∈ µ.

(C ′) ⇐ (C ′′) : Let A ∈ ξ so A′ ∈ µ and by (C ′′) there exists a finite B′ ∈ µ s.t. B′ ≺ A′

so B << A and since B′ is finite B-covering so B is finite B-farness i.e. there exists finite
corefinement of A belongs to ξ.

Definition 9 [2] A B-nearness frame is called contigual iff it satisfies the condition (C).

Theorem 2 Let (L, ξ) be a B-nearness frame then
ξc = {A ⊂ L|∀B << A, (B finite ⇒ B ∈ ξ)} is the smallest contigual B-nearness structure
on L contains ξ that we call it contigual B-nearness structure on L generated by ξ. In
addition ξf = (ξc)f where ξf = {A ∈ ξ|A finite}.

Proof: First we show ξc is a B-nearness on L.

To (BN1): Let A1 << A2 and A2 ∈ ξc. We have ∀B << A1, B << A2 so if B is finite it
implies that B ∈ ξ which means A1 ∈ ξc.

To (BN2): Let
∧
A 6= 0 and B << A so

∧
B 6= 0 therefore B ∈ ξ so A ∈ ξc.

To (BN3): By (BN2), ∅ ∈ ξc so ξc 6= ∅. And {0} /∈ ξc so ξc 6= PL.
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To (BN4): Let A
∨
B ∈ ξc if A /∈ ξc and B /∈ ξc then ∃ C << A and C is finite but C /∈ ξ

and ∃ D << B and D is finite but D /∈ ξ so C
∨
D /∈ ξ and it is finite. But since C << A

and D << B we have ∀ ci ∈ C ∃ ai ∈ A s.t. ai ≤ ci and ∀ dj ∈ D ∃ bj ∈ B s.t. bj ≤ dj

therefore ∀ci ∨ dj ∈ C
∨
D ∃ ai ∨ bj ∈ A

∨
B s.t. ai ∨ bj ≤ ci ∨ dj i.e. C

∨
D << A

∨
B and

since C
∨
D /∈ ξ and it is finite it is contradiction to A

∨
B ∈ ξc.

To (BN5′): Let x ∈ L, then T = {y ∈ L|x ≤ y, {x, y′} /∈ ξ} and
S = {y ∈ L|x ≤ y, {x, y′} /∈ ξc}. Let y ∈ T so x ≤ y and {x, y′} /∈ ξ if y /∈ S so {x, y′} ∈ ξc
by definition of ξc, {x, y′} ∈ ξ that is contradiction. So we have T ⊆ S therefore

∧
S ≤

∧
T

and we know
∧
T = x also by definition of S, x is its lower bound so x =

∧
S.

Therefore ξc is a B-nearness on L.

Now let every finite corefinement of A belongs to ξc if A /∈ ξc then ∃B << A where B is
finite and B /∈ ξ so B /∈ ξc that is contradiction so ξc is contigual.

Now we show that ξc is the smallest contigual B-nearness contains ξ.

Let A ∈ ξ so by (BN1) for every B << A, we have B ∈ ξ therefore A ∈ ξc. i.e. ξ ⊂ ξc.
Suppose η be an arbitrary contigual B-nearness contains ξ and A ∈ ξc, so ∀B << A, if B
is finite then B ∈ ξ therefore B ∈ η and since η is contigual, A ∈ η i.e. ξc ⊂ η so ξc is the
smallest contigual B-nearness contains ξ.

And obviously, ξf = (ξc)f .

Proposition 7 If (L, ξ) is a B-nearness frame and ξ, µ and γ are respectively correspond-
ing B-farness, B-covering and B-smallness then the following conditions are equivalent:

(U) If A ∈ ξ then there exists B ∈ ξ such that
{
st(b, B)d|b ∈ B

}
<< A;

(U ′) If A ∈ µ then there exists B ∈ µ such that {st(b, B)|b ∈ B} ≺ A;

(U ′′) If A /∈ γ then ∃B ⊂ L s.t. secB /∈ γ and
{
st(b, B)d|b ∈ B

}
<< secA.

