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Local antimaximum principle for the
Schrödinger operator in RN

ABSTRACT. We consider in this paper equations defined in RN involving Schrödinger
operators with indefinite weight functions and with potentials which tend to infinity at
infinity. After recalling the existence of principal eigenvalues and the maximum principle,
we study the local antimaximum principle.
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1 Introduction

We consider in this paper the Schrödinger operator −∆ + q defined on RN associated with
the indefinite weight m where q is a potential which satisfies the following hypothesis:

(H1
q) q ∈ L2

loc(RN) ∩ L∞loc(RN) ∩ Lploc(RN), p > N
2
, such that lim|x|→∞ q(x) =∞ and

q ≥ cst > 0.

and where the weight m satisfies one of the following hypotheses:

(H′1m) m ∈ L∞(RN), m is positive in the open subset Ω+
m = {x ∈ RN ,m(x) > 0} with non

zero measure and m is negative in the open subset Ω−m = {x ∈ RN ,m(x) < 0} with
non zero measure.

(H′2m) (i) m ∈ LN/2(RN) ∩ L∞loc(RN) (N ≥ 3), meas(Ω+
m) > 0, meas(Ω−m) > 0.

(ii) m = m1 −m2, m1 ≥ 0, m1 ∈ L∞(RN), m2 ≥ 0, m2 ∈ L∞loc(RN).

Mainly, this paper deals with the local antimaximum principle for the following equation

(−∆ + q)u = λmu+ f in RN , (1.1)

where λ is a real parameter and f satisfies the following hypothesis:

(H1
f ) f ∈ L2(RN) ∩ L∞loc(RN).
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As in [2, 3] we introduce the quadratic form

(v, w)q =

∫
RN

∇v · ∇w + qvw

defined for every pair

v, w ∈ Vq(RN) := {f ∈ L2(RN , (f, f)q <∞}.

Notice that Vq(RN) is a Hilbert space with the inner product (v, w)q and the norm

‖v‖q = ((v, v)q)
1/2 =

(∫
RN

[|∇v|2 + qv2]

)1/2

.

The set D(RN), which is the set of C∞ functions with compact supports, is a dense linear
subspace of Vq(RN). By the Lax-Milgram theorem, the Schrödinger operator L = −∆ + q in
L2(RN) is defined to be the selfadjoint operator in L2(RN) satisfying∫

RN

(Lv)w = (v, w)q for all v, w ∈ D(RN).

We denote by D(L) its domain (strong domain) and Vq(RN) is its weak domain. In the
following a function u ∈ Vq(RN) will be called a solution of (1.1) if it is a weak solution of
(1.1) i.e. if

∫
RN ∇u · ∇φ+ quφ = λ

∫
RN muφ+

∫
RN fφ for all φ ∈ D(RN). We recall that the

embedding of Vq(RN) into L2(RN) is compact.

We add another hypothesis upon the potential q which assures that any element of the
weak domain of the operator L = −∆ + q belongs to the strong domain D(L). It is the
following hypothesis.

(H2
q) There exists a positive constant C such that for all x ∈ RN and all h ∈ RN , h 6= 0,

| q(x+h)−q(x)|h| | ≤ C
√
q(x).

Note that for example, the potential q(x) = 1+|x| satisfies (H2
q). And we recall the following

proposition in [7], based on the methods of translations due to Nirenberg.

Proposition 1.1 Assume that the potential q satisfy (H1
q) and (H2

q). Let u be a weak
solution of (−∆ + q)u = f in RN with f ∈ L2(RN). Then u ∈ H2(RN), qu ∈ L2(RN) and
therefore u ∈ D(L).

Our assumptions on the weight m guarantee the existence of a unique principal and positive
eigenvalue λ1,q,m > 0 associated with a positive eigenfunction φ1,q,m > 0, and also the
existence and uniqueness of a principal negative eigenvalue λ̃1,q,m < 0 associated with a
positive eigenfunction φ̃1,q,m > 0 (see [6]). We also recall a variational characterization of
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these eigenvalues and that will be essential for the proof of the local antimaximum principle.
The problem of the existence of principal eigenvalues has been studied for the Laplacian and
the p-Laplacian operators associated with a weight, in bounded domains (see for example
[14]), in RN (see for example [5]), for the Schrödinger operator −∆ + q associated with a
weight m in RN (see [6, 7]). We also recall the maximum principle for (1.1): if u is one
weak solution of (1.1), if f ≥ 0 and if λ̃1,q,m < λ < λ1,q,m, then u ≥ 0. Note that the
maximum principle has been extensively studied for equations or systems (see for example
[8, 11–13, 21, 23, 25, 26]).

Afterwards we study the local antimaximum principle: we denote by BR the open ball in
RN of center 0 and radius R ; if f ≥ 0, f 6≡ 0, then there exists a constant δ = δ(f,R) > 0

such that for all λ ∈]λ1,q,m, λ1,q,m + δ[, any solution u of (1.1) is negative in BR.

