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Improved nearness research II

ABSTRACT. When applying in consequence the new created concept ”Bounded Topology”
[8] hence ”classical structures” like nearness structures [5], convergence structures [8] and
syntopogenous structures [8] will be analyzed in connexion with neighbourhood structures
[11] or supertopologies [4], respectively. In this context ”nearness” is presented as special
paranearness, ”convergence” as special b-convergence and being ”syntopogenous” as special
case of b-syntopogenous, leading us accordingly to a general theory of his own! Now, in this
paper we will study certain superclan spaces, whichever are in one-to-one correspondence to
strict topological extensions. Here, we should mention that the presented concept is not of
utmost generality, but then the reader is referred to [9].

KEY WORDS AND PHRASES. LEADER proximity; supertopological space; LODATO
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1 Basic concepts

As usual PX denotes the power set of a set X, and we use BX ⊂ PX to denote a collection
of bounded subsets of X, also known as B-sets, e.g. BX has the following properties:

(b1) ∅ ∈ BX ;

(b2) B2 ⊂ B1 ∈ BX imply B2 ∈ BX ;

(b3) x ∈ X implies {x} ∈ BX .

Then, for B-sets BX ,BY a function f : X −→ Y is called bounded iff f satisfies (b), e.g.

(b) {f [B] : B ∈ BX} ⊂ BY .
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Definition 1.1 For a set X, we call a tripel (X,BX , N) consisting of X,B-set BX and
a near-operator N : BX −→ P (P (PX)) a supernearness space (shortly supernear space) iff
the following axioms are satisfied, e.g.

(sn1) B ∈ BX and ρ2 << ρ1 ∈ N(B) imply ρ2 ∈ N(B), where ρ2 << ρ1 iff ∀F2 ∈ ρ2∃F1 ∈
ρ1 F2 ⊃ F1;

(sn2) B ∈ BX implies BX /∈ N(B) 6= ∅;

(sn3) ρ ∈ N(∅) implies ρ = ∅;

(sn4) x ∈ X implies {{x}} ∈ N({x});

(sn5) B1 ⊂ B2 ∈ BX imply N(B1) ⊂ N(B2);

(sn6) B ∈ BX and ρ1 ∨ ρ2 ∈ N(B) imply ρ1 ∈ N(B) or ρ2 ∈ N(B), where ρ1 ∨ ρ2 : ={F1 ∪
F2 : F1 ∈ ρ1, F2 ∈ ρ2};

(sn7) B ∈ BX , ρ ⊂ PX and {clN(F ) : F ∈ ρ} ∈ N(B) imply ρ ∈ N(B), where
clN(F ) : ={x ∈ X : {F} ∈ N({x})}.

If ρ ∈ N(B) for some B ∈ BX , then we call ρ a B-near collection in N . For supernear spaces
(X,BX , N), (Y,BY ,M) a bounded function f : X −→ Y is called sn-map iff it satisfies (sn),
e.g.

(sn) B ∈ BX and ρ ∈ N(B) imply {f [F ] : F ∈ ρ}=: fρ ∈M(f [B]).

We denote by SN the corresponding category.

Example 1.2 (i) For a nearness space (X, ξ) let BX be B-set. Then we consider the
tripel (X,BX , Nξ), where

Nξ(∅) : ={∅} and

Nξ(∅) : ={ρ ⊂ PX : {B} ∪ ρ ∈ ξ}, otherwise.

(ii) For a topological space (X, t) given by closure operator t let BX be B-set. Then we
consider the tripel (X,BX , Nt), where Nt(∅) : ={∅} and Nt(B) : ={ρ ⊂ PX : ∃x ∈
Bx ∈

⋂
{t(F ) : F ∈ ρ}}, otherwise.

(iii) For a LODATO space (X,BX , δ) with δ ⊂ BX×PX we consider the tripel (X,BX , Nδ),
where Nδ(∅) : ={∅} and Nδ(B) : ={ρ ⊂ PX : ρ ⊂ δ(B) and {B} ∪ ρ ⊂ ∩{δ(F ) : F ∈
ρ ∩ BX}}, otherwise, with δ(B) : ={A ⊂ X : BδA}. Hereby, following conditions must
be satisfied:
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(bp0) B ∈ BX implies clδ(B) ∈ BX , where clδ(B) : ={x ∈ X : {x}δB};

(bp1) ∅δA and Bδ∅ (e.g. ∅ is not in relation to A, and analogously this is also
holding for B;

(bp2) Bδ(A1 ∪ A2) iff BδA1 or BδA2;

(bp3) x ∈ X implies {x}δ{x};

(bp4) B1 ⊂ B2 ∈ BX and B1δA imply B2δA;

(bp5) B ∈ BX and BδA with A ⊂ clδ(C) imply BδC;

(bp6) B1 ∪B2 ∈ BX and (B1 ∪B2)δA imply B1δA or B2δA;

(bp7) A,B ⊂ X, clδ(B) ∈ BX and clδ(B)δA imply BδA;

(bp8) B1, B2 ∈ BX and B1δB2 imply B2δB1.