Proof:

((U) ⇒ (U ′)) Let A ∈ µ i.e. A′ ∈ ξ then by (U), there exists B′ ∈ ξ s.t.{
st(b′, B′)d|b′ ∈ B′

}
<< A′ i.e. for every b′ ∈ B′ there exists a′ ∈ A′ s.t. a′ ≤ st(b′, B′)d

i.e. a′ ≤
∧
{c′ ∈ B′|c′ ∨ b′ 6= 1} so

∨
{c ∈ B|c ∧ b 6= 0} ≤ a. Therefore for every b ∈ B there

exists a ∈ A s.t. st(b, B) ≤ a i.e. {st(b, B)|b ∈ B} ≺ A.

((U) ⇐ (U ′)) Let A ∈ ξ i.e. A′ ∈ µ then by (U ′) there exists B′ ∈ µ such that
{st(b′, B′)|b′ ∈ B′} ≺ A′ i.e. for every b′ ∈ B′ there exists a′ ∈ A′ s.t. st(b′, B′) ≤ a′ i.e.∨
{c′ ∈ B′|c′ ∧ b′ 6= 0} ≤ a′ so a ≤

∧
{c ∈ B|c ∨ b 6= 1}. Therefore for every b ∈ B, there

exists a ∈ A s.t. a ≤ st(b, B)d i.e.
{
st(b, B)d|b ∈ B

}
<< A.
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((U) ⇒ (U ′′)) If A /∈ γ then secA ∈ ξ so by (U) there exists B ∈ ξ such that{
st(b, B)d|b ∈ B

}
<< secA and B ∈ ξ implies secB /∈ γ.

((U) ⇐ (U ′′)) If A ∈ ξ i.e. secA /∈ γ then by (U ′′) ∃B ⊂ L s.t. secB /∈ γ and{
st(b, B)d|b ∈ B

}
<< sec2A = stackA and we know stackA << A so

{
st(b, B)d|b ∈ B

}
<<

A also secB /∈ γ implies B ∈ ξ.

Definition 10 [2] B-nearness frame (L, ξ) is called uniform iff it satisfies to condition
(U).

We denote by UBCFrm the category of uniform B-covering frames and B-covering homo-
morphisms.

Also we denote by UBNFrm the category of uniform B-nearness frames and B-nearness
homomorphisms.

5 Relation between B-Nearness on frames and subframes

Let L be a Boolean frame and a ∈ L then ↓ a = {x ∈ L|x ≤ a} is Boolean frame with ∧ and
∨ defined as in L. The top of ↓ a is a and the bottom of ↓ a is the bottom of L.

Let (L, ξ) be a B-nearness frame and ξ its corresponding farness. Let a ∈ L. For each A ⊆ L

a ∧ A = {a ∧ x|x ∈ A}

and
a ∧ ξ = {A ∈ P (↓ a)|A ∈ ξ} and a ∧ ξ =

{
A ∈ P (↓ a)|A ∈ ξ

}
Theorem 3 If (L, ξ) is a B-nearness frame and a ∈ L then a ∧ ξ is a nearness on ↓ a
and a ∧ ξ is corresponding B-farness on ↓ a.

Proof: (BN1) to (BN4) are obvious. We prove only (BN5).

To (BN5): Let x ∈↓ a and

S =
{
y ∈ L|x ≤ st(y, A)d for some A /∈ ξ

}
and

T =
{
w ∈↓ a|x ≤ st(w,B)d for some B /∈ a ∧ ξ

}
Let z ∈ S by (BN2) and proposition 2, x ≤ z and since x ≤ a so x ≤ a ∧ z. Choose A /∈ ξ
s.t. x ≤ st(z, A)d, since A� a ∧ A so by (BN1), a ∧ A /∈ ξ and by definition, a ∧ A /∈ a ∧ ξ

st((a ∧ z), (a ∧ A))d =
∧
{a ∧ h|h ∈ A, (a ∧ z) ∨ (a ∧ h) 6= a}

=
∧
{a ∧ h|h ∈ A, a ∧ (z ∨ h) 6= a}

= a ∧ (
∧
{h ∈ A|a � z ∨ h}
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Obviously {h ∈ A|a � z ∨ h} ⊂ {h ∈ A|z ∨ h 6= 1} so∧
{h ∈ A|z ∨ h 6= 1} ≤

∧
{h ∈ A|a � z ∨ h} and we have

x ≤ st(z, A)d =
∧
{h ∈ A|z ∨ h 6= 1} so x ≤

∧
{h ∈ A|a � z ∨ h} and since x ≤ a therefore

x ≤ a ∧ (
∧
{h ∈ A|a � z ∨ h} i.e. x ≤ st((a ∧ z), (a ∧A))d so a ∧ z ∈ T therefore a ∧ S ⊆ T

so
∧
T ≤

∧
(a ∧ S) ≤

∧
S since ξ is B-nearness so x =

∧
S so

∧
T ≤ x and for any w ∈ T

by (BN2) and proposition 2, we have x ≤ w i.e. x is a lower bound for T so
∧
T = x.

