Rostock. Math. Kolloq. 67, 59-88 (2012)

Subject Classification (AMS) 39A13, 26A16, 26A24, 26A27, 11K16

Manfred Krüppel

On the Solutions of Two-Scale Difference Equations

ABSTRACT. This paper deals with specific two-scale difference equations which are equivalent to a system of functional equations. Such equations have a continuous solution if the coefficients c_j of the corresponding characteristic polynomial P satisfy condition $|c_j| < 1$ for all j. By means of some functional relations for the solution we show that it is Hölder continuous and we determine the optimal Hölder exponent. Moreover we give a condition which is necessary and sufficient for the differentiability almost everywhere where we apply Borel's normal number theorem. If the coefficients c_j are nonnegative then the solution is a singular function. Special cases are the well-known singular functions of *de Rham* and of *Cantor*.

1 Introduction

A two-scale difference equation (dilation equation) is a functional equation of the form

$$\varphi\left(\frac{x}{d}\right) = \sum_{j=0}^{p-1} c_j \varphi(x-j) \tag{1.1}$$

with dilation parameter d > 1 and complex coefficients c_j where $c_0c_{p-1} \neq 0$, $p \geq 2$. Such equations especially with d = 2 appear in wavelet theory and in subdivision schemes where nontrivial compactly supported Lebesgue-integrable solutions are demanded, cf. [5], [7], [8], [9].

In this paper we consider the two-scale difference equation (1.1) with d = p, that means

$$\varphi\left(\frac{x}{p}\right) = \sum_{j=0}^{p-1} c_j \varphi(x-j) \qquad (x \in \mathbb{R})$$
(1.2)

under the condition

$$\sum_{j=0}^{p-1} c_j = 1 \tag{1.3}$$

and we are interested to solutions φ which satisfy the boundary conditions

$$\varphi(x) = 0 \text{ for } x < 0, \qquad \varphi(x) = 1 \text{ for } x > 1.$$
 (1.4)

It is easy to see that under these conditions equation (1.2) with (1.3) can be written as system of functional equations. Replacing x in (1.2) by k + x with $k \in \{0, 1, ..., p-1\}$ and $x \in [0, 1]$ we get in view of (1.4) the following system of equations

$$\varphi\left(\frac{k+x}{p}\right) = b_k + c_k\varphi(x) \qquad (0 \le x \le 1)$$
 (1.5)

with

$$b_k = \sum_{j=0}^{k-1} c_j \tag{1.6}$$

 $k = 0, 1, \ldots, p - 1$, cf. [18]. Such systems of equations are intensively investigated by R. Girgensohn, see [14], [15], [16]. If $|c_j| < 1$ for all $j = 0, 1, \ldots, p - 1$ then there exists exactly one bounded $\varphi : [0, 1] \mapsto \mathbb{R}$ which satisfies (1.5) with (1.6) and (1.3). This function φ is continuous and given in terms of the *p*-adic expansion of *x* by

$$\varphi\left(\sum_{n=1}^{\infty}\frac{\xi_n}{p^n}\right) = \sum_{n=0}^{\infty}b_{\xi_n}\prod_{k=1}^{n-1}c_{\xi_k},\tag{1.7}$$

cf. [14], see also [18, Theorem 2]. In particular, $\varphi(0) = 0$ and $\varphi(1) = 1$ so that φ can be extended by (1.4) to $x \in \mathbb{R}$, and this extended function is a continuous solution of (1.2) and satisfies (1.4). In this sense the two-scale difference equation (1.2) with (1.3) is equivalent to the system of equations (1.5) with (1.6) and (1.3).

The polynomial

$$P(z) = \sum_{j=0}^{p-1} c_j z^j$$
(1.8)

with $P(0) \neq 0$ and P(1) = 1 is called the *characteristic polynomial* of the equation (1.2). Simple examples are the extended functions of *de Rham* and of *Cantor*.

1. (De Rham's function) In case P(z) = a + (1 - a)z with $a \in (0, 1)$ equation (1.2) reads

$$\varphi\left(\frac{x}{2}\right) = a\varphi(x) + (1-a)\varphi(x-1) \qquad (x \in \mathbb{R})$$
(1.9)

which in view of (1.4) can be written as system of functional equations

$$\varphi\left(\frac{x}{2}\right) = a\varphi(x), \qquad \varphi\left(\frac{x+1}{2}\right) = a + (1-a)\varphi(x)$$
 (1.10)

with $0 \le x \le 1$ and de Rham's function is the uniquely bounded solution, cf. e.g. [18].

On the Solutions of Two-Scale Difference Equations

2. (*Cantor's function*) In case $P(z) = (1 + z^2)/2$ equation (1.2) reads

$$\varphi\left(\frac{x}{3}\right) = \frac{1}{2}\varphi(x) + \frac{1}{2}\varphi(x-2) \qquad (x \in \mathbb{R}).$$
(1.11)

In view of (1.4) this equation can be written as system of equations

$$\varphi\left(\frac{x}{3}\right) = \frac{1}{2}\varphi(x), \qquad \varphi\left(\frac{x+1}{3}\right) = \frac{1}{2}, \qquad \varphi\left(\frac{x+2}{3}\right) = \frac{1}{2} + \frac{1}{2}\varphi(x)$$
(1.12)

with $0 \le x \le 1$, and Cantor's function is the unique bounded solution of this system, cf. [21], (see also [20], p. 241).

In case $c_j \ge 0$ for all j = 0, 1, ..., p - 1 one can interpret the coefficients as probabilities $p_j = c_j$ and the solution φ as a distribution function which is a measure-preserving mapping, cf. [4, Section 3]. The figure on p. 37 in [4] shows the graph of φ in case p = 2, $p_0 = 0, 7$ and $p_1 = 0, 3$ (φ is de Rham's function with respect to the parameter a = 0, 7).

According to (1.4) we are only interested to the solution φ of (1.2) in [0, 1]. We always assume that $|c_j| < 1$ for all $j = 0, 1, \ldots, p-1$ which guarantees the existence of a continuous solution φ with $\varphi(0) = 0$ and $\varphi(1) = 1$. In the simple case $c_j = \frac{1}{p}$ for all j we have $\varphi(x) = x$ for $x \in [0, 1]$. In the following we always exclude this trivial case. We show in this paper that the solution φ of (1.2) with (1.3), (1.4) satisfies some functional relations (Proposition 2.3) and that it has in [0, 1] the following properties:

- 1. If $c_j \ge 0$ for all j then φ is an increasing function (Proposition 2.5).
- 2. If not $c_j \ge 0$ for all j then in no nonempty subinterval of $[0, 1] \varphi$ has finite variation (Proposition 2.6).
- 3. If $|c_j| < 1$ for all j then φ is Hölder continuous, i.e.

$$|\varphi(x) - \varphi(y)| \le A|x - y|^{\alpha}$$

with the optimal Hölder exponent $\alpha = \min \{-\log_p |c_0|, \ldots, -\log_p |c_{p-1}|\}$ and coefficient A with $1 \le A \le p^{1-\alpha} \frac{p-1}{p^{\alpha}-1}$ (Theorem 3.6).

- 4. If φ is differentiable at the point x_0 then $\varphi'(x_0) = 0$ (Proposition 4.2).
- 5. If $\min |c_j| \ge \frac{1}{p}$ then φ is nowhere differentiable in [0,1], and if $\min |c_j| < \frac{1}{p}$ then both sets, where φ is differentiable and where φ is not differentiable have positive Hausdorff dimension (Theorem 4.11).
- 6. If $p M_0 < 1$, where $M_0 = |c_0 c_1 \cdots c_{p-1}|^{1/p}$, then φ is differentiable almost everywhere and if $p M_0 \ge 1$ then it is almost nowhere differentiable (Theorem 4.12).
- 7. If $0 \le c_j < 1$ and $\min c_j = 0$ then φ is constant on the components $J_{m,n}$ of an open set $G \subseteq [0,1]$ with Lebesgue measure |G| = 1. These intervals can be represented by means of a sequence γ_n (Theorem 5.4, Example 5.6).

Example 1.1 For 0 < a < 1 the equation

$$\varphi\left(\frac{x}{3}\right) = a\varphi(x) + (1-2a)\varphi(x-1) + a\varphi(x-2) \qquad (x \in \mathbb{R})$$
(1.13)

has a continuous solution φ satisfying (1.4). For $0 \le x \le 1$ we have: φ is increasing for $0 < a < \frac{1}{2}$, φ is Cantor's function for $a = \frac{1}{2}$ and φ does not have finite variation for $\frac{1}{2} < a < 1$. Further, φ is nowhere differentiable for $\frac{2}{3} \le a < 1$. If a_0 is the positive solution of $27a^2(2a - 1) = 1$, i.e. $a_0 = 0,5592...$, then φ is differentiable almost everywhere for $0 < a < a_0$ and almost nowhere differentiable for $a_0 \le a < 1$. So it is astonishing that in case $\frac{1}{2} < a < a_0$ the continuous solution φ does not have finite total variation though the derivative vanishes almost everywhere.

Remark 1.2 1. Hölder continuity of compactly supported solutions φ of (1.1) are intensive investigated, e.g. for the Hölder exponent there are bounds in terms of the joint spectral radius of two matrices determined of the coefficients c_i , cf. [5, Theorem 4.3], [6], [7].

2. The optimal Hölder exponent $\alpha = \log_3 2$ of Cantor's function is already known from [17].

3. The optimal Hölder exponent $\alpha = \min \{-\log_2 a, -\log_2(1-a)\}$ of de Rham's function was already determined in [2, Section 2]. Remark 2 and Figure 3 in [2] show a comparison with the Hölder exponent $\mu = -\frac{1}{\log 4} \log (2a^2 - 2a + 1)$ obtainable by means of the corresponding joint spectral radius, cf. [6].

2 Functional relations

We start with a replicative relation, cf. [18].

Proposition 2.1 The solution φ of system (1.5), (1.6) satisfies the replicative relation

$$\sum_{k=0}^{p-1}\varphi\left(\frac{k+x}{p}\right) = \varphi(x) + C \qquad (x \in [0,1])$$
(2.1)

with the constant

$$C = p - 1 - P'(1). \tag{2.2}$$

Proof: Equation (2.1) follows from (1.5) by summation where x = 0 yields for the constant in (2.1)

$$C = \sum_{k=1}^{p-1} \varphi\left(\frac{k}{p}\right).$$

From (1.5) and (1.6) we get

$$\varphi\left(\frac{k}{p}\right) = \sum_{j=0}^{k-1} c_j$$

so that

$$C = (p-1)c_0 + (p-2)c_1 + \dots + c_{p-2}$$

= $(p-1)(c_0 + \dots + c_{p-1}) - \{c_1 + 2c_2 + \dots + (p-1)c_{p-1}\}$
= $(p-1)P(1) - P'(1).$

In view of P(1) = 1 it follows (2.2).

