Rostock. Math. Kolloq. 67, 3–19 (2012)

ZOHREH VAZIRY, S. B. NIMSE, DIETER LESEBERG

B-Nearness on Boolean frames

ABSTRACT. In this paper we define and study BN-proximity, B-nearness, B-farness, B-smallness and B-covering on Boolean frames and investigate relation between them. Also we define and investigate some properties of B-nearness on frames and subframes. Then we define complete nearness space by given B-near frame.

KEY WORDS. BN-Proximity, B-Nearness, B-Covering, B-Smallness, B-Farness, Contigual, Uniform, graded, Complete.

1 Introduction

Nearness on space introduced by Herrlich on 1974. Topics developed in this paper are based on the work of Banaschewski and Dube. We define and study BN-proximity, B-nearness, Bfarness, B-smallness and B-covering on Boolean frames and we investigate relation between them.

Also we investigate some properties of B-nearness on frames and subframes. Then we have shown that by given B-Nearness frame we can define a complete nearness space.

2 Background

Definition 1 Let X be a set and let ξ be a subset of P^2X . Consider the following axioms:

- (N1) If $\mathcal{A} \ll \mathcal{B}$ and $\mathcal{B} \in \xi$ then $\mathcal{A} \in \xi$. Where $\mathcal{A} \ll \mathcal{B}$ iff $\forall A \in \mathcal{A} \exists B \in \mathcal{B}, A \supseteq B$;
- (N2) If $\bigcap \mathcal{A} \neq \emptyset$ then $\mathcal{A} \in \xi$;
- $(N3) \ \emptyset \neq \xi \neq P^2 X;$
- (N4) If $(\mathcal{A} \bigvee \mathcal{B}) \in \xi$ then $\mathcal{A} \in \xi$ or $\mathcal{B} \in \xi$, where $\mathcal{A} \bigvee \mathcal{B} := \{A \cup B : A \in \mathcal{A}, B \in \mathcal{B}\};$

(N5) If $\{cl_{\xi}A|A \in \mathcal{A}\} \in \xi$ then $\mathcal{A} \in \xi$, where $cl_{\xi}A := \{x \in X | \{A, \{x\}\} \in \xi\}$.

 ξ is called nearness structure on X iff ξ satisfying to above conditions, and the pair (X, ξ) is called a nearness space -shortly a N-space- iff ξ is a nearness structure on X.

If (X,ξ) and (Y,η) are N-spaces then a function $f: X \longrightarrow Y$ is called a nearness preserving map from (X,ξ) to (Y,η) iff $\mathcal{A} \in \xi$ implies $f\mathcal{A} \in \eta$, where $f\mathcal{A} := \{f[A] : A \in \mathcal{A}\}.$

Let (X, ξ) be a N-space, then a subset \mathcal{A} of PX is called a ξ -cluster iff \mathcal{A} is maximal element of the set $\xi \setminus \{\emptyset\}$, ordered by inclusion. We call (X, ξ) complete iff every ξ -cluster contains an element $\{x\}$ for some $x \in X$.

 (X^*, ξ^*) is a completion of (X, ξ) where $\xi^* = \{\Omega \subset PX^* | \cup \{\cap \omega | \omega \in \Omega\} \in \xi\}$ and X^* denotes the set of all ξ -clusters.

Definition 2 A *frame* is a complete lattice satisfying the special distribution law,

 $(IFD1) \ \forall \ a \in L, \forall \ S \subseteq L, \ a \land \bigvee S = \bigvee \{a \land x | x \in S\};$

and it is called a Boolean frame if it is complementary.

Note, that in this case each element has unique complement, i.e.

 $\forall a \in L \exists ! a' \in L \text{ s.t. } a \land a' = 0 \text{ and } a \lor a' = 1$

Therefore Boolean frame satisfying in

 $(IFD2) \ \forall \ a \in L, \forall \ S \subseteq L, \ a \lor \bigwedge S = \bigwedge \{a \lor x | x \in S\}.$

Frame homomorphisms between Boolean frames preserve top, bottom (denoted by 1 and 0 respectively) meets, joins and complementary.

3 B-Nearness and BN-proximity on frames

Definition 3 Let L be a Boolean frame and A, B are subsets of L.

$$secA = \{x \in L | \forall a \in A, x \land a \neq 0\};$$

$$stackA = \{x \in L | \exists a \in A \text{ s.t. } a \leq x\};$$

$$A \bigvee B = \{a \lor b | a \in A, b \in B\};$$

$$A \bigwedge B = \{a \land b | a \in A, b \in B\};$$

$$A' = \{a' | a \in A\};$$

$$st(x, A) = \bigvee \{a \in A | a \land x \neq 0\};$$

$$st(x, A)^d = \bigwedge \{a \in A | a \lor x \neq 1\};$$

The partial order defined by setting $a \leq b$ iff $b = a \lor b$;

$$A \ll B \text{ iff } \forall a \in A \exists b \in B \text{ s.t. } b \leq a; (A \text{ corefines } B)$$
$$A \prec B \text{ iff } \forall a \in A \exists b \in B \text{ s.t. } a \leq b. (A \text{ refines } B)$$

Proposition 1 Let L be a Boolean frame and A, B are subsets of L. Then we have following statements:

- (1) $A \ll B$ iff $A' \prec B'$;
- (2) $stack(A \cup B) = stackA \cup stackB;$
- (3) $stack\emptyset = \emptyset;$
- (4) $stackA = sec^2A;$

(5)
$$sec^3A = secA;$$

Proof:

- (1) $A \ll B$ iff $\forall a \in A, \exists b \in B$ s.t. $b \leq a$ so $a' \leq b'$ i.e. $\forall a' \in A', \exists b' \in B'$ s.t. $a' \leq b'$ iff $A' \prec B'$.
- (2) and (3) obviously hold.
- (4) Let b ∈ stackA i.e. ∃a ∈ A s.t. a ≤ b. Let c be arbitrary member of secA so ∀a ∈ A, c ∧ a ≠ 0 and since a ≤ b, it implies c ∧ b ≠ 0 therefore we have ∀c ∈ secA, b ∧ c ≠ 0 i.e. b ∈ sec²A so stackA ⊆ sec²A.
 Now let b ∈ sec²A, if b ∉ stackA, then ∀a ∈ A, a ∉ b so ∀a ∈ A, b' ∧ a ≠ 0 i.e. b' ∈ secA so b ∉ sec²A which is contradiction so b ∈ stackA i.e. sec²A ⊆ stackA. Therefore stackA = sec²A.
- (5) Let $c \in sec^3A = stack(secA)$ so $\exists d \in secA$ s.t. $d \leq c$ but $\forall a \in A, d \land a \neq 0$ therefore $\forall a \in A, c \land a \neq 0$ i.e. $c \in secA$ so $sec^3A \subseteq secA$. And obviously, $secA \subseteq stack(secA)$ so $sec^3A = secA$.

Definition 4 Let *L* be a Boolean frame. The relation δ satisfying in the following conditions:

- (BP0) $x\delta y$ implies $y\delta x$;
- (BP1) $x \leq y$ and $x\delta z$ imply $y\delta z$;
- (BP2) $x \wedge y \neq 0$ implies $x \delta y$;
- (BP3) $x\delta y$ implies $x \neq 0$;
- (BP4) $x\delta(y \lor z)$ implies $x\delta y$ or $x\delta z$;

- (BP5) For every $x \in L$ we have $x = \bigwedge \{y \in L | x \leq y, x\overline{\delta}y'\}$. Relation δ is called *BN-proximity* on *L* and (L, δ) is *BN-proximal frame*. If additionally δ satisfies in (BP6),
- (BP6) $x\overline{\delta}y$ implies there exist $z \in L$ such that $x\overline{\delta}z$ and $z'\overline{\delta}y$; ($x\overline{\delta}y$ means x and y are not in relation.) Then δ is called *B-proximity* on *L* and (*L*, δ) is *B-proximal frame*.