In various common versions of the antimaximum principle in a bounded domain Ω ⊂ RN ,

N ≥ 1, besides the assumption f ≥ 0, f 6≡ 0 in Ω, it is only assumed that f ∈ Lp(Ω) for
some p > N (cf [10, Theorem 1 p.222], [25, 26]). The case of the Schrödinger operator on
RN is more difficult; the hypothesis f ∈ Lp(Ω) (p > N) is no longer sufficient (see [2, 3] for
the Schrödinger operator with no weight and [7] for the Schrödinger operator with a positive
bounded weight m). Therefore the two main difficulties here are the unboundedness of the
domain RN and the weight m which is not a positive bounded function.

We do not use the ideas expressed in [2, 3, 10, 20, 25, 26] where the antimaximum principle is
obtained by a decomposition of the resolvant of the operator near the principal and positive
eigenvalue and by projecting on the eigenspace generated by the eigenfunction associated
with this eigenvalue. Indeed because of the unboundedness of our domain, we cannot proceed
as for example in Hess (see [20]) where the antimaximum principle is studied for the Laplacian
operator with an indefinite weight function but in a bounded domain. And furthermore
because of our weight which is an indefinite function, we cannot proceed as in [2, 3, 7]
where the antimaximum principle is studied for the Schrödinger operator −∆ + q on RN

with a positive bounded weight m (m = 1 in [2, 3]): more precisely in these former papers
(
∫
RN mu

2)1/2 must be a norm, equivalent to the usual norm in L2(RN).

Thus for the proof of the local antimaximum principle, we follow a method developed in
[15, 24]. This method has been first established for the Laplacian operator in RN , N ≥ 3,

and f ∈ L∞(RN) and for the p-Laplacian operator with a nonpositive weight m at infinity
(see [24]), then it has been extended to the p-Laplacian operator in RN in [15]. This method is
based on a nonexistence result of nonnegative solutions for (1.1) if λ > λ1,q,m (see Proposition
3.1) and also on estimates given by the regularity C1 of any solution u of (1.1). We can
get this regularity either by using a regularity result of Tolksdorf in [27] and Serrin L∞(BR)

estimates for u (see [22]) as in [15, 24] or more classically by the local Lp-regularity theory.
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Indeed, first note that any solution u of (1.1) is continuous (see [1, Theorem 0.1 p.3], [23,
Theorem 7.1 p.232]). Moreover if u ∈ D(L) and (−∆+q)u = f ∈ L2(RN) with f ∈ Lploc(RN)

for some p with 2 ≤ p <∞ then the local Lp-regularity theory yields u ∈ W 2,p
loc (RN) (see [17,

Theorem 9.15 p.241]). In particular, if p > N then u ∈ C1(RN) by the Sobolev embedding
theorem (see [17, Theorem 7.10 p. 155]).

Therefore these results for the Schrödinger operator −∆ + q associated with an indefinite
weight m extend here the results of the antimaximum principle for the Laplacien operator
in a bounded domain (see [10, 20, 26]) and for the p-Laplacien operator in RN (see [15, 24]).
Note that extensions of maximum and antimaximum principles, respectively called ground
state positivity and negativity (or also called fundamental positivity and negativity), are
given for the Schrödinger operator in RN without any weight (see [2, 4]) and with a positive
weight (see [7]) but for a potential q which is a perturbation of a radially symmetric potential
and for a more restrictive set of functions f . Note in [15, Theorem 4.1] a result where the
fundamental negativity in RN is not verified for the Laplacien operator associated with an
indefinite weight in dimension N = 1. Also recall examples given in [2, Example 2.1] and
in [3, Example 4.1] where the global antimaximum principle in RN is still not verified for
the Schrödinger operator with no weight in dimension N ≥ 1. Finally, we can cite among
other papers the works of [16, 18, 19] where the antimaximum principle is studied either for
the p-Laplacian operator or an elliptic operator of second order with a bounded weight on a
bounded domain.

Our paper is organized as follows: In Section 2 we recall the existence of a principal positive
(resp. negative) eigenvalue λ1,q,m > 0 (resp. λ̃1,q,m < 0) associated with a positive eigenfunc-
tion φ1,q,m > 0 (resp. φ̃1,q,m > 0). We also recall the classical maximum principle for (1.1) in
the case of an indefinite weight m. In Section 3, we study the local antimaximum principle.
Finally in Section 4, we extend the local antimaximum principle to the case of the system
(4.1).

2 Existence of principal eigenvalues and maximum principle

First we recall in this section the existence of a unique positive principal eigenvalue λ1,q,m
and of a unique negative principal eigenvalue λ̃1,q,m (see [6, Theorems 2.1,2.2,3.1]). So we
assume in this paper that q satisfies (H1

q), (H2
q) and m satisfies (H′1m) or (H′2m).

