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ABSTRACT. In this paper we define and study BN-proximity, B-nearness, B-farness, B-
smallness and B-covering on Boolean frames and investigate relation between them. Also
we define and investigate some properties of B-nearness on frames and subframes. Then we

define complete nearness space by given B-near frame.
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1 Introduction

Nearness on space introduced by Herrlich on 1974. Topics developed in this paper are based
on the work of Banaschewski and Dube. We define and study BN-proximity, B-nearness, B-
farness, B-smallness and B-covering on Boolean frames and we investigate relation between
them.

Also we investigate some properties of B-nearness on frames and subframes. Then we have

shown that by given B-Nearness frame we can define a complete nearness space.

2 Background
Definition 1 Let X be a set and let ¢ be a subset of P2X. Consider the following
axioms:
N1) If A<< Band B € ¢ then A € . Where A << Biff VA€ A3B € B, A D B;
N2) If A # 0 then A € &;

) 0 # & # P2X;
N4) If (A\/B) € { then A€ or Be &, where A\/B:={AUB:Ac A,B e B};

(
(
(N3
(
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(N5) If {clcA|A € A} € € then A € £, where cl¢A = {x € X|{A, {z}} € &}

¢ is called nearness structure on X iff ¢ satisfying to above conditions, and the pair (X, ¢) is

called a nearness space -shortly a N-space- iff £ is a nearness structure on X.

If (X&) and (Y, n) are N-spaces then a function f : X — Y is called a nearness preserving
map from (X, &) to (Y,n) iff A € £ implies fA € n, where fA:= {f[A] : A € A}

Let (X, &) be a N-space, then a subset A of PX is called a &-cluster iff A is maximal element
of the set £\ {0}, ordered by inclusion. We call (X, &) complete iff every &-cluster contains

an element {z} for some x € X.

(X, &) is a completion of (X, £) where £* = {Q C PX*|U{Nw|w € 2} € £} and X* denotes
the set of all &-clusters.

Definition 2 A frame is a complete lattice satisfying the special distribution law,
(IFD1)Vae L,V SCL,an\/S=\{aAz|xeS}

and it is called a Boolean frame if it is complementary.

Note, that in this case each element has unique complement, i.e.

VaeL3'ad €Lst.and =0andaVad =1

Therefore Boolean frame satisfying in

(IFD2)Vae L,V SCL,avVAS=A{aVzlxeS}

Frame homomorphisms between Boolean frames preserve top, bottom (denoted by 1 and 0

respectively) meets, joins and complementary.

3 B-Nearness and BN-proximity on frames

Definition 3 Let L be a Boolean frame and A, B are subsets of L.
secA={x € LIVa € A,z Na # 0};
stackA = {x € L|Ja € Ast. a <z},
A\/B={aVblacAbe B};
A/\B={anblac Abec B};
= {d'la € A};
:\/{aeA|a/\9:7éO}'
st(z, A)* /\{a€A|a\/x7£1}
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The partial order defined by setting a < b iff b=a V b,

A<< BifftVae A3Jbe Bst. b<a; (A corefines B)
A< Biff Va€ A3Jbe Bs.t. a<b. (Arefines B)

Proposition 1 Let L be a Boolean frame and A, B are subsets of L. Then we have

following statements:

1) A<<Biff A < B

(1)

(2) stack(AU B) = stackA U stackB;
(3) stackd = 0;

(4) stackA = sec®A;

(5)

5) sec®A = secA;

Proof:

(1) A<< Biff Vae A, Fbe Bst. b<asod <Vie Va €A T € B st. o <V iff
A < B.

(2) and (3) obviously hold.

(4) Let b € stackA i.e. Ja € A s.t. a < b. Let ¢ be arbitrary member of secA so Va € A,
¢ A a # 0 and since a < b, it implies ¢ A b # 0 therefore we have Ve € secA, bAc # 0
ie. b€ sec?A so stackA C sec?A.

Now let b € sec?A, if b ¢ stackA, then Va € A, a £ bsoVa € A, b/ Na # 0 ie.
V € secA so b ¢ sec®A which is contradiction so b € stackA i.e. sec*?A C stackA.
Therefore stackA = sec?A.

(5) Let ¢ € sec®A = stack(secA) so Id € secA s.t. d < cbut Va € A, d A a # 0 therefore
Va€ A, cANa+#0ie. c€ secA so sec®>A C secA. And obviously, secA C stack(secA)

so secd A = secA.