(iv) For a preLEADER space (X,BX , δ) with δ ⊂ BX × PX only satisfies (bp1) to (bp5)
we consider the tripel (X,BX , N δ), where N δ(B) : ={ρ ⊂ PX : ρ ⊂ δ(B)} for each
B ∈ BX .

Definition 1.3 For preLEADER spaces (X,BX , δ), (Y,BY , γ) a bounded function f :

X −→ Y is called p-map iff f satisfied (p), e.g.

(p) B ∈ BX , A ⊂ X and BδA imply f [B]γf [A]. By LOSP respectively pLESP we denote
the corresponding categories.

Definition 1.4 TEXT denotes the category, whose objects are triples E : =(e,BX , Y ) -
called topological extensions - where X : =(X, clX), Y : =(Y, clY ) are topological spaces (given
by closure operators) with B-set BX , and e : X −→ Y is a function satisfying the following
conditions:

(tx1) A ∈ PX implies clX(A) = e−1[clY (e[A])], where e−1 denotes the inverse image under
e;

(tx2) clY (e[X]) = Y , which means the image of X under e is dense in Y . Morphisms in
TEXT have the form (f, g) : (e,BX , Y ) −→ (e′,BX′

, Y ′), where f : X −→ X ′, g :

Y −→ Y ′ are continuous maps such that f is bounded, and the following diagram
commutes

X
e //

f
��

Y

g
��

X ′
e′
// Y ′

.
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If (f, g) : (e,BX , Y ) −→ (e′,BX′
, Y ′) and (f ′, g′) : (e′,BX′

, Y ′) −→ (e′′,BX′′
, Y ′′), are TEXT-

morphisms, then they can be composed according to the rule:

(f ′, g′) ◦ (f, g) : =(f ′ ◦ f, g′ ◦ g) : (e,BX , Y ) −→ (e′′,BX′′
, Y ′′),

where ”o” denotes the composition of maps.

Remark 1.5 Observe, that axiom (tx1) in this definition is automatically satisfied if e :

X −→ Y is a topological embedding. Moreover, we only admit an ordinary B-set BX on X
which need not be necessary coincide with the power PX. In addition we mention that such
an extension is called strict iff it satisfies (tx3), e.g.

(tx3) {clY (e[A]) : A ⊂ X} forms a base for the closed subsets of Y [1].

By STREXT we denote the corresponding full subcategory of TEXT.

(v) For a topological extension E : =(e,BX , Y ) we consider the tripel (X,BX , Ne), where

Ne(∅) : ={∅} and

Ne(B) : ={ρ ⊂ PX : y ∈ ∩{clY (e[F ]) : F ∈ ρ} for some y ∈ e[B]}, otherwise.

2 Some important isomorphisms

With respect to above examples, first let us focus our attention to some special classes of
supernear spaces.

Definition 2.1 A supernear space (X,BX , N) is called saturated iff BX is, e.g.

(s) X ∈ BX .

Remark 2.2 Note, that in above case BX coincide with the power PX. (Also compare
with examples (i) or (ii), respectively). Moreover, we claim that the full subcategory SNS of
SN, whose objects are the saturated supernear spaces is bireflective in SN. Concretely, for a
supernear space (X,BX , N) we put: NS(B) : =N(B) for each B ∈ BX and NS(B) : ={ρ ⊂
PX : ∃x ∈ X∃B∗ ∈ BX(x ∈ B ⊃ B∗ and ρ ∈ N({x}) ∪ N(B∗))} for each B ∈ PX \ BX ,
hence (X,PX,NS) is saturated supernear space and 1X : (X,BX , N) −→ (X,PX,NS) to
be the bireflection in demand!

Definition 2.3 A supernear space (X,BX , N) is called

(i) paranearness space (paranear space) iff it is symmetric, hence N additionally satisfies
(sy), e.g.
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(sy) B ∈ BX\{∅} and ρ ∈ N(B) imply {B} ∪ ρ ∈ ∩{N(A) : A ∈ (ρ ∩ BX) ∪ {B}};

(ii) pointed iff N satisfies (pt), e.g.