Theorem 2.1 Assume that q satisfies (H1
q), (H2

q) and m satisfies (H′1m) or (H′2m)(i).
Then the operator −∆ + q associated with the weight m has a unique positive principal
eigenvalue λ1,q,m associated with a positive eigenfunction φ1,q,m ∈ C1(RN) normalized by
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∫
RN mφ

2
1,q,m = 1, λ1,q,m is simple and (λ1,q,m, φ1,q,m) satisfy

(−∆ + q)φ1,q,m = λ1,q,m m φ1,q,m in RN ; λ1,q,m > 0; φ1,q,m > 0.

λ1,q,m = inf{
∫
RN [|∇φ|2 + qφ2]∫

RN mφ2
, φ ∈ Vq(RN) s. t.

∫
RN

mφ2 > 0}, (2.1)

and this infimum is achieved for any function φ = αφ1,q,m with α ∈ R, α 6= 0. Moreover
the operator −∆ + q associated with the weight m has a unique negative principal eigenvalue
λ̃1,q,m associated with a positive eigenfunction φ̃1,q,m.

Now we recall the maximum principle for (1.1) (see ([6, Theorem 3.2])).

Theorem 2.2 Assume that q satisfies (H1
q), (H2

q) and m satisfies (H′1m) or (H′2m)(i).
Assume that f ∈ L2(RN), f ≥ 0 and u is a solution of (1.1). If λ̃1,q,m < λ < λ1,q,m, then
u ≥ 0.

We conclude this section by adding the following proposition. We follow here [15, Proposition
2.1].

Proposition 2.1 Assume that q satisfies (H1
q), (H2

q) and m satisfies (H′1m) or (H′2m)(i)-
(ii). Then any minimizing sequence (uk) of λ1,q,m admits a subsequence which converges
weakly in Vq(RN) to some u which realizes the infimum (2.1); and so there exists α ∈ R,
α 6= 0 such that u = αφ1,q,m.

Proof: First note that

λ1,q,m = inf{
∫
RN

[|∇φ|2 + qφ2], φ ∈ Vq(RN) s. t.
∫
RN

mφ2 = 1}. (2.2)

Let now (uk) be a minimizing sequence. Then (uk) is a bounded sequence in Vq(RN) and
there exists u ∈ Vq(RN) such that for a subsequence (uk) converges weakly to u in Vq(RN)

(and strongly in L2(RN), and for a subsequence, still denoted by (uk), uk → u a.e. in RN).

If m satisfies (H′1m), since the weight m is bounded, by the Lebesgue dominated convergence
theorem we get that 1 =

∫
RN mu

2
k →

∫
RN mu

2 as k → ∞. Moreover since (uk) converges
weakly to u in Vq(RN), we have ‖u‖q ≤ lim inf ‖uk‖q = λ1,q,m. Therefore u realizes the
infimum (2.2) and so u is on the form u = αφ1,q,m with α ∈ R, α 6= 0.

If now m satisfies (H′2m), note that
∫
RN m1u

2
k →

∫
RN m1u

2 as k → ∞. Recall that 1 =∫
RN mu

2
k =

∫
RN m1u

2
k −

∫
RN m2u

2
k. Thus∫

RN

m2u
2 ≤ lim inf

∫
RN

m2u
2
k =

∫
RN

m1u
2 − 1.
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Therefore
∫
RN mu

2 ≥ 1 and there exists β ∈]0, 1] such that
∫
RN m(βu)2 = 1. Moreover since

(uk) converges weakly to u in Vq(RN) we have∫
RN

[|∇u|2 + qu2] ≤ lim inf

∫
RN

[|∇uk|2 + qu2k] = λ1,q,m, (2.3)

and from the variational characterization (2.2) of λ1,q,m we also have

λ1,q,m ≤
∫
RN

[|∇(βu)|2 + q(βu)2] = β2

∫
RN

[|∇u|2 + qu2]. (2.4)

From (2.3) and (2.4) we get β2 ≥ 1 and therefore β = 1. So here again u realizes the infimum
(2.2) and therefore u is on the form u = αφ1,q,m with α ∈ R, α 6= 0.

3 The local antimaximum principle

In this section we consider the equation (1.1) where m satisfies (H′1m) or (H′2m), q satisfies
(H1

q), (H2
q) and f satisfies (H1

f ). Let u be a weak solution of (1.1). Recall that u ∈ C1(RN).
First we recall the Picone identity.

Lemma 3.1 Let Ω be a domain in RN . For ψ, u ∈ C1(Ω) with ψ ≥ 0 and u > 0 in Ω,
we have |∇ψ|2 −∇u · ∇(ψ

2

u
) ≥ 0 in Ω.

Proposition 3.1 If f ≥ 0, f 6≡ 0, then (1.1) has no solution if λ = λ1,q,m and has no
nonnegative solution if λ > λ1,q,m.

Proof: First assume that λ = λ1,q,m and there exists a solution u for (1.1). Multiplying (1.1)
by φ1,q,m as a test function, we obtain that

∫
RN fφ1,q,m = 0 and so we get a contradiction

since f ≥ 0, f 6≡ 0, φ1,q,m > 0.

