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On the Solutions of Two-Scale Difference Equations

ABSTRACT. This paper deals with specific two-scale difference equations which are equiv-
alent to a system of functional equations. Such equations have a continuous solution if the
coefficients cj of the corresponding characteristic polynomial P satisfy condition |cj| < 1

for all j. By means of some functional relations for the solution we show that it is Hölder
continuous and we determine the optimal Hölder exponent. Moreover we give a condition
which is necessary and sufficient for the differentiability almost everywhere where we apply
Borel’s normal number theorem. If the coefficients cj are nonnegative then the solution is
a singular function. Special cases are the well-known singular functions of de Rham and of
Cantor.

1 Introduction

A two-scale difference equation (dilation equation) is a functional equation of the form

ϕ
(x
d

)
=

p−1∑
j=0

cjϕ(x− j) (1.1)

with dilation parameter d > 1 and complex coefficients cj where c0cp−1 6= 0, p ≥ 2. Such
equations especially with d = 2 appear in wavelet theory and in subdivision schemes where
nontrivial compactly supported Lebesgue-integrable solutions are demanded, cf. [5], [7], [8],
[9].

In this paper we consider the two-scale difference equation (1.1) with d = p, that means

ϕ

(
x

p

)
=

p−1∑
j=0

cjϕ(x− j) (x ∈ R) (1.2)

under the condition
p−1∑
j=0

cj = 1 (1.3)
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and we are interested to solutions ϕ which satisfy the boundary conditions

ϕ(x) = 0 for x < 0, ϕ(x) = 1 for x > 1. (1.4)

It is easy to see that under these conditions equation (1.2) with (1.3) can be written as
system of functional equations. Replacing x in (1.2) by k + x with k ∈ {0, 1, . . . , p− 1} and
x ∈ [0, 1] we get in view of (1.4) the following system of equations

ϕ

(
k + x

p

)
= bk + ckϕ(x) (0 ≤ x ≤ 1) (1.5)

with

bk =
k−1∑
j=0

cj (1.6)

k = 0, 1, . . . , p − 1, cf. [18]. Such systems of equations are intensively investigated by R.
Girgensohn, see [14], [15], [16]. If |cj| < 1 for all j = 0, 1, . . . , p− 1 then there exists exactly
one bounded ϕ : [0, 1] 7→ R which satisfies (1.5) with (1.6) and (1.3). This function ϕ is
continuous and given in terms of the p-adic expansion of x by

ϕ

(
∞∑
n=1

ξn
pn

)
=
∞∑
n=0

bξn

n−1∏
k=1

cξk , (1.7)

cf. [14], see also [18, Theorem 2]. In particular, ϕ(0) = 0 and ϕ(1) = 1 so that ϕ can be
extended by (1.4) to x ∈ R, and this extended function is a continuous solution of (1.2) and
satisfies (1.4). In this sense the two-scale difference equation (1.2) with (1.3) is equivalent
to the system of equations (1.5) with (1.6) and (1.3).

The polynomial

P (z) =

p−1∑
j=0

cjz
j (1.8)

with P (0) 6= 0 and P (1) = 1 is called the characteristic polynomial of the equation (1.2).
Simple examples are the extended functions of de Rham and of Cantor.

1. (De Rham’s function) In case P (z) = a+ (1− a)z with a ∈ (0, 1) equation (1.2) reads

ϕ
(x

2

)
= aϕ(x) + (1− a)ϕ(x− 1) (x ∈ R) (1.9)

which in view of (1.4) can be written as system of functional equations

ϕ
(x

2

)
= aϕ(x), ϕ

(
x+ 1

2

)
= a+ (1− a)ϕ(x) (1.10)

with 0 ≤ x ≤ 1 and de Rham’s function is the uniquely bounded solution, cf. e.g. [18].



On the Solutions of Two-Scale Difference Equations 61

2. (Cantor’s function) In case P (z) = (1 + z2)/2 equation (1.2) reads

ϕ
(x

3

)
=

1

2
ϕ(x) +

1

2
ϕ(x− 2) (x ∈ R). (1.11)

In view of (1.4) this equation can be written as system of equations

ϕ
(x

3

)
=

1

2
ϕ(x), ϕ

(
x+ 1

3

)
=

1

2
, ϕ

(
x+ 2

3

)
=

1

2
+

1

2
ϕ(x) (1.12)

with 0 ≤ x ≤ 1, and Cantor’s function is the unique bounded solution of this system, cf.
[21], (see also [20], p. 241).

In case cj ≥ 0 for all j = 0, 1, . . . , p − 1 one can interpret the coefficients as probabilities
pj = cj and the solution ϕ as a distribution function which is a measure-preserving mapping,
cf. [4, Section 3]. The figure on p. 37 in [4] shows the graph of ϕ in case p = 2, p0 = 0, 7

and p1 = 0, 3 (ϕ is de Rham’s function with respect to the parameter a = 0, 7).

According to (1.4) we are only interested to the solution ϕ of (1.2) in [0, 1]. We always
assume that |cj| < 1 for all j = 0, 1, . . . , p−1 which guarantees the existence of a continuous
solution ϕ with ϕ(0) = 0 and ϕ(1) = 1. In the simple case cj = 1

p
for all j we have ϕ(x) = x

for x ∈ [0, 1]. In the following we always exclude this trivial case. We show in this paper
that the solution ϕ of (1.2) with (1.3), (1.4) satisfies some functional relations (Proposition
2.3) and that it has in [0, 1] the following properties:

1. If cj ≥ 0 for all j then ϕ is an increasing function (Proposition 2.5).

2. If not cj ≥ 0 for all j then in no nonempty subinterval of [0, 1] ϕ has finite variation
(Proposition 2.6).

3. If |cj| < 1 for all j then ϕ is Hölder continuous, i.e.

|ϕ(x)− ϕ(y)| ≤ A|x− y|α

with the optimal Hölder exponent α = min {− logp |c0|, . . . ,− logp |cp−1|} and coeffi-
cient A with 1 ≤ A ≤ p1−α p−1

pα−1 (Theorem 3.6).

4. If ϕ is differentiable at the point x0 then ϕ′(x0) = 0 (Proposition 4.2).

5. If min |cj| ≥ 1
p
then ϕ is nowhere differentiable in [0,1], and if min |cj| < 1

p
then both

sets, where ϕ is differentiable and where ϕ is not differentiable have positive Hausdorff
dimension (Theorem 4.11).

6. If pM0 < 1, where M0 = |c0c1 · · · cp−1|1/p, then ϕ is differentiable almost everywhere
and if pM0 ≥ 1 then it is almost nowhere differentiable (Theorem 4.12).

7. If 0 ≤ cj < 1 and min cj = 0 then ϕ is constant on the components Jm,n of an open
set G ⊆ [0, 1] with Lebesgue measure |G| = 1. These intervals can be represented by
means of a sequence γn (Theorem 5.4, Example 5.6).
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Example 1.1 For 0 < a < 1 the equation

ϕ
(x

3

)
= aϕ(x) + (1− 2a)ϕ(x− 1) + aϕ(x− 2) (x ∈ R) (1.13)

has a continuous solution ϕ satisfying (1.4). For 0 ≤ x ≤ 1 we have: ϕ is increasing for
0 < a < 1

2
, ϕ is Cantor’s function for a = 1

2
and ϕ does not have finite variation for

1
2
< a < 1. Further, ϕ is nowhere differentiable for 2

3
≤ a < 1. If a0 is the positive solution

of 27a2(2a − 1) = 1, i.e. a0 = 0, 5592 . . . , then ϕ is differentiable almost everywhere for
0 < a < a0 and almost nowhere differentiable for a0 ≤ a < 1. So it is astonishing that in
case 1

2
< a < a0 the continuous solution ϕ does not have finite total variation though the

derivative vanishes almost everywhere.

Remark 1.2 1. Hölder continuity of compactly supported solutions ϕ of (1.1) are intensive
investigated, e.g. for the Hölder exponent there are bounds in terms of the joint spectral
radius of two matrices determined of the coefficients cj, cf. [5, Theorem 4.3], [6], [7].

