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On the Solutions of Two-Scale Difference Equations

ABSTRACT. This paper deals with specific two-scale difference equations which are equiv-
alent to a system of functional equations. Such equations have a continuous solution if the
coefficients ¢; of the corresponding characteristic polynomial P satisfy condition |¢;| < 1
for all j. By means of some functional relations for the solution we show that it is Holder
continuous and we determine the optimal Holder exponent. Moreover we give a condition
which is necessary and sufficient for the differentiability almost everywhere where we apply
Borel’s normal number theorem. If the coefficients c; are nonnegative then the solution is
a singular function. Special cases are the well-known singular functions of de Rham and of

Cantor.

1 Introduction

A two-scale difference equation (dilation equation) is a functional equation of the form

—_

p—

0 (5) =D cele - ) (L.1)

<
I
o

with dilation parameter d > 1 and complex coefficients c¢; where cyc,—1 # 0, p > 2. Such
equations especially with d = 2 appear in wavelet theory and in subdivision schemes where

nontrivial compactly supported Lebesgue-integrable solutions are demanded, cf. [5], [7], [3],
[].

In this paper we consider the two-scale difference equation (1.1) with d = p, that means
x G
((2)=Topta-i) @em (12)
p =0

under the condition

d =1 (1.3)
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and we are interested to solutions ¢ which satisfy the boundary conditions
e(x)=0 for z <0, px)=1 for z>1. (1.4)

It is easy to see that under these conditions equation (1.2) with (1.3) can be written as
system of functional equations. Replacing z in (1.2) by k + = with k € {0,1,...,p— 1} and

z € [0,1] we get in view of (1.4) the following system of equations

w(k;x)=m+cw@) 0<z<) (15)

with
k—1
b= ¢ (1.6)
§=0

k=0,1,...,p— 1, cf. [18]. Such systems of equations are intensively investigated by R.
Girgensohn, see [11], [15], [16]. If |¢;| < 1 forall j =0,1,...,p— 1 then there exists exactly
one bounded ¢ : [0,1] — R which satisfies (1.5) with (1.6) and (1.3). This function ¢ is

continuous and given in terms of the p-adic expansion of x by

o) oo n—1
¢ (Z %) = e, [] e (1.7)
n=1 p n=0 k=1

cf. [11], see also |18, Theorem 2|. In particular, ¢(0) = 0 and ¢(1) = 1 so that ¢ can be
extended by (1.4) to z € R, and this extended function is a continuous solution of (1.2) and
satisfies (1.4). In this sense the two-scale difference equation (1.2) with (1.3) is equivalent
to the system of equations (1.5) with (1.6) and (1.3).

The polynomial

P(z) = ;2 (1.8)

with P(0) # 0 and P(1) = 1 is called the characteristic polynomial of the equation (1.2).

Simple examples are the extended functions of de Rham and of Cantor.

1. (De Rham’s function) In case P(z) = a+ (1 — a)z with a € (0,1) equation (1.2) reads

¢ (3) =@ +1-ape—1) (z€R) (1.9)

which in view of (1.4) can be written as system of functional equations

o(5) = o) et (- aeto) (110

with 0 < 2 <1 and de Rham’s function is the uniquely bounded solution, cf. e.g. [15].
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2. (Cantor’s function) In case P(z) = (1 + 2?)/2 equation (1.2) reads

x 1 1
’ (§> = p@) +50(z—=2) (s €R). (1.11)
In view of (1.4) this equation can be written as system of equations
T 1 r+1 1 x4+ 2 1 1
Z)y == = — = -4 = 1.12
0 (3) =50, w( . ) 3 90( . ) S+5e@)  (112)

with 0 < < 1, and Cantor’s function is the unique bounded solution of this system, cf.
[21], (see also [20], p. 241).

In case ¢; > 0 for all 7 = 0,1,...,p — 1 one can interpret the coefficients as probabilities
p; = ¢; and the solution ¢ as a distribution function which is a measure-preserving mapping,
cf. |1, Section 3|. The figure on p. 37 in [!]| shows the graph of ¢ in case p =2, py = 0,7
and p; = 0,3 (¢ is de Rham’s function with respect to the parameter a = 0, 7).

According to (1.4) we are only interested to the solution ¢ of (1.2) in [0,1]. We always
assume that |¢;| < 1forall j =0,1,...,p—1 which guarantees the existence of a continuous
solution ¢ with ¢(0) = 0 and ¢(1) = 1. In the simple case ¢; = 113 for all j we have p(z) =
for z € [0,1]. In the following we always exclude this trivial case. We show in this paper
that the solution ¢ of (1.2) with (1.3), (1.4) satisfies some functional relations (Proposition
2.3) and that it has in [0, 1] the following properties:

1. If ¢; > 0 for all j then ¢ is an increasing function (Proposition 2.5).

2. If not ¢; > 0 for all j then in no nonempty subinterval of [0, 1] ¢ has finite variation

(Proposition 2.6).

3. If |¢;| < 1 for all j then ¢ is Holder continuous, i.e.

lp(z) —oy)| < Alz —y|*

with the optimal Hélder exponent a = min{—log, |col,...,—log, |c,—1|} and coeffi-
cient A with 1 < A< pl_o‘;;;fl (Theorem 3.6).

4. If ¢ is differentiable at the point x then ¢'(xy) = 0 (Proposition 4.2).

5. If min|¢;| > 119 then ¢ is nowhere differentiable in [0,1], and if min|c¢;| < % then both
sets, where ¢ is differentiable and where ¢ is not differentiable have positive Hausdorff

dimension (Theorem 4.11).

6. If p My < 1, where My = |cocq - - cp,l\l/ P then ¢ is differentiable almost everywhere
and if p My > 1 then it is almost nowhere differentiable (Theorem 4.12).

7. If 0 < c¢; <1 and minc; = 0 then ¢ is constant on the components .J,,,, of an open
set G C [0, 1] with Lebesgue measure |G| = 1. These intervals can be represented by

means of a sequence 7, (Theorem 5.4, Example 5.6).
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Example 1.1 For 0 < a < 1 the equation

© (g) =ap(z) + (1 —2a)p(x — 1) + ap(z — 2) (z € R) (1.13)

has a continuous solution ¢ satisfying (1.4). For 0 < z < 1 we have: ¢ is increasing for
0 <ac< %, @ is Cantor’s function for a = % and ¢ does not have finite variation for
% < a < 1. Further, ¢ is nowhere differentiable for % < a < 1. If ag is the positive solution
of 27a*(2a — 1) = 1, i.e. ag = 0,5592..., then ¢ is differentiable almost everywhere for
0 < a < ag and almost nowhere differentiable for ay < a < 1. So it is astonishing that in
case % < a < ag the continuous solution ¢ does not have finite total variation though the

derivative vanishes almost everywhere.