Definition 4 Let L be a Boolean frame. The relation ¢ satisfying in the following
conditions:

BP0) zdy implies ydz;

BP1) x <y and xdz imply ydz;

(BPO)
(BP1)
(BP2) z Ay # 0 implies zdy;
(BP3) zdy implies x # 0;
(BP4)

BP4) x(y V z) implies xdy or xdz;
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(BP5) For every z € L we have z = A\ {y € L|z < y, 20y’ }.
Relation ¢ is called BN-prozimity on L and (L, 0) is BN-prozimal frame.
If additionally § satisfies in (BP6),

(BP6) zdy implies there exist z € L such that 28z and 2'0y; ( 26y means = and y are not
in relation.)

Then 6 is called B-prozimity on L and (L, d) is B-prozimal frame.

Let (L, 61) and (M, d2) be two B-proximal frames.

A frame homomorphism f : L — M is called frame B-proximal homomorphism iff

20,y implies f(z)d2.f(y)

We denote the corresponding category by BProxFrm.
Definition 5 Let L be a Boolean frame and ¢ be a subset of PL:

BN1) If A<< B and B € £ then A € &

BN2) If A A#0 then A €¢;

(BNT)

(BN2)

(BN3) 0 # ¢ # PL;

(BN4) If (A\/ B) € { then A€ £ or B €¢;

Then ¢ is called preB-nearness on L, and the pair (L,§) is called preB-nearness
frame iff it satisfies in (BN1)-(BN3).
¢ is called semiB-nearness on L, and the pair (L, ) is called semiB-nearness frame
iff it satisfies in (BN1)-(BN4).
¢ is called B-nearness on L, and the pair (L,§) is called B-nearness frame iff it
additionally satisfies:

(BN5) For each z € L, z = A {y € L|z < st(y, A)¢, for some A ¢ ¢}.

Let (L, &) and (M,n) be two B-nearness frames.
A frame homomorphism f : L — M is called B-nearness homomorphism iff

Aen= f1(A) et
The corresponding category denoted by BNFrm.

Proposition 2 Let L be a Boolean frame, y € L and A C L where A A = 0 then
st(y, A)? < y.

Proof: We know for every y € L

y:y\/():yv(/\{z]zeA}):/\{y\/z]zeA}.
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And since L is Boolean if for all z € A, yVz=1thenVze€ A,y <zsoy < ANAie ¢y =0
so y = 1 and then y = A} so we have

y:/\{y\/z|yVZ7é1,zEA}
—yV(A{zeAlzvy#1}
=y Vst(y, A = st(y, A <y

Proposition 3 Let L be a Boolean frame and ¢ is a preB-nearness on L then
x < st(y, A)¢ for some A ¢ ¢ iff z <y and {y/,z} ¢ &

Proof: Let x < st(y, A)? for some A ¢ £. Since A ¢ € by (BN2), AA = 0 and by
Proposition 2, st(y, A)¢ <ysoxz < AN{z|zVy+#1,2¢€ A} <y. Now for every z € A either
zVy#lorzVy=1.If zVy# 1thenx < zandif zVy =1theny < zie A<<{y, x}
and since A ¢ & by (BN1), {¢/,z} ¢ &.

Conversely, let < y and {y/,z} ¢ & For A = {¢/,x}, if y = 1 then st(y, A)? = 1 and if
y # 1 then st(y, A)¢ = z. In any case z < st(y, A)? for some A ¢ €.

Remark 1 Let (L,€) be a semiB-nearness frame then £ is B-nearness frame iff it satisfies

in the following condition:

(BNY) Foreach x € L,z = A {y € Ll <y, and {y',z} ¢ £}.

Theorem 1 Let L be a Boolean frame. Set of all preB-nearness on L ordered by set
inclusion is a lattice when its bottom is {A C L| A A # 0} and its top is {A C L|0 ¢ A} .

Remark 2 If (X,¢) is a B-nearness frame then the relation § on L defined by

zoy iff {z,y} € ¢
is a BN-proximity.

Proof: We show that ¢ satisfying in the (BP0)-(BP5).

To (BP0): Let xdy then {z,y} € £ and equivalently {y,z} € € i.e. yox.

To (BP1): Let < y and zdz i.e. {x,z} € £ since {y,z} << {z,z} by (BN1) we have
{y,z} € £ ie. yoz.

To (BP2): Let x Ay # 0 so by (BN2), {z,y} € € i.e. xdy.

To (BP3): Let zdy i.e. {z,y} € & If x = 0 then for every A C L, A << {z,y} and by
(BN1), A € ¢ i.e. £ = L which is contradiction to (BN3). So x # 0.

To (BP4): Let zd(y V z) i.e. {z,(yV 2)} € £ but we have
{z.y}vie,z} ={z,2V zyVa,yVz} <<{z,(yV2)}soby (BN), {z,y} v{z,z} € { and
by (BN4), {x,y} € £ or {x,z} € { i.e. xdy or xdz.
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To (BP5): By (BN5) we have for every z € L, v = A{y € Lz <y, and {y,z} ¢ £} i.e.
z=NA{y € Llz <y, and z0y'}.