So a ∧ ξ is a B-nearness on ↓ a generated by ξ.

Now we show that a ∧ ξ is its corresponding B-farness on ↓ a

a ∧ ξ = {A ⊂ P (↓ a)|A /∈ a ∧ ξ} i.e. a ∧ ξ = {A ⊂ P (↓ a)|A /∈ ξ} i.e.

a ∧ ξ =
{
A ⊂ P (↓ a)|A ∈ ξ

}
= a ∧ ξ.

Proposition 8 Let a ≤ b in L and ξb and ξa are respectively B-farnesses on ↓ b and ↓ a
generated by an unknown B-farness on L then ξb and ξa satisfy on the following relations :

(i) If D ∈ ξb then D << C for some C ∈ ξa.

(ii) If C ∈ ξa and C << D for some D ∈ P (↓ b) then D ∈ ξb

Proof: Obviously.

Definition 11 B-nearness frame (L, ξ) is called graded iff {A, secA} ⊆ ξ implies
ξ(A) ∈ ξ, where ξ(A) = {x ∈ L|({x} ∪ A) ∈ ξ}.

Proposition 9 Let (L, ξ) be a B-nearness frame and a ∈ L then following result holds

(i) If (L, ξ) is graded then a ∧ ξ is also a graded B-nearness on ↓ a.

(ii) If (L, ξ) is contigual then a ∧ ξ is also a contigual B-nearness on ↓ a.

Proof: (i) Let {A, sec↓aA} ⊂ a ∧ ξ since A ∈ P (↓ a), sec↓aA = a ∧ secLA and secLA <<

a ∧ secLA so {A, secLA} ⊂ ξ then ξ(A) ∈ ξ but (a ∧ ξ)(A) ⊆ ξ(A) so (a ∧ ξ)(A) ∈ ξ and
(a ∧ ξ)(A) ⊂ P (↓ a) so (a ∧ ξ)(A) ∈ a ∧ ξ.

(ii) Let A ⊆↓ a and every finite corefinemen of A in ↓ a belongs to a ∧ ξ . If there exists B
finite subset of L s.t. B << A and B /∈ ξ, since B << a ∧B then by (BN1), a ∧B /∈ ξ but
since A ∈↓ a and B << A so ∀ a∧ b ∈ a∧B ∃ x ∈ A s.t. x ≤ a∧ b i.e. a∧B << A then by
assumption a ∧B ∈ a ∧ ξ and so a ∧B ∈ ξ that is contradiction so every finite corefinemen
of A in L belongs to ξ, therefore A ∈ ξ and so A ∈ a ∧ ξ.

Let L be a Boolean frame and a ∈ L then ↑ a = {x ∈ L|a ≤ x} is Boolean frame with ∧ and
∨ defined as in L. The top of ↑ a is the top of L and the bottom of ↑ a is a.

Let (L, ξ) be a nearness frame and ξ its corresponding B-farness. Let a ∈ L.
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For each A ⊆ L

a ∨ A = {a ∨ x|x ∈ A}

and
a ∨ ξ =

{
B ∈ P (↑ a)|a ∨ A << B, for some A ∈ ξ

}
and a ∨ ξ is its corresponding B-nearness.

Theorem 4 If ξ is a B-farness on L and a ∈ L then a ∨ ξ is a B-farness on ↑ a.

Proof:

To (BF1): Let C << D and C ∈ a ∨ ξ so ∃A ∈ ξ s.t. a ∨ A << C and since C << D so
a ∨ A << D i.e. D ∈ a ∨ ξ

To (BF2): Let C ∈ a ∨ ξ. If
∧
C 6= a then ∃ z > a s.t.