Let (L, δ_1) and (M, δ_2) be two B-proximal frames.

A frame homomorphism $f: L \to M$ is called frame B-proximal homomorphism iff

$$x\overline{\delta_1}y$$
 implies $f(x)\overline{\delta_2}f(y)$

We denote the corresponding category by **BProxFrm**.

Definition 5 Let L be a Boolean frame and ξ be a subset of PL:

- (BN1) If $A \ll B$ and $B \in \xi$ then $A \in \xi$;
- (BN2) If $\bigwedge A \neq 0$ then $A \in \xi$;

(BN3)
$$\emptyset \neq \xi \neq PL;$$

(BN4) If
$$(A \bigvee B) \in \xi$$
 then $A \in \xi$ or $B \in \xi$;

Then ξ is called *preB-nearness* on *L*, and the pair (L,ξ) is called *preB-nearness* frame iff it satisfies in (BN1)-(BN3).

 ξ is called *semiB-nearness* on L, and the pair (L,ξ) is called *semiB-nearness frame* iff it satisfies in (BN1)-(BN4).

 ξ is called *B*-nearness on *L*, and the pair (L,ξ) is called *B*-nearness frame iff it additionally satisfies:

(BN5) For each $x \in L$, $x = \bigwedge \{ y \in L | x \le st(y, A)^d, \text{ for some } A \notin \xi \}.$

Let (L,ξ) and (M,η) be two B-nearness frames. A frame homomorphism $f: L \to M$ is called B-nearness homomorphism iff $A \in \eta \Rightarrow f^{-1}(A) \in \xi$.

The corresponding category denoted by **BNFrm**.

Proposition 2 Let *L* be a Boolean frame, $y \in L$ and $A \subseteq L$ where $\bigwedge A = 0$ then $st(y, A)^d \leq y$.

Proof: We know for every $y \in L$

$$y = y \lor 0 = y \lor (\bigwedge \{z | z \in A\}) = \bigwedge \{y \lor z | z \in A\}.$$

And since L is Boolean if for all $z \in A$, $y \lor z = 1$ then $\forall z \in A$, $y' \le z$ so $y' \le \bigwedge A$ i.e. y' = 0 so y = 1 and then $y = \land \emptyset$ so we have

$$y = \bigwedge \{ y \lor z | y \lor z \neq 1, z \in A \}$$

= $y \lor (\bigwedge \{ z \in A | z \lor y \neq 1 \})$
= $y \lor st(y, A)^d \Rightarrow st(y, A)^d \le y$

Proposition 3 Let *L* be a Boolean frame and ξ is a preB-nearness on *L* then $x \leq st(y, A)^d$ for some $A \notin \xi$ iff $x \leq y$ and $\{y', x\} \notin \xi$.

Proof: Let $x \leq st(y, A)^d$ for some $A \notin \xi$. Since $A \notin \xi$ by (BN2), $\bigwedge A = 0$ and by Proposition 2, $st(y, A)^d \leq y$ so $x \leq \bigwedge \{z | z \lor y \neq 1, z \in A\} \leq y$. Now for every $z \in A$ either $z \lor y \neq 1$ or $z \lor y = 1$. If $z \lor y \neq 1$ then $x \leq z$ and if $z \lor y = 1$ then $y' \leq z$ i.e. $A <<\{y', x\}$ and since $A \notin \xi$ by (BN1), $\{y', x\} \notin \xi$.

Conversely, let $x \leq y$ and $\{y', x\} \notin \xi$. For $A = \{y', x\}$, if y = 1 then $st(y, A)^d = 1$ and if $y \neq 1$ then $st(y, A)^d = x$. In any case $x \leq st(y, A)^d$ for some $A \notin \xi$.

Remark 1 Let (L, ξ) be a semiB-nearness frame then ξ is B-nearness frame iff it satisfies in the following condition:

(BN5') For each $x \in L$, $x = \bigwedge \{y \in L | x \le y, and \{y', x\} \notin \xi\}$.

Theorem 1 Let *L* be a Boolean frame. Set of all preB-nearness on *L* ordered by set inclusion is a lattice when its bottom is $\{A \subset L | \bigwedge A \neq 0\}$ and its top is $\{A \subset L | 0 \notin A\}$.

Remark 2 If (X,ξ) is a B-nearness frame then the relation δ on L defined by

$$x\delta y$$
 iff $\{x, y\} \in \xi$

is a BN-proximity.

Proof: We show that δ satisfying in the (BP0)-(BP5).

To (BP0): Let $x\delta y$ then $\{x, y\} \in \xi$ and equivalently $\{y, x\} \in \xi$ i.e. $y\delta x$.

To (BP1): Let $x \leq y$ and $x\delta z$ i.e. $\{x, z\} \in \xi$ since $\{y, z\} << \{x, z\}$ by (BN1) we have $\{y, z\} \in \xi$ i.e. $y\delta z$.

To (BP2): Let $x \land y \neq 0$ so by (BN2), $\{x, y\} \in \xi$ i.e. $x \delta y$.

To (BP3): Let $x\delta y$ i.e. $\{x, y\} \in \xi$. If x = 0 then for every $A \subset L$, $A \ll \{x, y\}$ and by (BN1), $A \in \xi$ i.e. $\xi = L$ which is contradiction to (BN3). So $x \neq 0$.

To (BP4): Let $x\delta(y \lor z)$ i.e. $\{x, (y \lor z)\} \in \xi$ but we have $\{x, y\} \lor \{x, z\} = \{x, x \lor z, y \lor x, y \lor z\} << \{x, (y \lor z)\}$ so by (BN1), $\{x, y\} \lor \{x, z\} \in \xi$ and by (BN4), $\{x, y\} \in \xi$ or $\{x, z\} \in \xi$ i.e. $x\delta y$ or $x\delta z$. To (BP5): By (BN5') we have for every $x \in L$, $x = \bigwedge \{y \in L | x \leq y, and \{y', x\} \notin \xi\}$ i.e. $x = \bigwedge \{y \in L | x \leq y, and x\overline{\delta}y'\}$.

Therefore δ is an *BN-proximity* on *L*.