In order to derive further functional relations for the solutions of (1.2) we introduce a sequence $C_k(c)$ depending on an arbitrary parameter $c \neq 0$ as follows: For $j \in \{0, 1, \ldots, p-1\}$ we put $C_j(c) = \frac{c_j}{c}$ where c_j are the coefficients of (1.2) and in general by the recursion:

$$C_{kp+j}(c) = C_k(c)C_j(c) \qquad (k \ge 1, j \in \{0, 1, \dots, p-1\}).$$
(2.3)

Obviously, if k has the p-adic representation

$$k = \sum_{\nu=0}^{n} k_{\nu} p^{\nu}, \qquad (k_{\nu} \in \{0, 1, \dots, p-1\})$$
(2.4)

then we have the explicit representation

$$C_k(c) = \prod_{j=0}^{p-1} \left(\frac{c_j}{c}\right)^{s_j(k)}$$
(2.5)

where $s_j(k)$ denotes the total number of occurrences of the digit j in the *p*-adic expansion (2.4) of k.

Remark 2.2 We use the parameter c in two cases:

1. In case $c = c_0$ we have $C_0(c_0) = 1$ and from (2.3) it is easy to see that the numbers $C_k := C_k(c_0)$ have the generating function

$$G(z) := \prod_{j=0}^{\infty} \frac{1}{c_0} P\left(z^{p^j}\right) = \sum_{k=0}^{\infty} C_k z^k$$
(2.6)

which converges for |z| < 1. Let us mention that the unit circle is a natural bound of convergence for G, cf. [12].

2. In Section **3** (Hölder continuity) we put $c = \max\{|c_0|, \ldots, |c_{p-1}|\}$ and so we are able to estimate the Hölder coefficient.

In the following we need the function

$$\varphi^*(x) = 1 - \varphi(1 - x) \qquad (x \in \mathbb{R})$$
(2.7)

which is the solution of the reversed two-scale difference equation

$$\varphi^*\left(\frac{x}{p}\right) = \sum_{j=0}^{p-1} c_j^* \varphi^*(x-j) \qquad (x \in \mathbb{R}).$$
(2.8)

where

$$c_j^* = c_{p-1-j} \tag{2.9}$$

cf. [3].

Proposition 2.3 The solution φ of system (1.5) satisfies the functional equations

$$\varphi\left(\frac{k+t}{p^n}\right) = \varphi\left(\frac{k}{p^n}\right) + c^n C_k(c)\varphi(t) \quad (0 \le t \le 1)$$
(2.10)

where $n \in \mathbb{N}$, $k = 0, 1, \ldots, p^n - 1$, $C_k(c)$ from (2.5) with

$$s_0(k) + \ldots + s_{p-1}(k) = n$$
 (2.11)

and

$$\varphi\left(\frac{k-t}{p^n}\right) = \varphi\left(\frac{k}{p^n}\right) - c^n C_{k-1}(c)\varphi^*(t) \quad (0 \le t \le 1)$$
(2.12)

for $k = 1, 2, ..., p^n$ with φ^* from (2.7). Moreover

$$\varphi\left(\frac{k}{p^n}\right) = c^n \sum_{j=0}^{k-1} C_j(c).$$
(2.13)

Proof: We prove (2.10) by induction on n. For n = 1 the equations (2.10) are equivalent to the system (1.5). If (2.10) with (2.11) in $C_k(c)$ holds for a fixed n then for $\frac{j+t}{p}$ instead of t with $j \in \{0, 1, \ldots, p-1\}$ and $0 \le t \le 1$ we have

$$\varphi\left(\frac{kp+j+t}{p^{n+1}}\right) = \varphi\left(\frac{k}{p^n}\right) + c^n C_k(c)\varphi\left(\frac{j+t}{p}\right)$$
$$= \varphi\left(\frac{k}{p^n}\right) + c^n C_k(c)\varphi\left(\frac{j}{p}\right) + c^{n+1} C_k(c)\frac{c_j}{c}\varphi(t).$$

For t = 0 it follows

$$\varphi\left(\frac{kp+j}{p^{n+1}}\right) = \varphi\left(\frac{k}{p^n}\right) + c^n C_k(c)\varphi\left(\frac{j}{p}\right)$$

and hence we get in view of (2.3)

$$\varphi\left(\frac{kp+j+t}{p^{n+1}}\right) = \varphi\left(\frac{kp+j}{p^{n+1}}\right) + c^{n+1}C_{kp+j}(c)\varphi(t)$$

with $s_0(kp+j) + \ldots + s_{p-1}(kp+j) = n+1$. Thus (2.10) with (2.11) in $C_k(c)$ is proved by induction. Now (2.13) follows from (2.10) for t = 1 and $\varphi(1) = 1$ by summation. Equation (2.10) with k-1 instead of k and 1-t instead of t yields in view of (2.7)

$$\varphi\left(\frac{k-t}{p^n}\right) = \varphi\left(\frac{k-1}{p^n}\right) + c^n C_{k-1}(c)\varphi(1-t)$$
$$= \varphi\left(\frac{k-1}{p^n}\right) + c^n C_{k-1}(c) - c^n C_{k-1}(c)\varphi^*(t)$$

For t = 0 it follows

$$\varphi\left(\frac{k}{p^n}\right) = \varphi\left(\frac{k-1}{p^n}\right) + c^n C_{k-1}(c)$$

and hence (2.12).

Example 2.4 (*De Rham's function*) In case P(z) = a + (1-a)z we have p = 2 and equation (1.9), i.e. $c_0 = a$, $c_1 = 1 - a$. For c = a we have by (2.5) that $C_k = C_k(a) = q^{s_1(k)}$ with $q = \frac{1-a}{a}$ where $s_1(k)$ denotes the number of ones in the dyadic representation of k, and the generating function (2.6) reads

$$G(z) = \prod_{j=0}^{\infty} \left(1 + qz^{2^j} \right) = \sum_{k=0}^{\infty} q^{s_1(k)} z^k.$$
(2.14)

Formulas (2.10) and (2.13) yield the known relations

$$\varphi\left(\frac{k+t}{2^n}\right) = \varphi\left(\frac{k}{2^n}\right) + a^n q^{s_1(k)}\varphi(t) \quad (0 \le t \le 1)$$

and

$$\varphi\left(\frac{k}{2^n}\right) = a^n \sum_{j=0}^{k-1} q^{s_1(j)}$$

for de Rham's function φ , cf. [1].

Proposition 2.5 In case $c_j \ge 0$ for all j = 0, 1, ..., p-1 the solution φ of (1.5) is an increasing function, and in case $c_j > 0$ it is strictly increasing.

Proof: If $c_j \ge 0$ for all j then we have $0 \le c_j < 1$ since $c_0 > 0$, $c_{p-1} > 0$ and (1.3). Hence the solution φ is continuous. From (2.10) we get for $n \in \mathbb{N}$ and $k = 0, 1, \ldots, p^n - 1$

$$\varphi\left(\frac{k+1}{p^n}\right) \ge \varphi\left(\frac{k}{p^n}\right)$$

so that the continuous function φ is increasing. In case $c_j > 0$ for all j equation (2.10) implies

$$\varphi\left(\frac{k+1}{p^n}\right) > \varphi\left(\frac{k}{p^n}\right)$$

so that indeed φ is strictly increasing in [0, 1].

Proposition 2.6 If not $c_j \ge 0$ for all j = 0, 1, ..., p-1 then in no nonempty subinterval of [0, 1] the solution φ of (1.2) has finite total variation.

Proof: If not $c_j \ge 0$ for all *j* then owing to (1.3) we have $|c_0| + ... + |c_{p-1}| > 1$. From (1.5) we get for $k \in \{0, ..., p-1\}$

$$\varphi\left(\frac{k+1}{p}\right) - \varphi\left(\frac{k}{p}\right) = c_k$$

and hence

$$\sum_{k=0}^{p-1} \left| \varphi\left(\frac{k+1}{p}\right) - \varphi\left(\frac{k}{p}\right) \right| = \sum_{k=0}^{p-1} |c_k|$$

and by induction on n

$$\sum_{k=0}^{p^n-1} \left| \varphi\left(\frac{k+1}{p^n}\right) - \varphi\left(\frac{k}{p^n}\right) \right| = \left(\sum_{k=0}^{p-1} |c_k|\right)^n.$$

In view of $|c_0| + |c_1| + \ldots + |c_{p-1}| > 1$ it follows that φ does not have finite total variation in [0, 1]. From (2.10) we conclude that this is valid also for the intervals $\left[\frac{k}{p^n}, \frac{k+1}{p^n}\right]$ with $n \in \mathbb{N}$ and $k = 0, 1, \ldots, p^n - 1$.

3 Hölder continuity

We assume that $|c_j| < 1$ for all j = 0, 1, ..., p-1 so that the solution φ of (1.2) is continuous. In order to verify the Hölder continuity of φ we introduce the notation

$$S_k(c) := \sum_{j=0}^{k-1} C_j(c)$$
(3.1)

for the sum in (2.13), i.e. we have

$$\varphi\left(\frac{k}{p^n}\right) = c^n S_k(c). \tag{3.2}$$

Lemma 3.1 The sequence $S_k(c)$ has following properties:

(i) $S_{pk}(c) = \frac{1}{c} S_k(c) \quad (k \ge 1).$ (ii) $S_{p^n}(c) = \frac{1}{c^n} \quad (n \ge 0).$ (iii) $S_{kp^n+\ell}(c) = S_{p^n}(c)S_k(c) + C_k(c)S_\ell(c) \quad (0 \le k < p, n \ge 1, 0 \le \ell < p^n).$ **Proof:** (i) For given $k \ge 1$ we choose n such that $k < p^{n-1}$. From (2.13) and (3.1) we get

$$S_{pk}(c) = \frac{1}{c^n}\varphi\left(\frac{pk}{p^n}\right) = \frac{1}{c^n}\varphi\left(\frac{k}{p^{n-1}}\right) = \frac{1}{c}S_k(c)$$

which implies (i).

- (ii) follows from (2.13) and $\varphi(1) = 1$.
- (iii) From (2.10) and (2.13) we get

$$\varphi\left(\frac{k+\frac{\ell}{p^n}}{p}\right) = \varphi\left(\frac{k}{p}\right) + c C_k(c)\varphi\left(\frac{\ell}{p^n}\right) = c S_k(c) + c^{n+1}C_k(c)S_\ell(c)$$

On the other side we have

$$\varphi\left(\frac{kp^n+\ell}{p^{n+1}}\right) = c^{n+1}S_{kp^n+\ell}(c)$$

and in view of (ii) it follows (iii).