∧
C = z but since C ∈ a ∨ ξ so

∃A ∈ ξ s.t. a ∨ A << C i.e. ∀a ∨ x ∈ a ∨ A ∃c ∈ C s.t. c ≤ a ∨ x so ∀a ∨ x ∈ a ∨ A,
z ≤ a ∨ x i.e. z ≤

∧
(a ∨ A) = a ∨ (

∧
A) but

∧
A = 0 therefore z ≤ a that is contradiction

to assumption. so
∧
C = a.

To (BF3): For every A ∈ ξ, a ∨ A << {a} i.e. {a} ∈ a ∨ ξ so a ∨ ξ 6= ∅. Now let b > a by
(BF2) we know {b} /∈ a ∨ ξ so a ∨ ξ 6= P (↑ a).

To (BF4): Let C ∈ a ∨ ξ and D ∈ a ∨ ξ so ∃ A ∈ ξ s.t. a ∨ A << C and ∃ B ∈ ξ s.t.
a ∨ B << D so A

∨
B ∈ ξ. Now let a ∨ (x ∨ y) ∈ a ∨ (A

∨
B) where x ∈ A and y ∈ B

i.e. (a ∨ x) ∨ (a ∨ y) ∈ a ∨ (A
∨
B) since a ∨ x ∈ a ∨ A and a ∨ A << C, ∃ c ∈ C s.t.

c ≤ a ∨ x similarly ∃ d ∈ D s.t. d ≤ a ∨ y therefore c ∨ d ≤ (a ∨ x) ∨ (a ∨ y) = a ∨ (x ∨ y)

i.e. a ∨ (A
∨
B) << C

∨
D. and since C

∨
D ∈ P (↑ a) then C

∨
D ∈ a ∨ ξ.

To (BF5): Let x ∈↑ a and

S =
{
y ∈ L|x ≤ st(y, A)d for some A ∈ ξ

}
and

T =
{
w ∈↑ a|x ≤ st(w,B)d for some B ∈ a ∨ ξ

}
Let z ∈ S then by (BF2) and proposition 2, x ≤ z and a ≤ x so z ∈↑ a. Now we choose
A ∈ ξ s.t. x ≤ st(z, A)d. Obviously, a ∨ A ∈ a ∨ ξ.

st(z, (a ∨ A))d =
∧
{a ∨ h|h ∈ A and z ∨ (a ∨ h) 6= 1}

= a ∨ (
∧
{h ∈ A|z ∨ h 6= 1})

≥
∧
{h ∈ A|z ∨ h 6= 1}

= st(z, A)d ≥ x

So z ∈ T i.e. S ⊆ T therefore
∧
T ≤

∧
S and since

∧
S = x and similar to proposition 2, x

is a lower bound for every w ∈ T so we have
∧
T = x.

so a ∨ ξ is a B-farness on ↑ a generated by ξ.
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Proposition 10 Let (L, ξ) be a B-nearness frame and a ∈ L then following result holds

(i) If (L, ξ) is uniform then a ∨ ξ is also a uniform B-nearness on ↑ a;

(ii) If (L, ξ) is contigual then a ∨ ξ is also a contigual B-nearness on ↑ a.

Proof: (i) Let C ∈ a ∨ ξ then there exists A ∈ ξ such that a ∨ A << C and since ξ is
uniform so ∃B ∈ ξ s.t.

{
st(b, B)d|b ∈ B

}
<< A i.e. ∀b ∈ B, ∃x ∈ A s.t.

x ≤
∧
{bi ∈ B|bi ∨ b 6= 1} therefore we have ∀a ∨ b ∈ a ∨ B(∈ a ∨ ξ), ∃a ∨ x ∈ a ∨ A s.t.

a ∨ x ≤
∧
{a ∨ bi ∈ a ∨B|bi ∨ b 6= 1}.

But {a ∨ bi ∈ a ∨B|bi ∨ b ∨ a 6= 1} ⊆ {a ∨ bi ∈ a ∨B|bi ∨ b 6= 1} so∧
{a ∨ bi ∈ a ∨B|bi ∨ b 6= 1} ≤

∧
{a ∨ bi ∈ a ∨B|(a ∨ bi) ∨ (a ∨ b) 6= 1}

then we have a ∨ x ≤
∧
{a ∨ bi ∈ a ∨B|(a ∨ bi) ∨ (a ∨ b) 6= 1} i.e.{

st(a ∨ b, a ∨B)d|a ∨ b ∈ a ∨B
}
<< a ∨ A and since a ∨ A << C so{

st(a ∨ b, a ∨B)d|a ∨ b ∈ a ∨B
}
<< C i.e. a ∨ ξ is uniform.