4 B-Farness, B-Smallness and B-Covering on frames

Definition 6 Let *L* be a Boolean frame let $\overline{\xi}$ be a subset of *PL* satisfying the following conditions:

- (BF1) If $A \ll B$ and $A \in \overline{\xi}$ then $B \in \overline{\xi}$;
- (BF2) If $A \in \overline{\xi}$ then $\bigwedge A = 0$;
- (BF3) $\emptyset \neq \overline{\xi} \neq PL;$
- (BF4) If $A \in \overline{\xi}$ and $B \in \overline{\xi}$ then $(A \bigvee B) \in \overline{\xi}$;

Then $\overline{\xi}$ is called *B*-farness on L, and the pair $(L, \overline{\xi})$ is called a *B*-farness frame iff it additionally satisfies:

(BF5) For each $x \in L$, $x = \bigwedge \{ y \in L | x \leq st(y, A)^d, \text{ for some } A \in \overline{\xi} \}.$

Definition 7 Let *L* be a Boolean frame let γ be a subset of *PL* satisfying the following conditions:

- (BS1) If $A \ll B$ and $A \in \gamma$ then $B \in \gamma$;
- (BS2) For $0 \in L$, $\{0\} \in \gamma$;
- (BS3) $\emptyset \neq \gamma \neq PL;$
- (BS4) If $A \cup B \in \gamma$ then $A \in \gamma$ or $A \in \gamma$;

Then γ is called *B*-smallness on L, and the pair (L, γ) is called a *B*-smallness frame iff it additionally satisfies:

(BS5) For each $x \in L$, $x = \bigwedge \{ y \in L | x \leq st(y, A)^d, \text{ for some } secA \notin \gamma \}.$

Definition 8 [2] Let L be a Boolean frame let μ be a subset of PL satisfying the following conditions:

- (BC1) If $A \prec B$ and $A \in \mu$ then $B \in \mu$;
- (BC2) If $A \in \mu$ then $\bigvee A = 1$;
- (BC3) $\emptyset \neq \mu \neq PL;$
- (BC4) If $A \in \mu$ and $B \in \mu$ then $(A \wedge B) \in \mu$;

Then μ is called *B*-covering on L, and the pair (L, μ) is called a *B*-covering frame iff it additionally satisfies:

(BC5) For each $x \in L$, $x = \bigvee \{y \in L | st(y, A) \le x, \text{ for some } A \in \mu \}$.

Let (L, μ_1) and (M, μ_2) be two B-covering frames, a frame homomorphism $f : L \to M$ is called B-covering homomorphism iff $A \in \mu_1 \Rightarrow \{f(a) : a \in A\} =: f(A) \in \mu_2$.

We denote the corresponding category with **BCFrm**.

Proposition 4 Let L be a Boolean frame and ξ be a B-nearness on L. Then

- (i) $\overline{\xi} = \{A \subseteq L | A \notin \xi\}$ is the B-farness structure on L induced by ξ ;
- (ii) $\mu = \{A \subseteq L | A' \in \overline{\xi}\}$ is the B-covering structure on L induced by ξ ;
- (iii) $\gamma = \{A \subset L | \forall B \in \mu, B \cap stackA \neq \emptyset\}$ is the B-smallness structure on L induced by ξ .

Proof:

- (i) We prove that $\overline{\xi}$ is a B-farness on L.
 - To (BF1): Let $A \ll B$ and $A \in \overline{\xi}$ then $A \notin \xi$ so by (BN1), $B \notin \xi$ i.e. $B \in \overline{\xi}$.

To (BF2): If $A \in \overline{\xi}$ i.e. $A \notin \xi$ so $\wedge A = 0$.

- To (BF3): Since $\xi \neq \emptyset$, $\overline{\xi} \neq PL$. And since $\xi \neq PL$, $\overline{\xi} \neq \emptyset$.
- To (BF4): Let $A \in \overline{\xi}$ and $B \in \overline{\xi}$ i.e. $A \notin \xi$ and $B \notin \xi$ so by (BN4), $A \lor B \notin \xi$ i.e. $A \lor B \in \overline{\xi}$.

To (BF5): Let $x \in L$, we know $x = \bigwedge \{ y \in L | x \leq st(y, A)^d, \text{ for some } A \notin \xi \}$ i.e. $x = \bigwedge \{ y \in L | x \leq st(y, A)^d, \text{ for some } A \in \overline{\xi} \}.$

So $\overline{\xi}$ is a B-farmess on L which induced by ξ .

(ii) We prove that μ is a B-covering on L.

To (BC1): Let $A \prec B$ and $A \in \mu$ i.e. $A' \ll B'$ and $A' \in \overline{\xi}$ so by (BF1), $B' \in \overline{\xi}$ i.e. $B \in \mu$.

- To (BC2): Let $A \in \mu$ i.e. $A' \in \overline{\xi}$ so by (BF2), $\wedge A' = 0$ so $\forall A = 1$.
- To (BC3): Since $\overline{\xi} \neq \emptyset$, $\mu \neq \emptyset$ and since $\overline{\xi} \neq PL$, $\mu \neq PL$.

To (BC4): Let $A \in \mu$ and $B \in \mu$ i.e. $A' \in \overline{\xi}$ and $B' \in \overline{\xi}$ so by (BF4), $A' \vee B' \in \overline{\xi}$ i.e. $(A \wedge B)' \in \overline{\xi}$ so $A \wedge B \in \mu$.

To (BC5): Let $x \in L$, we know $x' = \bigwedge \{y' \in L | x' \leq st(y', A')^d, \text{ for some } A' \in \overline{\xi}\}$ so $x = \bigvee \{y \in L | x' \leq st(y', A')^d, \text{ for some } A' \in \overline{\xi}\}.$

But $x' \leq st(y', A')^d$ means $x' \leq \bigwedge \{a' \in A' | a' \lor y' \neq 1\}$ i.e.

 $\bigvee \{a \in A | a \land y \neq 0\} \le x \text{ i.e. } st(y, A) \le x \text{ so}$

 $x = \bigvee \{y \in L | st(y, A) \le x, \text{ for some } A' \in \overline{\xi} \}$ i.e.

 $x = \bigvee \{y \in L | st(y, A) \le x, \text{ for some } A \in \mu \}.$

So μ is a B-covering on L which induced by ξ .

(iii) We prove that γ is a B-smallness on L.

To (BS1): If $A \ll B$ and $A \in \gamma$ then for every $D \in \mu$, $D \cap stackA \neq \emptyset$ i.e. for arbitrary $D \in \mu$, there exists $d \in D$ s.t. $a \leq d$ for some $a \in A$. Also we know $A \ll B$ so there exists $b \in B$ s.t. $b \leq a$ therefore $b \leq a \leq d$ i.e. $d \in stackB$ so $D \cap stackB \neq \emptyset$ i.e. $B \in \gamma$.

To (BS2): We know stack $\{0\} = \{x \in L | 0 \le x\} = L$ and obviously for every $B \in \mu$, $B \cap L \neq \emptyset$. So $\{0\} \in \gamma$.

To (BS3): Since $\{0\} \in \gamma$ so $\gamma \neq \emptyset$.

We know $stack \emptyset = \emptyset$ and for every $B \in \mu$, $B \cap \emptyset = \emptyset$ so $\emptyset \notin \gamma$ i.e. $\gamma \neq PL$.

To (BS4): Let $A \cup B \in \gamma$ so for every $D \in \mu$, $D \cap stack(A \cup B) \neq \emptyset$ i.e. $D \cap (stackA \cup stackB) \neq \emptyset$ so $(D \cap stackA) \cup (D \cap stackB) \neq \emptyset$ i.e. either $D \cap stackA \neq \emptyset$ or $D \cap stackB \neq \emptyset$.

Let for $D_1 \in \mu$, $D_1 \cap stackA = \emptyset$ and $D_1 \cap stackB \neq \emptyset$ (1)

Let for $D_2 \in \mu$, $D_2 \cap stackA \neq \emptyset$ and $D_2 \cap stackB = \emptyset$ (2)

Since $D_1 \in \mu$ and $D_2 \in \mu$, by (BC4), $D_1 \wedge D_2 \in \mu$.

So either $(D_1 \wedge D_2) \cap stackA \neq \emptyset$ or $(D_1 \wedge D_2) \cap stackB \neq \emptyset$.