Now we choose the parameter $c = \mathbf{c}$ where

$$\mathbf{c} := \max\{|c_0|, |c_1|, \dots, |c_{p-1}|\},\tag{3.3}$$

cf. Remark 2.2. Then $|C_k(\mathbf{c})| \leq 1$ for $k \in \{0, 1, \dots, p-1\}$ and (2.3) implies

$$|C_k(\mathbf{c})| \le 1 \qquad (k \in \mathbb{N}_0). \tag{3.4}$$

In view of (1.3) we have $\frac{1}{p} \leq \mathbf{c} < 1$. In case $\mathbf{c} = \frac{1}{p}$ we have $c_j = \frac{1}{p}$ for all $j = 0, 1, \dots, p-1$ and $\varphi(x) = x$ for $0 \leq x \leq 1$. If we exclude this trivial case then

$$\frac{1}{p} < \mathbf{c} < 1. \tag{3.5}$$

For the parameter \mathbf{c} from (3.3) satisfying (3.5) we put

$$\alpha := -\log_p \mathbf{c},\tag{3.6}$$

i.e.

 $\mathbf{c}\,p^{\alpha} = 1\tag{3.7}$

and (3.5) implies

$$0 < \alpha < 1. \tag{3.8}$$

Lemma 3.2 With α from (3.6) and **c** from (3.3) the sequence $\frac{1}{k^{\alpha}}S_k(\mathbf{c})$ is bounded. More precisely, for

$$K := \sup_{k} \left\{ \left| \frac{1}{k^{\alpha}} S_{k}(\mathbf{c}) \right| \right\}$$
(3.9)

we have the estimate

$$1 \le K \le \frac{p-1}{p^{\alpha}-1}.$$
 (3.10)

Proof: According to Lemma 3.1/(ii) and (3.7) we have

$$\frac{1}{p^{\alpha}}S_p(\mathbf{c}) = 1$$

and hence $K \ge 1$. Moreover, by Lemma 3.1/(i) and (3.7)

$$\frac{1}{(pk)^{\alpha}}S_{pk}(\mathbf{c}) = \frac{1}{k^{\alpha}}S_k(\mathbf{c})$$
(3.11)

so that

$$\sup_{k} \left| \frac{1}{k^{\alpha}} S_{k}(\mathbf{c}) \right| = \limsup_{k \to \infty} \left| \frac{1}{k^{\alpha}} S_{k}(\mathbf{c}) \right|.$$
(3.12)

For integer $n \ge 1$ let be

$$K_n := \max\left\{ \left| \frac{1}{k^{\alpha}} S_k(\mathbf{c}) \right| : p^{n-1} \le k \le p^n - 1 \right\}$$

then by (3.11) we have $K_n \leq K_{n+1}$.

Owing to Lemma 3.1/(iii) and to (3.11) we have

$$\frac{1}{(kp^n+\ell)^{\alpha}}S_{kp^n+\ell}(\mathbf{c}) = \left(\frac{kp^n}{kp^n+\ell}\right)^{\alpha}\frac{1}{k^{\alpha}}S_k(\mathbf{c}) + \left(\frac{\ell}{kp^n+\ell}\right)^{\alpha}\frac{C_k(\mathbf{c})}{\ell^{\alpha}}S_\ell(\mathbf{c})$$
(3.13)

for $k = 1, \dots, p - 1$ and $\ell = 0, 1, \dots, p^n - 1$.

Hence for $m = kp^n + \ell$ with $k \in \{1, \dots, p-1\}$ and $\ell \in \{0, 1, \dots, p^n - 1\}$ we have

$$\frac{1}{m^{\alpha}}S_m(\mathbf{c}) = (1-\xi)^{\alpha} \frac{1}{k^{\alpha}} S_k(\mathbf{c}) + \xi^{\alpha} C_k(\mathbf{c}) \frac{1}{\ell^{\alpha}} S_\ell(\mathbf{c})$$
(3.14)

where $\xi = \frac{\ell}{kp^n + \ell}$ with a certain $\ell \in \{0, 1, \dots, p^n - 1\}$ so that $0 \le \xi < \frac{1}{k+1}$. By (3.14) and (3.4) we get

$$K_{n+1} \leq (1-\xi)^{\alpha} \left| \frac{1}{k^{\alpha}} S_k(\mathbf{c}) \right| + \xi^{\alpha} |C_k(\mathbf{c})| \left| \frac{1}{\ell^{\alpha}} S_\ell(\mathbf{c}) \right|$$
$$\leq (1-\xi)^{\alpha} \left| \frac{1}{k^{\alpha}} S_k(\mathbf{c}) \right| + \xi^{\alpha} K_n$$

where $k \in \{1, \ldots, p-1\}, \ell \leq p^n$ and in view of $K_n \leq K_{n+1}$ it follows

$$(1-\xi^{\alpha})K_n \leq (1-\xi)^{\alpha} \left| \frac{1}{k^{\alpha}} S_k(\mathbf{c}) \right|.$$

Note $1 - \xi^{\alpha} > 0$ since $0 \le \xi < \frac{1}{k+1}$ and $\alpha > 0$, cf. (3.8). Consequently,

$$K_n \le \frac{(1-\xi)^{\alpha}}{1-\xi^{\alpha}} \left| \frac{1}{k^{\alpha}} S_k(\mathbf{c}) \right| \le M_k \left| \frac{1}{k^{\alpha}} S_k(\mathbf{c}) \right| \qquad (k \in \{1, \dots, p-1\})$$
(3.15)

with

$$M_k = \max_{0 \le x \le \frac{1}{k+1}} \frac{(1-x)^{\alpha}}{1-x^{\alpha}}.$$

In view of (3.8) the function $f(x) = (1 - x)^{\alpha}/(1 - x^{\alpha})$ is increasing so that we get $M_k = f(\frac{1}{k+1}) = \frac{k^{\alpha}}{(k+1)^{\alpha}-1}$ and

$$K_n \le \frac{1}{(k+1)^{\alpha}-1} |S_k(\mathbf{c})| \qquad (k \in \{1, \dots, p-1\}).$$

From (3.1) we get in view of $|C_j(\mathbf{c})| \leq 1$ that $|S_k(\mathbf{c})| \leq k$ so that

$$K_n \le \frac{k}{(k+1)^{\alpha} - 1}$$
 $(k \in \{1, \dots, p-1\}).$

The function $g(x) = \frac{x}{(x+1)^{\alpha}-1}$ is increasing in [1, p-1] so that $K_n \leq g(p-1) = \frac{p-1}{p^{\alpha}-1}$ which yields the assertion.

Remark 3.3 If we carry out the foregoing considerations with the coefficient c_j^* of the reversed equation (2.8) instead of c_j then in view of (2.9) and (3.3) we have

 $\mathbf{c}^* = \max\{|c_0^*|, \ldots, |c_{p-1}^*|\} = \mathbf{c}$, and hence with the same α from (3.6) we find that the corresponding coefficients $C_j^*(\mathbf{c})$ satisfy $|C_j^*(\mathbf{c})| \leq 1$ and that the sums $\frac{1}{k^{\alpha}} S_k^*(\mathbf{c})$ are bounded where

$$K^* := \sup_{k} \left| \frac{1}{k^{\alpha}} S_k^*(\mathbf{c}) \right| \tag{3.16}$$

can be estimates similarly as in (3.10). So

$$K^* \le \frac{p-1}{p^{\alpha} - 1}.$$
(3.17)

Lemma 3.4 If $|c_j| < 1$ for all $j \in \{0, 1, ..., p-1\}$ then for $0 \le t \le 1$, $n \in \mathbb{N}$ and $k \in \{0, 1, ..., p-1\}$ we have

$$\left|\varphi\left(\frac{k+t}{p^n}\right) - \varphi\left(\frac{k}{p^n}\right)\right| \le K\left(\frac{t}{p^n}\right)^{\alpha} \tag{3.18}$$

and for $k \in \{1, 2, ..., p\}$

$$\left|\varphi\left(\frac{k-t}{p^n}\right) - \varphi\left(\frac{k}{p^n}\right)\right| \le K^* \left(\frac{t}{p^n}\right)^{\alpha}.$$
(3.19)

Proof: We only prove (3.18). For $t = \frac{k}{p^n}$ with $0 \le k \le p^n$ the representation (2.13) with $c = \mathbf{c}$ implies

$$\frac{\varphi(t)}{t^{\alpha}} = \frac{\varphi(\frac{k}{p^n})}{(\frac{k}{p^n})^{\alpha}} = \frac{1}{k^{\alpha}} \sum_{j=0}^{k-1} C_j(\mathbf{c}) = \frac{1}{k^{\alpha}} S_k(\mathbf{c})$$

in view of (3.7). By Lemma 3.2 it follows

$$\frac{|\varphi(t)|}{t^{\alpha}} \le K$$

for these t and hence also for arbitrary $t \in (0, 1]$ by continuity. By (2.13) with $c = \mathbf{c}$ we have in view of (3.7)

$$\varphi\left(\frac{k+t}{p^n}\right) - \varphi\left(\frac{k}{p^n}\right) = \frac{1}{p^{\alpha n}}C_k(\mathbf{c})\varphi(t)$$

and using (3.4) we get

$$\left|\varphi\left(\frac{k+t}{p^n}\right) - \varphi\left(\frac{k}{p^n}\right)\right| \le \left(\frac{t}{p^n}\right)^{\alpha} \frac{|\varphi(t)|}{t^{\alpha}} \le \left(\frac{t}{p^n}\right)^{\alpha} K.$$

In the same way using (2.7) it follows (3.19).

Proposition 3.5 If $|c_j| < 1$ for j = 0, ..., p-1 then for arbitrary $x, y \in [0, 1]$ the solution φ satisfies the inequality

$$|\varphi(x) - \varphi(y)| \le \frac{p^{1-\alpha}(p-1)}{p^{\alpha} - 1}|x - y|^{\alpha}$$

with α from (3.6).

Proof: For given $x, y \in [0, 1]$ with h = y - x > 0 we assume that

$$\frac{1}{p^n} \le h < \frac{1}{p^{n-1}}.$$

Let be $k = [p^n x]$ and $t_{\mu} = \frac{k+\mu}{p^n}$ $(\mu = 0, 1, ...)$. Then we have

$$t_0 \le x < t_1 < \ldots < t_m < y \le t_{m+1}$$

where $1 \le m \le p - 1$ since $t_1 = \frac{k+1}{p^n} \le x + \frac{1}{p^n} \le x + h = y$ and $t_{p+1} = \frac{k+p+1}{p^n} > x + \frac{1}{p^{n-1}} > x + h = y$. We use

$$|\varphi(y) - \varphi(x)| \le |\varphi(t_1) - \varphi(x)| + |\varphi(y) - \varphi(t_m)| + \sum_{\mu=2}^{m-1} |\varphi(t_{\mu+1}) - \varphi(t_{\mu})|.$$

We denote $a_1 = t_1 - x$, $a_k = t_k - t_{k-1}$ for k = 2, ..., m - 1, and $a_m = y - t_m$ then $a_1 + ... + a_m = y - x$ and by Lemma 3.4

$$|\varphi(y) - \varphi(x)| \le K^* a_1^{\alpha} + K \sum_{\mu=2}^m a_{\mu}^{\alpha} \le K_{\max} \left(a_1^{\alpha} + \ldots + a_m^{\alpha} \right)$$

with $K_{\max} := \max \{K, K^*\}$. According to (3.8) the function $t \mapsto t^{\alpha}$ is concave and applying Jensen's inequality

$$\frac{a_1^{\alpha} + \ldots + a_m^{\alpha}}{m} \le \left(\frac{a_1 + \ldots + a_m}{m}\right)^{\alpha}$$

we find in view of $m \leq p$ and (3.8)

$$|\varphi(y) - \varphi(x)| \le K_{\max} m^{1-\alpha} (y-x)^{\alpha} \le K_{\max} p^{1-\alpha} (y-x)^{\alpha}.$$

Finally, from (3.9) and (3.17) we get

$$K_{\max} p^{1-\alpha} \le p^{1-\alpha} \frac{p-1}{p^{\alpha}-1}$$

and the proposition is proved.