Therefore ¢ is an BN-prozimity on L.

4 B-Farness, B-Smallness and B-Covering on frames

Definition 6 Let L be a Boolean frame let £ be a subset of PL satisfying the following

conditions:
(BF1) If A << B and A € € then B € &,
(BF2) If Ac {then AA=0;
(BF3) 0 # ¢ # PL;
(BF4) If A€ £ and B € € then (A\/ B) € ¢;

Then ¢ is called B-farness on L, and the pair (L, &) is called a B-farness frame iff
it additionally satisfies:

(BF5) For each z € L, x = A\ {y € L|z < st(y, A)?, for some A € £}.
Definition 7 Let L be a Boolean frame let v be a subset of PL satisfying the following

conditions:
(BS1) If A << B and A € ~y then B € 7;
(BS2) For 0 € L, {0} € ;
(BS3) 0 # v # PL;

(BS4) If AUB € y then A€ yor A € 7;

Then 7 is called B-smallness on L, and the pair (L, ) is called a B-smallness frame

iff it additionally satisfies:

(BS5) For each z € L, z = A\ {y € L|z < st(y, A)?, for some secA ¢ v}.
Definition 8 [2] Let L be a Boolean frame let u be a subset of PL satisfying the

following conditions:
(BC1) If A< B and A € p then B € y;
(BC2) If Ae pthen \VA=1;
(BC3) 0 # n# PL;

(BC4) If A€ pand B € pthen(AAB) € 15

Then p is called B-covering on L, and the pair (L, p) is called a B-covering frame

iff it additionally satisfies:
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(BC5) For each x € L, x = \/ {y € L|st(y,A) <z, for some A € u}.

Let (L,p1) and (M, pus) be two B-covering frames, a frame homomorphism f : L — M is
called B-covering homomorphism iff A € u; = {f(a) :a € A} =: f(A) € po.

We denote the corresponding category with BCFrm.

Proposition 4 Let L be a Boolean frame and ¢ be a B-nearness on L. Then

(i)
(i)
(iii)

¢ ={A C L|A ¢ ¢} is the B-farness structure on L induced by &;
p={AC L|A" € £} is the B-covering structure on L induced by &;

v={AC L|VB € u, BN stackA # 0} is the B-smallness structure on L induced by &.

Proof:

(i)

We prove that € is a B-farness on L.
To (BF1): Let A << Band A € € then A ¢ ¢ so by (BN1), B¢ £ie BeE.
To (BF2): If A€ Eie. A¢ & so ANA=0.
To (BF3): Since £ # 0, £ # PL. And since & # PL, £ # 0.
(

To (BF4): Let Ac €and B € fie A¢ ¢and B¢ &soby (BN4), AVDB ¢ ¢ie.
AV B€E.

To (BF5): Let z € L, we know z = A {y € L|z < st(y, A)?, for some A ¢ ¢} ie.
= N\{y € Llz < st(y, A)?, for some A € {}.

So € is a B-farness on L which induced by €.

We prove that p is a B-covering on L.

To (BC1): Let A< Band A € pie A" << B'and A’ € € so by (BF1), B’ € € i.e.
B e pu.

To (BC2): Let A € pie. A" € € soby (BF2), NA'=0so VA = 1.
To (BC3): Since &€ # 0, i # 0 and since & # PL, u # PL.

To (BC4): Let A€ pand B € pie. A €& and B’ € € so by (BF4), A’V B € { ie.
(AANB) €so ANB € p.

To (BC5): Let € L, we know 2/ = A {y' € L|z’ < st(y', A')¢, for some A’ € £} so
v=\{ye Lz <st(y,A')?, for some A’ € £}

But 2’ < st(y', A')? means 2’ < \{d' € A'|d’ Vy # 1} ie.
V{ee Alany #0} <xie st(y,A) <xso
=\ {y € Lst(y,A) <z, for some A’ € } ie.
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r=\{y € L|st(y,A) <z, for some A € u}.
So p is a B-covering on L which induced by &.

We prove that ~ is a B-smallness on L.

To (BS1): If A << B and A € « then for every D € u, D N stackA # ) i.e. for
arbitrary D € p, there exists d € D s.t. a < d for some a € A. Also we know A << B
so there exists b € B s.t. b < a therefore b < a < d ie. d € stackB so DN stackB # ()
ie. B €.

To (BS2): We know stack {0} = {z € L|0 <z} = L and obviously for everyB € p,
BNL#0. So {0} €~.

To (BS3): Since {0} € v so v # 0.
We know stack() = () and for every B € yu, BN =0 so ¢ ~ie v+#PL.