If $(D_1 \wedge D_2) \cap stackA \neq \emptyset$, there exists $d_1 \wedge d_2$ where $d_1 \in D_1$ and $d_2 \in D_2$ s.t. $a \leq (d_1 \wedge d_2)$ for some $a \in A$ therefore $a \leq d_1$ and $a \leq d_2$, i.e. $D_1 \cap stackA \neq \emptyset$ and $D_2 \cap stackA \neq \emptyset$ which is contradiction to (1). Similarly if $(D_1 \wedge D_2) \cap stackB \neq \emptyset$, we have $D_1 \cap stackB \neq \emptyset$ and $D_2 \cap stackB \neq \emptyset$ which is contradiction to (2).

So either for all $D \in \mu$, $D \cap stackA \neq \emptyset$ or for all $D \in \mu$, $D \cap stackB \neq \emptyset$ i.e. either $A \in \gamma$ or $B \in \gamma$.

To (BS5): Let
$$x \in L$$
 so $x = \bigwedge \{ y \in L | x \leq st(y, A)^d, \text{ for some } A \in \overline{\xi} \}$ i.e.
 $x = \bigwedge \{ y \in L | x \leq st(y, A)^d, \text{ for some } A' \in \mu \}.$

If $A' \in \mu$ then $secA \notin \gamma$ since $A' \cap stack(secA) = A' \cap secA = \emptyset$.

And if $secA \notin \gamma$ then there is $B \in \mu$ s.t. $B \cap stack(secA) = \emptyset$, i.e. $B \cap secA = \emptyset$, i.e. for every $b \in B$ there is $a \in A$ s.t. $b \wedge a = 0$ so $b \leq a'$ therefore we have $B \prec A'$ and by (BC1) it implies $A' \in \mu$.

So equivalently we have $x = \bigwedge \{ y \in L | x \leq st(y, A)^d, \text{ for some } secA \notin \gamma \}.$

Therefore γ is a B-smallness on L which induced by ξ .

Proposition 5 Let *L* be a Boolean frame and ξ , $\overline{\xi}$, γ and μ be respectively B-nearness, B-farness, B-smallness and B-covering structures induced by each other on *L*. Then following relations are hold

- (1) $A \in \xi$ iff $A \notin \overline{\xi}$;
- (2) $A \in \overline{\xi}$ iff $A \notin \xi$;
- (3) $A \in \overline{\xi}$ iff $A' \in \mu$;
- (4) $A \in \mu$ iff $A' \in \overline{\xi}$;
- (5) $A \in \mu$ iff $\forall B \in \xi A \cap secB \neq \emptyset$;
- (6) $A \in \xi$ iff $\forall B \in \mu, B \cap secA \neq \emptyset$;
- (7) $A \in \gamma$ iff $\forall B \in \mu, B \cap stackA \neq \emptyset$;
- (8) $A \in \mu$ iff $\forall B \in \gamma, A \cap stack B \neq \emptyset$;
- (9) $A \in \xi$ iff $secA \in \gamma$;
- (10) $A \in \gamma$ iff $secA \in \xi$;
- (11) $A \in \gamma$ iff $\forall B \in \overline{\xi} \exists a \in A \exists b \in B, a \land b = 0;$
- (12) $A \in \overline{\xi}$ iff $\forall B \in \gamma, \exists a \in A \exists b \in B, a \land b = 0.$

Proof:

By Proposition 4, (1) - (4) is clear.

(5) Let $A \in \mu$ then $A' \in \overline{\xi}$ and let $B \in \xi$ we prove that $A \cap secB \neq \emptyset$ i.e. $\exists a \in A$ s.t. $a \in secB$ i.e. $\exists a \in A$ s.t. $\forall b \in B, a \land b \neq 0$. If not so $\forall a \in A \exists b \in B$ s.t. $a \land b = 0$ i.e. $b \leq a'$ therefore $\forall a' \in A' \exists b \in B$ s.t. $b \leq a'$ i.e. A' << B and since $A' \in \overline{\xi}$ by (BF1) $B \in \overline{\xi}$ which is a contradiction.

Conversely, let $\forall B \in \xi A \cap secB \neq \emptyset$. If $A \notin \mu$ then $A' \in \xi$. But we have $A \cap secA' = \emptyset$ since for every $a \in A$, $a \wedge a' = 0$ and $a' \in A'$ so $a \notin secA'$ which is contradiction so $A \in \mu$.

(6) Similar to (5). And by Proposition 4, (7) is clear.

(9) Let $A \notin \xi$ i.e. $A' \in \mu$ then we have $A' \cap secA = \emptyset$ i.e. $A' \cap stack(secA) = \emptyset$ so $secA \notin \gamma$.

Conversely, let $secA \notin \gamma$ i.e. there exists $B \in \mu$ s.t. $B \cap stack(secA) = \emptyset$ so $B \cap secA = \emptyset$ i.e. $\forall b \in B, \exists a \in A \text{ s.t. } a \land b = 0 \text{ so } b \leq a' \text{ therefore } B \prec A' \text{ and by (BC1) it implies } A' \in \mu$ so $A \notin \xi$.

(10) Let $A \in \gamma$ i.e. $\forall B \in \mu, B \cap stackA \neq \emptyset$.

We consider $B = \{d' \in L | \forall a \in A, d \land a \neq 0\}$. For every $d' \in B$, there is not any $a \in A$ s.t. $a \leq d'$ i.e. for every $d' \in B$, $d' \notin stackA$ so $\{d' \in L | \forall a \in A, d \land a \neq 0\} \notin \mu$ therefore $\{d \in L | \forall a \in A, d \land a \neq 0\} \in \xi$ i.e. $secA \in \xi$.

Conversely, $secA \in \xi$ by (9), $sec^2A \in \gamma$ i.e. $stackA \in \gamma$ and since $stackA \ll A$ by (BS1) it implies $A \in \gamma$.

(8) Let $A \in \mu$ and $B \in \gamma$ then by (7) we have $A \cap stack B \neq \emptyset$.

Conversely, let $\forall B \in \gamma$, $A \cap stack B \neq \emptyset$, if $A \notin \mu$ then $A' \in \xi$ and by (9) $secA' \in \gamma$ and by assumption $A \cap stack(secA') \neq \emptyset$ i.e. $A \cap secA' \neq \emptyset$ which is contradiction so $A \in \mu$.

(11) By (7) is clear. And (12) by (8) is clear.

Proposition 6 If (L, ξ) is a B-nearness frame and $\overline{\xi}$ and μ are respectively corresponding B-farness and B-covering then the following conditions are equivalent:

- (C) If every finite corefinement of A belongs to ξ then A belongs to ξ ;
- (C') If $A \in \overline{\xi}$ then there exists a finite corefinement B of A with $B \in \overline{\xi}$;
- (C'') If $A \in \mu$ then there exists a finite refinements B of A with $B \in \mu$.

Proof: $(C) \Leftrightarrow (C')$: Obviously.

 $(C') \Rightarrow (C'')$: Let $A \in \mu$ then $A' \in \overline{\xi}$ so by (C') there exists a finite $B' \in \overline{\xi}$ s.t. B' << A'i.e. $B \prec A$ and since B' is finite B-farness so B is finite B-covering. So there exists a finite refinements B of A with $B \in \mu$.

 $(C') \leftarrow (C'')$: Let $A \in \overline{\xi}$ so $A' \in \mu$ and by (C'') there exists a finite $B' \in \mu$ s.t. $B' \prec A'$ so $B \ll A$ and since B' is finite B-covering so B is finite B-farness i.e. there exists finite corefinement of A belongs to $\overline{\xi}$.

Definition 9 [2] A B-nearness frame is called *contigual* iff it satisfies the condition (C).