2. The optimal Hölder exponent α = log3 2 of Cantor’s function is already known from [17].

3. The optimal Hölder exponent α = min {− log2 a,− log2(1−a)} of de Rham’s function was
already determined in [2, Section 2]. Remark 2 and Figure 3 in [2] show a comparison with
the Hölder exponent µ = − 1

log 4
log (2a2 − 2a+ 1) obtainable by means of the corresponding

joint spectral radius, cf. [6].

2 Functional relations

We start with a replicative relation, cf. [18].

Proposition 2.1 The solution ϕ of system (1.5), (1.6) satisfies the replicative relation

p−1∑
k=0

ϕ

(
k + x

p

)
= ϕ(x) + C (x ∈ [0, 1]) (2.1)

with the constant
C = p− 1− P ′(1). (2.2)

Proof: Equation (2.1) follows from (1.5) by summation where x = 0 yields for the constant
in (2.1)

C =

p−1∑
k=1

ϕ

(
k

p

)
.

From (1.5) and (1.6) we get

ϕ

(
k

p

)
=

k−1∑
j=0

cj
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so that

C = (p− 1)c0 + (p− 2)c1 + . . .+ cp−2

= (p− 1)(c0 + . . .+ cp−1)− {c1 + 2c2 + . . .+ (p− 1)cp−1}
= (p− 1)P (1)− P ′(1).

In view of P (1) = 1 it follows (2.2). �

In order to derive further functional relations for the solutions of (1.2) we introduce a se-
quence Ck(c) depending on an arbitrary parameter c 6= 0 as follows: For j ∈ {0, 1, . . . , p−1}
we put Cj(c) =

cj
c
where cj are the coefficients of (1.2) and in general by the recursion:

Ckp+j(c) = Ck(c)Cj(c) (k ≥ 1, j ∈ {0, 1, . . . , p− 1}). (2.3)

Obviously, if k has the p-adic representation

k =
n∑
ν=0

kνp
ν , (kν ∈ {0, 1, . . . , p− 1}) (2.4)

then we have the explicit representation

Ck(c) =

p−1∏
j=0

(cj
c

)sj(k)
(2.5)

where sj(k) denotes the total number of occurrences of the digit j in the p-adic expansion
(2.4) of k.

Remark 2.2 We use the parameter c in two cases:

1. In case c = c0 we have C0(c0) = 1 and from (2.3) it is easy to see that the numbers
Ck := Ck(c0) have the generating function

G(z) :=
∞∏
j=0

1

c0
P
(
zp

j
)

=
∞∑
k=0

Ckz
k (2.6)

which converges for |z| < 1. Let us mention that the unit circle is a natural bound of
convergence for G, cf. [12].

2. In Section 3 (Hölder continuity) we put c = max {|c0|, . . . , |cp−1|} and so we are able to
estimate the Hölder coefficient.
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In the following we need the function

ϕ∗(x) = 1− ϕ(1− x) (x ∈ R) (2.7)

which is the solution of the reversed two-scale difference equation

ϕ∗
(
x

p

)
=

p−1∑
j=0

c∗jϕ
∗(x− j) (x ∈ R). (2.8)

where
c∗j = cp−1−j (2.9)

cf. [3].

Proposition 2.3 The solution ϕ of system (1.5) satisfies the functional equations

ϕ

(
k + t

pn

)
= ϕ

(
k

pn

)
+ cnCk(c)ϕ(t) (0 ≤ t ≤ 1) (2.10)

where n ∈ N, k = 0, 1, . . . , pn − 1, Ck(c) from (2.5) with

s0(k) + . . .+ sp−1(k) = n (2.11)

and
ϕ

(
k − t
pn

)
= ϕ

(
k

pn

)
− cnCk−1(c)ϕ∗(t) (0 ≤ t ≤ 1) (2.12)

for k = 1, 2, . . . , pn with ϕ∗ from (2.7). Moreover

ϕ

(
k

pn

)
= cn

k−1∑
j=0

Cj(c). (2.13)

Proof: We prove (2.10) by induction on n. For n = 1 the equations (2.10) are equivalent
to the system (1.5). If (2.10) with (2.11) in Ck(c) holds for a fixed n then for j+t

p
instead of

t with j ∈ {0, 1, . . . , p− 1} and 0 ≤ t ≤ 1 we have

ϕ

(
kp+ j + t

pn+1

)
= ϕ

(
k

pn

)
+ cnCk(c)ϕ

(
j + t

p

)
= ϕ

(
k

pn

)
+ cnCk(c)ϕ

(
j

p

)
+ cn+1Ck(c)

cj
c
ϕ(t).

For t = 0 it follows
ϕ

(
kp+ j

pn+1

)
= ϕ

(
k

pn

)
+ cnCk(c)ϕ

(
j

p

)
and hence we get in view of (2.3)

ϕ

(
kp+ j + t

pn+1

)
= ϕ

(
kp+ j

pn+1

)
+ cn+1Ckp+j(c)ϕ(t)
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with s0(kp+ j) + . . .+ sp−1(kp+ j) = n+ 1. Thus (2.10) with (2.11) in Ck(c) is proved by
induction. Now (2.13) follows from (2.10) for t = 1 and ϕ(1) = 1 by summation. Equation
(2.10) with k − 1 instead of k and 1− t instead of t yields in view of (2.7)

ϕ

(
k − t
pn

)
= ϕ

(
k − 1

pn

)
+ cnCk−1(c)ϕ(1− t)

= ϕ

(
k − 1

pn

)
+ cnCk−1(c)− cnCk−1(c)ϕ∗(t).

For t = 0 it follows
ϕ

(
k

pn

)
= ϕ

(
k − 1

pn

)
+ cnCk−1(c)

and hence (2.12). �

Example 2.4 (De Rham’s function) In case P (z) = a+(1−a)z we have p = 2 and equation
(1.9), i.e. c0 = a, c1 = 1 − a. For c = a we have by (2.5) that Ck = Ck(a) = qs1(k) with
q = 1−a

a
where s1(k) denotes the number of ones in the dyadic representation of k, and the

generating function (2.6) reads

G(z) =
∞∏
j=0

(
1 + qz2

j
)

=
∞∑
k=0

qs1(k)zk. (2.14)

Formulas (2.10) and (2.13) yield the known relations

ϕ

(
k + t

2n

)
= ϕ

(
k

2n

)
+ anqs1(k)ϕ(t) (0 ≤ t ≤ 1)

and

ϕ

(
k

2n

)
= an

k−1∑
j=0

qs1(j)

for de Rham’s function ϕ, cf. [1].

Proposition 2.5 In case cj ≥ 0 for all j = 0, 1, . . . , p− 1 the solution ϕ of (1.5) is an
increasing function, and in case cj > 0 it is strictly increasing.

Proof: If cj ≥ 0 for all j then we have 0 ≤ cj < 1 since c0 > 0, cp−1 > 0 and (1.3). Hence
the solution ϕ is continuous. From (2.10) we get for n ∈ N and k = 0, 1, . . . , pn − 1

ϕ

(
k + 1

pn

)
≥ ϕ

(
k

pn

)
so that the continuous function ϕ is increasing. In case cj > 0 for all j equation (2.10)
implies

ϕ

(
k + 1

pn

)
> ϕ

(
k

pn

)
so that indeed ϕ is strictly increasing in [0, 1]. �
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Proposition 2.6 If not cj ≥ 0 for all j = 0, 1, . . . , p−1 then in no nonempty subinterval
of [0, 1] the solution ϕ of (1.2) has finite total variation.

Proof: If not cj ≥ 0 for all j then owing to (1.3) we have |c0|+ . . .+ |cp−1| > 1. From (1.5)
we get for k ∈ {0, . . . , p− 1}

ϕ

(
k + 1

p

)
− ϕ

(
k

p

)
= ck

and hence
p−1∑
k=0

∣∣∣∣ϕ(k + 1

p

)
− ϕ

(
k

p

)∣∣∣∣ =

p−1∑
k=0

|ck|

and by induction on n

pn−1∑
k=0

∣∣∣∣ϕ(k + 1

pn

)
− ϕ

(
k

pn

)∣∣∣∣ =

(
p−1∑
k=0

|ck|

)n

.