Now we know that φ is Hölder continuous with exponent α from (3.6). Next we show that α is the optimal Hölder exponent and we determine also the optimal Hölder coefficient.

Theorem 3.6 If $|c_j| < 1$ for j = 0, ..., p-1 then the solution φ of the equation (1.2) is Hölder continuous with the optimal Hölder exponent α from (3.6), i.e.

$$\alpha = \min\left\{-\log_p |c_0|, \dots, -\log_p |c_{p-1}|\right\}$$

where $0 < \alpha < 1$, cf. (3.8), and the optimal Hölder coefficient

$$A := \sup_{k,\ell} \frac{1}{k^{\alpha}} \left| \sum_{j=0}^{k-1} C_{\ell+j}(\mathbf{c}) \right|$$
(3.20)

which satisfies

$$1 \le A \le \frac{p^{1-\alpha}(p-1)}{p^{\alpha}-1},\tag{3.21}$$

i.e. we have

$$|\varphi(x) - \varphi(y)| \le A |x - y|^{\alpha}$$
(3.22)

for arbitrary $x, y \in [0, 1]$.

Proof: 1. First we show (3.22) with α from (3.6) and A from (3.20). For $y = \frac{\ell}{p^n}$ and $x = y + \frac{k}{p^n}$ with $0 \le \ell < k + \ell \le p^n$ the representation (2.13) with $c = \mathbf{c}$ implies

$$\frac{\varphi(x) - \varphi(y)}{(x - y)^{\alpha}} = \frac{\varphi(\frac{k + \ell}{p^n}) - \varphi(\frac{\ell}{p^n})}{(\frac{k}{p^n})^{\alpha}} = \frac{1}{k^{\alpha}} \sum_{j=\ell}^{k+\ell-1} C_j(\mathbf{c})$$

in view of (3.7). Hence, we get (3.22) for p-adic rational $x, y \in [0, 1]$ where A is finite by Proposition 3.5. Continuity of φ implies that (3.22) is valid for all x and y in [0, 1].

2. We show that α is the optimal Hölder exponent. Assume that φ is Hölder continuous with an exponent $\beta > \alpha$, i.e. for all $x, y \in [0, 1]$ we have

$$|\varphi(x) - \varphi(y)| \le B|x - y|^{\beta} \tag{3.23}$$

71

with a certain constant B.

From (1.5) we get for k = 0, 1, ..., p - 1 by induction on n that

$$\varphi\left(\frac{k(p^n-1)+t(p-1)}{p^n(p-1)}\right) = b_k \sum_{\nu=0}^{n-1} c_k^{\nu} + c_k^n \varphi(t) \qquad (0 \le t \le 1).$$

Putting t = 0 and t = 1 we get in view of $\varphi(0) = 0$ and $\varphi(1) = 1$ that

$$\varphi\left(\frac{k(p^n-1)+p-1}{p^n(p-1)}\right) - \varphi\left(\frac{k(p^n-1)}{p^n(p-1)}\right) = c_k^n.$$
(3.24)

Now we choose $k \in \{0, 1, \dots, p-1\}$ such that $|c_k| = \mathbf{c}$, cf. (3.3). In (3.24) we put $y = \frac{k(p^n-1)}{p^n(p-1)}$, $x = y + \frac{1}{p^n}$ and obtain in view of $x - y = \frac{1}{p^n}$, $|c_k| = \mathbf{c}$ and (3.6) that

$$|\varphi(x) - \varphi(y)| = (x - y)^{\alpha}.$$

According to (3.23) we get

$$\left(\frac{1}{p^n}\right)^{\alpha} \le B\left(\frac{1}{p^n}\right)^{\beta},$$

i.e. $p^{n(\beta-\alpha)} \leq B$, which yields a contradiction for large *n*. Hence, α is the optimal Hölder exponent and it follows that *A* from (3.20) is the optimal Hölder coefficient. The estimate $A \geq 1$ follows from (3.22) with x = 0, y = 1 in view of $\varphi(0) = 0$, $\varphi(1) = 1$. The above estimate of *A* follows from Proposition 3.5.

Remark 3.7 Note that in limit case $\alpha = 1$ we get A = 1 in accordance with $\varphi(x) = x$ for $0 \le x \le 1$.

A detail discussion of the Hölder continuity of de Rham's function and of solutions of certain two-scale difference equations you can find in [2, Section 2 and Section 5.2]. In [11, Proposition 10.1] it was shown the Hölder continuity of Cantor's function with optimal exponent $\alpha = \frac{\log 2}{\log 3}$ and coefficient A = 1.

4 Differentiability

As before we exclude the case $c_j = \frac{1}{p}$ for all $j \in \{0, 1, \dots, p-1\}$ where $\varphi(x) = x$ for $0 \le x \le 1$. First we give a general statement on the differentiability.

4.1 General statements

We start with the following simple lemma, cf. [15].

Lemma 4.1 Let $f : [0,1] \mapsto \mathbb{R}$ have a finite right-hand derivative $f'_+(x_0)$ at the point $x_0 \in [0,1)$. If (u_n) and (v_n) are sequences in [0,1] such that $x_0 < u_n < v_n$, $v_n \to x_0$ and $u_n - x_0 \leq L(v_n - u_n)$ with a constant L then

$$\frac{f(v_n) - f(u_n)}{v_n - u_n} \to f'_+(x_0) \qquad (n \to \infty).$$

Proposition 4.2 If the solution φ of (1.2) is differentiable at x_0 then $\varphi'(x_0) = 0$.

Proof: Assume, at $x_0 \in [0, 1)$ there exists the finite derivative $\varphi'(x_0) \neq 0$. For $n \in \mathbb{N}$ and $k = 0, 1, \ldots, p^n - 1$ we put $x_{k,n} = \frac{k}{p^n}$ and $N_{a,b} = \{k \in \mathbb{N} : a \leq k \leq b\}$. If $x_{k',n} \leq x_0 < x_{k'+1,n}$ then for each $k \in N_{k'+1,k'+2p-1}$ we put $u_{k,n} = x_{k,n}$ and $v_{k,n} = x_{k+1,n}$ so that $x_0 < u_{k,n} < v_{k,n}$ and $u_{k,n} - x_0 \leq p(v_{k,n} - u_{k,n})$. Applying (2.10) with t = 1 we get

$$\frac{\varphi(v_{k,n}) - \varphi(u_{k,n})}{v_{k,n} - u_{k,n}} = p^n c_0^n C_k$$

just as

$$\frac{\varphi(v_{k+1,n}) - \varphi(u_{k+1,n})}{v_{k+1,n} - u_{k+1,n}} = p^n c_0^n C_{k+1}.$$

In view of $\varphi'_+(x_0) \neq 0$ it follows by Lemma 4.1 that for $k \in N_{k'+1,k'+p}$ we have

$$\frac{C_{k+1}}{C_k} \to 1 \qquad (n \to \infty).$$

The set $N_{k'+1,k'+2p-1}$ contains a section of the form $N_{d,d+p-2}$ with $d = pk_0 < k' + p$. For $k \in N_{d,d+p-2}$, i.e. $k = pk_0 + j$ with $j = 0, 1, \ldots, p-2$ we have by (2.3) with $c = c_0$ that $C_k = C_{pk_0+j} = \frac{c_j}{c_0}C_{k_0}$ and it follows

$$\frac{c_{j+1}}{c_j} \to 1 \qquad (n \to \infty),$$

i.e. $c_{j+1} = c_j$. So by (1.3) it follows $c_j = \frac{1}{p}$ for j = 0, ..., p - 1.

Proposition 4.3 The set E of points $x \in [0, 1]$ where φ is differentiable has the Lebesgue measure 0 or 1.

Proof: The set E is Lebesgue measurable with the measure |E|. We show that E is homogeneous, that means for each nonempty interval [a, b] in [0, 1] we have $|E \cap [a, b]| = (b-a)|E|$. Equation (2.10) with $c = c_0$, $C_k = C_k(c_0)$ implies

$$\frac{1}{p^n}\varphi'\left(\frac{k+t}{p^n}\right) = c_0^n C_k \varphi'(t) \quad (t \in E).$$

Put $E_{k,n} := E \cap \left[\frac{k}{p^n}, \frac{k+1}{p^n}\right]$ we have $|E_{k,n}| = |E_{k',n}| \ (0 \le k, k' < p^n)$ and hence

$$E = \bigcup_{k=0}^{p^{n-1}} E_{k,n}$$

implies $|E_{k,n}| = \frac{1}{p^n} |E|$. It follows $|E \cap [a,b]| = (b-a)|E|$ for each interval $[a,b] \subset [0,1]$ and hence |E| = 0 or |E| = 1 by a theorem of Lebesgue.

4.2 Special difference quotients

Now, for given $x \in [0, 1]$ we investigate the special difference quotients

$$\Delta_n(x) := \frac{\varphi(\frac{k+1}{p^n}) - \varphi(\frac{k}{p^n})}{1/p^n}$$
(4.1)

with $k = [p^n x]$, i.e.

$$\frac{k}{p^n} \le x < \frac{k+1}{p^n}.\tag{4.2}$$

Applying (2.10) with $c = c_0$ and t = 1 we get in view of $\varphi(1) = 1$

$$\Delta_n(x) = p^n c_0^n C_k. \tag{4.3}$$

In order to get a suitable representation for C_k we need a mean value M. For $\lambda_j \in [0, 1]$ with $\lambda_0 + \cdots + \lambda_{p-1} = 1$ we introduce the mean value $M = M(\lambda_0, \ldots, \lambda_{p-1})$ by

$$M := \prod_{j=0}^{p-1} |c_j|^{\lambda_j}.$$
(4.4)

Lemma 4.4 Let $x \in [0,1]$ and $n \in \mathbb{N}$. Then for $C_k = C_k(c_0)$ from (2.5) with $k = [p^n x]$ we have

$$C_k = \frac{1}{c_0^n} \prod_{j=0}^{p-1} c_j^{s_j(k)}$$
(4.5)

with

$$s_0(k) + s_1(k) + \ldots + c_{p-1}(k) = n$$
 (4.6)

where $s_i(k)$ is the number of the digit j in the p-adic representation of k. Further

$$|C_k|^{1/n} = \frac{1}{|c_0|} e_n(x) M(\lambda_0, \dots, \lambda_{p-1})$$
(4.7)

where

$$e_n(x) := \prod_{j=0}^{p-1} |c_j|^{\varepsilon_j(n)}$$
(4.8)

with $\varepsilon_j(n) = \frac{1}{n}s_j(k) - \lambda_j$.