Theorem 2 Let (L,ξ) be a B-nearness frame then

 $\xi_c = \{A \subset L | \forall B \ll A, (B \text{ finite } \Rightarrow B \in \xi)\}$ is the smallest contigual B-nearness structure on L contains ξ that we call it contigual B-nearness structure on L generated by ξ . In addition $\xi_f = (\xi_c)_f$ where $\xi_f = \{A \in \xi | A \text{ finite}\}.$

Proof: First we show ξ_c is a B-nearness on L.

To (BN1): Let $A_1 \ll A_2$ and $A_2 \in \xi_c$. We have $\forall B \ll A_1$, $B \ll A_2$ so if B is finite it implies that $B \in \xi$ which means $A_1 \in \xi_c$.

To (BN2): Let $\bigwedge A \neq 0$ and $B \ll A$ so $\bigwedge B \neq 0$ therefore $B \in \xi$ so $A \in \xi_c$.

To (BN3): By (BN2), $\emptyset \in \xi_c$ so $\xi_c \neq \emptyset$. And $\{0\} \notin \xi_c$ so $\xi_c \neq PL$.

To (BN4): Let $A \bigvee B \in \xi_c$ if $A \notin \xi_c$ and $B \notin \xi_c$ then $\exists C \ll A$ and C is finite but $C \notin \xi$ and $\exists D \ll B$ and D is finite but $D \notin \xi$ so $C \bigvee D \notin \xi$ and it is finite. But since $C \ll A$ and $D \ll B$ we have $\forall c_i \in C \exists a_i \in A$ s.t. $a_i \leq c_i$ and $\forall d_j \in D \exists b_j \in B$ s.t. $b_j \leq d_j$ therefore $\forall c_i \lor d_j \in C \bigvee D \exists a_i \lor b_j \in A \lor B$ s.t. $a_i \lor b_j \leq c_i \lor d_j$ i.e. $C \bigvee D \ll A \lor B$ and since $C \bigvee D \notin \xi$ and it is finite it is contradiction to $A \lor B \in \xi_c$.

To (BN5'): Let $x \in L$, then $T = \{y \in L | x \leq y, \{x, y'\} \notin \xi\}$ and

 $S = \{y \in L | x \leq y, \{x, y'\} \notin \xi_c\}$. Let $y \in T$ so $x \leq y$ and $\{x, y'\} \notin \xi$ if $y \notin S$ so $\{x, y'\} \in \xi_c$ by definition of ξ_c , $\{x, y'\} \in \xi$ that is contradiction. So we have $T \subseteq S$ therefore $\bigwedge S \leq \bigwedge T$ and we know $\bigwedge T = x$ also by definition of S, x is its lower bound so $x = \bigwedge S$.

Therefore ξ_c is a B-nearness on L.

Now let every finite corefinement of A belongs to ξ_c if $A \notin \xi_c$ then $\exists B \ll A$ where B is finite and $B \notin \xi$ so $B \notin \xi_c$ that is contradiction so ξ_c is contigual.

Now we show that ξ_c is the smallest contigual B-nearness contains ξ .

Let $A \in \xi$ so by (BN1) for every $B \ll A$, we have $B \in \xi$ therefore $A \in \xi_c$. i.e. $\xi \subset \xi_c$. Suppose η be an arbitrary contigual B-nearness contains ξ and $A \in \xi_c$, so $\forall B \ll A$, if B is finite then $B \in \xi$ therefore $B \in \eta$ and since η is contigual, $A \in \eta$ i.e. $\xi_c \subset \eta$ so ξ_c is the smallest contigual B-nearness contains ξ .

And obviously, $\xi_f = (\xi_c)_f$.

Proposition 7 If (L, ξ) is a B-nearness frame and $\overline{\xi}$, μ and γ are respectively corresponding B-farness, B-covering and B-smallness then the following conditions are equivalent:

(U) If $A \in \overline{\xi}$ then there exists $B \in \overline{\xi}$ such that $\{st(b, B)^d | b \in B\} \ll A$;

(U') If $A \in \mu$ then there exists $B \in \mu$ such that $\{st(b, B) | b \in B\} \prec A$;

(U'') If $A \notin \gamma$ then $\exists B \subset L$ s.t. $secB \notin \gamma$ and $\{st(b, B)^d | b \in B\} << secA.$

Proof:

 $((U) \Rightarrow (U'))$ Let $A \in \mu$ i.e. $A' \in \overline{\xi}$ then by (U), there exists $B' \in \overline{\xi}$ s.t. $\{st(b', B')^d | b' \in B'\} << A'$ i.e. for every $b' \in B'$ there exists $a' \in A'$ s.t. $a' \leq st(b', B')^d$ i.e. $a' \leq \bigwedge \{c' \in B' | c' \lor b' \neq 1\}$ so $\bigvee \{c \in B | c \land b \neq 0\} \leq a$. Therefore for every $b \in B$ there exists $a \in A$ s.t. $st(b, B) \leq a$ i.e. $\{st(b, B) | b \in B\} \prec A$.

 $((U) \leftarrow (U'))$ Let $A \in \overline{\xi}$ i.e. $A' \in \mu$ then by (U') there exists $B' \in \mu$ such that $\{st(b', B')|b' \in B'\} \prec A'$ i.e. for every $b' \in B'$ there exists $a' \in A'$ s.t. $st(b', B') \leq a'$ i.e. $\bigvee \{c' \in B'|c' \land b' \neq 0\} \leq a'$ so $a \leq \bigwedge \{c \in B|c \lor b \neq 1\}$. Therefore for every $b \in B$, there exists $a \in A$ s.t. $a \leq st(b, B)^d$ i.e. $\{st(b, B)^d | b \in B\} < < A$.

 $((U) \Rightarrow (U''))$ If $A \notin \gamma$ then $secA \in \overline{\xi}$ so by (U) there exists $B \in \overline{\xi}$ such that $\{st(b, B)^d | b \in B\} << secA$ and $B \in \overline{\xi}$ implies $secB \notin \gamma$.

 $((U) \leftarrow (U''))$ If $A \in \overline{\xi}$ i.e. $secA \notin \gamma$ then by $(U'') \exists B \subset L$ s.t. $secB \notin \gamma$ and $\{st(b, B)^d | b \in B\} << sec^2A = stackA$ and we know stackA << A so $\{st(b, B)^d | b \in B\} << A$ also $secB \notin \gamma$ implies $B \in \overline{\xi}$.

Definition 10 [2] B-nearness frame (L, ξ) is called *uniform* iff it satisfies to condition (U).

We denote by **UBCFrm** the category of uniform B-covering frames and B-covering homomorphisms.

Also we denote by **UBNFrm** the category of uniform B-nearness frames and B-nearness homomorphisms.

5 Relation between B-Nearness on frames and subframes

Let L be a Boolean frame and $a \in L$ then $\downarrow a = \{x \in L | x \leq a\}$ is Boolean frame with \land and \lor defined as in L. The top of $\downarrow a$ is a and the bottom of $\downarrow a$ is the bottom of L.

Let (L,ξ) be a B-nearness frame and $\overline{\xi}$ its corresponding farness. Let $a \in L$. For each $A \subseteq L$

$$a \wedge A = \{a \wedge x | x \in A\}$$

and

$$a \wedge \xi = \{A \in P(\downarrow a) | A \in \xi\} \text{ and } a \wedge \overline{\xi} = \{A \in P(\downarrow a) | A \in \overline{\xi}\}$$

Theorem 3 If (L,ξ) is a B-nearness frame and $a \in L$ then $a \wedge \xi$ is a nearness on $\downarrow a$ and $a \wedge \overline{\xi}$ is corresponding B-farness on $\downarrow a$.