Remark 1.2 1. Hélder continuity of compactly supported solutions ¢ of (1.1) are intensive
investigated, e.g. for the Holder exponent there are bounds in terms of the joint spectral

radius of two matrices determined of the coefficients ¢;, cf. |5, Theorem 4.3|, [6], [7].
2. The optimal Holder exponent o = logs 2 of Cantor’s function is already known from [17].

3. The optimal Hélder exponent av = min {— log, a, — log,(1—a)} of de Rham’s function was

already determined in |2, Section 2|. Remark 2 and Figure 3 in 2] show a comparison with
1

- log4

joint spectral radius, cf. [6].

log (2a* — 2a + 1) obtainable by means of the corresponding

the Holder exponent p =

2 Functional relations

We start with a replicative relation, cf. [15].

Proposition 2.1 The solution ¢ of system (1.5), (1.6) satisfies the replicative relation

1

= k+x
go( ) e 40wl 1)

with the constant
C=p—1-P(1). (2.2)

Proof: Equation (2.1) follows from (1.5) by summation where z = 0 yields for the constant

in (2.1)

)
()5

O —

AN

From (1.5) and (1.6) we get

T
L

<
I
o
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so that
C = (p—Deog+(pP—2)cr+...+¢p2
= (p—D(co+...+cp1) —{ar+2ca+...+(p— 1)y}
= (p—=1PQ) = P(1).
In view of P(1) =1 it follows (2.2). O

In order to derive further functional relations for the solutions of (1.2) we introduce a se-
quence Cy(c) depending on an arbitrary parameter ¢ # 0 as follows: For j € {0,1,...,p—1}

we put Cj(c) = < where ¢; are the coefficients of (1.2) and in general by the recursion:
Cipsl€) = Cu(OCH(0) (k21,7 €{0,1,....p—1}). 23)

Obviously, if k£ has the p-adic representation

k= Zk,,p”, (k, € {0,1,...,p—1}) (2.4)
v=0

then we have the explicit representation

p—1

cile) =[] (%)w) (2.5)

i—0

<

where s;(k) denotes the total number of occurrences of the digit j in the p-adic expansion

(2.4) of k.
Remark 2.2 We use the parameter ¢ in two cases:

1. In case ¢ = ¢y we have Cy(cp) = 1 and from (2.3) it is easy to see that the numbers

Ck := Ci(cp) have the generating function
G(z) == ﬁ lP (ij> = i Cr2" (2.6)
j=o 0 k=0

which converges for |z| < 1. Let us mention that the unit circle is a natural bound of

convergence for G, cf. [12].

2. In Section 3 (Holder continuity) we put ¢ = max {|col, ..., |cp,—1]|} and so we are able to
estimate the Holder coeflicient.
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In the following we need the function
' (x)=1—p(1—1x) (x € R) (2.7)

which is the solution of the reversed two-scale difference equation

<> ZW v—j) (z€R) (2.8)

where
C; = Cp—1—j (29)

cf. [3].

Proposition 2.3 The solution ¢ of system (1.5) satisfies the functional equations
k4t k
o(B) —o (&) +eciann 0si<) (210)
wheren € N, k=0,1,...,p" — 1, Cx(c) from (2.5) with

so(k) +...+sp-1(k) =n (2.11)
and
k—t K\ .
() =e (%) -ean@rt n<e< (212)
fork=1,2,...,p" with ¢* from (2.7). Moreover
I k-1
@ (—n> =" ZC’j(c). (2.13)
p ay

Proof: We prove (2.10) by induction on n. For n = 1 the equations (2.10) are equivalent
to the system (1.5). If (2.10) with (2.11) in Ck(c) holds for a fixed n then for jp# instead of
t with 7 € {0,1,...,p—1} and 0 < ¢t < 1 we have

kp+j+t k .  +t
(25 - () +aon (59
p p p

_ . (Jg) b Cu()g <%> G0 Lplr).

(') = ) oo ()

and hence we get in view of (2.3)

kp+ 7+t kp+j n
® (pnT) = ( s + "M Oy () p(2)

For ¢t = 0 it follows
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with so(kp+7) + ...+ sp—1(kp+j) = n+ 1. Thus (2.10) with (2.11) in Cy(c) is proved by
induction. Now (2.13) follows from (2.10) for ¢ = 1 and ¢(1) = 1 by summation. Equation
(2.10) with k£ — 1 instead of k and 1 — t instead of ¢ yields in view of (2.7)

@ (k — t) = (k—_nl) + "Cr1(c)p(l — 1)

p" p
k—1 n n *
= 90( o ) + "Ci_1(c) = "Cr_1(c)p*(t).

k k-1
%) (—n) =@ (—n) + C”Ok_l(c)
p p
and hence (2.12). O

For t = 0 it follows

Example 2.4 (De Rham’s function) In case P(z) = a+(1—a)z we have p = 2 and equation
(1.9), i.e. ¢ =a, ¢c; =1 —a. For ¢ = a we have by (2.5) that C; = Ci(a) = ¢®) with
q= 177“ where s1(k) denotes the number of ones in the dyadic representation of k, and the

generating function (2.6) reads
G2 =[ (1+as) =D g (2.14)
=0 k=0

Formulas (2.10) and (2.13) yield the known relations

@ (k S t) =¢ <£) +a"¢We(t) (0<t<1)

2n 2n

and

k k—1
) =g s1(7)
o(5) =2

7=0
for de Rham’s function ¢, cf. [1].

Proposition 2.5 In case c; >0 for all j =0,1,...,p— 1 the solution ¢ of (1.5) is an

increasing function, and in case c¢; > 0 it is strictly increasing.

Proof: If ¢; > 0 for all j then we have 0 < ¢; < 1 since ¢y > 0, ¢,_1 > 0 and (1.3). Hence
the solution ¢ is continuous. From (2.10) we get forn € Nand £k =0,1,...,p" — 1

()0

so that the continuous function ¢ is increasing. In case ¢; > 0 for all j equation (2.10)

#(57)>(5)

so that indeed ¢ is strictly increasing in [0, 1]. O

implies
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Proposition 2.6 If not c; >0 forallj=0,1,...,p—1 then in no nonempty subinterval
of [0, 1] the solution ¢ of (1.2) has finite total variation.