Proof: If $x = 0, \xi_1 \xi_2 \dots$ is the *p*-adic expansion of *x* then $k = k(n) = [p^n x]$ has the form $k = \xi_n + \xi_{n-1}p + \dots + \xi_1 p^{n-1}$. So $s_0(k) + \dots + s_{p-1}(k) = n$ and by (2.5) we get

$$C_k = \prod_{j=0}^{p-1} \left(\frac{c_j}{c_0}\right)^{s_j(k)} = \frac{1}{c_0^n} \prod_{j=0}^{p-1} c_j^{s_j(k)},$$

i.e. (4.5) is proved. Formula (4.7) with (4.8) is a simple consequence of (4.5).

Lemma 4.5 Let $x \in [0,1]$ and $n \in \mathbb{N}$. Then for $\Delta_n(x)$ from (4.1) we have

$$|\Delta_n(x)| = \prod_{j=0}^{p-1} a_j^{s_j(k)}$$

with $a_j = p |c_j|$ so that $a_0 a_1 \dots a_{p-1} = 1$.

Proof: Formulas (4.3) and (4.5) imply

$$\Delta_n(x) = p^n \prod_{j=0}^{p-1} c_j^{s_j(k)}.$$

In view of (4.6) it follows

$$\Delta_n(x) = \prod_{j=0}^{p-1} (p \, c_j)^{s_j(k)}$$

which proved the assertion.

Next we consider special sets of real numbers, cf. [13, Chapter 10]. Let $x = 0, \xi_1 \xi_2 \dots$ be the representation of a number $x \in (0, 1)$ to the base p and $d_j(x|_n)$ the total number of occurrence of the digit $j \in \{0, 1, \dots, p-1\}$ in the first n places $0, \xi_1 \dots \xi_{n-1}$. That means

$$d_j(x|_n) = s_j(k) \tag{4.9}$$

where $k = [p^n x]$. For $\lambda_j \in [0, 1]$ with $\lambda_0 + \ldots + \lambda_{p-1} = 1$ let $F = F(\lambda_0, \ldots, \lambda_{p-1})$ be the set

$$F := \left\{ x \in [0,1] : \lim_{n \to \infty} \frac{1}{n} d_j(x|_n) = \lambda_j \qquad \forall \quad j = 0, 1, \dots, p-1 \right\}.$$
 (4.10)

It is known that F has the Hausdorff dimension

$$dim_H F = -\frac{1}{\log p} \sum_{j=0}^{p-1} \lambda_j \log \lambda_j \tag{4.11}$$

with the convention $0 \log 0 = 0$, cf. [13]. Further, the numbers $x \in F(p^{-1}, \ldots, p^{-1})$ are called *normal numbers* with respect to the base p and Borel's normal number theorem says that $F(p^{-1}, \ldots, p^{-1})$ is a set of Lebesgue measure 1.

The following proposition is the basis for the investigation of φ concerning the differentiability.

Proposition 4.6 For $x \in F(\lambda_0, \ldots, \lambda_{p-1})$ we have

$$\lim_{n \to \infty} |\Delta_n(x)|^{1/n} = p M(\lambda_0, \dots, \lambda_{p-1})$$
(4.12)

with M from (4.4).

Proof: By Lemma 4.4 and (4.3) we get

$$|\Delta_n(x)|^{1/n} = p e_n(x) M(\lambda_0, \dots, \lambda_{p-1}).$$

Using (4.9) for $x \in F(\lambda_0, ..., \lambda_{p-1})$ we have $\frac{1}{n}s_j(k) = \frac{1}{n}d_j(x|_n) \to \lambda_j$ as $n \to \infty$. Hence $e_n(x) \to 1$ as $n \to \infty$ and it follows the assertion.

4.3 The case p M < 1

We need further lemmata.

Lemma 4.7 Let be $x \in F(\lambda_0, \ldots, \lambda_{p-1})$ with the p-adic expansion $x = 0, \xi_1 \xi_2 \ldots$ where $\xi_{n-j} = p-1$ for $j = 1, 2, \ldots, r_n$. If $\lambda_{p-1} < 1$ then $\frac{r_n}{n} \to 0$ as $n \to \infty$.

Proof: For $x \in F$ we have $\frac{1}{n-r_n}d_{p-1}(x|_{n-r_n}) \to \lambda_{p-1}$ and $\frac{1}{n}d_{p-1}(x|_n) \to \lambda_{p-1}$ as $n \to \infty$. By supposition we have $d_{p-1}(x|_n) = d_{p-1}(x|_{n-r_n}) + r_n$ and hence

$$\frac{1}{n}d_{p-1}(x|_n) = \frac{n-r_n}{n}\frac{1}{n-r_n}d_{p-1}(x|_{n-r_n}) + \frac{r_n}{n}.$$

Certainly $0 \leq \frac{r_n}{n} \leq 1$, i.e. the sequence $\frac{r_n}{n}$ is bounded. If s is the limit of a convergent subsequence then in view of (4.10) it follows $\lambda_{p-1} = (1-s)\lambda_{p-1} + s$, i.e. $(1-\lambda_{p-1})s = 0$ and hence s = 0 since $\lambda_{p-1} < 1$. So $\frac{r_n}{n} \to 0$ as $n \to \infty$.

Lemma 4.8 Let be $x \in F(\lambda_0, \ldots, \lambda_{p-1})$ with $\lambda_{p-1} < 1$ and $k = k(n) = [p^n x]$ then for $\mu = 0, 1, \ldots, p$ we have

$$\lim_{n \to \infty} \left| \frac{C_{k(n)+\mu}}{C_{k(n)}} \right|^{1/n} = 1$$

with $C_k = C_k(c_0)$ from (2.5).

Proof: Let be $x = 0, \xi_1 \xi_2 \dots$ the *p*-dic expansion of *x* then $k = k(n) = [p^n x]$ has the form $k = \xi_n + \xi_{n-1}p + \dots + \xi_1 p^{n-1}$. For $\mu \ge 0$ with $\xi_{n-1} \le \xi_{n-1} + \mu < p$ we have $k + \mu = (\xi_n + \mu) + \xi_{n-1}p + \dots + \xi_1 p^{n-1}$ and by (2.5) it holds

$$C_{k+\mu} = C_k \frac{C_{\xi_n+\mu}}{C_{\xi_n}}.$$

Now we consider $\mu \in \{1, ..., p\}$ with $p \leq \xi_{n-1} + \mu \leq 2p - 1$. If $\xi_{n-1} then we have <math>k + \mu = (\xi_n + \mu - p) + (\xi_{n-1} + 1)p + \xi_{n-2}p^2 + ... + \xi_1p^{n-1}$ and by (2.5) it holds

$$C_{k+\mu} = C_k \frac{C_{\xi_n+\mu-p}}{C_{\xi_n}} \frac{C_{\xi_{n-1}+1}}{C_{\xi_{n-1}}}.$$

If
$$\xi_{n-j} = p - 1$$
 for $j = 1, ..., n_r$ and $\xi_{n-n_r-1} then k has the representation
 $k = \xi_n + (p-1)p + ... + (p-1)p^{r_n} + \xi_{n-n_r-1}p^{r_n+1} + ... + \xi_1 p^{n-1}$$

and we have

$$k + \mu = (\xi_n + \mu - p) + (\xi_{n-r_n-1} + 1)p^{r_n+1} + \ldots + \xi_1 p^{n-1}$$

According to (2.5) we get

$$C_{k+\mu} = C_k \frac{C_{\xi_n+\mu-p}}{C_{\xi_n}} \left(\frac{C_{p-1}}{C_0}\right)^{r_n} \frac{C_{\xi_{n-r_n-1}+1}}{C_{\xi_{n-r_n}}}.$$

Put $C = \max\{|C_i|/|C_j|\}$ (i, j = 0, 1, ..., p - 1) then we get

$$\frac{1}{C^{r_n+2}} \le \left|\frac{C_{k+\mu}}{C_k}\right| \le C^{r_n+2}$$

and in view of Lemma 4.7 it follows the assertion.

Proposition 4.9 If $p M(\lambda_0, ..., \lambda_{p-1}) < 1$ where $\lambda_{p-1} < 1$ then the solution φ of (1.2) is differentiable at each point $x \in F(\lambda_0, ..., \lambda_{p-1})$ with $\varphi'(x) = 0$.

Proof: Choose $\varepsilon > 0$ so that

$$q := (1+\varepsilon)^3 p M(\lambda_0, \dots, \lambda_{p-1}) < 1.$$

For fixed $x \in F(\lambda_0, \ldots, \lambda_{p-1})$ it holds $e_n(x) \to 1$ as $n \to \infty$, cf. (4.8), (4.10) and (4.9). Hence there is a number n_0 such that for $n \ge n_0$ we have

$$e_n(x) < 1 + \varepsilon, \tag{4.13}$$

$$K^{1/n} < 1 + \varepsilon \tag{4.14}$$

with $K = \max |\varphi(t)|$ for $0 \le t \le 1$ and by Lemma 4.8

$$|C_{k+\mu}|^{1/n} < (1+\varepsilon)|C_k|^{1/n}$$
(4.15)

where $k = [p^n x]$. Now, let y = x + h < 1 with h > 0 (the case h < 0 is analogous) and

$$\frac{1}{p^n} \le h < \frac{1}{p^{n-1}}$$

with $n \ge n_0$. Note that $h \to 0$ is equivalent to $n \to \infty$. Put $t_{\mu} = \frac{k+\mu}{p^n}$ $(\mu = 0, 1, ...)$ then we have $t_0 < x < t_1 < \ldots < t_m < x + h \le t_{m+1}$ where $1 \le m \le p-1$ since $t_1 = \frac{k+1}{p^n} \le x + \frac{1}{p^n} \le x + h$ and $t_{p+1} = \frac{k+p+1}{p^n} > x + \frac{1}{p^{n-1}} > x + h$. We use

$$|\varphi(x+h) - \varphi(x)| \le |\varphi(x+h) - \varphi(t_m)| + |\varphi(t_1) - \varphi(x)| + \sum_{\mu=1}^{m-1} |\varphi(t_{\mu+1}) - \varphi(t_{\mu})|.$$