Assume now that λ > λ1,q,m and there exists a nonnegative solution u for (1.1). Let R > 0

and cR a positive constant sufficiently large such that cR + λm − q ≥ 0 in BR. Note that
−∆u + cRu = (cR + λm − q)u + f ≥ 0 in BR. Applying the strong maximum principle in
BR (see [17, Theorem 8.19 p.198]) (or as in [15, 24] the Vázquez maximum principle given
in [28, Theorems 1,5]) we obtain that u > 0 in BR for any R sufficiently large and so u > 0

in RN .

Let now (ψk)k be a convergent sequence to φ1,q,m in Vq(RN), ψk ≥ 0, ψk ∈ D(RN). Applying
the Picone identity, we get∫

RN

(
|∇ψk|2 −∇u · ∇(

ψ2
k

u
)

)
= ‖ψk‖2q − λ

∫
RN

mψ2
k −

∫
RN

f
ψ2
k

u
≥ 0.
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Since (ψk)k is a convergent sequence to φ1,q,m in Vq(RN), we have

‖ψk‖2q → ‖φ1,q,m‖2q = λ1,q,m

∫
RN

mφ2
1,q,m as k →∞.

If m satisfies (H′1m), note that ψk → φ1,q,m in L2(RN) as k → ∞ and (at least for a sub-
sequence still denoted by (ψk)) there exists h ∈ L2(RN) such that ψk → φ1,q,m a.e. in RN

and |ψk| ≤ h a.e. in RN for all k. So, since m ∈ L∞(RN), there exists a positive constant C
such that |mψ2

k −mφ2
1,q,m| ≤ C(h2 + φ2

1,q,m) a.e. in RN . Applying the Lebesgue dominated
convergence Theorem, we deduce that∫

RN

mψ2
k →

∫
RN

mφ2
1,q,m as k →∞. (3.1)

By the same way, if m satisfies (H′2m), recall that N ≥ 3 and H1(RN) ⊂ L2∗(RN) with a
continuous embedding, so note that ψk → φ1,q,m in L2∗(RN) as k →∞ with 2∗ = 2N

N−2 and (at
least for a subsequence still denoted by (ψk)) there exists h ∈ L2∗(RN) such that ψk → φ1,q,m

a.e. in RN and |ψk| ≤ h a.e. in RN for all k. So |mψ2
k −mφ2

1,q,m| ≤ |m|(h2 + φ2
1,q,m) a.e. in

RN . Applying the Lebesgue dominated convergence Theorem, we still get (3.1).

Finally, note that fψ2
k

u
≥ 0 and fψ2

k

u
∈ L1(RN) since ψk has a compact support, f ∈ L∞loc(RN),

u ∈ L∞loc(RN). By the Fatou lemma we get that∫
RN

fφ2
1,q,m

u
≤ lim inf

∫
RN

fψ2
k

u
.

So by the Lebesgue dominated convergence Theorem and Fatou Lemma, we obtain

(λ1,q,m − λ)

∫
RN

mφ2
1,q,m −

∫
RN

f
φ2
1,q,m

u
≥ 0.

And we get a contradiction since the first term of this estimate is negative and the second
term is negative too.

We give now the local antimaximum principle.

Theorem 3.1 Let f ≥ 0, f 6≡ 0. Then for any R > 0 there exists a positive constant
δ = δ(f,R) > 0 such that for any λ ∈]λ1,q,m, λ1,q,m + δ[, any solution u of (1.1) is negative
in BR.

Proof: We follow [15, 24]. Assume by contradiction that for some R > 0 there exist
λk > λ1,q,m, λk ↘ λ1,q,m, a solution uk of

(−∆ + q)uk = λkmuk + f in RN , (3.2)

and xk ∈ BR such that uk(xk) ≥ 0.
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First we show that limk→∞ ‖uk‖q =∞. On the contrary, assume that (‖uk‖q)k is a bounded
sequence. Therefore, from the compact embedding of Vq(RN) into L2(RN), for a subsequence,
there exists u ∈ Vq(RN) such that (uk)k converges to u, weakly in Vq(RN) and strongly in
L2(RN). So for all φ ∈ D(RN),∫

RN

(∇uk · ∇φ+ qukφ)→
∫
RN

(∇u · ∇φ+ quφ) as k →∞

and by the Lebesgue dominated convergence Theorem∫
RN

mukφ→
∫
RN

muφ as k →∞.

Therefore as k → ∞, we get from (3.2) that (−∆ + q)u = λ1,q,mmu + f in RN which
contradicts Proposition 3.1. So limk→∞ ‖uk‖q =∞.

Now set vk = uk
‖uk‖q

. Then vk satisfies

(−∆ + q)vk = λkmvk +
f

‖uk‖q
in RN . (3.3)

Since (vk)k is a bounded sequence in Vq(RN), as before, for a subsequence, there exists
v ∈ Vq(RN) such that (vk)k converges to v, weakly in Vq(RN) and strongly in L2(RN). And
v satisfies

(−∆ + q)v = λ1,q,mmv in RN .