To (BS4): Let AUB € 7 so for every D € pu, DNstack(AUB) # () i.e. DN (stackAU
stackB) # 0 so (D N stackA) U (D N stackB) # () i.e. either D N stackA # () or
D N stackB # .

Let for Dy €pu, D;NstackA=0 and D;NstackB # 0 (1)
Let for Dy € pu, DyNstackA#® and D, N stackB =0 (2)

Since Dy € p and Dy € u, by (BC4), Dy A Dy € p.
So either (D1 A Do) N stackA # () or (Dy A D) N stackB # ).

If (D; A Dy) N stackA # (), there exists d; A dy where d; € Dy and dy € Dy s.t.
a < (dy A dy) for some a € A therefore a < d; and a < dy, i.e. Dy N stackA # () and
Dy N stackA # () which is contradiction to (1). Similarly if (Dy A D) N stackB # 0,
we have Dy N stackB # () and Dy N stackB # () which is contradiction to (2).

So either for all D € u, D N stackA # () or for all D € p, D N stackB # () i.e. either
Ae~yor Ben.

To (BS5): Let z € L'sox = \ {y € L|z < st(y, A)?, for some A € £} i.e.
= A\{y € Lz < st(y, A)?, for some A’ € pu}.
If A" € p then secA ¢ ~ since A’ N stack(secA) = A’ N secA = ().

And if secA ¢ ~ then there is B € u s.t. B N stack(secA) =0, i.e. BN secA =10, i.e.
for every b € B there is a € A s.t. bAa =0so0 b < a therefore we have B < A" and
by (BC1) it implies A" € p.

So equivalently we have z = A {y € L|z < st(y, A)?, for some secA ¢ v}.
Therefore 7 is a B-smallness on L which induced by &.
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Proposition 5 Let L be a Boolean frame and &, €, v and  be respectively B-nearness,
B-farness, B-smallness and B-covering structures induced by each other on L. Then following

relations are hold
1) Ac¢iff A¢ &
2) Ac€iff A¢ ¢,
3) Aeiff A €

4) Acpiff A €€,
6) Aeciff V B € p, BNsecA #

(
(
(
(
(5) Aepiff VB e& AnsecB # ;
(
(
(8) A€ piff VB € v, AN stackB + 0
(

9

)

)

)

)

)

)

7y Ae~ift V B € u, BN stackA # ();

)

) A€ iff secA € ~;

(10) A € ~ iff secA € &;

(11) Aevyif YBeéJac AT e B, anb=0;
)

(12) Acéiff YvBey,Jac AIbe B, anb=0.

Proof:
By Proposition 4, (1) - (4) is clear.

(5) Let A € pthen A’ € € and let B € & we prove that AN secB # () i.e. 3 a € A s.t.
a € secBie Jae Ast. Vbe B,aANb#0. If notsoVae A3Fbe Bst. aNnb=0 ie.
b < a therefore Va' € A’ 3b € Bs.t. b<d ie A << B andsince A’ € £ by (BF1) Be ¢

which is a contradiction.

Conversely, let V B € £ ANsecB # (. If A ¢ uthen A” € £&. But we have AN secA’ = ()

since for every a € A, a ANa' =0 and ¢’ € A" so a ¢ secA’ which is contradiction so A € p.
(6) Similar to (5). And by Proposition 4, (7) is clear.
(9) Let A ¢ ¢ ie. A € pthen we have A’ NsecA = () i.e. A'Nstack(secA) = () so secA ¢ ~.

Conversely, let secA ¢ v i.e. there exists B € pu s.t. BN stack(secA) = () so BN secA = ()
ie. Vb€ B, Ja € As.t. aNb=0so0b<d therefore B < A" and by (BC1) it implies A’ € u

so A¢¢.
(10) Let A € v ie. VB € u, BN stackA # (.
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We consider B = {d' € L|Va € A,dNa+#0}. For every d € B, there is not any a € A
st. a < d ie. for every d € B, d ¢ stackA so {d' € LNa € A,dANa+# 0} ¢ u therefore
{de LiVae€ AjdNa#0} € ie. secAe.

Conversely, secA € € by (9), sec’A € v i.e. stackA € v and since stackA << A by (BS1) it
implies A € .

(8) Let A € p and B € v then by (7) we have AN stackB # .

Conversely, let VB € v, AN stackB # 0, if A ¢ pu then A’ € £ and by (9) secA’ € v and by
assumption A N stack(secA’) # () i.e. AN secA’ # () which is contradiction so A € p.

(11) By (7) is clear. And (12) by (8) is clear.

Proposition 6 If (L,¢)is a B-nearness frame and £ and p are respectively corresponding

B-farness and B-covering then the following conditions are equivalent:

(C) If every finite corefinement of A belongs to £ then A belongs to &;
(C") If A € £ then there exists a finite corefinement B of A with B € &;
(C") If A € p then there exists a finite refinements B of A with B € p.