In view of |c0|+ |c1|+ . . .+ |cp−1| > 1 it follows that ϕ does not have finite total variation in
[0, 1]. From (2.10) we conclude that this is valid also for the intervals [ k

pn
, k+1
pn

] with n ∈ N
and k = 0, 1, . . . , pn − 1. �

3 Hölder continuity

We assume that |cj| < 1 for all j = 0, 1, . . . , p−1 so that the solution ϕ of (1.2) is continuous.
In order to verify the Hölder continuity of ϕ we introduce the notation

Sk(c) :=
k−1∑
j=0

Cj(c) (3.1)

for the sum in (2.13), i.e. we have

ϕ

(
k

pn

)
= cnSk(c). (3.2)

Lemma 3.1 The sequence Sk(c) has following properties:

(i) Spk(c) = 1
c
Sk(c) (k ≥ 1).

(ii) Spn(c) = 1
cn

(n ≥ 0).

(iii) Skpn+`(c) = Spn(c)Sk(c) + Ck(c)S`(c) (0 ≤ k < p, n ≥ 1, 0 ≤ ` < pn).
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Proof: (i) For given k ≥ 1 we choose n such that k < pn−1. From (2.13) and (3.1) we get

Spk(c) =
1

cn
ϕ

(
pk

pn

)
=

1

cn
ϕ

(
k

pn−1

)
=

1

c
Sk(c)

which implies (i).

(ii) follows from (2.13) and ϕ(1) = 1.

(iii) From (2.10) and (2.13) we get

ϕ

(
k + `

pn

p

)
= ϕ

(
k

p

)
+ cCk(c)ϕ

(
`

pn

)
= c Sk(c) + cn+1Ck(c)S`(c).

On the other side we have
ϕ

(
kpn + `

pn+1

)
= cn+1Skpn+`(c)

and in view of (ii) it follows (iii). �

Now we choose the parameter c = c where

c := max {|c0|, |c1|, . . . , |cp−1|}, (3.3)

cf. Remark 2.2. Then |Ck(c)| ≤ 1 for k ∈ {0, 1, . . . , p− 1} and (2.3) implies

|Ck(c)| ≤ 1 (k ∈ N0). (3.4)

In view of (1.3) we have 1
p
≤ c < 1. In case c = 1

p
we have cj = 1

p
for all j = 0, 1, . . . , p− 1

and ϕ(x) = x for 0 ≤ x ≤ 1. If we exclude this trivial case then

1

p
< c < 1. (3.5)

For the parameter c from (3.3) satisfying (3.5) we put

α := − logp c, (3.6)

i.e.
c pα = 1 (3.7)

and (3.5) implies
0 < α < 1. (3.8)

Lemma 3.2 With α from (3.6) and c from (3.3) the sequence 1
kα
Sk(c) is bounded. More

precisely, for

K := sup
k

{∣∣∣∣ 1

kα
Sk(c)

∣∣∣∣} (3.9)

we have the estimate
1 ≤ K ≤ p− 1

pα − 1
. (3.10)
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Proof: According to Lemma 3.1/(ii) and (3.7) we have

1

pα
Sp(c) = 1

and hence K ≥ 1. Moreover, by Lemma 3.1/(i) and (3.7)

1

(pk)α
Spk(c) =

1

kα
Sk(c) (3.11)

so that
sup
k

∣∣∣∣ 1

kα
Sk(c)

∣∣∣∣ = lim sup
k→∞

∣∣∣∣ 1

kα
Sk(c)

∣∣∣∣ . (3.12)

For integer n ≥ 1 let be

Kn := max

{∣∣∣∣ 1

kα
Sk(c)

∣∣∣∣ : pn−1 ≤ k ≤ pn − 1

}
then by (3.11) we have Kn ≤ Kn+1.

Owing to Lemma 3.1/(iii) and to (3.11) we have

1

(kpn + `)α
Skpn+`(c) =

(
kpn

kpn + `

)α
1

kα
Sk(c) +

(
`

kpn + `

)α
Ck(c)

`α
S`(c) (3.13)

for k = 1, . . . , p− 1 and ` = 0, 1, . . . , pn − 1.

Hence for m = kpn + ` with k ∈ {1, . . . , p− 1} and ` ∈ {0, 1, . . . , pn − 1} we have

1

mα
Sm(c) = (1− ξ)α 1

kα
Sk(c) + ξαCk(c)

1

`α
S`(c) (3.14)

where ξ = `
kpn+`

with a certain ` ∈ {0, 1, . . . , pn − 1} so that 0 ≤ ξ < 1
k+1

. By (3.14) and
(3.4) we get

Kn+1 ≤ (1− ξ)α
∣∣∣∣ 1

kα
Sk(c)

∣∣∣∣+ ξα|Ck(c)|
∣∣∣∣ 1

`α
S`(c)

∣∣∣∣
≤ (1− ξ)α

∣∣∣∣ 1

kα
Sk(c)

∣∣∣∣+ ξαKn

where k ∈ {1, . . . , p− 1}, ` ≤ pn and in view of Kn ≤ Kn+1 it follows

(1− ξα)Kn ≤ (1− ξ)α
∣∣∣∣ 1

kα
Sk(c)

∣∣∣∣ .
Note 1− ξα > 0 since 0 ≤ ξ < 1

k+1
and α > 0, cf. (3.8). Consequently,

Kn ≤
(1− ξ)α

1− ξα

∣∣∣∣ 1

kα
Sk(c)

∣∣∣∣ ≤Mk

∣∣∣∣ 1

kα
Sk(c)

∣∣∣∣ (k ∈ {1, . . . , p− 1}) (3.15)
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with
Mk = max

0≤x≤ 1
k+1

(1− x)α

1− xα
.

In view of (3.8) the function f(x) = (1 − x)α/(1 − xα) is increasing so that we get Mk =

f( 1
k+1

) = kα

(k+1)α−1 and

Kn ≤
1

(k + 1)α − 1
|Sk(c)| (k ∈ {1, . . . , p− 1}).

From (3.1) we get in view of |Cj(c)| ≤ 1 that |Sk(c)| ≤ k so that

Kn ≤
k

(k + 1)α − 1
(k ∈ {1, . . . , p− 1}).

The function g(x) = x
(x+1)α−1 is increasing in [1, p− 1] so that Kn ≤ g(p− 1) = p−1

pα−1 which
yields the assertion. �

Remark 3.3 If we carry out the foregoing considerations with the coefficient c∗j of the
reversed equation (2.8) instead of cj then in view of (2.9) and (3.3) we have
c∗ = max{|c∗0|, . . . , |c∗p−1|} = c, and hence with the same α from (3.6) we find that the
corresponding coefficients C∗j (c) satisfy |C∗j (c)| ≤ 1 and that the sums 1

kα
S∗k(c) are bounded

where

K∗ := sup
k

∣∣∣∣ 1

kα
S∗k(c)

∣∣∣∣ (3.16)

can be estimates similarly as in (3.10). So

K∗ ≤ p− 1

pα − 1
. (3.17)

Lemma 3.4 If |cj| < 1 for all j ∈ {0, 1, . . . , p − 1} then for 0 ≤ t ≤ 1, n ∈ N and
k ∈ {0, 1, . . . , p− 1} we have∣∣∣∣ϕ(k + t

pn

)
− ϕ

(
k

pn

)∣∣∣∣ ≤ K

(
t

pn

)α
(3.18)

and for k ∈ {1, 2, . . . , p} ∣∣∣∣ϕ(k − tpn

)
− ϕ

(
k

pn

)∣∣∣∣ ≤ K∗
(
t

pn

)α
. (3.19)

Proof: We only prove (3.18). For t = k
pn

with 0 ≤ k ≤ pn the representation (2.13) with
c = c implies

ϕ(t)

tα
=
ϕ( k

pn
)

( k
pn

)α
=

1

kα

k−1∑
j=0

Cj(c) =
1

kα
Sk(c)



70 M. Krüppel

in view of (3.7). By Lemma 3.2 it follows

|ϕ(t)|
tα
≤ K

for these t and hence also for arbitrary t ∈ (0, 1] by continuity. By (2.13) with c = c we have
in view of (3.7)

ϕ

(
k + t

pn

)
− ϕ

(
k

pn

)
=

1

pαn
Ck(c)ϕ(t)

and using (3.4) we get∣∣∣∣ϕ(k + t

pn

)
− ϕ

(
k

pn

)∣∣∣∣ ≤ ( t

pn

)α |ϕ(t)|
tα
≤
(
t

pn

)α
K.