Proof: If not ¢; > 0 for all j then owing to (1.3) we have |co| + ...+ |cp—1] > 1. From (1.5)

we get for k € {0,...,p— 1}

<kz+1> <k:)
pl— )¢l )=a

b p
p—1 p—1

k+1 k

@(—)—w(—)lzzm

k=0 p p k=0

-1
k+1 k \
@( n >—90<—n)‘ = <Z|Ck|>
p b 0
In view of |co| + |c1]| + ... 4+ |cp—1| > 1 it follows that ¢ does not have finite total variation in

[0,1]. From (2.10) we conclude that this is valid also for the intervals [I%, %] with n € N
and k=0,1,...,p" — 1. [l

and hence

and by induction on n

pt—1

n

k=0

3 Holder continuity

We assume that |¢;| < 1forall j =0,1,...,p—1so that the solution ¢ of (1.2) is continuous.

In order to verify the Holder continuity of ¢ we introduce the notation

k—1
Sk(c) =Y Cj(c) (3.1)
=0
for the sum in (2.13), i.e. we have
k n
© (E) = "Sk(c). (3.2)

Lemma 3.1 The sequence Si(c) has following properties:
(i) Sp() = LSu(e) (k= 1)
(ii) Spn (C) = Cin (n Z 0)

(111) Skpn_;,_g(C) = Spn(C)Sk(C) + Ok(C)Sg(C) (0 <k<p, n>1, 0</I< pn).
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Proof: (i) For given k > 1 we choose n such that k < p"~!. From (2.13) and (3.1) we get

50 = e () = e (1) = 15wt
which implies ().

(ii) follows from (2.13) and ¢(1) = 1.

(iii) From (2.10) and (2.13) we get

¢<k+#>—¢(§>+a%@¢(§)—c&@mmM%M@&@y

p

On the other side we have

(kp”+£

e ) = "y a(c)

and in view of (ii) it follows (iii).
Now we choose the parameter ¢ = ¢ where
c :=max {|cl, |c1], - -, |ep-1]},
cf. Remark 2.2. Then |Ci(c)| <1 for k € {0,1,...,p — 1} and (2.3) implies

Ch(0) <1 (ke N).

In view of (1.3) we have }D <c< 1. Incasec= %} we have ¢; = % forall j =0,1,...

and p(z) =z for 0 < z < 1. If we exclude this trivial case then

1
- <c< 1l
p

For the parameter ¢ from (3.3) satisfying (3.5) we put

a:= —log,c,
ie.
cpt =1
and (3.5) implies
0<a<l

(3.3)

(3.4)

Jp_l

(3.5)

(3.6)

(3.7)

(3.8)

Lemma 3.2 With « from (3.6) and ¢ from (3.3) the sequence = Sk(c) is bounded. More

precisely, for

we have the estimate

(3.9)

(3.10)
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Proof: According to Lemma 3.1/(ii) and (3.7) we have

1

Esp(c) =1

and hence K > 1. Moreover, by Lemma 3.1/(i) and (3.7)

1 1
WSpk(c) = ES]C(C) (311)
so that . .
sup |—Sk(c)| = lim sup |—Sk(c)|. (3.12)
k| ke k—oo | K*

For integer n > 1 let be

K, := max {’k—laSk(c)

:p’”ékép”—l}

then by (3.11) we have K,, < K,,41.
Owing to Lemma 3.1/(iii) and to (3.11) we have

1 Ep» \% 1 14 “ Cilc
G + 0" +g)a‘skp”+€(c) = ( T e) = ok(e) + < e £> ’zi )sg(c) (3.13)

fork=1,...,p—1land ¢=0,1,...,p" — 1.
Hence for m = kp" + ¢ with k € {1,...,p—1} and £ € {0,1,...,p" — 1} we have

1 1 1
ﬁSm(c) =(1- S)O‘ﬁSk(c) + f’aCk(c)g—aSg(c) (3.14)
where £ = kpr with a certain £ € {0,1,...,p" — 1} so that 0 < & < 5. By (3.14) and
(3.4) we get
B s (=07 |72 8k{e)] + &Gl 75dde)
1
< (-9 | LS| + K,

where k € {1,...,p— 1}, £ < p" and in view of K,, < K, it follows

1
(1-&MK, < (1-¢" k_aS’f(C) .
Note 1 —£* > 0 since 0 < ¢ < k+r1 and a > 0, cf. (3.8). Consequently,
1= 1 1
K< U= 2 —Se)| < My|=Su(e)| (ke {l..p-1})  (315)
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with . N
-
M, = max u
0<z< iy 1— x>

In view of (3.8) the function f(z) = (1 — 2)*/(1 — 2®) is increasing so that we get My =
) = ( fe— and

E+1 k+1)o—1

1

Kn§m|8k(c)| (kE{L?p_l})

From (3.1) we get in view of |C(c)| <1 that |Sk(c)| < k so that

k
K,<— " (ke{l,...p—1}).
The function g(z) = m is increasing in [1,p — 1] so that K, < g(p—1) = p’;__ll which
yields the assertion. 0

Remark 3.3 If we carry out the foregoing considerations with the coefficient ¢} of the

reversed equation (2.8) instead of ¢; then in view of (2.9) and (3.3) we have

¢ = max{|cj|,...,|c; 4|} = ¢, and hence with the same o from (3.6) we find that the

corresponding coefficients C'¥(c) satisfy |C(c)| < 1 and that the sums ;5 S;(c) are bounded

where
1

Si(c) (3.16)

K* :=sup
k

can be estimates similarly as in (3.10). So

(3.17)

Lemma 3.4 If|¢| <1 forall j € {0,1,...,p— 1} then for 0 <t <1, n € N and
ke{0,1,...,p— 1} we have

‘90 (kptt> _30(;%)‘ SK(]%Y (3.18)
() )l () o1

Proof: We only prove (3.18). For t = z% with 0 < k < p” the representation (2.13) with

¢ = c implies

and for k € {1,2,...,p}

) eGr) 1 &S 1
got(a) - (ﬁn)a :k_aZ;Cj(c>_ﬁ k<c)
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in view of (3.7). By Lemma 3.2 it follows

()]
t(]
for these t and hence also for arbitrary ¢ € (0, 1] by continuity. By (2.13) with ¢ = ¢ we have

k + t) ( k ) 1
—p| =) =—Cilc)p(t
@ ( = o\ ) = oo k(c)p(t)
and using (3.4) we get

‘90 (kptt> —F (]%)‘ < (%)a |90t(;f)\ - (%)QK-

In the same way using (2.7) it follows (3.19). O

<K

in view of (3.7)

Proposition 3.5 If |¢j| < 1 for j = 0,...,p — 1 then for arbitrary z,y € [0,1] the
solution ¢ satisfies the inequality

Tp-1)

lp(z) — p(y)] < |z —y|*

with o from (3.6).