Proof: (C') < (C"): Obviously.
(C") = (C") : Let A € pthen A’ € € so by (C') there exists a finite B’ € € s.t. B’ << A’

i.e. B < A and since B’ is finite B-farness so B is finite B-covering. So there exists a finite
refinements B of A with B € u.
(C") <= (C") : Let A€ £so A" € uand by (C”) there exists a finite B’ € u s.t. B’ < A’
so B << A and since B’ is finite B-covering so B is finite B-farness i.e. there exists finite
corefinement of A belongs to &.

Definition 9 [2] A B-nearness frame is called contigual iff it satisfies the condition (C').

Theorem 2 Let (L, &) be a B-nearness frame then
& ={AC LIVB << A, (B finite = B € §)} is the smallest contigual B-nearness structure

on L contains ¢ that we call it contigual B-nearness structure on L generated by £. In
addition & = (&) where {§ = {A € | A finite}.
Proof: First we show &, is a B-nearness on L.

To (BN1): Let A; << Ay and Ay € &. We have VB << Ay, B << A, so if B is finite it
implies that B € £ which means A; € &,.

To (BN2): Let AA#0and B << Aso A\ B # 0 therefore B € { so A € ..
To (BN3): By (BN2), 0 € & s0 & # 0. And {0} ¢ & so & # PL.
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To (BN4): Let A\ Be & if A¢ ¢ and B ¢ & then 3 C << A and C is finite but C' ¢ ¢
and 3 D << B and D is finite but D ¢ £ so C'\/ D ¢ £ and it is finite. But since C << A
and D << Bwehave V¢, € Cda; € Ast. a;, <candVd; € D3Ib; € Bst. b; <d;
therefore Ve; Vd; € C\/ D 3 a; Vb € A\ Bst. a;Vb; <¢ Vdjie C\/D<<A\ B and
since C'\/ D ¢ £ and it is finite it is contradiction to A\/ B € &..

To (BNH): Let o € L, then T' = {y € L|z <y, {z,y'} ¢ £} and

S={yellr<yfry}¢&} LetyeTsox<yand{z,y} ¢ ify¢ Sso{ry}el
by definition of &., {z,y'} € £ that is contradiction. So we have T C S therefore A S < AT

and we know AT = x also by definition of S, x is its lower bound so x = A S.
Therefore &, is a B-nearness on L.

Now let every finite corefinement of A belongs to &. if A ¢ . then 3B << A where B is
finite and B ¢ & so B ¢ &, that is contradiction so . is contigual.

Now we show that &, is the smallest contigual B-nearness contains &.

Let A € £ so by (BN1) for every B << A, we have B € ¢ therefore A € &.. ie. & C &.
Suppose n be an arbitrary contigual B-nearness contains £ and A € &, so VB << A, if B
is finite then B € ¢ therefore B € n and since 7 is contigual, A € n i.e. £ C 1 so &. is the

smallest contigual B-nearness contains &.
And obviously, &5 = (&)

Proposition 7 1If (L, ¢) is a B-nearness frame and &, ; and 7 are respectively correspond-

ing B-farness, B-covering and B-smallness then the following conditions are equivalent:

(U) If A € € then there exists B € £ such that {st(b, B)¥|b € B} << A;
(U') If A € p then there exists B € p such that {st(b, B)|b € B} < A;
(U") If A ¢ ~ then 3B C L s.t. secB ¢ v and {st(b, B)!|b € B} << secA.

Proof:

(U) = (U") Let A€ pie A €& then by (U), there exists B’ € € s.t.

{st(t), B")| € B'} << A’ ie. for every I/ € B’ there exists a’ € A’ s.t. ' < st(v/,B')?
ie. d < A\N{d e B|d Vb #1}so\/{ce BlcANb+# 0} <a. Therefore for every b € B there
exists a € A s.t. st(b,B) <aie. {st(b,B)|be B} < A.

(U) <= (U")) Let A € €ie. A’ € p then by (U’) there exists B’ € y such that

{st(t/,B")|t\ € B'} < A" i.e. for every I/ € B’ there exists a’ € A’ s.t. st(V/,B') < d ie.
VA{deB|dANY #0} <d soa< AN{ce€ B|cVb#1}. Therefore for every b € B, there
exists a € A s.t. a < st(b, B)? i.e. {st(b,B)¢lb€ B} << A.
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(U) = (U”)) If A¢ v then secA € € so by (U) there exists B € £ such that
{st(b, B)!|b € B} << secA and B € { implies secB ¢ 1.

(U) < (UM) If A€ Eie. secA ¢ v then by (U") 3B C L s.t. secB ¢ v and
{st(b, B)!|b € B} << sec*A = stackA and we know stackA << A so {st(b, B)!|b € B} <<
A also secB ¢ ~ implies B € €.