Put $x = \frac{k+1-t}{p^n}$ with suitable $0 \le t < 1$ then by (2.10) (with $a = c_0, C_k = C_k(c_0)$) we have

$$\varphi(x) - \varphi(t_1) = c_0^n C_{k+1} \varphi(1-t)$$

and hence

$$\frac{|\varphi(t_1) - \varphi(x)|}{h} = \frac{1}{h} |c_0|^n |C_{k+1}| |\varphi(1-t)| \le p^n |c_0|^n |C_{k+1}| K$$

where $K = \max |\varphi|$. Applying Lemma 4.4 we get

$$p|c_0||C_{k+1}|^{1/n}K^{1/n} = p|c_0||C_k|^{1/n} \left|\frac{C_{k+1}}{C_k}\right|^{1/n}K^{1/n} = pMe_n(x) \left|\frac{C_{k+1}}{C_k}\right|^{1/n}K^{1/n}$$

and using (4.13), (4.14) and (4.15) it follows

$$p|c_0||C_{k+1}|^{1/n}K^{1/n} < (1+\varepsilon)^3 pM = q$$

so that

$$\frac{|\varphi(x) - \varphi(t_1)|}{h} < q^n. \tag{4.16}$$

Since $t_m < x + h \le t_{m+1}$ we have $x + h = \frac{k+m+\tau}{p^n}$ with suitable $0 < \tau \le 1$ and by (2.10)

$$\varphi(x+h) - \varphi(t_m) = c_0^n C_{k+m} \varphi(\tau).$$

Therefore

$$\frac{|\varphi(x+h) - \varphi(t_m)|}{h} \le \frac{1}{h} |c_0|^n |C_{k+m}| K \le p^n |c_0|^n |C_{k+m}| K < q^n$$
(4.17)

where we have again used (4.13), (4.14) and (4.15).

Moreover, by (2.10) it holds

$$\varphi(t_{\mu+1}) - \varphi(t_{\mu}) = c_0 C_{k+\mu}$$

and hence again

$$\frac{|\varphi(t_{\mu+1}) - \varphi(t_{\mu})|}{h} = \frac{1}{h} |c_0|^n |C_{k+\mu}| \le p^n |c_0|^n |C_{k+\mu}| < q^n.$$
(4.18)

Form (4.16), (4.17) and (4.18) it follows in view of $m \le p-1$

$$\frac{|\varphi(x+h) - \varphi(x)|}{h} < (p+1)q^n.$$

This implies $\varphi'_+(x) = 0$. In the same way $\varphi'_-(x) = 0$.

78

4.4 The case pM = 1

We investigate $\Delta_n(x)$ from (4.1) under the condition

$$p |c_0 c_1 \cdots c_{p-1}|^{1/p} = 1.$$
(4.19)

The following proof due to A. Meister (personal communication).

Lemma 4.10 Assume that it holds (4.19) and that $a_j = p|c_j|$ for j = 0, 1, ..., p-1. If not $a_0 = a_1 = ... = a_{p-1} = 1$ then the set of x with the property $\Delta_n(x) \to 0$ as $n \to \infty$ has the measure zero.

Proof: Let $x = 0, \xi_1 \xi_2 \dots$ where the digits ξ_j are independent and identically distributed on the discrete set $\{0, 1, \dots, p-1\}$. Since

$$d_j(x|_n) = \sum_{k=1}^n \chi_j(\xi_k)$$

we have by Lemma 4.5 and (4.9)

$$\log |\Delta_n(x)| = \sum_{k=1}^n \sum_{j=0}^{p-1} \chi_j(\xi_k) \log a_j = \sum_{k=1}^n \log a_{\xi_k}$$

where $\log a_{\xi_k}$ are independent and identically distributed. Moreover,

$$E(\log a_{\xi_k}) = \sum_{j=0}^{p-1} \frac{1}{p} \log a_j = \frac{1}{p} \log \left(\prod_{j=0}^{p-1} a_j\right) = 0$$

since by (4.19) we have $a_0a_1 \cdots a_{p-1} = 1$, and it is

$$\sigma^{2} = E(\log^{2} a_{\xi_{k}}) = \sum_{j=0}^{p-1} \frac{1}{p}(\log^{2} a_{j}) > 0$$

since not all a_i are equal to 1. The law of iterated logarithm says

$$\limsup_{n \to \infty} \frac{\log |\Delta_n(x)|}{\sqrt{2\sigma^2 n \log \log n}} = +1 \qquad (a.s.)$$

and

$$\liminf_{n \to \infty} \frac{\log |\Delta_n(x)|}{\sqrt{2\sigma^2 n \log \log n}} = -1 \qquad (a.s.).$$

This implies the assertion.

1				
12	-	-	-	

4.5 On the differentiability of the solution

After the foregoing preparations we are able to give the main results concerning differentiability of the solution φ of (1.2). As already mentioned in the Introduction we again exclude the trivial case $c_j = \frac{1}{p}$ for all $j = 0, 1, \ldots, p - 1$.

Theorem 4.11 The solution φ of (1.2) has the property:

1. If min $|c_j| \geq \frac{1}{n}$ then φ is nowhere differentiable in [0, 1].

2. If min $|c_j| < \frac{1}{p}$ then both sets, where φ is differentiable and where φ does not have a finite derivative, have positive Hausdorff dimension.

Proof: 1. If $|c_j| \ge \frac{1}{p}$ for all j = 0, 1, ..., p-1 then $a_j = p |c_j| \ge 1$ and for each $x \in [0, 1]$ we have by Lemma 4.5 that $|\Delta_n(x)| \ge 1$ for all $n \in \mathbb{N}$. So φ is not differentiable at x according to Proposition 4.2.

2. If min $|c_j| < \frac{1}{p}$ then in view of (1.3) there are indices k and ℓ such that $|c_k| < \frac{1}{p}$ and $|c_\ell| > \frac{1}{p}$. For the mean value (4.4) we have $M(\lambda_0, \ldots, \lambda_{p-1}) = |c_k| < \frac{1}{p}$ if $\lambda_k = 1$ and $\lambda_j = 0$ for $j \neq k$. Hence, there exist such $\lambda'_j > 0$ (with λ'_k nearly by 1 and $\lambda'_{p-1} < 1$) that $p M(\lambda'_0, \ldots, \lambda'_{p-1}) < 1$. By Proposition 4.9 we have $\varphi'(x) = 0$ for $x \in F(\lambda'_0, \ldots, \lambda'_{p-1})$ and by (4.11) this set F has positive Hausdorff dimension. Moreover, $M(\lambda_0, \ldots, \lambda_{p-1}) = |c_\ell| > \frac{1}{p}$ if $\lambda_\ell = 1$ and $\lambda_j = 0$ for $j \neq \ell$, so that there are $\lambda''_j > 0$ such that $p M(\lambda''_0, \ldots, \lambda''_{p-1}) > 1$. For $x \in F(\lambda''_0, \ldots, \lambda''_{p-1})$ it fails $\Delta_n(x) \to 0$ by Proposition 4.6 so that φ is not differentiable at x according to Proposition 4.2, and by (4.11) also this set F has positive Hausdorff dimension.

Theorem 4.12 The solution φ of (1.2) has in [0, 1] the property:

1. If $p |c_0 c_1 \cdots c_{p-1}|^{1/p} < 1$ then $\varphi'(x) = 0$ almost everywhere.

2. If $p | c_0 c_1 \cdots c_{p-1} |^{1/p} \ge 1$ then φ is almost nowhere differentiable.

Proof: We consider $x \in F(p^{-1}, \ldots, p^{-1})$ and remember that this set has the Lebesgue measure 1 by Borel's normal number theorem.

1. If $p |c_0 c_1 \cdots c_{p-1}|^{1/p} < 1$ then by Proposition 4.9 we have $\varphi'(x) = 0$ for each $x \in F(p^{-1}, \ldots, p^{-1})$.

2.1. If $p |c_0 c_1 \cdots c_{p-1}|^{1/p} = 1$ then by Proposition 4.10 the set of all $x \in F(p^{-1}, \ldots, p^{-1})$ with $\limsup |\Delta_n(x)| > 0$ has the measure 1. For all these x the derivative does not exist according to Proposition 4.2.

2.2. If $p |c_0 c_1 \cdots c_{p-1}|^{1/p} > 1$ then for each $x \in F(p^{-1}, \ldots, p^{-1})$ we have according to Proposition 4.6 that $|\Delta_n(x)| \to \infty$ as $n \to \infty$ and hence the derivative does not exist owing to Proposition 4.2.

Remark 4.13 1. Note that Proposition 4.3 is a consequence of Theorem 4.12.

2. Assume that φ is an increasing solution of (1.2) but not $\varphi(x) = x$ for all $x \in [0, 1]$. Then by Proposition 2.5 together with Proposition 2.6 we have $c_j \ge 0$ for all $j = 0, 1, \ldots, p-1$ but not $c_j = \frac{1}{p}$ for all j and in view of (1.3)

$$(c_0c_1\cdots c_{p-1})^{1/p} < \frac{c_0+c_1+\ldots+c_{p-1}}{p} = \frac{1}{p}$$

so that $\varphi'(x) = 0$ almost everywhere by Theorem 4.12. So for an increasing solution φ of (1.2) we have besides of $\varphi(x) = x$ for $x \in [0, 1]$ that $\varphi'(x) = 0$ almost everywhere.

5 Singular solutions

A nonconstant $\varphi : [0, 1] \mapsto [0, 1]$ is called (strictly) singular, if it is continuous and (strictly) increasing with $\varphi'(x) = 0$ almost everywhere. We remember that in case $c_j = \frac{1}{p}$ for $j \in \{0, 1, \ldots, p-1\}$ the solution φ of (1.2) reads $\varphi(x) = x$ for $0 \le x \le 1$ and that we exclude this trivial case. As already mentioned in Remark 3.3.1 we use the parameter $c = c_0$ and write short C_k for $C_k(c_0)$.

From Proposition 2.5 and Proposition 4.2 we get

Proposition 5.1 If $c_j \ge 0$ for all j = 0, 1, ..., p-1 then the solution φ of (1.2) is a singular function and if $c_j > 0$ for all j then it is strictly singular.

Lemma 5.2 If φ is a solution of equation (1.2) satisfying (1.4) then φ cannot vanish in a neighborhood of x = 0.

Proof: Assume that $\varphi(x) = 0$ for $x < \varepsilon_0$ where $\varepsilon_0 > 0$. In view of

$$\varphi\left(\frac{x}{p}\right) = c_0\varphi(x) \qquad (0 \le x \le 1)$$

and $c_0 \neq 0$ implies $\varphi(x) = 0$ for x . In view of <math>p > 1 it follows $\varepsilon_0 = 0$ since $\varphi(x) = 1$ for x > 1.