In the same way using (2.7) it follows (3.19). �

Proposition 3.5 If |cj| < 1 for j = 0, . . . , p − 1 then for arbitrary x, y ∈ [0, 1] the
solution ϕ satisfies the inequality

|ϕ(x)− ϕ(y)| ≤ p1−α(p− 1)

pα − 1
|x− y|α

with α from (3.6).

Proof: For given x, y ∈ [0, 1] with h = y − x > 0 we assume that

1

pn
≤ h <

1

pn−1
.

Let be k = [pnx] and tµ = k+µ
pn

(µ = 0, 1, . . . ). Then we have

t0 ≤ x < t1 < . . . < tm < y ≤ tm+1

where 1 ≤ m ≤ p − 1 since t1 = k+1
pn
≤ x + 1

pn
≤ x + h = y and tp+1 = k+p+1

pn
> x + 1

pn−1 >

x+ h = y. We use

|ϕ(y)− ϕ(x)| ≤ |ϕ(t1)− ϕ(x)|+ |ϕ(y)− ϕ(tm)|+
m−1∑
µ=2

|ϕ(tµ+1)− ϕ(tµ)|.

We denote a1 = t1 − x, ak = tk − tk−1 for k = 2, . . . ,m − 1, and am = y − tm then
a1 + . . .+ am = y − x and by Lemma 3.4

|ϕ(y)− ϕ(x)| ≤ K∗aα1 +K

m∑
µ=2

aαµ ≤ Kmax (aα1 + . . .+ aαm)

with Kmax := max {K,K∗}. According to (3.8) the function t 7→ tα is concave and applying
Jensen’s inequality

aα1 + . . .+ aαm
m

≤
(
a1 + . . .+ am

m

)α
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we find in view of m ≤ p and (3.8)

|ϕ(y)− ϕ(x)| ≤ Kmaxm
1−α(y − x)α ≤ Kmax p

1−α(y − x)α.

Finally, from (3.9) and (3.17) we get

Kmax p
1−α ≤ p1−α

p− 1

pα − 1

and the proposition is proved. �

Now we know that ϕ is Hölder continuous with exponent α from (3.6). Next we show that
α is the optimal Hölder exponent and we determine also the optimal Hölder coefficient.

Theorem 3.6 If |cj| < 1 for j = 0, . . . , p− 1 then the solution ϕ of the equation (1.2) is
Hölder continuous with the optimal Hölder exponent α from (3.6), i.e.

α = min
{
− logp |c0|, . . . ,− logp |cp−1|

}
where 0 < α < 1, cf. (3.8), and the optimal Hölder coefficient

A := sup
k,`

1

kα

∣∣∣∣∣
k−1∑
j=0

C`+j(c)

∣∣∣∣∣ (3.20)

which satisfies

1 ≤ A ≤ p1−α(p− 1)

pα − 1
, (3.21)

i.e. we have
|ϕ(x)− ϕ(y)| ≤ A |x− y|α (3.22)

for arbitrary x, y ∈ [0, 1].

Proof: 1. First we show (3.22) with α from (3.6) and A from (3.20). For y = `
pn

and
x = y + k

pn
with 0 ≤ ` < k + ` ≤ pn the representation (2.13) with c = c implies

ϕ(x)− ϕ(y)

(x− y)α
=
ϕ(k+`

pn
)− ϕ( `

pn
)

( k
pn

)α
=

1

kα

k+`−1∑
j=`

Cj(c)

in view of (3.7). Hence, we get (3.22) for p-adic rational x, y ∈ [0, 1] where A is finite by
Proposition 3.5. Continuity of ϕ implies that (3.22) is valid for all x and y in [0, 1].

2. We show that α is the optimal Hölder exponent. Assume that ϕ is Hölder continuous
with an exponent β > α, i.e. for all x, y ∈ [0, 1] we have

|ϕ(x)− ϕ(y)| ≤ B|x− y|β (3.23)
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with a certain constant B.

From (1.5) we get for k = 0, 1, . . . , p− 1 by induction on n that

ϕ

(
k(pn − 1) + t(p− 1)

pn(p− 1)

)
= bk

n−1∑
ν=0

cνk + cnkϕ(t) (0 ≤ t ≤ 1).

Putting t = 0 and t = 1 we get in view of ϕ(0) = 0 and ϕ(1) = 1 that

ϕ

(
k(pn − 1) + p− 1

pn(p− 1)

)
− ϕ

(
k(pn − 1)

pn(p− 1)

)
= cnk . (3.24)

Now we choose k ∈ {0, 1, . . . , p−1} such that |ck| = c, cf. (3.3). In (3.24) we put y = k(pn−1)
pn(p−1) ,

x = y + 1
pn

and obtain in view of x− y = 1
pn
, |ck| = c and (3.6) that

|ϕ(x)− ϕ(y)| = (x− y)α.

According to (3.23) we get (
1

pn

)α
≤ B

(
1

pn

)β
,

i.e. pn(β−α) ≤ B, which yields a contradiction for large n. Hence, α is the optimal Hölder
exponent and it follows that A from (3.20) is the optimal Hölder coefficient. The estimate
A ≥ 1 follows from (3.22) with x = 0, y = 1 in view of ϕ(0) = 0, ϕ(1) = 1. The above
estimate of A follows from Proposition 3.5. �

Remark 3.7 Note that in limit case α = 1 we get A = 1 in accordance with ϕ(x) = x for
0 ≤ x ≤ 1.

A detail discussion of the Hölder continuity of de Rham’s function and of solutions of certain
two-scale difference equations you can find in [2, Section 2 and Section 5.2]. In [11, Propo-
sition 10.1] it was shown the Hölder continuity of Cantor’s function with optimal exponent
α = log 2

log 3
and coefficient A = 1.

4 Differentiability

As before we exclude the case cj = 1
p
for all j ∈ {0, 1, . . . , p − 1} where ϕ(x) = x for

0 ≤ x ≤ 1. First we give a general statement on the differentiability.

4.1 General statements

We start with the following simple lemma, cf. [15].
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Lemma 4.1 Let f : [0, 1] 7→ R have a finite right-hand derivative f ′+(x0) at the point
x0 ∈ [0, 1). If (un) and (vn) are sequences in [0, 1] such that x0 < un < vn, vn → x0 and
un − x0 ≤ L(vn − un) with a constant L then

f(vn)− f(un)

vn − un
→ f ′+(x0) (n→∞).

Proposition 4.2 If the solution ϕ of (1.2) is differentiable at x0 then ϕ′(x0) = 0.

Proof: Assume, at x0 ∈ [0, 1) there exists the finite derivative ϕ′(x0) 6= 0. For n ∈ N and
k = 0, 1, . . . , pn − 1 we put xk,n = k

pn
and Na,b = {k ∈ N : a ≤ k ≤ b}. If xk′,n ≤ x0 < xk′+1,n

then for each k ∈ Nk′+1,k′+2p−1 we put uk,n = xk,n and vk,n = xk+1,n so that x0 < uk,n < vk,n

and uk,n − x0 ≤ p(vk,n − uk,n). Applying (2.10) with t = 1 we get

ϕ(vk,n)− ϕ(uk,n)

vk,n − uk,n
= pncn0Ck

just as
ϕ(vk+1,n)− ϕ(uk+1,n)

vk+1,n − uk+1,n

= pncn0Ck+1.

In view of ϕ′+(x0) 6= 0 it follows by Lemma 4.1 that for k ∈ Nk′+1,k′+p we have
Ck+1

Ck
→ 1 (n→∞).

The set Nk′+1,k′+2p−1 contains a section of the form Nd,d+p−2 with d = pk0 < k′ + p. For
k ∈ Nd,d+p−2, i.e. k = pk0 + j with j = 0, 1, . . . , p − 2 we have by (2.3) with c = c0 that
Ck = Cpk0+j =

cj
c0
Ck0 and it follows

cj+1

cj
→ 1 (n→∞),

i.e. cj+1 = cj. So by (1.3) it follows cj = 1
p
for j = 0, . . . , p− 1. �

Proposition 4.3 The set E of points x ∈ [0, 1] where ϕ is differentiable has the Lebesgue
measure 0 or 1.