Definition 10 [2] B-nearness frame (L,¢) is called uniform iff it satisfies to condition
V).

We denote by UBCFrm the category of uniform B-covering frames and B-covering homo-

morphisms.

Also we denote by UBNFrm the category of uniform B-nearness frames and B-nearness

homomorphisms.

5 Relation between B-Nearness on frames and subframes

Let L be a Boolean frame and a € L then | a = {x € L|z < a} is Boolean frame with A and
V defined as in L. The top of | a is @ and the bottom of | a is the bottom of L.

Let (L, &) be a B-nearness frame and ¢ its corresponding farness. Let a € L. For each A C L
aNA={aNzlx e A}

and

aNé={AeP(la)Ae&} and ané={AeP(la)Ael}

Theorem 3 1If (L,¢) is a B-nearness frame and a € L then a A € is a nearness on | a

and a A € is corresponding B-farness on | a.

Proof: (BN1) to (BN4) are obvious. We prove only (BN5).
To (BN5): Let z €] a and

S ={y € Llz < st(y, A)* for some A ¢ £} and
T = {w €} alz < st(w, B) for some B ¢ a A}

Let z € S by (BN2) and proposition 2, z < z and since x < a so x < a A z. Choose A ¢ ¢
s.t. x < st(z, A)?, since A << aA Asoby (BN1), aAA¢ ¢ and by definition, a A A ¢ a A€

st((anz),(anA)* = N{anhlhe A (anz)V(anh)#a}
= N\{anhlh € Ajan(zVh)#a}
=an(N\{heAagzvh}
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Obviously {h € Ala £ zV h} C {h € Al]zV h # 1} so

AN{h € Alzvh#1} < N{h € Ala £ zV h} and we have

x <st(z,A)?=A\N{he€ AlzVh#1}sox < AN{h € Ala £ 2V h} and since x < a therefore
r<aA(AN{h€AlaLzVh}ie x<st((aNz),(anA)soaAz€eT therefore aNS C T
so AT < A(aAS) < AS since € is B-nearness so v = A\ S so AT < x and for any w € T
by (BN2) and proposition 2, we have x < w i.e. z is a lower bound for T'so AT = z.

So a A € is a B-nearness on | a generated by &.

Now we show that a A € is its corresponding B-farness on | a

anNéE={ACP(la)A¢gane}ie anéE={ACP(la)|A¢E} ie.
aNé={AcCP(la)Aet}=ant

Proposition 8 Let a <bin L and £, and &, are respectively B-farnesses on | b and | a

generated by an unknown B-farness on L then &, and &, satisfy on the following relations :
(i) If D € &, then D << C for some C € &,.
(ii) If C € €, and C' << D for some D € P(] b) then D € &,

Proof: Obviously.

Definition 11 B-nearness frame (L,&) is called graded iff {A,secA} C ¢ implies
E(A) € &, where £(4) = {x € LI({z} U A) € £).

Proposition 9 Let (L,¢) be a B-nearness frame and a € L then following result holds
(i) If (L, &) is graded then a A € is also a graded B-nearness on | a.
(i) If (L,&) is contigual then a A is also a contigual B-nearness on | a.

Proof: (i) Let {A, secj,A} C a A€ since A € P(] a), secj,A = a A sec, A and sec, A <<

a N secp A so {A,sec, A} C & then £(A) € € but (a A &)(A) C &(A) so (aN€)(A) € € and
(an&)(A) C P(la)so (aN&)(A) eant.

(ii) Let A C| a and every finite corefinemen of A in | a belongs to a A £ . If there exists B
finite subset of L s.t. B << A and B ¢ &, since B << a A B then by (BN1), a A B ¢ £ but
since A€laand B<<AsoVaAbeaABIdxr e Ast. x <aAbie aAB << A then by

assumption a A B € a A& and so a A B € £ that is contradiction so every finite corefinemen
of A in L belongs to &, therefore A € £ and so A € a A €.

Let L be a Boolean frame and a € L then 1 a = {x € L|a < 2} is Boolean frame with A and
V defined as in L. The top of 1 a is the top of L and the bottom of 1 a is a.

Let (L, &) be a nearness frame and ¢ its corresponding B-farness. Let a € L.
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For each A C L
aVA={aVzlxe A}
and
aVE={BeP(a)laVvA<<B, for some A €}
and a V £ is its corresponding B-nearness.

Theorem 4 If ¢ is a B-farness on L and a € L then a V € is a B-farness on 1 a.