Proof: (BN1) to (BN4) are obvious. We prove only (BN5).

To (BN5): Let $x \in \downarrow a$ and

$$S = \left\{ y \in L | x \leq st(y, A)^d \text{ for some } A \notin \xi \right\} \text{ and}$$
$$T = \left\{ w \in \downarrow a | x \leq st(w, B)^d \text{ for some } B \notin a \land \xi \right\}$$

Let $z \in S$ by (BN2) and proposition 2, $x \leq z$ and since $x \leq a$ so $x \leq a \wedge z$. Choose $A \notin \xi$ s.t. $x \leq st(z, A)^d$, since $A \ll a \wedge A$ so by (BN1), $a \wedge A \notin \xi$ and by definition, $a \wedge A \notin a \wedge \xi$

$$st((a \land z), (a \land A))^{d} = \bigwedge \{a \land h | h \in A, (a \land z) \lor (a \land h) \neq a\}$$
$$= \bigwedge \{a \land h | h \in A, a \land (z \lor h) \neq a\}$$
$$= a \land (\bigwedge \{h \in A | a \nleq z \lor h\}$$

Obviously $\{h \in A | a \nleq z \lor h\} \subset \{h \in A | z \lor h \neq 1\}$ so $\bigwedge \{h \in A | z \lor h \neq 1\} \le \bigwedge \{h \in A | a \nleq z \lor h\}$ and we have $x \le st(z, A)^d = \bigwedge \{h \in A | z \lor h \neq 1\}$ so $x \le \bigwedge \{h \in A | a \nleq z \lor h\}$ and since $x \le a$ therefore $x \le a \land (\bigwedge \{h \in A | a \nleq z \lor h\}$ i.e. $x \le st((a \land z), (a \land A))^d$ so $a \land z \in T$ therefore $a \land S \subseteq T$ so $\bigwedge T \le \bigwedge (a \land S) \le \bigwedge S$ since ξ is B-nearness so $x = \bigwedge S$ so $\land T \le x$ and for any $w \in T$ by (BN2) and proposition 2, we have $x \le w$ i.e. x is a lower bound for T so $\land T = x$.

So $a \wedge \xi$ is a B-nearness on $\downarrow a$ generated by ξ .

Now we show that $a \wedge \overline{\xi}$ is its corresponding B-farness on $\downarrow a$

$$\overline{a \wedge \xi} = \{A \subset P(\downarrow a) | A \notin a \wedge \xi\} \text{ i.e. } \overline{a \wedge \xi} = \{A \subset P(\downarrow a) | A \notin \xi\} \text{ i.e.}$$
$$\overline{a \wedge \xi} = \{A \subset P(\downarrow a) | A \in \overline{\xi}\} = a \wedge \overline{\xi}.$$

Proposition 8 Let $a \leq b$ in L and $\overline{\xi}_b$ and $\overline{\xi}_a$ are respectively B-farnesses on $\downarrow b$ and $\downarrow a$ generated by an unknown B-farness on L then $\overline{\xi}_b$ and $\overline{\xi}_a$ satisfy on the following relations :

- (i) If $D \in \overline{\xi}_b$ then D << C for some $C \in \overline{\xi}_a$.
- (ii) If $C \in \overline{\xi}_a$ and $C \ll D$ for some $D \in P(\downarrow b)$ then $D \in \overline{\xi}_b$

Proof: Obviously.

Definition 11 B-nearness frame (L,ξ) is called *graded* iff $\{A, secA\} \subseteq \xi$ implies $\xi(A) \in \xi$, where $\xi(A) = \{x \in L | (\{x\} \cup A) \in \xi\}.$

Proposition 9 Let (L,ξ) be a B-nearness frame and $a \in L$ then following result holds

- (i) If (L,ξ) is graded then $a \wedge \xi$ is also a graded B-nearness on $\downarrow a$.
- (ii) If (L,ξ) is contigual then $a \wedge \xi$ is also a contigual B-nearness on $\downarrow a$.

Proof: (i) Let $\{A, sec_{\downarrow a}A\} \subset a \land \xi$ since $A \in P(\downarrow a)$, $sec_{\downarrow a}A = a \land sec_LA$ and $sec_LA << a \land sec_LA$ so $\{A, sec_LA\} \subset \xi$ then $\xi(A) \in \xi$ but $(a \land \xi)(A) \subseteq \xi(A)$ so $(a \land \xi)(A) \in \xi$ and $(a \land \xi)(A) \subset P(\downarrow a)$ so $(a \land \xi)(A) \in a \land \xi$.

(ii) Let $A \subseteq \downarrow a$ and every finite corefinemen of A in $\downarrow a$ belongs to $a \land \xi$. If there exists B finite subset of L s.t. $B \ll A$ and $B \notin \xi$, since $B \ll a \land B$ then by (BN1), $a \land B \notin \xi$ but since $A \in \downarrow a$ and $B \ll A$ so $\forall a \land b \in a \land B \exists x \in A$ s.t. $x \leq a \land b$ i.e. $a \land B \ll A$ then by assumption $a \land B \in a \land \xi$ and so $a \land B \in \xi$ that is contradiction so every finite corefinemen of A in L belongs to ξ , therefore $A \in \xi$ and so $A \in a \land \xi$.

Let *L* be a Boolean frame and $a \in L$ then $\uparrow a = \{x \in L | a \leq x\}$ is Boolean frame with \land and \lor defined as in *L*. The top of $\uparrow a$ is the top of *L* and the bottom of $\uparrow a$ is *a*.

Let (L,ξ) be a nearness frame and $\overline{\xi}$ its corresponding B-farness. Let $a \in L$.

For each $A \subseteq L$

$$a \lor A = \{a \lor x | x \in A\}$$

and

$$a \lor \overline{\xi} = \{ B \in P(\uparrow a) | a \lor A \ll B, \text{ for some } A \in \overline{\xi} \}$$

and $a \lor \xi$ is its corresponding B-nearness.

Theorem 4 If $\overline{\xi}$ is a B-farness on L and $a \in L$ then $a \vee \overline{\xi}$ is a B-farness on $\uparrow a$.

Proof:

To (BF1): Let $C \ll D$ and $C \in a \lor \overline{\xi}$ so $\exists A \in \overline{\xi}$ s.t. $a \lor A \ll C$ and since $C \ll D$ so $a \lor A \ll D$ i.e. $D \in a \lor \overline{\xi}$

To (BF2): Let $C \in a \lor \overline{\xi}$. If $\bigwedge C \neq a$ then $\exists z > a$ s.t. $\bigwedge C = z$ but since $C \in a \lor \overline{\xi}$ so $\exists A \in \overline{\xi}$ s.t. $a \lor A \ll C$ i.e. $\forall a \lor x \in a \lor A \exists c \in C$ s.t. $c \leq a \lor x$ so $\forall a \lor x \in a \lor A$, $z \leq a \lor x$ i.e. $z \leq \bigwedge (a \lor A) = a \lor (\bigwedge A)$ but $\bigwedge A = 0$ therefore $z \leq a$ that is contradiction to assumption. so $\bigwedge C = a$.

To (BF3): For every $A \in \overline{\xi}$, $a \lor A \ll \{a\}$ i.e. $\{a\} \in a \lor \overline{\xi}$ so $a \lor \overline{\xi} \neq \emptyset$. Now let b > a by (BF2) we know $\{b\} \notin a \lor \overline{\xi}$ so $a \lor \overline{\xi} \neq P(\uparrow a)$.