Proof: For given z,y € [0,1] with h = y — x > 0 we assume that
1 1
— < h< —-
p" p"

i (1 =0,1,...). Then we have

Let be k = [p"z] and ¢,

tr<z<t; <...<lpm<yY<inn

wherelgmgp—lsincetl—pig +#§x+h:yandtp+1:k+p+l>x+ = >
x4+ h =1y. We use

o(y) — ()] < le(t) — e(@)] + le(y) |+Z|90 (tur1) = o (tu)l-

We denote a; = t; —x, ap = tp —tg_q for k = 2,....m — 1, and a,, = y — t,, then

a1+ ...+ a, =y —x and by Lemma 3.4

o) — (@) < K°af + K3 < Ko (a5 + ...+ a)
pn=2

with Kipax := max {K, K*}. According to (3.8) the function ¢ — ¢* is concave and applying

At tan _(at.. +am “
m o m

Jensen’s inequality
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we find in view of m < p and (3.8)

o(y) = p(@)] < Kmax m' ™ (y — 2)* < Kpaxp' ™ (y — )",
Finally, from (3.9) and (3.17) we get

p—1
pr—1

Kuaxp' ™ <pi®
and the proposition is proved. O

Now we know that ¢ is Holder continuous with exponent « from (3.6). Next we show that

« is the optimal Holder exponent and we determine also the optimal Hélder coefficient.

Theorem 3.6 If|c;| <1 forj=0,...,p—1 then the solution v of the equation (1.2) is

Hélder continuous with the optimal Hélder exponent o from (3.6), i.e.

o =min {—log, |col, ..., —log, c,-1]}

where 0 < o < 1, ¢f. (3.8), and the optimal Hélder coefficient

k—1
A ::ﬂﬁ)i% ;{;C&fﬂc) (3.20)
which satisfies
jcac 1) (3.21)
pe—1
i.e. we have
o(x) —(y)] < Alz —y|* (3.22)

for arbitrary z,y € [0, 1].
Proof: 1. First we show (3.22) with « from (3.6) and A from (3.20). For y = % and
T=1y+ p—’i with 0 < ¢ < k + ¢ < p™ the representation (2.13) with ¢ = ¢ implies

o(x) — o(y) o(Tr) — 90(1%) 1R

in view of (3.7). Hence, we get (3.22) for p-adic rational z,y € [0,1] where A is finite by
Proposition 3.5. Continuity of ¢ implies that (3.22) is valid for all  and y in [0, 1].

2. We show that « is the optimal Holder exponent. Assume that ¢ is Holder continuous

with an exponent 5 > «, i.e. for all z,y € [0, 1] we have

lo(z) — ¢(y)| < Blz —y|’ (3.23)
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with a certain constant B.

From (1.5) we get for k =0,1,...,p — 1 by induction on n that

<k@"—1)+ﬂp—1)

n—1
=D e+ clo(t 0<t<1).
) R AT GRS

Putting ¢t = 0 and ¢t = 1 we get in view of ¢(0) =0 and (1) = 1 that

N (3.21)

pi(p—1) pi(p—1)

Now we choose k € {0,1,...,p—1} such that |c;| = c, cf. (3.3). In (3.24) we put y = %,

r=y+ # and obtain in view of x —y = [%, lck| = ¢ and (3.6) that

[0}

lp(z) — p(y)| = (z —y)*.

Y =)

ie. p"#~®) < B, which yields a contradiction for large n. Hence, a is the optimal Holder

According to (3.23) we get

exponent and it follows that A from (3.20) is the optimal Holder coefficient. The estimate
A > 1 follows from (3.22) with z = 0, y = 1 in view of ¢(0) = 0, ¢(1) = 1. The above

estimate of A follows from Proposition 3.5. U
Remark 3.7 Note that in limit case &« = 1 we get A = 1 in accordance with ¢(z) = x for

0<z<1.

A detail discussion of the Holder continuity of de Rham’s function and of solutions of certain
two-scale difference equations you can find in [2, Section 2 and Section 5.2]. In |11, Propo-
sition 10.1] it was shown the Holder continuity of Cantor’s function with optimal exponent

o= % and coefficient A = 1.

4 Differentiability

As before we exclude the case ¢; = % for all j € {0,1,...,p — 1} where ¢p(x) = z for

0 <z < 1. First we give a general statement on the differentiability.

4.1 General statements

We start with the following simple lemma, cf. [15].
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Lemma 4.1 Let f: [0,1] — R have a finite right-hand derivative f)(xz) at the point
xo € 10,1). If (u,) and (v,) are sequences in [0,1] such that xo < u, < v,, v, — Xy and
Uy — 2o < L(v, — uy,) with a constant L then

f (o) — f(un)

Up — Up

Proposition 4.2 [f the solution ¢ of (1.2) is differentiable at xy then ¢'(zy) = 0.

— fi (o) (n — 00).

Proof: Assume, at zq € [0,1) there exists the finite derivative ¢'(z) # 0. For n € N and
k=0,1,...,p" — 1 we put zy,, = p—’i and Nop ={keN:a<k<b}. Ifxp,, <xo<Tpiin
then for each k € Nyj1 p42p—1 We put uy,, = Tppn, and vy, = Tpy1,, 50 that zo < ug, < Vip
and uy., — 2o < p(Vkn — Uk,). Applying (2.10) with ¢ =1 we get

i) 2 etea) _

just as
P(Vkt1,0) — P(Upt1,n)

Vk+1,n — Uk+1n

n._n
=p C()Ok-s-l‘

In view of ¢’ (zo) # 0 it follows by Lemma 4.1 that for & € Ny1q 4, We have
Ck—i—l
Cy
The set Njpi142,-1 contains a section of the form Ngyg4.p, o with d = pky < k' + p. For
k € Nyagipo, ie. k= pko+ j with j = 0,1,...,p — 2 we have by (2.3) with ¢ = ¢, that

Cr = Cprotj = %Cko and it follows

—1 (n — 00).

AN (n — 00),
€
i.e. ¢ci41 = c;. So by (1.3) it follows ¢; = L for j =0,...,p — 1. O
J J Jp

Proposition 4.3 The set E of points x € [0, 1] where o is differentiable has the Lebesgue

measure 0 or 1.