Proof:

To (BF1): Let C << Dand C € aVE&sodA € Est. aV A << C andsince C << D so
aVA<<Die DeaVé

To (BF2): Let C € aV & If AC # athen3 2z >ast. \NC =z butsince C € aVEso
EIAEEs.t. aVA<<Cie YaVreaVAdee Cst. c<aVxsoVaVzxeEaVA,
z<aVzie z< A@VA) =aV(A\A) but A A =0 therefore z < a that is contradiction

to assumption. so A\ C = a.

To (BF3): For every A€ &, aV A << {a}ie. {a} €aVEsoaVE+#(D Nowlet b>a by
(BF2) we know {b} ¢ aVEsoaVE# P(Ta).

To (BF4): Let C € aVéand D €aVésodAcést. aVA<<Cand3IB e ¢ st.
aVB << Dso A\YB €& NowletaV(zVy) €aV(A\B) wherez € Aand y € B
ie. (avz)V(aVy) €aV(AVB)sinceaVe €aVAandaV A<<C,3ceC st
¢ <aVazsimilarly 3d € D st. d < aVy therefore cVd < (aVz)V(aVy)=aV(xVy)
ie. aV(A\ B) << C\D. and since C\/ D € P(1a) then C\/ D € aVE.

To (BF5): Let z €1 a and

S = {y € L|z < st(y, A)? for some A € E} and
T = {w €t a|z < st(w, B)? for some B € a V £}

Let z € S then by (BF2) and proposition 2, z < z and a < x so z €1 a. Now we choose
Acést. x <st(z, AL Obviously,a VA€ aVE.

st(z, (aV A)* = \{avhlheAand 2V (aVh) # 1}
=aV(\{heAzvh+#1})
> \{heAlzvh+#1}
= st(z, A >z

So z € T'ie. S CT therefore AT < A S and since A S = z and similar to proposition 2,

is a lower bound for every w € T so we have AT = z.

so a V € is a B-farness on 1 a generated by €.
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Proposition 10 Let (L,¢) be a B-nearness frame and a € L then following result holds

(i) If (L,€) is uniform then a V ¢ is also a uniform B-nearness on 1 a;

(i) If (L,&) is contigual then a V ¢ is also a contigual B-nearness on 71 a.

Proof: (i) Let C' € a V £ then there exists A € £ such that a V A << C and since £ is
uniform so 3B € £ s.t. {st(b,B)!b€ B} << Aie. Vb€ B, 3z € Ast.

x < N{b; € B|b; Vb # 1} therefore we have Ya Vb € aV B(€ aV§), JaVr € aV A sit.
aVez < AN{aVvb €aVvB|bVb#1}.

But {aVvb €aVvB|lb;VbVa#1} C{aVb €aV B|b;Vb+#1} so

AN{aVvb €aVvBlb;vVb#1} < AN{aVvb €aV B|(aVb)V(aVb)#1}

then we have a Vo < A{aVb, €aV Bl(aVb)V (aVb)#1}ie.

{st(aVvb,aVv B)aVbeaV B} <<aVAandsince aV A << C so
{st(avb,aVv B)aVvbeaV B} << Cie aVEis uniform.

(ii) Let C' € a V€ then there exists A € £ s.t. aV A << C. But £ is contigual so there exists
finite B € £ s.t. B << A so aV B is finite and it belongs to a V £ and also aV B << aV A
soaV B << (Cie. aVE¢is contigual.

6 B-Nearness frame and Complete Near Space

Definition 12 Let (L,€) be a B-nearness frame. A nonempty subset A of L is called

&-cluster iff A is a maximal element of the set £ ordered by set inclusion.

Theorem 5 Let (L,¢) be a B-nearness frame, X* be set of all {-clusters and
& ={QCc PX*|U{Nw|w € 2} € &} then (X*, &) is complete nearness space induced by
B-nearness frame (L, §).

Proof: We prove that (X*,£*) satisfies in all conditions of nearness space.
To (N1) i.e. Let Q << Q9 and Qs € £* then ; € £*.

If O ¢ & then U{Nwlw e M} ¢ & therefore VA, € X*, U{Nwlw e} € A ie.
VA, € X*, 3x; € U{Nw|w € 21} s.t. z; ¢ A; but for some w € Qy, z; € (w say x; € [|w;
when w; € ;.

Since ) << Qy, Yw; € Qy, Jws € Qs st. wy C wy we have (Nw; C (ws. And since
VA; € X* dx; € (w; where x; ¢ A; so Jw, € Qs s.t. w) C w; so [w; C [w, therefore
z; € w} and so z; € Y{Nwlw € N} where x; ¢ A; i.e. VA; € X*, U{Nwlw € D} € A,
so U{Nwlw € Qo} ¢ £ ie. Qo ¢ £ that is contradiction so ; € &*.