Proof: The set E is Lebesgue measurable with the measure |E|. We show that E is
homogeneous, that means for each nonempty interval [a, b] in [0, 1] we have |E ∩ [a, b]| =

(b− a)|E|. Equation (2.10) with c = c0, Ck = Ck(c0) implies
1

pn
ϕ′
(
k + t

pn

)
= cn0Ckϕ

′(t) (t ∈ E).

Put Ek,n := E ∩ [ k
pn
, k+1
pn

] we have |Ek,n| = |Ek′,n| (0 ≤ k, k′ < pn) and hence

E =

pn−1⋃
k=0

Ek,n

implies |Ek,n| = 1
pn
|E|. It follows |E ∩ [a, b]| = (b− a)|E| for each interval [a, b] ⊂ [0, 1] and

hence |E| = 0 or |E| = 1 by a theorem of Lebesgue. �
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4.2 Special difference quotients

Now, for given x ∈ [0, 1] we investigate the special difference quotients

∆n(x) :=
ϕ(k+1

pn
)− ϕ( k

pn
)

1/pn
(4.1)

with k = [pnx], i.e.
k

pn
≤ x <

k + 1

pn
. (4.2)

Applying (2.10) with c = c0 and t = 1 we get in view of ϕ(1) = 1

∆n(x) = pncn0Ck. (4.3)

In order to get a suitable representation for Ck we need a mean value M . For λj ∈ [0, 1]

with λ0 + · · ·+ λp−1 = 1 we introduce the mean value M = M(λ0, . . . , λp−1) by

M :=

p−1∏
j=0

|cj|λj . (4.4)

Lemma 4.4 Let x ∈ [0, 1] and n ∈ N. Then for Ck = Ck(c0) from (2.5) with k = [pnx]

we have

Ck =
1

cn0

p−1∏
j=0

c
sj(k)
j (4.5)

with
s0(k) + s1(k) + . . .+ cp−1(k) = n (4.6)

where sj(k) is the number of the digit j in the p-adic representation of k. Further

|Ck|1/n =
1

|c0|
en(x)M(λ0, . . . , λp−1) (4.7)

where

en(x) :=

p−1∏
j=0

|cj|εj(n) (4.8)

with εj(n) = 1
n
sj(k)− λj .

Proof: If x = 0, ξ1ξ2 . . . is the p-adic expansion of x then k = k(n) = [pnx] has the form
k = ξn + ξn−1p+ . . .+ ξ1p

n−1. So s0(k) + . . .+ sp−1(k) = n and by (2.5) we get

Ck =

p−1∏
j=0

(
cj
c0

)sj(k)
=

1

cn0

p−1∏
j=0

c
sj(k)
j ,

i.e. (4.5) is proved. Formula (4.7) with (4.8) is a simple consequence of (4.5). �
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Lemma 4.5 Let x ∈ [0, 1] and n ∈ N. Then for ∆n(x) from (4.1) we have

|∆n(x)| =
p−1∏
j=0

a
sj(k)
j

with aj = p |cj| so that a0a1 . . . ap−1 = 1.

Proof: Formulas (4.3) and (4.5) imply

∆n(x) = pn
p−1∏
j=0

c
sj(k)
j .

In view of (4.6) it follows

∆n(x) =

p−1∏
j=0

(p cj)
sj(k)

which proved the assertion. �

Next we consider special sets of real numbers, cf. [13, Chapter 10]. Let x = 0, ξ1ξ2 . . . be
the representation of a number x ∈ (0, 1) to the base p and dj(x|n) the total number of
occurrence of the digit j ∈ {0, 1, . . . , p− 1} in the first n places 0, ξ1 . . . ξn−1. That means

dj(x|n) = sj(k) (4.9)

where k = [pnx]. For λj ∈ [0, 1] with λ0 + . . .+ λp−1 = 1 let F = F (λ0, . . . , λp−1) be the set

F :=

{
x ∈ [0, 1] : lim

n→∞

1

n
dj(x|n) = λj ∀ j = 0, 1, . . . , p− 1

}
. (4.10)

It is known that F has the Hausdorff dimension

dimHF = − 1

log p

p−1∑
j=0

λj log λj (4.11)

with the convention 0 log 0 = 0, cf. [13]. Further, the numbers x ∈ F (p−1, . . . , p−1) are called
normal numbers with respect to the base p and Borel’s normal number theorem says that
F (p−1, . . . , p−1) is a set of Lebesgue measure 1.

The following proposition is the basis for the investigation of ϕ concerning the differentia-
bility.

Proposition 4.6 For x ∈ F (λ0, . . . , λp−1) we have

lim
n→∞

|∆n(x)|1/n = pM(λ0, . . . , λp−1) (4.12)

with M from (4.4).
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Proof: By Lemma 4.4 and (4.3) we get

|∆n(x)|1/n = p en(x)M(λ0, . . . , λp−1).

Using (4.9) for x ∈ F (λ0, . . . , λp−1) we have 1
n
sj(k) = 1

n
dj(x|n) → λj as n → ∞. Hence

en(x)→ 1 as n→∞ and it follows the assertion. �

4.3 The case pM < 1

We need further lemmata.

Lemma 4.7 Let be x ∈ F (λ0, . . . , λp−1) with the p-adic expansion x = 0, ξ1ξ2 . . . where
ξn−j = p− 1 for j = 1, 2, . . . , rn. If λp−1 < 1 then rn

n
→ 0 as n→∞.

Proof: For x ∈ F we have 1
n−rndp−1(x|n−rn)→ λp−1 and 1

n
dp−1(x|n)→ λp−1 as n→∞. By

supposition we have dp−1(x|n) = dp−1(x|n−rn) + rn and hence

1

n
dp−1(x|n) =

n− rn
n

1

n− rn
dp−1(x|n−rn) +

rn
n
.

Certainly 0 ≤ rn
n
≤ 1, i.e. the sequence rn

n
is bounded. If s is the limit of a convergent

subsequence then in view of (4.10) it follows λp−1 = (1− s)λp−1 + s, i.e (1− λp−1)s = 0 and
hence s = 0 since λp−1 < 1. So rn

n
→ 0 as n→∞. �

Lemma 4.8 Let be x ∈ F (λ0, . . . , λp−1) with λp−1 < 1 and k = k(n) = [pnx] then for
µ = 0, 1, . . . , p we have

lim
n→∞

∣∣∣∣Ck(n)+µCk(n)

∣∣∣∣1/n = 1

with Ck = Ck(c0) from (2.5).

Proof: Let be x = 0, ξ1ξ2 . . . the p-dic expansion of x then k = k(n) = [pnx] has the form
k = ξn + ξn−1p + . . . + ξ1p

n−1. For µ ≥ 0 with ξn−1 ≤ ξn−1 + µ < p we have k + µ =

(ξn + µ) + ξn−1p+ . . .+ ξ1p
n−1 and by (2.5) it holds

Ck+µ = Ck
Cξn+µ
Cξn

.

Now we consider µ ∈ {1, . . . , p} with p ≤ ξn−1 + µ ≤ 2p − 1. If ξn−1 < p − 1 then we have
k + µ = (ξn + µ− p) + (ξn−1 + 1)p+ ξn−2p

2 + . . .+ ξ1p
n−1 and by (2.5) it holds

Ck+µ = Ck
Cξn+µ−p
Cξn

Cξn−1+1

Cξn−1

.
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If ξn−j = p− 1 for j = 1, . . . , nr and ξn−nr−1 < p− 1 then k has the representation

k = ξn + (p− 1)p+ . . .+ (p− 1)prn + ξn−nr−1p
rn+1 + . . .+ ξ1p

n−1

and we have
k + µ = (ξn + µ− p) + (ξn−rn−1 + 1)prn+1 + . . .+ ξ1p

n−1 .

According to (2.5) we get

Ck+µ = Ck
Cξn+µ−p
Cξn

(
Cp−1
C0

)rn Cξn−rn−1+1

Cξn−rn
.