(ii) Let C ∈ a∨ ξ then there exists A ∈ ξ s.t. a∨A << C. But ξ is contigual so there exists
finite B ∈ ξ s.t. B << A so a ∨B is finite and it belongs to a ∨ ξ and also a ∨B << a ∨A
so a ∨B << C i.e. a ∨ ξ is contigual.

6 B-Nearness frame and Complete Near Space

Definition 12 Let (L, ξ) be a B-nearness frame. A nonempty subset A of L is called
ξ-cluster iff A is a maximal element of the set ξ ordered by set inclusion.

Theorem 5 Let (L, ξ) be a B-nearness frame, X∗ be set of all ξ-clusters and
ξ∗ = {Ω ⊂ PX∗|

⋃
{
⋂
ω|ω ∈ Ω} ∈ ξ} then (X∗, ξ∗) is complete nearness space induced by

B-nearness frame (L, ξ).

Proof: We prove that (X∗, ξ∗) satisfies in all conditions of nearness space.

To (N1) i.e. Let Ω1 << Ω2 and Ω2 ∈ ξ∗ then Ω1 ∈ ξ∗.

If Ω1 /∈ ξ∗ then
⋃
{
⋂
ω|ω ∈ Ω1} /∈ ξ therefore ∀Ai ∈ X∗,

⋃
{
⋂
ω|ω ∈ Ω1} * Ai i.e.

∀Ai ∈ X∗, ∃xi ∈
⋃
{
⋂
ω|ω ∈ Ω1} s.t. xi /∈ Ai but for some ω ∈ Ω1, xi ∈

⋂
ω say xi ∈

⋂
ωi

when ωi ∈ Ω1.

Since Ω1 << Ω2, ∀ω1 ∈ Ω1, ∃ω2 ∈ Ω2 s.t. ω2 ⊆ ω1 we have
⋂
ω1 ⊆

⋂
ω2. And since

∀Ai ∈ X∗, ∃xi ∈
⋂
ωi where xi /∈ Ai so ∃ω′i ∈ Ω2 s.t. ω′i ⊆ ωi so

⋂
ωi ⊆

⋂
ω′i therefore

xi ∈
⋂
ω′i and so xi ∈

⋃
{
⋂
ω|ω ∈ Ω2} where xi /∈ Ai i.e. ∀Ai ∈ X∗,

⋃
{
⋂
ω|ω ∈ Ω2} * Ai

so
⋃
{
⋂
ω|ω ∈ Ω2} /∈ ξ i.e. Ω2 /∈ ξ∗ that is contradiction so Ω1 ∈ ξ∗.

To (N2) i.e. If
⋂

Ω 6= ∅ then Ω ∈ ξ∗.
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Let
⋂

Ω 6= ∅ so ∃A ∈ X∗ s.t. ∀ω ∈ Ω, A ∈ ω therefore
∀ω ∈ Ω,

⋂
ω ⊆ A so

⋃
{
⋂
ω|ω ∈ Ω} ⊆ A and since A ∈ ξ so

⋃
{
⋂
ω|ω ∈ Ω} ∈ ξ i.e. Ω ∈ ξ∗.

To (N3) i.e. ∅ 6= ξ∗ 6= P 2X∗.

Since ξ 6= ∅ so ∃A ∈ X∗ and by definition of X∗ obviously {{A}} ∈ ξ∗ so ξ∗ 6= ∅. And if
{∅} ∈ ξ∗ then

⋃
{
⋂
∅} (= L) ∈ ξ that is contradiction to ξ 6= PL so ξ∗ 6= P 2X∗.

To (N4) i.e. If Ω1

∨
Ω2 ∈ ξ∗ then Ω1 ∈ ξ∗ or Ω2 ∈ ξ∗,

where Ω1

∨
Ω2 = {ω1 ∪ ω2|ω1 ∈ Ω1, ω2 ∈ Ω2}.