Proof: The set E is Lebesgue measurable with the measure |E|. We show that E is
homogeneous, that means for each nonempty interval [a,b] in [0, 1] we have |E N [a,b]| =
(b — a)|E|. Equation (2.10) with ¢ = ¢g, Cy = Cr(cp) implies

2o (M) —gavn e,

p p
Put By, = EN [I%, %] we have |Ey | = |Epn| (0 <k, k" < p") and hence

implies |Ey | = #|E\ It follows |E N [a,b]| = (b — a)|E| for each interval [a,b] C [0, 1] and
hence |E| =0 or |E| = 1 by a theorem of Lebesgue. O
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4.2 Special difference quotients

Now, for given z € [0, 1] we investigate the special difference quotients

P(55) = (r)
Ap(r) = —2 T i (4.1)
with k = [p"x], i.e.
§§x<k;3 (4.2)

Applying (2.10) with ¢ = ¢y and ¢t = 1 we get in view of ¢(1) =1
Anlz) = PGk (43)

In order to get a suitable representation for Cj we need a mean value M. For \; € [0, 1]
with A\g + -+ + A\,_1 = 1 we introduce the mean value M = M (Xo,...,\,—1) by

p—1
M =[] lesl (4.4)
=0
Lemma 4.4 Let z € [0,1] and n € N. Then for Cy = Ci(co) from (2.5) with k = [p"x]
we have
15w
@:%Hq (4.5)
7=0
with
so(k) +s1(k)+...+cp1(k)=n (4.6)

where s;(k) is the number of the digit j in the p-adic representation of k. Further

1
|Ck;|1/n = @Bn(x)M(Aow--,)\p—ﬂ (4.7)

where X
—
enlr) = [T e (4.9
§=0
U)Zth €j(n) = %SJ(]C) — >‘j .

Proof: If z = 0,&& ... is the p-adic expansion of z then k = k(n) = [p"z] has the form
k=& + & ap+...+&p" " So so(k) + ...+ sp_1(k) =n and by (2.5) we get

AN C I L,
— J — Sj
a-I1(E) -5 e
7=0

=0

i.e. (4.5) is proved. Formula (4.7) with (4.8) is a simple consequence of (4.5). O
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Lemma 4.5 Letz €(0,1] and n € N. Then for A,(z) from (4.1) we have

p—1

An(@)] = [[a?®

=0

<

with aj = p|c;| so that apay .. .a,—1 = 1.

Proof: Formulas (4.3) and (4.5) imply

p—1
7=0
In view of (4.6) it follows
p—1
An(z) = [[pey)»™
j=0
which proved the assertion. 0
Next we consider special sets of real numbers, cf. [13, Chapter 10]. Let z = 0,£& ... be

the representation of a number z € (0,1) to the base p and d;(x|,) the total number of

occurrence of the digit j € {0,1,...,p — 1} in the first n places 0,&; ...&,_1. That means
dj(x]n) = s;(k) (4.9)

where k = [p"z]. For A\; € [0,1] with Ao+ ...+ A,-1 = 11let ' = F(Xo,...,\p—1) be the set

1
F = {IG[O,l]Z lim —d;(z|,) = A, \ j—O,l,...,p—l}. (4.10)

n—oo 1N

It is known that F' has the Hausdorff dimension

p—1

1
dimglt = ——— A log A\, 4.11
H lng]Z_; ] g ] ( )

with the convention 0log0 = 0, cf. [13]. Further, the numbers x € F(p~*,... p~!) are called
normal numbers with respect to the base p and Borel’s normal number theorem says that

F(p~',...,p71) is a set of Lebesgue measure 1.

The following proposition is the basis for the investigation of ¢ concerning the differentia-
bility.

Proposition 4.6 Forz € F()y,...,\,_1) we have
lim [A,(z)[" =pM(No, ..., A1) (4.12)
n—oo

with M from (4.4).



76 M. Kriippel
Proof: By Lemma 4.4 and (4.3) we get
1AL (@)Y = pen(x) M(No, - Apo1)-

Using (4.9) for © € F(Xo,...,A\p—1) we have 1s;(k) = 1d;(z],) — ); as n — oco. Hence

T on

en(x) — 1 as n — oo and it follows the assertion. O

4.3 Thecase pM < 1

We need further lemmata.

Lemma 4.7 Let be x € F(Xg,...,\,_1) with the p-adic expansion x = 0,&& ... where
Snj=p—1forg=1,2...;ry. If \yo1 <1 then "> — 0 asn — co.

Proof: For x € F we have ——d, 1(z|,_,) = \,—1 and %dp,l(x|n) — A\p—1 a8 n — 00. By

n—rn

supposition we have d,_1(z|,) = dp—1(x|n—r,) + r» and hence

n—r, 1

1 Tn
ﬁdp—1(1'|n) = dp-1(7|n—r,) + P

n o n-—r,
Certainly 0 < < 1, i.e. the sequence ™ is bounded. If s is the limit of a convergent
subsequence then in view of (4.10) it follows A\,_; = (1 — s)\,—1 + s, i.e (1 —A,—1)s = 0 and
hence s = 0 since A\,_; < 1. So ™ — 0 as n — 0. ]

Lemma 4.8 Let be x € F(No,..., \p1) with \y_1 < 1 and k = k(n) = [p"z] then for
w=0,1,...,p we have
1/n

Crm+u| ™ _ 4

lim '
n—oo

Cr(n)
with Cy, = Cy(co) from (2.5).

Proof: Let be z = 0,£,&, ... the p-dic expansion of = then k = k(n) = [p"z] has the form
k=& +& p+ ... +&p . Forp >0 with £, < &1 +p < p we have k + p =
(& +p) + & ip+ ...+ &p» 1t and by (2.5) it holds

Cent
Crpp = Cp—2E
k-+p k Ce.

Now we consider p € {1,...,p} with p <&, 1 +pu <2p—1. If §,_; < p—1 then we have
k+p= (& +p—p)+ (1 +1)p+&op® + ...+ &p" ! and by (2.5) it holds
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If¢, j=p—1forj=1,...,n, and §,,,—1 <p— 1 then k has the representation

k=&+@—-1p+...+@—1p" +&n—p" T+ .+ &}
and we have
k+p=E+p—p)+ Epma+D)p T+ &P

According to (2.5) we get

Certpnp (Co1\ " Cepppat
C — Cr nTH—P p n—rp—1 ]
BTG ( Co ) Cer

Put C' = max {|C;|/|C;|} (i, =0,1,...,p— 1) then we get

1 |Cuss
Ornt2 — Ck

n

< Crn—i-Q

and in view of Lemma 4.7 it follows the assertion. O

Proposition 4.9 IfpM(Xy,..., 1) < 1 where \,_1 < 1 then the solution ¢ of (1.2)
is differentiable at each point x € F(Xg, ..., \p—1) with ¢'(z) = 0.

Proof: Choose € > 0 so that
qg:=1+e)PpM(Ng,..., A1) < 1.

For fixed x € F()o,...,A\p—1) it holds e,(z) — 1 as n — oo, cf. (4.8), (4.10) and (4.9).