To (BF4): Let $C \in a \lor \overline{\xi}$ and $D \in a \lor \overline{\xi}$ so $\exists A \in \overline{\xi}$ s.t. $a \lor A \ll C$ and $\exists B \in \overline{\xi}$ s.t. $a \lor B \ll C$ and $\exists B \in \overline{\xi}$ s.t. $a \lor B \ll D$ so $A \bigvee B \in \overline{\xi}$. Now let $a \lor (x \lor y) \in a \lor (A \lor B)$ where $x \in A$ and $y \in B$ i.e. $(a \lor x) \lor (a \lor y) \in a \lor (A \lor B)$ since $a \lor x \in a \lor A$ and $a \lor A \ll C$, $\exists c \in C$ s.t. $c \leq a \lor x$ similarly $\exists d \in D$ s.t. $d \leq a \lor y$ therefore $c \lor d \leq (a \lor x) \lor (a \lor y) = a \lor (x \lor y)$ i.e. $a \lor (A \lor B) \lt C \lor D$. and since $C \lor D \in P(\uparrow a)$ then $C \lor D \in a \lor \overline{\xi}$.

To (BF5): Let $x \in \uparrow a$ and

$$S = \left\{ y \in L | x \leq st(y, A)^d \text{ for some } A \in \overline{\xi} \right\} \text{ and}$$
$$T = \left\{ w \in \uparrow a | x \leq st(w, B)^d \text{ for some } B \in a \lor \overline{\xi} \right\}$$

Let $z \in S$ then by (BF2) and proposition 2, $x \leq z$ and $a \leq x$ so $z \in \uparrow a$. Now we choose $A \in \overline{\xi}$ s.t. $x \leq st(z, A)^d$. Obviously, $a \lor A \in a \lor \overline{\xi}$.

$$st(z, (a \lor A))^{d} = \bigwedge \{a \lor h | h \in A \text{ and } z \lor (a \lor h) \neq 1\}$$
$$= a \lor (\bigwedge \{h \in A | z \lor h \neq 1\})$$
$$\ge \bigwedge \{h \in A | z \lor h \neq 1\}$$
$$= st(z, A)^{d} > x$$

So $z \in T$ i.e. $S \subseteq T$ therefore $\bigwedge T \leq \bigwedge S$ and since $\bigwedge S = x$ and similar to proposition 2, x is a lower bound for every $w \in T$ so we have $\bigwedge T = x$.

so $a \vee \overline{\xi}$ is a B-farmess on $\uparrow a$ generated by $\overline{\xi}$.

16

Proposition 10 Let (L,ξ) be a B-nearness frame and $a \in L$ then following result holds

- (i) If (L,ξ) is uniform then $a \lor \xi$ is also a uniform B-nearness on $\uparrow a$;
- (ii) If (L,ξ) is contigual then $a \lor \xi$ is also a contigual B-nearness on $\uparrow a$.

Proof: (i) Let $C \in a \lor \overline{\xi}$ then there exists $A \in \overline{\xi}$ such that $a \lor A \ll C$ and since $\overline{\xi}$ is uniform so $\exists B \in \overline{\xi}$ s.t. $\{st(b,B)^d | b \in B\} \ll A$ i.e. $\forall b \in B, \exists x \in A$ s.t. $x \leq \bigwedge \{b_i \in B | b_i \lor b \neq 1\}$ therefore we have $\forall a \lor b \in a \lor B(\in a \lor \overline{\xi}), \exists a \lor x \in a \lor A$ s.t. $a \lor x \leq \bigwedge \{a \lor b_i \in a \lor B | b_i \lor b \neq 1\}$.

But $\{a \lor b_i \in a \lor B | b_i \lor b \lor a \neq 1\} \subseteq \{a \lor b_i \in a \lor B | b_i \lor b \neq 1\}$ so $\bigwedge \{a \lor b_i \in a \lor B | b_i \lor b \neq 1\} \leq \bigwedge \{a \lor b_i \in a \lor B | (a \lor b_i) \lor (a \lor b) \neq 1\}$ then we have $a \lor x \leq \bigwedge \{a \lor b_i \in a \lor B | (a \lor b_i) \lor (a \lor b) \neq 1\}$ i.e. $\{st(a \lor b, a \lor B)^d | a \lor b \in a \lor B\} << a \lor A$ and since $a \lor A << C$ so $\{st(a \lor b, a \lor B)^d | a \lor b \in a \lor B\} << C$ i.e. $a \lor \xi$ is uniform.

(ii) Let $C \in a \lor \overline{\xi}$ then there exists $A \in \overline{\xi}$ s.t. $a \lor A \ll C$. But $\overline{\xi}$ is contigual so there exists finite $B \in \overline{\xi}$ s.t. $B \ll A$ so $a \lor B$ is finite and it belongs to $a \lor \overline{\xi}$ and also $a \lor B \ll a \lor A$ so $a \lor B \ll C$ i.e. $a \lor \xi$ is contigual.

6 B-Nearness frame and Complete Near Space

Definition 12 Let (L,ξ) be a B-nearness frame. A nonempty subset A of L is called ξ -cluster iff A is a maximal element of the set ξ ordered by set inclusion.

Theorem 5 Let (L,ξ) be a B-nearness frame, X^* be set of all ξ -clusters and $\xi^* = \{\Omega \subset PX^* | \bigcup \{\bigcap \omega | \omega \in \Omega\} \in \xi\}$ then (X^*,ξ^*) is complete nearness space induced by B-nearness frame (L,ξ) .

Proof: We prove that (X^*, ξ^*) satisfies in all conditions of nearness space.

To (N1) i.e. Let $\Omega_1 \ll \Omega_2$ and $\Omega_2 \in \xi^*$ then $\Omega_1 \in \xi^*$.

If $\Omega_1 \notin \xi^*$ then $\bigcup \{ \bigcap \omega | \omega \in \Omega_1 \} \notin \xi$ therefore $\forall A_i \in X^*$, $\bigcup \{ \bigcap \omega | \omega \in \Omega_1 \} \notin A_i$ i.e. $\forall A_i \in X^*, \exists x_i \in \bigcup \{ \bigcap \omega | \omega \in \Omega_1 \}$ s.t. $x_i \notin A_i$ but for some $\omega \in \Omega_1, x_i \in \bigcap \omega$ say $x_i \in \bigcap \omega_i$ when $\omega_i \in \Omega_1$.

Since $\Omega_1 << \Omega_2$, $\forall \omega_1 \in \Omega_1$, $\exists \omega_2 \in \Omega_2$ s.t. $\omega_2 \subseteq \omega_1$ we have $\bigcap \omega_1 \subseteq \bigcap \omega_2$. And since $\forall A_i \in X^*$, $\exists x_i \in \bigcap \omega_i$ where $x_i \notin A_i$ so $\exists \omega'_i \in \Omega_2$ s.t. $\omega'_i \subseteq \omega_i$ so $\bigcap \omega_i \subseteq \bigcap \omega'_i$ therefore $x_i \in \bigcap \omega'_i$ and so $x_i \in \bigcup \{\bigcap \omega | \omega \in \Omega_2\}$ where $x_i \notin A_i$ i.e. $\forall A_i \in X^*$, $\bigcup \{\bigcap \omega | \omega \in \Omega_2\} \notin A_i$ so $\bigcup \{\bigcap \omega | \omega \in \Omega_2\} \notin \xi^*$ that is contradiction so $\Omega_1 \in \xi^*$.

To (N2) i.e. If $\bigcap \Omega \neq \emptyset$ then $\Omega \in \xi^*$.