Let Ω1

∨
Ω2 ∈ ξ∗. If Ω1 /∈ ξ∗ and Ω2 /∈ ξ∗ then

Ω1 /∈ ξ∗ ⇒
⋃
{
⋂
ωi|ωi ∈ Ω1} /∈ ξ, we call U1 =

⋃
{
⋂
ωi|ωi ∈ Ω1} and

Ω2 /∈ ξ∗ ⇒
⋃
{
⋂
ωj|ωj ∈ Ω2} /∈ ξ, we call U2 =

⋃
{
⋂
ωj|ωj ∈ Ω2}.

Since U1 /∈ ξ and U2 /∈ ξ then U1

∨
U2 /∈ ξ i.e.

{x ∨ y|x ∈ U1, y ∈ U2} /∈ ξ (I)

Let x ∈ U1 then ∃ω1 ∈ Ω1 s.t. x ∈
⋂
ω1 therefore ∀Ai ∈ ω1, x ∈ Ai so ∀Ai ∈ ω1,

Ai
⋃
{x ∨ z} << Ai where z ∈ L so Ai

⋃
{x ∨ z} ∈ ξ but since each Ai is ξ-cluster so

∀Ai ∈ ω1, x ∨ z ∈ Ai for any z ∈ L.

Similarly Let y ∈ U2 then ∃ω2 ∈ Ω2 s.t. y ∈
⋂
ω2 therefore ∀Bj ∈ ω2, y ∈ Bj so ∀Bj ∈ ω2,

y ∨ z ∈ Bj for any z ∈ L. So we have
∀Ai ∈ ω1 and ∀Bj ∈ ω2, x ∨ y ∈ Ai and x ∨ y ∈ Bj i.e. x ∨ y ∈

⋂
(ω1 ∪ ω2) so

x ∨ y ∈
⋃
{
⋂

(ωi ∪ ωj)|ωi ∈ Ω1, ωj ∈ Ω2} therefore
{x ∨ y|x ∈ U1, y ∈ U2} ⊆

⋃
{
⋂

(ωi ∪ ωj)|ωi ∈ Ω1, ωj ∈ Ω2}
and by (I) we have

⋃
{
⋂

(ωi ∪ ωj)|ωi ∈ Ω1, ωj ∈ Ω2} /∈ ξ i.e. Ω1

∨
Ω2 /∈ ξ∗ that is contradic-

tion so Ω1 ∈ ξ∗ or Ω2 ∈ ξ∗.

To (N5) i.e. If
{
cl∗ξω|ω ∈ Ω

}
∈ ξ∗ then Ω ∈ ξ∗ where cl∗ξω = {A ∈ X∗| {ω, {A}} ∈ ξ∗}.

Let ω ⊆ X∗ so cl∗ξω = {A ∈ X∗|((
⋂
ω) ∪ A) ∈ ξ} but since A is ξ-cluster so it is maximal in

ξ then cl∗ξω = {A ∈ X∗|
⋂
ω ⊆ A} therefore ∀ω ⊆ X∗,

⋂
ω ⊆

⋂
cl∗ξω.

Now let
{
cl∗ξω|ω ∈ Ω

}
∈ ξ∗ so

⋃{⋂
(cl∗ξω)|ω ∈ Ω

}
∈ ξ and we know⋂

ω ⊆
⋂
cl∗ξω so

⋃
{
⋂
ω|ω ∈ Ω} ⊆

⋃{⋂
(cl∗ξω)|ω ∈ Ω

}
so⋃

{
⋂
ω|ω ∈ Ω} ∈ ξ i.e. Ω ∈ ξ∗.

Therefore (X∗, ξ∗) is a nearness space.

Now we have to show that (X∗, ξ∗) is complete.

Let Ω ∈ ξ∗ be a ξ∗-cluster by definition
⋃
{
⋂
ω|ω ∈ Ω} ∈ ξ so there exists ξ-cluster, A, s.t.⋃

{
⋂
ω|ω ∈ Ω} ⊂ A. We consider Ω′ = Ω∪{{A}} obviously

⋃
{
⋂
ω′|ω′ ∈ Ω′} ⊂ A therefore

Ω′ ∈ ξ∗, since Ω is ξ∗-cluster so {A} ∈ Ω therefore (X∗, ξ∗) is a complete nearness space.
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