Put C = max {|Ci|/|Cj|} (i, j = 0, 1, . . . , p− 1) then we get

1

Crn+2
≤
∣∣∣∣Ck+µCk

∣∣∣∣ ≤ Crn+2

and in view of Lemma 4.7 it follows the assertion. �

Proposition 4.9 If pM(λ0, . . . , λp−1) < 1 where λp−1 < 1 then the solution ϕ of (1.2)

is differentiable at each point x ∈ F (λ0, . . . , λp−1) with ϕ′(x) = 0.

Proof: Choose ε > 0 so that

q := (1 + ε)3 pM(λ0, . . . , λp−1) < 1.

For fixed x ∈ F (λ0, . . . , λp−1) it holds en(x) → 1 as n → ∞, cf. (4.8), (4.10) and (4.9).
Hence there is a number n0 such that for n ≥ n0 we have

en(x) < 1 + ε, (4.13)

K1/n < 1 + ε (4.14)

with K = max |ϕ(t)| for 0 ≤ t ≤ 1 and by Lemma 4.8

|Ck+µ|1/n < (1 + ε)|Ck|1/n (4.15)

where k = [pnx]. Now, let y = x+ h < 1 with h > 0 (the case h < 0 is analogous) and

1

pn
≤ h <

1

pn−1

with n ≥ n0. Note that h → 0 is equivalent to n → ∞. Put tµ = k+µ
pn

(µ = 0, 1, . . .)
then we have t0 < x < t1 < . . . < tm < x + h ≤ tm+1 where 1 ≤ m ≤ p − 1 since
t1 = k+1

pn
≤ x+ 1

pn
≤ x+ h and tp+1 = k+p+1

pn
> x+ 1

pn−1 > x+ h. We use

|ϕ(x+ h)− ϕ(x)| ≤ |ϕ(x+ h)− ϕ(tm)|+ |ϕ(t1)− ϕ(x)|+
m−1∑
µ=1

|ϕ(tµ+1)− ϕ(tµ)|.



78 M. Krüppel

Put x = k+1−t
pn

with suitable 0 ≤ t < 1 then by (2.10) (with a = c0, Ck = Ck(c0)) we have

ϕ(x)− ϕ(t1) = cn0Ck+1ϕ(1− t)

and hence
|ϕ(t1)− ϕ(x)|

h
=

1

h
|c0|n|Ck+1||ϕ(1− t)| ≤ pn|c0|n|Ck+1|K

where K = max |ϕ|. Applying Lemma 4.4 we get

p|c0||Ck+1|1/nK1/n = p|c0||Ck|1/n
∣∣∣∣Ck+1

Ck

∣∣∣∣1/nK1/n = pMen(x)

∣∣∣∣Ck+1

Ck

∣∣∣∣1/nK1/n

and using (4.13), (4.14) and (4.15) it follows

p|c0||Ck+1|1/nK1/n < (1 + ε)3pM = q

so that
|ϕ(x)− ϕ(t1)|

h
< qn. (4.16)

Since tm < x+ h ≤ tm+1 we have x+ h = k+m+τ
pn

with suitable 0 < τ ≤ 1 and by (2.10)

ϕ(x+ h)− ϕ(tm) = cn0Ck+mϕ(τ).

Therefore
|ϕ(x+ h)− ϕ(tm)|

h
≤ 1

h
|c0|n|Ck+m|K ≤ pn|c0|n|Ck+m|K < qn (4.17)

where we have again used (4.13), (4.14) and (4.15).

Moreover, by (2.10) it holds

ϕ(tµ+1)− ϕ(tµ) = c0Ck+µ

and hence again

|ϕ(tµ+1)− ϕ(tµ)|
h

=
1

h
|c0|n|Ck+µ| ≤ pn|c0|n|Ck+µ| < qn. (4.18)

Form (4.16), (4.17) and (4.18) it follows in view of m ≤ p− 1

|ϕ(x+ h)− ϕ(x)|
h

< (p+ 1)qn.

This implies ϕ′+(x) = 0. In the same way ϕ′−(x) = 0. �
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4.4 The case pM = 1

We investigate ∆n(x) from (4.1) under the condition

p |c0c1 · · · cp−1|1/p = 1. (4.19)

The following proof due to A. Meister (personal communication).

Lemma 4.10 Assume that it holds (4.19) and that aj = p|cj| for j = 0, 1, . . . , p − 1. If
not a0 = a1 = . . . = ap−1 = 1 then the set of x with the property ∆n(x)→ 0 as n→∞ has
the measure zero.

Proof: Let x = 0, ξ1ξ2 . . . where the digits ξj are independent and identically distributed
on the discrete set {0, 1, . . . , p− 1}. Since

dj(x|n) =
n∑
k=1

χj(ξk)

we have by Lemma 4.5 and (4.9)

log |∆n(x)| =
n∑
k=1

p−1∑
j=0

χj(ξk) log aj =
n∑
k=1

log aξk

where log aξk are independent and identically distributed. Moreover,

E(log aξk) =

p−1∑
j=0

1

p
log aj =

1

p
log

(
p−1∏
j=0

aj

)
= 0

since by (4.19) we have a0a1 · · · ap−1 = 1, and it is

σ2 = E(log2 aξk) =

p−1∑
j=0

1

p
(log2 aj) > 0

since not all aj are equal to 1. The law of iterated logarithm says

lim sup
n→∞

log |∆n(x)|√
2σ2n log log n

= +1 (a.s.)

and
lim inf
n→∞

log |∆n(x)|√
2σ2n log log n

= −1 (a.s.).

This implies the assertion. �
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4.5 On the differentiability of the solution

After the foregoing preparations we are able to give the main results concerning differentia-
bility of the solution ϕ of (1.2). As already mentioned in the Introduction we again exclude
the trivial case cj = 1

p
for all j = 0, 1, . . . , p− 1.

Theorem 4.11 The solution ϕ of (1.2) has the property:

1. If min |cj| ≥ 1
p
then ϕ is nowhere differentiable in [0, 1].

2. If min |cj| < 1
p
then both sets, where ϕ is differentiable and where ϕ does not have a finite

derivative, have positive Hausdorff dimension.

Proof: 1. If |cj| ≥ 1
p
for all j = 0, 1, . . . , p− 1 then aj = p |cj| ≥ 1 and for each x ∈ [0, 1] we

have by Lemma 4.5 that |∆n(x)| ≥ 1 for all n ∈ N. So ϕ is not differentiable at x according
to Proposition 4.2.

2. If min |cj| < 1
p
then in view of (1.3) there are indices k and ` such that |ck| < 1

p
and

|c`| > 1
p
. For the mean value (4.4) we have M(λ0, . . . , λp−1) = |ck| < 1

p
if λk = 1 and

λj = 0 for j 6= k. Hence, there exist such λ′j > 0 (with λ′k nearly by 1 and λ′p−1 < 1) that
pM(λ′0, . . . , λ

′
p−1) < 1. By Proposition 4.9 we have ϕ′(x) = 0 for x ∈ F (λ′0, . . . , λ

′
p−1) and by

(4.11) this set F has positive Hausdorff dimension. Moreover, M(λ0, . . . , λp−1) = |c`| > 1
p
if

λ` = 1 and λj = 0 for j 6= `, so that there are λ′′j > 0 such that pM(λ′′0, . . . , λ
′′
p−1) > 1. For

x ∈ F (λ′′0, . . . , λ
′′
p−1) it fails ∆n(x)→ 0 by Proposition 4.6 so that ϕ is not differentiable at x

according to Proposition 4.2, and by (4.11) also this set F has positive Hausdorff dimension.
�

Theorem 4.12 The solution ϕ of (1.2) has in [0, 1] the property:

1. If p |c0c1 · · · cp−1|1/p < 1 then ϕ′(x) = 0 almost everywhere.

2. If p |c0c1 · · · cp−1|1/p ≥ 1 then ϕ is almost nowhere differentiable.

Proof: We consider x ∈ F (p−1, . . . , p−1) and remember that this set has the Lebesgue
measure 1 by Borel’s normal number theorem.

1. If p |c0c1 · · · cp−1|1/p < 1 then by Proposition 4.9 we have ϕ′(x) = 0 for each x ∈
F (p−1, . . . , p−1).

2.1. If p |c0c1 · · · cp−1|1/p = 1 then by Proposition 4.10 the set of all x ∈ F (p−1, . . . , p−1)

with lim sup |∆n(x)| > 0 has the measure 1. For all these x the derivative does not exist
according to Proposition 4.2.