To (N2) ie. If (N Q # 0 then 2 € &*.
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Let Q2 # 0 so JA € X* s.t. Vw € Q, A € w therefore
Vwe Q, NwC Aso J{Nw|w € 2} C A and since A € £ so |J{Nwlw € Q} € ie Qe X

To (N3) ie. & £ P2X*.

Since £ # () so A € X* and by definition of X* obviously {{A}} € £* so & # (. And if
{0} € & then |J{N 0} (= L) € £ that is contradiction to & # PL so £* # P?X*.

To (N4) ie. If Q1 \/ Qg € € then Q € £ or Qy € €7,
where Ql VQQ = {w1 U WQ‘(JJl € Ql,UJQ € QQ}

Let Ql \/QQ € f* If Ql ¢ 5* and QQ ¢ f* then
O ¢ & = U{Nwilwi € U} ¢ €, we call Uy = J{Nwilws € 4} and
Qs ¢ & = U{Nwjlw; € D} ¢ &, we call Uy = {Nwjlw; € Q}.

Since Uy ¢ £ and Us ¢ & then Uy \/ Us ¢ € ie.

{x\/yleUl,yEUg}géf (I)

Let x € Uy then Jw; € Oy s.t. = € [|w; therefore VA; € wy, x € A; so VA; € wy,
A;U{x vz} << A; where z € L so A;|J{zV 2z} € £ but since each A; is &-cluster so
VA; € wy, xVz €A forany z € L.

Similarly Let y € U, then 3wy € s s.t. y € (ws therefore VB; € wy, y € Bj so VB; € wo,
yV z € Bj for any z € L. So we have

VA, € wy and VB; € wy, tVy € A;and xVy € Bj ie. zVy € [(w Uwy) so
rVy e U{N(w Uw))|w; € Q1,w; € Qy} therefore

{zVvylr e U,y e Uy} CU{N(wiUwj)|w; € Qy,w; € Qo}

and by (I) we have |J{((w;i Uw;)|w; € Q1,w; € Do} & Eie. O\ Qy ¢ £F that is contradic-
tion so €2 € £* or () € £

To (N5) ie. If {clfwlw € O} € £ then Q € £ where clfw = {A € X*|[{w, {A}} € £*}.

Let w C X" so cliw = {A € X*|((Nw) U A) € {} but since A is &-cluster so it is maximal in
€ then clfw = {A € X*[[Nw C A} therefore Vw C X*, w C () clfw.

Now let {clfww € Q} € & so U {N(cliw)|w € Q} € £ and we know

Nw C Neiw so J{Nwlw € O} € U{N(cliw)|w € Q} so

U{Nwlw € Q} € {ie Qe

Therefore (X*,£*) is a nearness space.

Now we have to show that (X*,£*) is complete.

Let Q € & be a £*-cluster by definition | {(w|w € Q} € £ so there exists &-cluster, A, s.t.
U{Nw|w € Q} € A. We consider ' = QU{{A}} obviously | {w'|w € '} C A therefore

Q€ &, since 2 is £*-cluster so {A} € Q therefore (X*,£*) is a complete nearness space.



B-Nearness on Boolean frames

References

[1] Banaschewski, B., and Pultr, A. :

19

Cauchy points of uniform and nearness frames.

Quaestiones mathematicael9, 101 -127(1996)

[2] Dube, T. A. : The Tamano-Dowker type theorems for nearness frames. Journal of Pure

and Applied Algebra 99, 1-7 (1995)

[3] Dube, T.: Paracompact and locally fine nearness frames. Topology and its Applications

62, 247253 (1995)

[4] Herrlich, H. : A concept of nearness. General topology and its applications 4, 191 -212

(1974)

[5] Herrlich, H. : Topologycal structures.

[6] Johnstone, Peter T. : Stone Spaces.

Cambridge University Press, 1982
received: 02.09.2011

Authors:

Zohreh Vaziry

Department of Mathematics,
University of Pune,
Pune-411007,

India

e-mail: z_m_vaziry@yahoo.co.in

Dr.S. B. Nimse
Vice-Chancellor,
SRTM University,
Nanded-431606,
India

e-mail: dr.sbnimse@rediffmail.com

Math. Centre Tracts 52, pp. 59—122 (1974)

Cambridge Studies in Advanced Mathematics3,

PD Dr. Dieter Leseberg
Department of Mathematics and Informatics,
Free University of Berlin,
Germany
And
Central library,
Technical University Braunschweig,

Germany

e-mail: d.leseberg@tu-bs.de


mailto:z_m_vaziry@yahoo.co.in

	Zohreh Vaziry, S. B. Nimse, Dieter Leseberg – B-Nearness on Boolean frames
	Introduction
	Background
	B-Nearness and BN-proximity on frames
	B-Farness, B-Smallness and B-Covering on frames
	Relation between B-Nearness on frames and subframes
	B-Nearness frame and Complete Near Space