Since λ1,q,m is a simple eigenvalue then there exists β ∈ R such that

v = βφ1,q,m.

First note that if we multiply (3.3) by φ1,q,m as a test function and if we integrate over RN ,
we get

λ1,q,m

∫
RN

mφ1,q,mvk = λk

∫
RN

mφ1,q,mvk +

∫
RN

f

‖uk‖q
φ1,q,m.

Therefore since
∫
RN

f
‖uk‖q

φ1,q,m > 0 and λ1,q,m < λk we have
∫
RN mφ1,q,mvk < 0. So if the

weight m satisfies (H′1m), passing to the limit we get that
∫
RN mφ1,q,mv ≤ 0 and β ≤ 0.

Therefore we will consider three cases for β (and the case β > 0 only when the weight m
satisfies (H′2m)).

If β = 0 then v = 0. Note that ‖vk‖2q = λk
∫
RN mv

2
k +

∫
RN

fvk
‖uk‖q

and ‖vk‖2q ≤ λk
∫
RN pv

2
k +∫

RN
fvk
‖uk‖q

with p := m if m satisfies (H′1m) and p := m1 if m satisfies (H′2m). By the Lebesgue
dominated convergence theorem, we get that

∫
RN pv

2
k → 0 and

∫
RN

fvk
‖uk‖q

→ 0 as k →∞. So
we have ‖vk‖q → 0 as k →∞, which is impossible since ‖vk‖q = 1. Therefore β 6= 0.
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If now β < 0 then v < 0 in RN . But (vk)k converges to v in C1
loc(RN) and uniformly on all

ball BR. So vk is negative in BR for k sufficiently large, which contradicts the existence of
the sequence xk.

So we consider the last case β > 0 (and in fact only when the weight m satisfies (H′2m)). We
will show that vk ≥ 0 i.e. v−k ≡ 0 in RN for k sufficiently large. On the contrary, assume
that v−k 6≡ 0. Multiplying (3.3) by v−k and integrating over RN , we get that

0 < ‖v−k ‖
2
q = λk

∫
RN

m(v−k )2 −
∫
RN

fv−k
‖uk‖q

≤ λk

∫
RN

m(v−k )2.

So rk :=
∫
RN m(v−k )2 > 0. Moreover by the variational characterization of λ1,q,m we have

‖v−k ‖2q∫
RN m(v−k )2

→ λ1,q,m as k →∞ i.e. lim
k→∞
‖wk‖2q = λ1,q,m with wk =

1

r
1/2
k

v−k .

So (wk) is a minimizing sequence for λ1,q,m in (2.2) and from the simplicity of the eigenvalue
λ1,q,m, using Proposition 2.1, for a subsequence, we deduce that (wk)k converges to αφ1,q,m

with α ∈ R, α 6= 0, weakly in Vq(RN) (and strongly in L2(RN)). But (vk)k converges to
βφ1,q,m > 0 in C1

loc(RN). So vk is positive on the unit ball B1 for k sufficiently large and so
v−k ≡ 0, wk ≡ 0 on B1. Thus α = 0. Therefore we get a contradiction.

So vk ≥ 0 in RN for k sufficiently large and vk satisfies (3.3) with λk > λ1,q,m. This contradicts
Proposition 3.1 and this concludes the proof of the local antimaximum principle theorem.

Note that we obtain the same kind of local antimaximum principle for λ < λ̃1,q,m since
λ̃1,q,m = −λ1,q,−m and the equation (−∆ + q)u = λmu + f is equivalent to (−∆ + q)u =

(−λ)(−m)u + f. To conclude this section, as in [15], we give a result for the semi-global
antimaximum principle.

Proposition 3.2 Assume that there exists R0 ∈ R, R0 > 0 such that m ≤ 0 in
BC
R0

:= RN \ BR0 . Assume also that f ≥ 0, f 6≡ 0, and there exists a constant C ≥ 0

such that f ≤ −Cmφ1,q,m in BC
R0
. Let δ = δ(f,R0) be given by Theorem 3.1. Then for any

λ ∈]λ1,q,m, λ1,q,m + δ[, any solution u of (1.1) satisfies u ≤ C
λ−λ1,q,mφ1,q,m in RN .

Proof: Let C ′ = C
λ−λ1,q,m (with λ ∈]λ1,q,m, λ1,q,m + δ[) and v = u − C ′φ1,q,m. We want to

prove that v+ = 0 in RN . First note that v+ = 0 in BR0 by Theorem 3.1. Moreover we have

(−∆ + q)v = (λ− λ1,q,m)mu+ λ1,q,mmv + f in RN . (3.4)

Multiplying (3.4) by v+ and integrating over RN , since v+ = 0 in BR0 , we get

0 ≤
∫
BC

R0

[|∇v+|2 + q|v+|2] = λ1,q,m

∫
BC

R0

m|v+|2 +

∫
BC

R0

[(λ− λ1,q,m)mu+ f ]v+.
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Since f ≤ −Cmφ1,q,m in BC
R0

and m ≤ 0 in BC
R0
, we obtain

0 ≤
∫
BC

R0

[(λ− λ1,q,m)mu+ f ]v+ ≤ (λ− λ1,q,m)

∫
BC

R0

m|v+|2 ≤ 0.