Hence there is a number ngy such that for n > ny we have

en(z) <1+¢, (4.13)

K'V"<14¢ (4.14)
with K = max |p(t)| for 0 <t <1 and by Lemma 4.8

Crpul/ < (14 )| (4.15)

where k = [p"x]. Now, let y =z + h < 1 with A > 0 (the case h < 0 is analogous) and

1 1

_n§h< n—1

p p
with n > ny. Note that h — 0 is equivalent to n — oco. Put t, = %ﬂ (0 =0,1,...)
then we have t) < z < t; < ... < t,, < z+ h <ty where 1 < m < p — 1 since
tlz%Sx—l—#§$+handtp+1:%>x+pnl,l>x—|—h. We use

m—1

lp(@+h) = ()] < lp(@ +h) = e(tn)l + lp(t) = (@) + Y lo(tur) = (t)].

pu=1
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Put z = k;ﬁ_t with suitable 0 < ¢ < 1 then by (2.10) (with a = ¢y, Cy = Ck(co)) we have

p(r) = p(t1) = gCrrrp(1 — 1)

and hence
lp(t1) — p()]

1 n n n
. = 5 leol"|Chsillp( = )] < p"leol”|Crsa| K

where K = max |p|. Applying Lemma 4.4 we get

Cha | Choa |
pleol|Cra| V" EKY™ = pleol|Cil " | 5= K" = pMey(x) ‘ oo K
k
and using (4.13), (4.14) and (4.15) it follows
pleo]|Croa | " KV™ < (14 €)*pM = q
so that
—p(t

h

Since t,, < x + h < t,, 41 we have x + h = ’“Jr;)”% with suitable 0 < 7 < 1 and by (2.10)

p(x +h) = p(tm) = GCrimp(T).

Therefore
lp(z + h) — p(tm)]
h

where we have again used (4.13), (4.14) and (4.15).

1
< o leol"|Creml K < p"[co]"|Crm| K < ¢ (4.17)

Moreover, by (2.10) it holds
Sﬁ(twl) - go(tu) = coChtp

and hence again

lo(tus1) — p(tL)|
h

1
= 7 leol"|Crl < p"[co]"|Cherl < " (4.18)
Form (4.16), (4.17) and (4.18) it follows in view of m < p —1

o(z +h) = p(a)|
h

< (p+1)¢".

This implies ¢, () = 0. In the same way ¢’ (z) = 0. O
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4.4 The case pM =1
We investigate A, (x) from (4.1) under the condition

pleoer - cpa|VP = 1. (4.19)
The following proof due to A. Meister (personal communication).

Lemma 4.10 Assume that it holds (4.19) and that a; = p|c;| for j =0,1,...,p— 1. If
not ag = a; = ... = a,_y = 1 then the set of x with the property A,(z) — 0 as n — oo has

the measure zero.

Proof: Let x = 0, ... where the digits §; are independent and identically distributed
on the discrete set {0,1,...,p — 1}. Since

di(xln) =Y x;(&)

we have by Lemma 4.5 and (4.9)

3
3
A

log |Ay(2)] = X;(&)loga; = Zlog Qg,

k=1

<.
Il
o

where log a¢, are independent and identically distributed. Moreover,
p—1 1 1 p—1
E(logag,) = Z —loga; = —log Haj =0
—o P p =0
j J
since by (4.19) we have aga; - - - a,—; = 1, and it is
p—1 1
o2 = E(log? ag, ) Z (log? a;)
Jj=0 p

since not all a; are equal to 1. The law of iterated logarithm says

log |A
lim sup 08 |An(2)] = +1 (a.s.)
n—oo  y/202nloglogn
and o A
lim inf ——2 [Bn(2)] -1 (a.s.).

n—oo \ /202nloglogn B

This implies the assertion. O
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4.5 On the differentiability of the solution

After the foregoing preparations we are able to give the main results concerning differentia-
bility of the solution ¢ of (1.2). As already mentioned in the Introduction we again exclude
the trivial case ¢; = % forall j =0,1,...,p—1.

Theorem 4.11 The solution ¢ of (1.2) has the property:

1. If min |¢;| > = then ¢ is nowhere differentiable in [0, 1].

2. Ifmin |¢j| <

derivative, have positive Hausdorff dimension.

then both sets, where @ is differentiable and where @ does not have a finite

SRS

Proof: 1. If |¢;| > % forall j =0,1,...,p—1then a; = plc;| > 1 and for each z € [0, 1] we
have by Lemma 4.5 that |A,(x)| > 1 for all n € N. So ¢ is not differentiable at  according
to Proposition 4.2.

2. If min |¢j] < % then in view of (1.3) there are indices k and ¢ such that |¢x| < + and
lce| > %. For the mean value (4.4) we have M(Xo,..., \p—1) = || < % if Ay = 1 and
Aj = 0 for j # k. Hence, there exist such A} > 0 (with X} nearly by 1 and A} _; < 1) that
pM(Xy, ..., N, 1) < 1. By Proposition 4.9 we have ¢'(z) = 0 for ¥ € F(\, ..., A, ;) and by
(4.11) this set F' has positive Hausdorff dimension. Moreover, M (Ao, ..., A\p—1) = |ce| > }D if

A =1and \; =0 for j # £, so that there are A} > 0 such that p M(Ag,...,A\] ;) > 1. For

D =

) p—l
r € F(Ag, ..., Ay_y) it fails A, (x) — 0 by Proposition 4.6 so that ¢ is not differentiable at x
according to Proposition 4.2, and by (4.11) also this set F has positive Hausdorff dimension.
O

Theorem 4.12 The solution ¢ of (1.2) has in [0, 1] the property:
1. If pleocy - ~cp,1|1/p < 1 then ¢'(x) = 0 almost everywhere.

2. If plcoey - - cp,l\l/p > 1 then ¢ is almost nowhere differentiable.

Proof: We consider x € F(p~!,...,p~!) and remember that this set has the Lebesgue

measure 1 by Borel’s normal number theorem.

1. If pleger - - ¢, 1|Y/P < 1 then by Proposition 4.9 we have ¢'(x) = 0 for each z €
Fp=t....p™Y.

2.1. If plcoer - - - ¢,-1|Y/P = 1 then by Proposition 4.10 the set of all z € F(p~,...,p})
with limsup |A,(x)| > 0 has the measure 1. For all these x the derivative does not exist

according to Proposition 4.2.

2.2. If plcoer---cp1|Y/P > 1 then for each x € F(p',...,p~!) we have according to
Proposition 4.6 that |A,(x)] — oo as n — oo and hence the derivative does not exist owing
to Proposition 4.2. [l
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Remark 4.13 1. Note that Proposition 4.3 is a consequence of Theorem 4.12.