Proposition 5.3 Let be $0 \le c_j < 1$ with $\min c_j = 0$. Then the solution φ of (1.2) is constant on the components (a_i, b_i) of an open set G with Lebesgue measure |G| = 1. The endpoints a_i and b_i are of the form $\frac{k}{p^n}$ where we have:

Proof: Assume that $c_{k_0} = 0$ where $1 \le k_0 \le p - 2$. From (1.5) it follows that φ is constant on the interval

$$I_{k_0} = \left(\frac{k_0}{p}, \frac{k_0 + 1}{p}\right).$$

By repeated application of (1.5) we see that φ is constant on the intervals

$$I_{k_1,k_0} = \left(\frac{k_1}{p} + \frac{k_0}{p^2}, \frac{k_1}{p} + \frac{k_0 + 1}{p^2}\right)$$

where $k_1 \neq k_0$, $0 \leq k_1 \leq p - 1$, and in general

$$I_{k_{n-1},\dots,k_0} = \left(\frac{k_{n-1}}{p} + \dots + \frac{k_1}{p^{n-1}} + \frac{k_0}{p^n}, \frac{k_{n-1}}{p} + \dots + \frac{k_1}{p^{n-1}} + \frac{k_0 + 1}{p^n}\right),$$

where $k_{\nu} \neq k_0$ and $0 \leq k_{\nu} \leq p-1$ for $\nu > 0$. Obviously, I_{k_{n-1},\dots,k_0} has the Lebesgue measure $|I_{k_{n-1},\dots,k_0}| = \frac{1}{p^n}$. These intervals are pairwise different and hence the union G_0 has the Lebesgue measure

$$|G_0| = \sum_{n=1}^{\infty} \frac{(p-1)^{n-1}}{p^n} = \frac{1}{p(1-\frac{p-1}{p})} = 1.$$

The left endpoint of I_{k_{n-1},\ldots,k_0} has the form $\frac{k}{n^n}$ with

$$k = k_{n-1}p^{n-1} + k_{n-2}p^{n-2} + \ldots + k_1p + k_0$$

so that $c_{k_0} = 0$ implies $C_k = 0$, cf. (2.3). It follows from (2.10) that

$$\varphi\left(\frac{k+t}{p^n}\right) = \varphi\left(\frac{k}{p^n}\right) \qquad (0 \le t \le 1),$$

i.e. φ is constant on I_{k_{n-1},\ldots,k_0} . If G is an open set such that φ is constant on each component (a_i, b_i) of G then $G_0 \subseteq G \subseteq [0, 1]$ and hence |G| = 1 too.

Now let (a_i, b_i) be a maximal interval where φ is constant. Choose n so large that $b_i - a_i > \frac{2}{p^n}$ then there is an integer k such that

$$\frac{k-1}{p^n} < a_i \le \frac{k}{p^n} \tag{5.1}$$

and $\frac{k+1}{p^n} < b_i$, i.e. φ is constant on $\left[\frac{k}{p^n}, \frac{k+1}{p^n}\right]$.

We show that $a_i = \frac{k}{p^n}$ and that $C_{k-1} \neq 0$, $C_k = 0$. By Lemma 5.2 $\varphi(x)$ cannot vanish in a neighborhood of x = 0 which is true also for $\varphi^*(x) = 1 - \varphi(1 - x)$ since $c_{p-1} > 0$. Therefore in view of (5.1) equation (2.12) implies that φ is not constant in a neighborhood of $\frac{k}{p^n}$ which implies $a_i = \frac{k}{p^n}$ and $C_{k-1} \neq 0$. Moreover, equation (2.10) for t = 1 yields

$$\varphi\left(\frac{k+1}{p^n}\right) = \varphi\left(\frac{k}{p^n}\right) + c_0^n C_k$$

and hence $c_0^n C_k = 0$ must be. It follows $C_k = 0$ since $c_0 > 0$.

Conversely, let be $C_k = 0$ and $C_{k-1} \neq 0$. Then equation (2.10) implies

$$\varphi\left(\frac{k+t}{p^n}\right) = \varphi\left(\frac{k}{p^n}\right) \qquad (0 \le t \le 1)$$

i.e. φ is constant on $\left[\frac{k}{p^n}, \frac{k+1}{p^n}\right]$. Moreover, equation (2.12) implies that φ is not constant in a neighborhood of $\frac{k}{p^n}$ so that it is a left endpoint a_i of an interval of constancy. In the same manner the another assertions can be proved.

In case $0 \le c_j < 1$ and min $c_j = 0$ equation (1.2) can be written in the form

$$\varphi\left(\frac{x}{p}\right) = \sum_{n=0}^{q-1} c_{\gamma_n} \varphi(x - \gamma_n) \qquad (x \in \mathbb{R})$$
(5.2)

where q is an integer with $1 \leq q \leq p-1$ and where γ_n are nonnegative integers with $0 = \gamma_0 < \gamma_1 < \cdots < \gamma_{q-1} = p-1$. The characteristic polynomial of equation (5.2) reads $P(z) = c_0 + c_{\gamma_1} z^{\gamma_1} + \cdots + c_{p-1} z^{p-1}$ and (2.6) has the form

$$G(z) = \prod_{j=0}^{\infty} \frac{1}{c_0} P(z^{p^j}) = \sum_{n=0}^{\infty} C_{\gamma_n} z^{\gamma_n}$$
(5.3)

with strictly increasing integers γ_n where it holds with $\varepsilon_{\mu} \in \{0, 1, \dots, q-1\}$:

$$n = \sum_{\mu=0}^{m-1} \varepsilon_{\mu} q^{\mu} \qquad \Longrightarrow \qquad \gamma_n = \sum_{\mu=0}^{m-1} \gamma_{\varepsilon_{\mu}} p^{\mu}.$$
(5.4)

In particular, if $n = \sum_{\mu=0}^{m-1} (q-1)q^{\mu} = q^m - 1$ then $\gamma_n = \sum_{\mu=0}^{m-1} (p-1)p^{\mu} = p^m - 1$ and

$$\gamma_{qn+r} = p\gamma_n + \gamma_r \qquad (r \in \{0, 1, \dots, q-1\}).$$
 (5.5)

Theorem 5.4 The open intervals $J_{m,n} \subseteq [0,1]$ where the solution φ of (5.2) is constant have the form

$$J_{m,n} = \left(\frac{\gamma_{m-1}+1}{p^n}, \frac{\gamma_m}{p^n}\right) \qquad (n = 1, 2, \dots, m = 1, 2, \dots, q^n - 1)$$
(5.6)

provided that $\gamma_{m-1} + 1 < \gamma_m$.

Proof: We apply Proposition 5.3. If (a_i, b_i) is a maximal interval of constancy then by Proposition 5.3 and the definition of γ_n we have $a_i = \frac{\gamma_k + 1}{p^n}$ and $b_i = \frac{\gamma_m}{p^n}$ with suitable k, m. Since the sequence γ_n is strictly increasing it follows k = m - 1, i.e. $(a_i, b_i) = J_{m,n}$ from (5.11) with the given indices there.

Remark 5.5 1. Observe that $J_{qm,n+1} = J_{m,n}$ since in view of (5.5) we have for the left endpoint

$$\gamma_{qm-1} + 1 = \gamma_{q(m-1)+q-1} + 1 = p\gamma_{m-1} + \gamma_{q-1} + 1 = p(\gamma_{m-1} + 1)$$

where we have used $\gamma_{q-1} = p-1$, and for the right endpoint $\gamma_{qm} = p\gamma_m$. So we can see again that the nonempty intervals $J_{m,n}$ coincide or they are disjoint.

2. Note that

$$\sum_{m=1}^{q^n-1} |J_{m,n}| = \sum_{m=1}^{q^n-1} \frac{\gamma_m - \gamma_{m-1} - 1}{p^n} = \frac{\gamma_{q^n-1} - \gamma_0 - q^n}{p^n} = \frac{p^n - 1 - q^n}{p^n} \to 1$$

as $n \to \infty$.

Example 5.6 (*Cantor's function.*) We know that Cantor's function φ is the to [0,1] restricted solution of (1.2) with $c_0 = \frac{1}{2}$, $c_1 = 0$, $c_1 = \frac{1}{2}$, i.e.

$$\varphi\left(\frac{x}{3}\right) = \frac{1}{2}\varphi(x) + \frac{1}{2}\varphi(x-2) \qquad (x \in \mathbb{R})$$

satisfying (1.4). Here $P(z) = (1 + z^2)/2$ and the generating function (2.6) reads

$$G(z) = \prod_{j=0}^{\infty} \left(1 + z^{2 \cdot 3^j} \right) = \sum_{k=0}^{\infty} C_k z^k$$
(5.7)

where $C_k = 0$ if the triadic representation of k contains the digit 1, elsewhere $C_k = 1$. Hence, G can be written as

$$G(z) = \sum_{n=0}^{\infty} z^{\gamma_n} = 1 + z^2 + z^6 + z^8 + z^{18} + z^{20} + z^{24} + z^{26} + \dots$$
(5.8)

with strictly increasing exponents $\gamma_0 = 0$, $\gamma_1 = 2$, $\gamma_2 = 6$, $\gamma_3 = 8$ and so on. It holds with $\varepsilon_{\mu} \in \{0, 1\}$:

$$n = \sum_{\mu=0}^{m-1} \varepsilon_{\mu} 2^{\mu} \qquad \Longrightarrow \qquad \gamma_n = 2 \sum_{\mu=0}^{m-1} \varepsilon_{\mu} 3^{\mu} \tag{5.9}$$

and it is easy to see that

$$\gamma_{k-1} + \gamma_{2^n-k} = 3^n - 1$$
 $(n = 1, 2, ..., k = 1, 2, ..., 2^n).$ (5.10)

The open intervals $J_{m,n}$ where Cantors function φ is constant have the form

$$J_{m,n} = \left(\frac{\gamma_{m-1}+1}{3^n}, \frac{\gamma_m}{3^n}\right) \qquad (n = 1, 2, \dots, m = 1, 2, \dots, 2^n - 1) \tag{5.11}$$

with $\varphi(x) = \frac{m}{2^n}$ for $x \in J_{m,n}$.

6 Subadditivity

In this section we investigate the subadditivity of the solution φ of (1.2), i.e.

$$\varphi(x+y) \le \varphi(x) + \varphi(y) \tag{6.1}$$

for all $x, y \in \mathbb{R}$. For this purpose again we consider the sequence $S_k(\mathbf{c})$ from (3.1) with $c = \mathbf{c}$ from (3.3).