Let $\bigcap \Omega \neq \emptyset$ so $\exists A \in X^*$ s.t. $\forall \omega \in \Omega, A \in \omega$ therefore $\forall \omega \in \Omega, \bigcap \omega \subseteq A$ so $\bigcup \{\bigcap \omega | \omega \in \Omega\} \subseteq A$ and since $A \in \xi$ so $\bigcup \{\bigcap \omega | \omega \in \Omega\} \in \xi$ i.e. $\Omega \in \xi^*$. To (N3) i.e. $\emptyset \neq \xi^* \neq P^2 X^*$.

Since $\xi \neq \emptyset$ so $\exists A \in X^*$ and by definition of X^* obviously $\{\{A\}\} \in \xi^*$ so $\xi^* \neq \emptyset$. And if $\{\emptyset\} \in \xi^*$ then $\bigcup \{\bigcap \emptyset\} (=L) \in \xi$ that is contradiction to $\xi \neq PL$ so $\xi^* \neq P^2X^*$.

To (N4) i.e. If $\Omega_1 \bigvee \Omega_2 \in \xi^*$ then $\Omega_1 \in \xi^*$ or $\Omega_2 \in \xi^*$, where $\Omega_1 \bigvee \Omega_2 = \{\omega_1 \cup \omega_2 | \omega_1 \in \Omega_1, \omega_2 \in \Omega_2\}.$

Let $\Omega_1 \bigvee \Omega_2 \in \xi^*$. If $\Omega_1 \notin \xi^*$ and $\Omega_2 \notin \xi^*$ then $\Omega_1 \notin \xi^* \Rightarrow \bigcup \{\bigcap \omega_i | \omega_i \in \Omega_1\} \notin \xi$, we call $U_1 = \bigcup \{\bigcap \omega_i | \omega_i \in \Omega_1\}$ and $\Omega_2 \notin \xi^* \Rightarrow \bigcup \{\bigcap \omega_j | \omega_j \in \Omega_2\} \notin \xi$, we call $U_2 = \bigcup \{\bigcap \omega_j | \omega_j \in \Omega_2\}$.

Since $U_1 \notin \xi$ and $U_2 \notin \xi$ then $U_1 \bigvee U_2 \notin \xi$ i.e.

$$\{x \lor y | x \in U_1, y \in U_2\} \notin \xi \tag{I}$$

Let $x \in U_1$ then $\exists \omega_1 \in \Omega_1$ s.t. $x \in \bigcap \omega_1$ therefore $\forall A_i \in \omega_1, x \in A_i$ so $\forall A_i \in \omega_1, A_i \bigcup \{x \lor z\} << A_i$ where $z \in L$ so $A_i \bigcup \{x \lor z\} \in \xi$ but since each A_i is ξ -cluster so $\forall A_i \in \omega_1, x \lor z \in A_i$ for any $z \in L$.

Similarly Let $y \in U_2$ then $\exists \omega_2 \in \Omega_2$ s.t. $y \in \bigcap \omega_2$ therefore $\forall B_j \in \omega_2, y \in B_j$ so $\forall B_j \in \omega_2, y \lor z \in B_j$ for any $z \in L$. So we have $\forall A_i \in \omega_1$ and $\forall B_j \in \omega_2, x \lor y \in A_i$ and $x \lor y \in B_j$ i.e. $x \lor y \in \bigcap (\omega_1 \cup \omega_2)$ so $x \lor y \in \bigcup \{\bigcap (\omega_i \cup \omega_j) | \omega_i \in \Omega_1, \omega_j \in \Omega_2\}$ therefore

 $\{x \lor y | x \in U_1, y \in U_2\} \subseteq \bigcup \{\bigcap (\omega_i \cup \omega_j) | \omega_i \in \Omega_1, \omega_j \in \Omega_2\}$

and by (I) we have $\bigcup \{\bigcap (\omega_i \cup \omega_j) | \omega_i \in \Omega_1, \omega_j \in \Omega_2\} \notin \xi$ i.e. $\Omega_1 \bigvee \Omega_2 \notin \xi^*$ that is contradiction so $\Omega_1 \in \xi^*$ or $\Omega_2 \in \xi^*$.

To (N5) i.e. If $\{cl_{\xi}^*\omega|\omega\in\Omega\}\in\xi^*$ then $\Omega\in\xi^*$ where $cl_{\xi}^*\omega=\{A\in X^*|\{\omega,\{A\}\}\in\xi^*\}.$

Let $\omega \subseteq X^*$ so $cl_{\xi}^*\omega = \{A \in X^* | ((\bigcap \omega) \cup A) \in \xi\}$ but since A is ξ -cluster so it is maximal in ξ then $cl_{\xi}^*\omega = \{A \in X^* | \bigcap \omega \subseteq A\}$ therefore $\forall \omega \subseteq X^*, \bigcap \omega \subseteq \bigcap cl_{\xi}^*\omega$. Now let $\{cl_{\xi}^*\omega | \omega \in \Omega\} \in \xi^*$ so $\bigcup \{\bigcap (cl_{\xi}^*\omega) | \omega \in \Omega\} \in \xi$ and we know $\bigcap \omega \subseteq \bigcap cl_{\xi}^*\omega$ so $\bigcup \{\bigcap \omega | \omega \in \Omega\} \subseteq \bigcup \{\bigcap (cl_{\xi}^*\omega) | \omega \in \Omega\}$ so $\bigcup \{\bigcap \omega | \omega \in \Omega\} \in \xi$ i.e. $\Omega \in \xi^*$. Therefore (X^*, ξ^*) is a nearness space.

Now we have to show that (X^*, ξ^*) is complete.

Let $\Omega \in \xi^*$ be a ξ^* -cluster by definition $\bigcup \{\bigcap \omega | \omega \in \Omega\} \in \xi$ so there exists ξ -cluster, A, s.t. $\bigcup \{\bigcap \omega | \omega \in \Omega\} \subset A$. We consider $\Omega' = \Omega \cup \{\{A\}\}$ obviously $\bigcup \{\bigcap \omega' | \omega' \in \Omega'\} \subset A$ therefore $\Omega' \in \xi^*$, since Ω is ξ^* -cluster so $\{A\} \in \Omega$ therefore (X^*, ξ^*) is a complete nearness space.

References

- Banaschewski, B., and Pultr, A.: Cauchy points of uniform and nearness frames. Quaestiones mathematicae19, 101–127(1996)
- [2] Dube, T. A.: The Tamano-Dowker type theorems for nearness frames. Journal of Pure and Applied Algebra 99, 1-7 (1995)
- [3] Dube, T.: Paracompact and locally fine nearness frames. Topology and its Applications 62, 247-253 (1995)
- [4] Herrlich, H.: A concept of nearness. General topology and its applications 4, 191–212 (1974)
- [5] Herrlich, H.: Topologycal structures. Math. Centre Tracts 52, pp. 59–122 (1974)
- [6] Johnstone, Peter T.: Stone Spaces. Cambridge Studies in Advanced Mathematics3, Cambridge University Press, 1982

received: 02.09.2011

e-mail: dr.sbnimse@rediffmail.com

Authors:

Zohreh Vaziry	PD Dr. Dieter Leseberg
Department of Mathematics,	Department of Mathematics and Informatics,
University of Pune,	Free University of Berlin,
Pune-411007,	Germany
India	And
e-mail: z_m_vaziry@yahoo.co.in	Central library,
	Technical University Braunschweig,
Dr. S. B. Nimse	Germany
Vice-Chancellor,	e-mail: d.leseberg@tu-bs.de
SRTM University,	
Nanded-431606,	
India	