2.2. If p |c0c1 · · · cp−1|1/p > 1 then for each x ∈ F (p−1, . . . , p−1) we have according to
Proposition 4.6 that |∆n(x)| → ∞ as n→∞ and hence the derivative does not exist owing
to Proposition 4.2. �
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Remark 4.13 1. Note that Proposition 4.3 is a consequence of Theorem 4.12.

2. Assume that ϕ is an increasing solution of (1.2) but not ϕ(x) = x for all x ∈ [0, 1]. Then
by Proposition 2.5 together with Proposition 2.6 we have cj ≥ 0 for all j = 0, 1, . . . , p − 1

but not cj = 1
p
for all j and in view of (1.3)

(c0c1 · · · cp−1)1/p <
c0 + c1 + . . .+ cp−1

p
=

1

p

so that ϕ′(x) = 0 almost everywhere by Theorem 4.12. So for an increasing solution ϕ of
(1.2) we have besides of ϕ(x) = x for x ∈ [0, 1] that ϕ′(x) = 0 almost everywhere.

5 Singular solutions

A nonconstant ϕ : [0, 1] 7→ [0, 1] is called (strictly) singular, if it is continuous and (strictly)
increasing with ϕ′(x) = 0 almost everywhere. We remember that in case cj = 1

p
for j ∈

{0, 1, . . . , p − 1} the solution ϕ of (1.2) reads ϕ(x) = x for 0 ≤ x ≤ 1 and that we exclude
this trivial case. As already mentioned in Remark 3.3.1 we use the parameter c = c0 and
write short Ck for Ck(c0).

From Proposition 2.5 and Proposition 4.2 we get

Proposition 5.1 If cj ≥ 0 for all j = 0, 1, . . . , p − 1 then the solution ϕ of (1.2) is a
singular function and if cj > 0 for all j then it is strictly singular.

Lemma 5.2 If ϕ is a solution of equation (1.2) satisfying (1.4) then ϕ cannot vanish in
a neighborhood of x = 0.

Proof: Assume that ϕ(x) = 0 for x < ε0 where ε0 > 0. In view of

ϕ

(
x

p

)
= c0ϕ(x) (0 ≤ x ≤ 1)

and c0 6= 0 implies ϕ(x) = 0 for x < p ε0. In view of p > 1 it follows ε0 = 0 since ϕ(x) = 1

for x > 1. �

Proposition 5.3 Let be 0 ≤ cj < 1 with min cj = 0. Then the solution ϕ of (1.2) is
constant on the components (ai, bi) of an open set G with Lebesgue measure |G| = 1. The
endpoints ai and bi are of the form k

pn
where we have:

· k
pn

= ai ⇐⇒ Ck−1 6= 0, Ck = 0,

· k
pn

= bi ⇐⇒ Ck−1 = 0, Ck 6= 0,

· k
pn
∈ G ⇐⇒ Ck−1 = 0, Ck = 0.
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Proof: Assume that ck0 = 0 where 1 ≤ k0 ≤ p− 2. From (1.5) it follows that ϕ is constant
on the interval

Ik0 =

(
k0
p
,
k0 + 1

p

)
.

By repeated application of (1.5) we see that ϕ is constant on the intervals

Ik1,k0 =

(
k1
p

+
k0
p2
,
k1
p

+
k0 + 1

p2

)
where k1 6= k0, 0 ≤ k1 ≤ p− 1, and in general

Ikn−1,...,k0 =

(
kn−1
p

+ . . .+
k1
pn−1

+
k0
pn
,
kn−1
p

+ . . .+
k1
pn−1

+
k0 + 1

pn

)
,

where kν 6= k0 and 0 ≤ kν ≤ p− 1 for ν > 0. Obviously, Ikn−1,...,k0 has the Lebesgue measure
|Ikn−1,...,k0| = 1

pn
. These intervals are pairwise different and hence the union G0 has the

Lebesgue measure

|G0| =
∞∑
n=1

(p− 1)n−1

pn
=

1

p(1− p−1
p

)
= 1.

The left endpoint of Ikn−1,...,k0 has the form k
pn

with

k = kn−1p
n−1 + kn−2p

n−2 + . . .+ k1p+ k0

so that ck0 = 0 implies Ck = 0, cf. (2.3). It follows from (2.10) that

ϕ

(
k + t

pn

)
= ϕ

(
k

pn

)
(0 ≤ t ≤ 1),

i.e. ϕ is constant on Ikn−1,...,k0 . If G is an open set such that ϕ is constant on each component
(ai, bi) of G then G0 ⊆ G ⊆ [0, 1] and hence |G| = 1 too.

Now let (ai, bi) be a maximal interval where ϕ is constant. Choose n so large that bi−ai > 2
pn

then there is an integer k such that

k − 1

pn
< ai ≤

k

pn
(5.1)

and k+1
pn

< bi, i.e. ϕ is constant on [ k
pn
, k+1
pn

].

We show that ai = k
pn

and that Ck−1 6= 0, Ck = 0. By Lemma 5.2 ϕ(x) cannot vanish in a
neighborhood of x = 0 which is true also for ϕ∗(x) = 1− ϕ(1− x) since cp−1 > 0. Therefore
in view of (5.1) equation (2.12) implies that ϕ is not constant in a neighborhood of k

pn
which

implies ai = k
pn

and Ck−1 6= 0. Moreover, equation (2.10) for t = 1 yields

ϕ

(
k + 1

pn

)
= ϕ

(
k

pn

)
+ cn0Ck
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and hence cn0Ck = 0 must be. It follows Ck = 0 since c0 > 0.

Conversely, let be Ck = 0 and Ck−1 6= 0. Then equation (2.10) implies

ϕ

(
k + t

pn

)
= ϕ

(
k

pn

)
(0 ≤ t ≤ 1),

i.e. ϕ is constant on [ k
pn
, k+1
pn

]. Moreover, equation (2.12) implies that ϕ is not constant in a
neighborhood of k

pn
so that it is a left endpoint ai of an interval of constancy. In the same

manner the another assertions can be proved. �

In case 0 ≤ cj < 1 and min cj = 0 equation (1.2) can be written in the form

ϕ

(
x

p

)
=

q−1∑
n=0

cγnϕ(x− γn) (x ∈ R) (5.2)

where q is an integer with 1 ≤ q ≤ p − 1 and where γn are nonnegative integers with
0 = γ0 < γ1 < · · · < γq−1 = p − 1. The characteristic polynomial of equation (5.2) reads
P (z) = c0 + cγ1z

γ1 + · · ·+ cp−1z
p−1 and (2.6) has the form

G(z) =
∞∏
j=0

1

c0
P (zp

j

) =
∞∑
n=0

Cγnz
γn (5.3)

with strictly increasing integers γn where it holds with εµ ∈ {0, 1, . . . , q − 1}:

n =
m−1∑
µ=0

εµq
µ =⇒ γn =

m−1∑
µ=0

γεµp
µ. (5.4)

In particular, if n =
m−1∑
µ=0

(q − 1)qµ = qm − 1 then γn =
m−1∑
µ=0

(p− 1)pµ = pm − 1 and

γqn+r = pγn + γr (r ∈ {0, 1, . . . , q − 1}). (5.5)

Theorem 5.4 The open intervals Jm,n ⊆ [0, 1] where the solution ϕ of (5.2) is constant
have the form

Jm,n =

(
γm−1 + 1

pn
,
γm
pn

)
(n = 1, 2, . . . , m = 1, 2, . . . , qn − 1) (5.6)

provided that γm−1 + 1 < γm.

Proof: We apply Proposition 5.3. If (ai, bi) is a maximal interval of constancy then by
Proposition 5.3 and the definition of γn we have ai = γk+1

pn
and bi = γm

pn
with suitable k, m.

Since the sequence γn is strictly increasing it follows k = m − 1, i.e. (ai, bi) = Jm,n from
(5.11) with the given indices there. �
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Remark 5.5 1. Observe that Jqm,n+1 = Jm,n since in view of (5.5) we have for the left
endpoint

γqm−1 + 1 = γq(m−1)+q−1 + 1 = pγm−1 + γq−1 + 1 = p(γm−1 + 1)

where we have used γq−1 = p−1, and for the right endpoint γqm = pγm. So we can see again
that the nonempty intervals Jm,n coincide or they are disjoint.