2. Assume that ¢ is an increasing solution of (1.2) but not ¢(z) = x for all x € [0, 1]. Then
by Proposition 2.5 together with Proposition 2.6 we have ¢; > 0 for all j = 0,1,...,p —1

but not ¢; = % for all j and in view of (1.3)

1/p<Co+Cl+...—|—Cp,1 _1

(Cocl N _1)
P p p

so that ¢/(x) = 0 almost everywhere by Theorem 4.12. So for an increasing solution ¢ of

(1.2) we have besides of ¢(x) = x for = € [0,1] that ¢’(z) = 0 almost everywhere.

5 Singular solutions

A nonconstant ¢ : [0, 1] — [0, 1] is called (strictly) singular, if it is continuous and (strictly)
increasing with ¢'(z) = 0 almost everywhere. We remember that in case ¢; = % for j €
{0,1,...,p — 1} the solution ¢ of (1.2) reads ¢(z) = x for 0 < x < 1 and that we exclude
this trivial case. As already mentioned in Remark 3.3.1 we use the parameter ¢ = ¢y and
write short Cy for Ci(co).

From Proposition 2.5 and Proposition 4.2 we get

Proposition 5.1 Ifc; >0 for all j = 0,1,...,p — 1 then the solution ¢ of (1.2) is a

singular function and if ¢; > 0 for all j then it is strictly singular.

Lemma 5.2 If ¢ is a solution of equation (1.2) satisfying (1.4) then ¢ cannot vanish in
a neighborhood of x = 0.

Proof: Assume that p(z) = 0 for = < gy where €g > 0. In view of

@ (f) = cp(z)  (0<z<1)

p

and ¢y # 0 implies p(x) = 0 for © < pey. In view of p > 1 it follows gy = 0 since p(z) =1
for z > 1. UJ

Proposition 5.3 Let be 0 < ¢; < 1 with mine; = 0. Then the solution ¢ of (1.2) is
constant on the components (a;,b;) of an open set G with Lebesgue measure |G| = 1. The

endpoints a; and b; are of the form 1% where we have:
% = a; — Ck:—l 7é 07 Ck: = 07
o =0b S Cr1=0, Cp#0,

I%EG g Ok_lzo, Cr,=0.
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Proof: Assume that ¢, = 0 where 1 < ky < p —2. From (1.5) it follows that ¢ is constant

(m)k0+1)
L, = —, .
p P

By repeated application of (1.5) we see that ¢ is constant on the intervals

B ko ki kot 1
Ikl,koz(;l+—°—1+0 )

on the interval

P p p?
where ky # ko, 0 < k; < p—1, and in general

(knl kq ko kn_1 kq ko + 1)
[k: ko = ;

oot nfl_‘__n’ ..ot nfl_{— n
p p p p p p

ceey

T, ko]l = #. These intervals are pairwise different and hence the union Gy has the

Lebesgue measure
oo

_1n—1 1
Gol = Y- 2= 1

" p(l—E3)

The left endpoint of Ij,, , ., has the form pin with

n=1

k=knpap" "+ knoop" 2 4 .+ kap + ko

so that ¢, = 0 implies Cy, = 0, cf. (2.3). It follows from (2.10) that

(5)-0(8) oeren

i.e. ¢is constant on Iy, , k.. If G is an open set such that ¢ is constant on each component
(a;,b;) of G then Gy C G C [0, 1] and hence |G| =1 too.

Now let (a;, b;) be a maximal interval where ¢ is constant. Choose n so large that b; —a; > p%

then there is an integer k£ such that

k—1 k
<a < (5.1)
p" p"
and Bl < b, ie. ¢ is constant on [X A1,
P P p

We show that a; = pk—n and that Cy_; # 0, Cy = 0. By Lemma 5.2 ¢(x) cannot vanish in a
neighborhood of x = 0 which is true also for ¢*(z) =1 — ¢(1 — z) since ¢,—1 > 0. Therefore
in view of (5.1) equation (2.12) implies that ¢ is not constant in a neighborhood of 1% which

implies a; = ﬁ and Cy_1 # 0. Moreover, equation (2.10) for t = 1 yields

E+1 k
RIORS
p p
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and hence ¢jCy = 0 must be. It follows Cj = 0 since ¢y > 0.

Conversely, let be Cy = 0 and Cj_; # 0. Then equation (2.10) implies

(5 -o(2) wseen

ﬁ, k11 Moreover, equation (2.12) implies that ¢ is not constant in a

i.e. p is constant on |
neighborhood of pﬁn so that it is a left endpoint a; of an interval of constancy. In the same

manner the another assertions can be proved. O

In case 0 < ¢; < 1 and min¢; = 0 equation (1.2) can be written in the form

e(2)- Zw( —7)  (@ER) (52)

where ¢ is an integer with 1 < ¢ < p — 1 and where 7, are nonnegative integers with
0=1 < < -+ <7-1=p— 1. The characteristic polynomial of equation (5.2) reads
P(z) =co+cpy 2 + -+ ¢p_12P7 and (2.6) has the form

Giz)=||—P&") = n .
(2) HCO ()= C,2 (5.3)
7=0 n=0

with strictly increasing integers ~,, where it holds with ¢, € {0,1,...,¢ —1}:
m—1 m—1
n = Z €#qu — Yn = Z %#pu' (54>
pn=0 pn=0
m—1 m—1
In particular, if n = > (¢ — 1)¢" = ¢™ — 1 then v, = > (p— 1)p* =p™ — 1 and
pn=0 ©n=0
Yantr = DVn + W (red0,1,...,q—1}). (5.5)

Theorem 5.4 The open intervals J,,.,, C [0,1] where the solution ¢ of (5.2) is constant

have the form
m— 1 m
Jm,n:<u,l> n=12,..., m=12...,¢"—1) (5.6)
p" p"
provided that Vm,—1 + 1 < Y.

Proof: We apply Proposition 5.3. If (a;,b;) is a maximal interval of constancy then by

Proposition 5.3 and the definition of ~, we have a; = 7’;?[1 and b; = Z—Z’; with suitable k£, m.

Since the sequence 7, is strictly increasing it follows k = m — 1, i.e. (a;,b;) = Jp, from
(5.11) with the given indices there. O
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Remark 5.5 1. Observe that Jy, 41 = Jmn since in view of (5.5) we have for the left
endpoint

Ygm—1 +1= Ya(m—1)+q¢—1 +1= PYm—1 + Yq—1 +1= p(ﬁ)/m—l + 1)
where we have used v,_; = p—1, and for the right endpoint 74, = pym. So we can see again

that the nonempty intervals J,,,, coincide or they are disjoint.

2. Note that

-1 q"-1 . -1 o _om n_1_ g»
S TETER e S R . e
m=1 m=1 pn p” pn

as n — oQ.