Therefore
∫
BC

R0

[|∇v+|2 + q|v+|2] = 0 and v+ = 0 in BC
R0
.

Theorem 3.2 Assume that there exists R0 ∈ R, R0 > 0 such that m ≤ 0 in
BC
R0

:= RN \BR0 . Assume also that f ≥ 0, f 6≡ 0, f with compact support. Then there exists
δ := δ(f) a positive constant such that for any λ ∈]λ1,q,m, λ1,q,m + δ[, any solution u of (1.1)
is negative in RN .

Proof: Let R1 ≥ R0 such that suppf ⊂ BR1 and let δ := δ(f,R1) given by Theorem 3.1.
Let λ ∈]λ1,q,m, λ1,q,m + δ[ and u a solution of (1.1). From Proposition 3.2 with C = 0 we get
that u ≤ 0 in RN . Moreover from Theorem 3.1 we have u < 0 in BR1 .

Let now x ∈ BC

R1
:= RN \BR1 and r > 0 such that B(x, r)∩BR1 6= ∅ and B(x, r)∩suppf = ∅.

Let cr be a positive constant such that cr + λm− q > 0 in B(x, r) the open ball of center x
and radius r. Since (−∆)(−u) + cr(−u) = (cr + λm− q)(−u) ≥ 0 in B(x, r), by the strong
maximum principle, we get that −u ≡ 0 or −u > 0 in B(x, r). Since u < 0 in BR1 we
deduce that −u > 0 in B(x, r). So u(x) < 0 and this concludes the proof of the semi-global
antimaximum principle.

4 Study of a linear elliptic system

In this section, we study the antimaxium principle for the following system

(−∆ + qi)ui = λ

(
miui +

n∑
j=1;j 6=i

mijuj

)
+ fi in RN , i = 1, · · · , n, (4.1)

where each of the potentials qi satisfy (H1
q)-(H2

q), each of the weights mi satisfy the hypoth-
esis (H′1m) and each of the functions fi satisfy the hypothesis (H1

f ). We denote by M the
n×n-matrix given by M = (mij) with mii = mi. We will consider the following hypotheses:

(H1
M) For all i 6= j, mij ∈ L∞(RN) and mij > 0.

(H2
M) M is a symmetric matrix.

(H3
M) Ω := ∩ni=1Ω

+
i is an open subset of RN with non zero measure and with

Ω+
i := {x ∈ RN ,mi(x) > 0}.
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We also consider the following system:

(−∆ + qi)ui = λ

(
miui +

n∑
j=1;j 6=i

mijuj

)
in RN , i = 1, · · · , n. (4.2)

We recall from [7] the existence of a positive and simple eigenvalue associated with a positive
eigenfunction for (4.2).

Theorem 4.1 Assume that each of the potentials qi satisfy (H1
q)-(H2

q) and each of the
weights mi satisfy (H′1m). Assume also that (H1

M)-(H3
M) are satisfied. Then there exists

a unique principal eigenvalue Λ1,M > 0 associated with a positive eigenfunction Φ1,M =

(φ1,M , · · · , φn,M) ∈ V := Vq1(RN)× · · · × Vqn(RN) for the system (4.2) (and φi,M > 0 for all
i). The eigenvalue Λ1,M is simple and verifies

Λ1,M = inf

{ ∑n
i=1 ‖ui‖2qi∑n

i=1

∫
RN miu2i +

∑n
i,j;i 6=j

∫
RN mijuiuj

, u = (u1, · · · , un) ∈ V

such that
n∑
i=1

∫
RN

miu
2
i +

n∑
i,j;i 6=j

∫
RN

mijuiuj > 0

}
. (4.3)

We recall from [7] the maximum principle for (4.1).

Theorem 4.2 Assume that each of the potentials qi satisfy (H1
q)-(H2

q) and each of the
weights mi satisfy (H′1m). Assume also that (H1

M)-(H3
M) are satisfied. Assume that fi ∈

L2(RN) for all i. If 0 ≤ λ < Λ1,M , then the system (4.1) satisfies the maximum principle: if
f = (f1, · · · , fn) ≥ 0, then ui ≥ 0 for all i with u = (u1, · · · , un) solution of (4.1).

Now we study the local antimaximum principle for (4.1). As for one equation, note that any
solution u = (u1, · · · , un) of (4.1) satisfies u ∈ (C1(RN))n. We now extend Proposition 3.1
to the system (4.1).