2. Note that

qn−1∑
m=1

|Jm,n| =
qn−1∑
m=1

γm − γm−1 − 1

pn
=
γqn−1 − γ0 − qn

pn
=
pn − 1− qn

pn
→ 1

as n→∞.

Example 5.6 (Cantor’s function.) We know that Cantor’s function ϕ is the to [0,1] re-
stricted solution of (1.2) with c0 = 1

2
, c1 = 0, c1 = 1

2
, i.e.

ϕ
(x

3

)
=

1

2
ϕ(x) +

1

2
ϕ(x− 2) (x ∈ R)

satisfying (1.4). Here P (z) = (1 + z2)/2 and the generating function (2.6) reads

G(z) =
∞∏
j=0

(
1 + z2·3

j
)

=
∞∑
k=0

Ckz
k (5.7)

where Ck = 0 if the triadic representation of k contains the digit 1, elsewhere Ck = 1. Hence,
G can be written as

G(z) =
∞∑
n=0

zγn = 1 + z2 + z6 + z8 + z18 + z20 + z24 + z26 + . . . (5.8)

with strictly increasing exponents γ0 = 0, γ1 = 2, γ2 = 6, γ3 = 8 and so on. It holds with
εµ ∈ {0, 1}:

n =
m−1∑
µ=0

εµ2µ =⇒ γn = 2
m−1∑
µ=0

εµ3µ (5.9)

and it is easy to see that

γk−1 + γ2n−k = 3n − 1 (n = 1, 2, . . . , k = 1, 2, . . . , 2n). (5.10)

The open intervals Jm,n where Cantors function ϕ is constant have the form

Jm,n =

(
γm−1 + 1

3n
,
γm
3n

)
(n = 1, 2, . . . , m = 1, 2, . . . , 2n − 1) (5.11)

with ϕ(x) = m
2n

for x ∈ Jm,n.



On the Solutions of Two-Scale Difference Equations 85

6 Subadditivity

In this section we investigate the subadditivity of the solution ϕ of (1.2), i.e.

ϕ(x+ y) ≤ ϕ(x) + ϕ(y) (6.1)

for all x, y ∈ R. For this purpose again we consider the sequence Sk(c) from (3.1) with c = c

from (3.3).

Lemma 6.1 Assume that cj ≥ 0 for all j = 0, 1, . . . , p− 1 and that for 0 ≤ k, ` < p we
have

Sk(c) + S`(c) ≥

{
Sk+`(c) if k + ` < p

Sk+`−p(c) + Sp(c) if k + ` ≥ p
(6.2)

then for all nonnegative integers k, ` it holds

Sk+`(c) ≤ Sk(c) + S`(c). (6.3)

Proof: First note that by (2.5) we have Cj(c) ≥ 0 for all j ∈ N. We shall prove the
inequality (6.3) for nonnegative integers k, ` < pn by induction with respect to n where as
abbreviation we write Sk in place of Sk(c). For n = 0 the inequality is true by (6.2). Assume
that (6.3) is true for 0 ≤ k, ` < pn. For integers 0 ≤ k, ` < pn+1 we write k = pk′ + i and
` = p`′ + j with 0 ≤ k′, `′ < pn and i, j ∈ {0, 1, . . . , p− 1}. We consider two cases:

1. Let be i+ j < p. Then in view of Lemma 3.1/(iii) we have

Sp(k′+`′)+i+j = SpSk′+`′ + Ck′+`′(c)Si+j

≤ Sp(Sk′ + S`′) + Ck′+`′(c)(Si + Sj)

≤ SpSk′ + SpS`′ + Ck′(c)Si + C`′(c)Sj

= Spk′+i + Sp`′+j

where we have used that (3.4) and that Ck′+`′(c) ≤ min {Ck′(c), C`′(c)} according to (2.5).
So Sk+` ≤ Sk + S`.

2. In case i+ j ≥ p we have 0 ≤ i+ j−p < p−1. Applying Lemma 3.1/(iii) and assumption
of induction we get

Sk′+`′+1 = Sk′+`′ + Ck′+`′(c) ≤ Sk′ + S`′ + Ck′+`′(c)

and

Sp(k′+`′+1)+i+j−p = SpSk′+`′+1 + Ck′+`′+1(c)Si+j−p

≤ Sp{Sk′ + S`′ + Ck′+`′(c)}+ Ck′+`′+1(c)Si+j−p

≤ SpSk′ + SpS`′ + Ck′+`′(c)(Sp + Si+j−p)

≤ SpSk′ + SpS`′ + Ck′+`′(c)(Si + Sj)
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where we have used (6.2) and Ck′+`′+1(c) ≤ Ck′+`′(c) according to (2.5) and (3.4). Hence we
have Sk+` ≤ Sk + S` again. �

Theorem 6.2 If (6.2) is satisfies then the solution ϕ of (1.2) is subadditive, i.e.

ϕ(x+ y) ≤ ϕ(x) + ϕ(y) (x, y ∈ R). (6.4)

Proof: For x = k
pn
, y = `

pn
in [0,1] with x + y ≤ 1 the assertion follows from (3.2) in view

of (6.3), and for arbitrary x, y ∈ [0, 1] with x + y ≤ 1 by continuity of ϕ. Now from (1.4) it
is easy to see that the inequality is true for all x, y ∈ R. �

Example 6.3 (De Rham’s function) We know that de Rham’s function ϕ is the to [0,1]
restricted solution ϕ of (1.2) with c0 = a, c1 = 1− a, a ∈ (0, 1), i.e.

ϕ
(x

2

)
= aϕ(x) + (1− a)ϕ(x− 1) (x ∈ R)

satisfying (1.4), cf. Example 2.4. For 0 < a < 1
2
de Rham’s function ϕ fails to be subadditive

since 2ϕ(1
2
) = 2a < 1 = ϕ(1). In case 1

2
≤ a < 1 we have c = max {a, 1 − a} = a and

Ck = Ck(a) = qs(k) with q = 1−a
a
, where s(k) denotes the number of ones in the dyadic

representation of k, i.e. C0 = 1, C1 = q, C2 = q, C3 = q2, C4 = q, C5 = q2 and for
Sk = Sk(a) we have S1 = 1, S2 = 1 + q, S3 = 1 + 2q, S4 = 1 + 2q + q2, S5 = 1 + 3q + q2. So
inequality (6.2) is satisfies if 0 < q ≤ 1, i.e. 1

2
≤ a < 1 and for these a we have (6.3), cf. [2,

Lemma 2.2]. Hence, for 1
2
≤ a < 1 the extended de Rham function is subadditive owing to

Theorem 6.2.

Finally we consider once more two-scale difference equation (1.13).

Example 6.4 (Equation (1.13)) For 0 < a < 1 let ϕ be the continuous solution of

ϕ
(x

3

)
= aϕ(x) + (1− 2a)ϕ(x− 1) + aϕ(x− 2) (x ∈ R)

satisfying (1.4). For 0 < a ≤ 1
2
the coefficients are nonnegative. In case 0 < a < 1

3
the

solution ϕ fails to be subadditive since ϕ(2
3
) = 1 − a > 2a = 2ϕ(1

3
). In case 1

3
≤ a ≤ 1

2
we

have c = max {a, 1− 2a, a} = a and Ck = Ck(a) = %s1(k) with % = 1−2a
a

, where s1(k) denotes
the number of ones in the triadic representation of k. So C0 = 1, C1 = %, C2 = 1, C3 = %,
C4 = %2, C5 = %, C6 = 1 and for Sk = Sk(a) we have S1 = 1, S2 = 1 + %, S3 = 2 + %,
S4 = 2 + 2%, S5 = 2 + 2%+ %2. Inequality (6.2) is satisfies if % ≥ 0 (from S2 ≤ S1 + S1) and
if % ≤ 1 (from S2 + S2 ≥ S1 + S3). So for 1

3
≤ a ≤ 1

2
it holds (6.3), and the solution ϕ of

(1.13) is subadditive according to Theorem 6.2. In particular, Cantor’s function (a = 1
2
) is

subadditive, cf. also [22, Section 3.2.4], [10].
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