Example 5.6 (Cantor’s function.) We know that Cantor’s function ¢ is the to [0,1] re-

)
stricted solution of (1.2) with ¢y = %, c1=0,c = %, ie.

1

o(3) =500 +50@-2)  (@ER)

satisfying (1.4). Here P(z) = (1 + 2?)/2 and the generating function (2.6) reads

G(z) = ﬁ (1 + z2'3j> - i Oy (5.7)

J=0

where C}, = 0 if the triadic representation of k contains the digit 1, elsewhere C}, = 1. Hence,
G can be written as

o0

G(z):Zz% =14+ 224204842820 M (5.8)
n=0

with strictly increasing exponents vy = 0, 11 = 2, 75 = 6, 73 = 8 and so on. It holds with
e, € {0,1}:

m—1 m—1
n=> g2 = 3,=2) 3 (5.9)
u=0 pn=0
and it is easy to see that
Yoot + e =3"—1 (n=1,2,..., k=1,2,...,2"). (5.10)
The open intervals J,, ,, where Cantors function ¢ is constant have the form

m— 1 m
Jmnz(%g—n) (n=1,2,...., m=12,...,2"—1) (5.11)

with p(z) = 5 for x € Jpp.
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6 Subadditivity

In this section we investigate the subadditivity of the solution ¢ of (1.2), i.e.

oz +y) <o)+ o) (6.1)

for all z,y € R. For this purpose again we consider the sequence Si(c) from (3.1) with ¢ = ¢
from (3.3).

Lemma 6.1 Assume that ¢; >0 for all j = 0,1,...,p — 1 and that for 0 < k,{ < p we

have
f k+4
Su(c) + Syle) > Sk+e(c) Z'f +E<p (6.2)
S].H_g_p(C) + Sp(C) Zf k+7¢ > p
then for all nonnegative integers k, £ it holds
Sk+g(c) S Sk(C) + SK(C). (63)

Proof: First note that by (2.5) we have Cj(c) > 0 for all j € N. We shall prove the
inequality (6.3) for nonnegative integers k, ¢ < p™ by induction with respect to n where as
abbreviation we write Sy in place of Sk(c). For n = 0 the inequality is true by (6.2). Assume
that (6.3) is true for 0 < k,¢ < p". For integers 0 < k,¢ < p"™! we write k = pk’ + i and
C=pl'+jwith0<E ¢ <p*andi,je{0,1,...,p—1}. We consider two cases:

1. Let be i + j < p. Then in view of Lemma 3.1/(iii) we have
Spe+)tit; = SpSie + Crpe(€)Sit;

Sp(Sk/ + Sg/) + Ck/Jrg/(C)(Si + Sj)

SpSk/ + SpSgl + Cr (C)SZ + Cg/(C)Sj

IAIA

Spk’—i—i + SpZ’—i—j
where we have used that (3.4) and that Cyp(c) < min {Cy(c), Cr(c)} according to (2.5).
S0 Skye < Sk + S
2. Incasei+j > pwehave 0 <i+j—p < p—1. Applying Lemma 3.1/(iii) and assumption
of induction we get

Sk/-i-f/-i-l = Sk"-i—f’ + C’kl_}_gl(c) S Sk’ —I— Sgl + C’k’—i-f/(c)

and

Sp(k'+€’+1)+z‘+j—p = SpSk’+£’+1 + Ck’+£’+1(c)5z'+j—p
SpiSk + Spr + Crryer(€)} + Chryey1(€)Sij—p
SpSk + SpSe + Crav(€)(Sp + Sitjp)

(c
SpSk/ + SpSz/ + Clrppr (C)(Sz + Sj)

IN A A
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where we have used (6.2) and Cyryp41(c) < Cprye(c) according to (2.5) and (3.4). Hence we
have Sy, < S + Sy again. ]

Theorem 6.2 If (6.2) is satisfies then the solution o of (1.2) is subadditive, i.e.

pr+y) <wl@)+ely)  (z,y €R). (6.4)

Proof: For z = 1%, y = an in [0,1] with x +y < 1 the assertion follows from (3.2) in view

of (6.3), and for arbitrary =,y € [0, 1] with  + y < 1 by continuity of ¢. Now from (1.4) it
is easy to see that the inequality is true for all z,y € R. 0

Example 6.3 (De Rham’s function) We know that de Rham’s function ¢ is the to [0,1]
restricted solution ¢ of (1.2) with ¢cg =a, ¢; =1 —a, a € (0,1), i.e.

¢ (3)=av@)+(1-ajpz—=1) (@eR)

satisfying (1.4), cf. Example 2.4. For 0 < a < % de Rham’s function ¢ fails to be subadditive

since 2¢(3) = 2a < 1 = ¢(1). In case § < a < 1 we have ¢ = max{a,1 — a} = a and

Cy, = Cyla) = ¢¢™® with ¢ = =%, where s(k) denotes the number of ones in the dyadic
representation of k, ie. Cp =1, C; = ¢q, Cy, = q, C3 = ¢, Cy = ¢, C5 = ¢* and for
Sy = Sgp(a) wehave S; =1, Sy =1+¢q,S3=1+2¢, S4=1+2¢+¢* Ss=1+3¢+¢* So
inequality (6.2) is satisfies if 0 < ¢ < 1, i.e. % < a < 1 and for these a we have (6.3), cf. |2,
Lemma 2.2]. Hence, for % < a < 1 the extended de Rham function is subadditive owing to

Theorem 6.2.

Finally we consider once more two-scale difference equation (1.13).
Example 6.4 (Equation (1.13)) For 0 < a < 1 let ¢ be the continuous solution of

T

© (5) =ap(x)+ (1 —2a)p(x — 1) + ap(x — 2) (x € R)

1
2
solution ¢ fails to be subadditive since ¢(2) =1 —a > 2a = 2p(3). In case 3y < a < § we
s1(k 1—2a

a )

satisfying (1.4). For 0 < a < 3 the coefficients are nonnegative. In case 0 < a < % the

have ¢ = max {a, 1 — 2a,a} = a and C}, = Ci(a) = 0¥ with o = where s1(k) denotes
the number of ones in the triadic representation of k. So Cy =1, C, = p, Cy =1, C5 = p,
Cy = 0% Cs = p, Cs = 1 and for Sy = Si(a) we have S; = 1, S = 1+ 9, S3 = 2 + o,
Sy =2+420, S5 =2+ 20+ ¢* Inequality (6.2) is satisfies if ¢ > 0 (from S, < S; + 5;) and
if o <1 (from Sy + Sy > S; + S3). So for % <a< % it holds (6.3), and the solution ¢ of
(1.13) is subadditive according to Theorem 6.2. In particular, Cantor’s function (a = ) is

2
subadditive, cf. also |22, Section 3.2.4], [10].
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