Proposition 4.1 If fi ≥ 0, fi 6≡ 0 for all i, then (4.1) has no solution if λ = Λ1,M and
has no nonnegative solution if λ > Λ1,M .

Proof: First assume that λ = Λ1,M and there exists a solution u = (u1, · · · , un) for (4.1).
Multiplying each equation of (4.1) by φi,M as a test function, integrating over RN and adding
all these equations, since M is a symmetric matrix, we obtain that

∑n
i=1

∫
RN fiφi,M = 0 and

so we get a contradiction since fi ≥ 0, fi 6≡ 0, φi,M > 0.

Assume now that λ > Λ1,M and there exists a nonnegative solution u = (u1, · · · , un) for
(4.1) i.e. ui ≥ 0 for all i. Let R > 0 and cR a positive constant sufficiently large such that
cR + λmi − qi ≥ 0 in BR for any i. Note that for any i

−∆ui + cRui = (cR + λmi − qi)ui + λ
n∑

j=1;j 6=i

mijuj + fi ≥ 0 in BR.
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Applying the strong maximum principle in BR, since λ > 0, mij > 0, uj ≥ 0, fi ≥ 0, fi 6≡ 0,

we obtain that ui > 0 in BR for any R sufficiently large and so ui > 0 in RN .

Let now for each i = 1, · · · , n (ψik)k be a convergent sequence to φi,M in Vqi(RN), ψik ≥ 0,

ψik ∈ D(RN). Applying the Picone identity, we get∫
RN

(
|∇ψik|2 −∇ui · ∇(

ψ2
ik

ui
)

)
=

‖ψik‖2qi − λ
∫
RN

miψ
2
ik − λ

n∑
j=1;j 6=i

∫
RN

mijuj
ψ2
ik

ui
−
∫
RN

fi
ψ2
ik

ui
≥ 0.

Therefore
n∑
i=1

∫
RN

(
|∇ψik|2 −∇ui · ∇(

ψ2
ik

ui
)

)
=

n∑
i=1

‖ψik‖2qi − λ
n∑
i=1

∫
RN

miψ
2
ik

−λ
n∑

i,j=1;j 6=i

∫
RN

mijuj
ψ2
ik

ui
−

n∑
i=1

∫
RN

fi
ψ2
ik

ui
≥ 0.

Since (ψik)k is a convergent sequence to φi,M in Vqi(RN), we have

‖ψik‖2qi → ‖φi,M‖
2
qi

= Λ1,M(

∫
RN

miφ
2
i,M +

n∑
j=1;i 6=j

∫
RN

mijφi,Mφj,M) as k →∞.

Passing to the limit by the Lebesgue dominated convergence Theorem and Fatou Lemma,
we get

(Λ1,M − λ)
n∑
i=1

∫
RN

miφ
2
i,M −

n∑
i=1

∫
RN

fi
φ2
i,M

ui

+Λ1,M

n∑
i,j=1;i 6=j

∫
RN

mijφi,Mφj,M − λ
n∑

i,j=1;j 6=i

∫
RN

mijuj
φ2
iM

ui
≥ 0.

Since λ > Λ1,M and
∑n

i,j=1;i 6=j
∫
RN mijφi,Mφj,M > 0 thus

(Λ1,M − λ)
n∑
i=1

∫
RN

miφ
2
i,M −

n∑
i=1

∫
RN

fi
φ2
i,M

ui
− λ

n∑
i,j=1;i<j

∫
RN

mij

uiuj
(ujφi,M − uiφj,M)2 ≥ 0.

And we get a contradiction since all the two first terms of this estimate are negative and the
third term is nonpositive.

We give now the local antimaximum principle.

Theorem 4.3 Let f = (f1, · · · , fn), fi ≥ 0, fi 6≡ 0 for all i. Then for any R > 0 there
exists a positive constant δ = δ(f,R) > 0 such that for any λ ∈]Λ1,M ,Λ1,M + δ[, any solution
u = (u1, · · · , un) of (4.1) is negative in BR i.e. ui < 0 in BR for all i.
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Proof: Assume by contradiction that for some R > 0 there exist λk > Λ1,M , λk ↘ Λ1,M , a
solution uk = (u1k, · · · , unk) of

(−∆ + qi)uik = λk(miuik +
n∑

j=1;j 6=i

mijujk) + fi in RN , i = 1, · · · , n (4.4)

and ik ∈ {1, · · · , n}, xik,k ∈ BR such that uikk(xik,k) ≥ 0.

First we show that limk→∞ ‖uik‖qi = ∞ for at least one i. On the contrary, assume that
(‖uik‖qi)k is a bounded sequence for all i. Therefore, from the compact embedding of Vqi(RN)

into L2(RN), for a subsequence, there exists ui ∈ Vqi(RN) such that (uik)k converges to ui,
weakly in Vqi(RN) and strongly in L2(RN). Passing to the limit in (4.4) as in Theorem 3.1
we get

(−∆ + qi)ui = Λ1,M(miui +
n∑

j=1;j 6=i

mijuj) + fi in RN , i = 1, · · · , n

which contradicts Proposition 4.1. So limk→∞ ‖uik‖qi =∞ for at least one i.