Lemma 6.1 Assume that $c_j \ge 0$ for all j = 0, 1, ..., p-1 and that for $0 \le k, l < p$ we have

$$S_{k}(\mathbf{c}) + S_{\ell}(\mathbf{c}) \geq \begin{cases} S_{k+\ell}(\mathbf{c}) & \text{if } k+\ell (6.2)$$

then for all nonnegative integers k, ℓ it holds

$$S_{k+\ell}(\mathbf{c}) \le S_k(\mathbf{c}) + S_\ell(\mathbf{c}). \tag{6.3}$$

Proof: First note that by (2.5) we have $C_j(\mathbf{c}) \ge 0$ for all $j \in \mathbb{N}$. We shall prove the inequality (6.3) for nonnegative integers $k, \ell < p^n$ by induction with respect to n where as abbreviation we write S_k in place of $S_k(\mathbf{c})$. For n = 0 the inequality is true by (6.2). Assume that (6.3) is true for $0 \le k, \ell < p^n$. For integers $0 \le k, \ell < p^{n+1}$ we write k = pk' + i and $\ell = p\ell' + j$ with $0 \le k', \ell' < p^n$ and $i, j \in \{0, 1, \dots, p-1\}$. We consider two cases:

1. Let be i + j < p. Then in view of Lemma 3.1/(iii) we have

$$S_{p(k'+\ell')+i+j} = S_p S_{k'+\ell'} + C_{k'+\ell'}(\mathbf{c}) S_{i+j}$$

$$\leq S_p (S_{k'} + S_{\ell'}) + C_{k'+\ell'}(\mathbf{c}) (S_i + S_j)$$

$$\leq S_p S_{k'} + S_p S_{\ell'} + C_{k'}(\mathbf{c}) S_i + C_{\ell'}(\mathbf{c}) S_j$$

$$= S_{pk'+i} + S_{p\ell'+j}$$

where we have used that (3.4) and that $C_{k'+\ell'}(\mathbf{c}) \leq \min \{C_{k'}(\mathbf{c}), C_{\ell'}(\mathbf{c})\}$ according to (2.5). So $S_{k+\ell} \leq S_k + S_\ell$.

2. In case $i + j \ge p$ we have $0 \le i + j - p . Applying Lemma 3.1/(iii) and assumption of induction we get$

$$S_{k'+\ell'+1} = S_{k'+\ell'} + C_{k'+\ell'}(\mathbf{c}) \le S_{k'} + S_{\ell'} + C_{k'+\ell'}(\mathbf{c})$$

and

$$S_{p(k'+\ell'+1)+i+j-p} = S_p S_{k'+\ell'+1} + C_{k'+\ell'+1}(\mathbf{c}) S_{i+j-p}$$

$$\leq S_p \{S_{k'} + S_{\ell'} + C_{k'+\ell'}(\mathbf{c})\} + C_{k'+\ell'+1}(\mathbf{c}) S_{i+j-p}$$

$$\leq S_p S_{k'} + S_p S_{\ell'} + C_{k'+\ell'}(\mathbf{c}) (S_p + S_{i+j-p})$$

$$\leq S_p S_{k'} + S_p S_{\ell'} + C_{k'+\ell'}(\mathbf{c}) (S_i + S_j)$$

where we have used (6.2) and $C_{k'+\ell'+1}(\mathbf{c}) \leq C_{k'+\ell'}(\mathbf{c})$ according to (2.5) and (3.4). Hence we have $S_{k+\ell} \leq S_k + S_\ell$ again.

Theorem 6.2 If (6.2) is satisfies then the solution φ of (1.2) is subadditive, i.e.

$$\varphi(x+y) \le \varphi(x) + \varphi(y) \qquad (x, y \in \mathbb{R}).$$
 (6.4)

Proof: For $x = \frac{k}{p^n}$, $y = \frac{\ell}{p^n}$ in [0,1] with $x + y \le 1$ the assertion follows from (3.2) in view of (6.3), and for arbitrary $x, y \in [0,1]$ with $x + y \le 1$ by continuity of φ . Now from (1.4) it is easy to see that the inequality is true for all $x, y \in \mathbb{R}$.

Example 6.3 (*De Rham's function*) We know that de Rham's function φ is the to [0,1] restricted solution φ of (1.2) with $c_0 = a$, $c_1 = 1 - a$, $a \in (0, 1)$, i.e.

$$\varphi\left(\frac{x}{2}\right) = a\varphi(x) + (1-a)\varphi(x-1) \qquad (x \in \mathbb{R})$$

satisfying (1.4), cf. Example 2.4. For $0 < a < \frac{1}{2}$ de Rham's function φ fails to be subadditive since $2\varphi(\frac{1}{2}) = 2a < 1 = \varphi(1)$. In case $\frac{1}{2} \leq a < 1$ we have $\mathbf{c} = \max\{a, 1 - a\} = a$ and $C_k = C_k(a) = q^{s(k)}$ with $q = \frac{1-a}{a}$, where s(k) denotes the number of ones in the dyadic representation of k, i.e. $C_0 = 1$, $C_1 = q$, $C_2 = q$, $C_3 = q^2$, $C_4 = q$, $C_5 = q^2$ and for $S_k = S_k(a)$ we have $S_1 = 1$, $S_2 = 1 + q$, $S_3 = 1 + 2q$, $S_4 = 1 + 2q + q^2$, $S_5 = 1 + 3q + q^2$. So inequality (6.2) is satisfies if $0 < q \leq 1$, i.e. $\frac{1}{2} \leq a < 1$ and for these a we have (6.3), cf. [2, Lemma 2.2]. Hence, for $\frac{1}{2} \leq a < 1$ the extended de Rham function is subadditive owing to Theorem 6.2.

Finally we consider once more two-scale difference equation (1.13).

Example 6.4 (Equation (1.13)) For 0 < a < 1 let φ be the continuous solution of

$$\varphi\left(\frac{x}{3}\right) = a\varphi(x) + (1-2a)\varphi(x-1) + a\varphi(x-2) \qquad (x \in \mathbb{R})$$

satisfying (1.4). For $0 < a \leq \frac{1}{2}$ the coefficients are nonnegative. In case $0 < a < \frac{1}{3}$ the solution φ fails to be subadditive since $\varphi(\frac{2}{3}) = 1 - a > 2a = 2\varphi(\frac{1}{3})$. In case $\frac{1}{3} \leq a \leq \frac{1}{2}$ we have $\mathbf{c} = \max\{a, 1-2a, a\} = a$ and $C_k = C_k(a) = \varrho^{s_1(k)}$ with $\varrho = \frac{1-2a}{a}$, where $s_1(k)$ denotes the number of ones in the triadic representation of k. So $C_0 = 1$, $C_1 = \varrho$, $C_2 = 1$, $C_3 = \varrho$, $C_4 = \varrho^2$, $C_5 = \varrho$, $C_6 = 1$ and for $S_k = S_k(a)$ we have $S_1 = 1$, $S_2 = 1 + \varrho$, $S_3 = 2 + \varrho$, $S_4 = 2 + 2\varrho$, $S_5 = 2 + 2\varrho + \varrho^2$. Inequality (6.2) is satisfies if $\varrho \geq 0$ (from $S_2 \leq S_1 + S_1$) and if $\varrho \leq 1$ (from $S_2 + S_2 \geq S_1 + S_3$). So for $\frac{1}{3} \leq a \leq \frac{1}{2}$ it holds (6.3), and the solution φ of (1.13) is subadditive according to Theorem 6.2. In particular, Cantor's function $(a = \frac{1}{2})$ is subadditive, cf. also [22, Section 3.2.4], [10].

References

- Berg, L., and Krüppel, M. : De Rahm's singular function and related functions. Z. Anal. Anw. 19, 227-237 (2000)
- [2] Berg, L., and Krüppel, M. : De Rham's singular function, two-scale difference equations and Appell polynomials. Result. Math. 38, 18–47 (2000)
- Berg, L., and Krüppel, M. : Eigenfunctions of two-scale difference equations and Appell polynomials. Z. Anal. Anw. 20, 457-488 (2001)
- [4] Billingsley, P. : Ergodic Theory and Information. New York (John Wiley and Sons) 1965
- [5] Colella, D., and Heil, C. : Sobolev regularity and the smoothness of compactly supported wavelets, in "Wavelets: Mathematics and Applications." J. J. Benedetto and M. Frazier, eds., CRC Press, Boca Raton, FL 161–200 (1994)
- [6] Colella, D., and Heil, C.: Characterization of scaling functions: continuous solutions. SIAM J. Matrix Anal. Appl. 15, 496-518 (1994)
- [7] Daubechies, I.: Ten Lectures on Wavelets. SIAM Philadelphia, 1992
- [8] Daubechies, I., and Lagarias, J. C. : Two-scale difference equations I. Existence and global regularity of solutions. SIAM J. Math. Anal. 22, 1388–1410 (1991)
- [9] Daubechies, I., and Lagarias, J. C. : Two-scale difference equations II. Global regularity, infinite products of matrices and fractals. SIAM J. Math. Anal. 23, 1031–1079 (1992)
- [10] Doboš, J.: The standard Cantor function is subadditive. Proc. Amer. Math. Soc. 124 (N11), 3425-3426 (1996)
- [11] Dovgoshey, O., Martio, O., Ryazanov, V., and Vuorinen, M. : The Cantor function. Expo. Math. 24, 1–37 (2006)
- [12] Fabry, E. : Sur les points singuliers d'une fonction donde par son développement et série et l'impossibilité du prolongement analytique dans des cas trés généraux. Ann. Sci. Ecole Norm. Sup. 3^e série, 13, 367–399 (1896)
- [13] Falconer, K.J.: Fractal Geometry. Mathematical Foundations and Applications. John Wiley & Sons, 1990

- [14] Girgensohn, R. : Funktionalgleichungen für nirgends differenzierbare Funktionen. Clausthal 1992 (Dissertation)
- [15] Girgensohn, R.: Functional equations and nowhere differentiable functions. Aequationes Math. 46, 243-256 (1993)
- [16] Girgensohn, R.: Nowhere differentiable solutions of a system of functional equations. Aequationes Math. 47, 89–99 (1994)
- [17] Gorin, E.A., and Kukushkin, B.N.: Integrals related to the Cantor function. St. Petersburg Math. J. 15, 449-468 (2004)
- [18] Kairies, H.-H. : Functional equations for peculiar functions. Aequationes Math. 53, 207-241 (1997)
- [19] Krüppel, M. : De Rham's singular function, its partial derivatives with respect to the parameter and binary digital sums. Rostock. Math. Kolloq. 64, 57-74 (2009)
- [20] Kuczma, M. : Functional Equations in a Single Variable. (PAN Monografie Mat.: Vol 46). Warsaw: Polish Sci. Publ. 1968
- [21] Sierpiński, W. : Sur un système d'équations fonctionelles définissant une fonction avec un ensemble dense d'intervalles d'invariabilité. Bull. Inter. Acad. Sci. Cracovie, Cl. Sci. Math. Nat. Sér. A, 577-582 (1911)
- [22] Timan, A. F. : Theory of Approximation of Functions of a Real Variable. International Series of Monographs in Pure and Applied Mathematics, vol. 34, Pergamon Press, Oxford 1963

received: November 28, 2012

Author:

Manfred Krüppel Universität Rostock Institut für Mathematik 18051 Rostock Germany e-mail: manfred.krueppel@uni-rostock.de