Now set vjk =
ujk∑n

i=1 ‖uik‖qi
for all j. Then vik satisfies

(−∆ + qi)vik = λk(mivik +
n∑

j=1;j 6=i

mijvjk) +
fi∑n

i=1 ‖uik‖qi
in RN , i = 1, · · · , n. (4.5)

Since (vik)k is a bounded sequence in Vqi(RN), as before, for a subsequence, there exists
vi ∈ Vqi(RN) such that (vik)k converges to vi, weakly in Vqi(RN) and strongly in L2(RN).

And v = (v1, · · · , vn) satisfies

(−∆ + qi)vi = Λ1,M(mivi +
n∑

j=1;j 6=i

mijvj) in RN , i = 1, · · · , n.

Since Λ1,M is a simple eigenvalue then there exists β ∈ R such that

v = βΦ1,M i.e. for all i = 1, · · · , n, vi = βφi,M .

We will consider three cases for β.

If β = 0 then v = 0. Note that for any i = 1, · · · , n,

‖vik‖2qi = λk

∫
RN

miv
2
ik + λk

n∑
j=1;j 6=i

∫
RN

mijvjkvik +

∫
RN

fivik∑n
i=1 ‖uik‖qi

.

By the Lebesgue dominated convergence Theorem, we get that ‖vik‖qi → 0 as k → ∞ for
all i, which is impossible since

∑n
i=1 ‖vik‖qi = 1. Therefore β 6= 0.
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If now β < 0 then v < 0 in RN . But for any i, (vik)k converges to vi in C1
loc(RN). So vik is

negative in BR for k sufficiently large, which contradicts the existence of the sequence xik,k.

So we consider the last case β > 0. We will show that for any i, vik ≥ 0 i.e. v−ik ≡ 0 in
RN for k sufficiently large. On the contrary, assume that there exists i0 such that v−i0k 6≡ 0.

Denote by

D(u) :=
n∑
i=1

∫
RN

miu
2
i +

n∑
i,j;i 6=j

∫
RN

mijuiuj for u = (u1, · · · , un) ∈ V.

Multiplying (4.5) by v−ik and integrating over RN , we get that

0 <
n∑
i=1

‖v−ik‖
2
qi

= λk(
n∑
i=1

∫
RN

mi(v
−
ik)

2 +
n∑

i,j=1;i 6=j

∫
RN

mijv
−
jkv
−
ik)

−λk
n∑

i,j=1;i 6=j

∫
RN

mijv
+
jkv
−
ik −

n∑
i=1

∫
RN

fiv
−
ik∑n

i=1 ‖uik‖qi
.

So 0 <
∑n

i=1 ‖v
−
ik‖2qi ≤ λkD(v−k ) with v−k = (v−1k, · · · , v

−
nk) and therefore D(v−k ) > 0 and

Λ1,M = limk→∞
‖v−k ‖

2
V

D(v−k )
with ‖v−k ‖2V =

∑n
i=1 ‖v

−
ik‖2qi .

Let wk = 1
D(v−k )1/2

v−k . So (wk) is a minimizing sequence for (4.3) and from the simplicity
of the eigenvalue Λ1,M , for a subsequence, we deduce that (wk)k converges to αΦ1,M with
α ∈ R, α 6= 0, weakly in V (RN) (and strongly in (L2(RN))n). Indeed first note that (wk) is a
bounded sequence in V so there exists w ∈ V such that (wk) converges to w weakly in V and
strongly in (L2(RN))n. Note also that D(wk) = 1 and so ‖wk‖2V

D(wk)
→ Λ1,M as k →∞. Moreover

D(wk)→ D(w) as k →∞ and ‖w‖V ≤ lim inf ‖wk‖V =
√

Λ1,M since (wk) converges weakly
to w in V. So using the variational characterization (4.3) of Λ1,M we get that ‖w‖

2
V

D(w)
= Λ1,M .

Thus w realizes the infimum of Λ1,M and from the simplicity of the eigenvalue Λ1,M we
deduce the existence of a real α 6= 0 such that w = αΦ1,M .

But (vk)k converges to βΦ1,M > 0 in (C1
loc(RN))n. So for all i, vik is positive on the unit ball

B1 for k sufficiently large and so v−ik ≡ 0, wik ≡ 0 on B1. Thus α = 0. Therefore we get a
contradiction.

So vik ≥ 0 in RN for all i = 1, · · · , n and for k sufficiently large and vik satisfies (4.5)
with λk > Λ1,M . This contradicts Proposition 4.1 and this concludes the proof of the local
antimaximum principle theorem.

These results can be extended to the system (4.1) with weights mi satisfying (H′2m) (see [9]
for the existence of a principal, positive and simple eigenvalue Λ1,M).
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