(pt) B ∈ BX\{∅} implies N(B) = ∪{N({x}) : x ∈ B}. By PN respectively PT-SN
we denote the corresponding full subcategory of SN.

Theorem 2.4 The category NEAR of nearness spaces and nearness preserving maps
is isomorphic to the full subcategory PNS of PN, whose objects are the saturated paranear
spaces.

Proof: According to example (i). Conversely, we consider for a saturated paranear space
(Y,BY ,M):

µM : ={A ⊂ PX : A ∈ ∩{M(A) : A ∈ A}}.

Theorem 2.5 The category TOP of topological spaces and continuous maps is isomor-
phic to the full subcategory PT-SNS of PT-SN, whose objects are the saturated pointed su-
pernear spaces.

Proof: According to example (ii) and by respecting (sn7) in definition 1.1.

Definition 2.6 Let be given a supernear space (X,BX , N). For B ∈ BXC ∈ GRL(X) is
called B-clan in N iff it satisfies

(cla1) B ∈ C ∈ N(B);

(cla2) A ∈ C and A ⊂ clN(F ) imply F ∈ C, where GRL(X) : ={γ ⊂ PX : γ is grill }, and
γ ⊂ PX is called grill (Choquet [3]) iff

(gri1) ∅ /∈ γ;

(gri2) G1 ∪G2 ∈ γ iff G1 ∈ γ or G2 ∈ γ.

Then (X,BX , N) is called superclan space iff N satisfies (cla), e.g.

(cla) B ∈ BX\{∅} and ρ ∈ N(B) imply the existence of B-clan C ∈ GRL(X)ρ ⊂ C.

Moreover, if (X,BX , N) ∈ PN satisfies (cla), we analogously call it paraclan space!

Remark 2.7 Here, we note that each pointed supernear space is always a superclan space
by making use of the fact that for each B ∈ BX with x ∈ B {T ⊂ X : x ∈ clN(T )}=:xN is
B-clan in N , and xN is maximal in N({x}) \ {∅}, ordered by inclusion!
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Theorem 2.8 The category BUN of bunch-determined nearness spaces and related maps
[2] is isomorphic to the full subcategory CLA-PNS of PNS, whose objects are the saturated
paraclan spaces.

Proof: Compare with theorem 2.4.

Definition 2.9 A paranear space (X,BX , N) is called round iff it satisfies (r), e.g.

(r) B ∈ BX implies clN(B) ∈ BX .

Theorem 2.10 The full subcategory R-PN of PN, whose objects are the round paranear
spaces is bireflective in PN.

Proof: For a paranear space (X,BX , N) we set:

BXN : ={D ⊂ X : ∃B ∈ BXclN(B) ⊃ D} and

Nr(∅) : ={∅} respectively

Nr(D) : ={ρ ⊂ PX : ∃B ∈ BX{D} ∪ ρ ∈ N(B)}, otherwise.

Then the tripel (X,BX , Nr) is a round paranear space and 1X : (X,BX , N) −→ (X,BX , Nr)

to be the bireflection in demand!

Corollary 2.11 If (X,BX , N) is paraclan space then (X,BXN , Nr) as well.

Definition 2.12 A round paranear space (X,BX , N) is called LOproximal iff it satisfies
(LOp), e.g.

(LOp) B ∈ BX\{∅}, ρ ∈ pN(B) and {B} ∪ ρ ⊂ ∩{pN(F ) : F ∈ ρ ∩ BX} imply ρ ∈ N(B),
where BPN

A iff {A} ∈ N(B).

Theorem 2.13 The category LOSP is isomorphic to the full subcategory LO-PN of R-
PN, whose objects are the LOproximal paranear spaces.

Proof: According to example (iii). Conversely, we consider the near-relation ”pN ” as
defined in 2.12. Moreover we note that for a paranear space (X,BX , N) the near-operator
N is dense, e.g. by satisfying (d)B ⊂ X and clN(B) ∈ BX imply N(clN(B)) = N(B), and
moreover it is connected, e.g. by satisfying

(cnc) B1 ∪B2 ∈ BX implies N(B1 ∪B2) = N(B1) ∪N(B2).
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Remark 2.14 Now, we mention that in the ”saturated case” LOproximal paranear spaces
and LODATO proximity spaces [10] essentially are the same!

Proposition 2.15 Let (Y, t) be a symmetric topological space given by closure operator
t and BX B-set with X ⊂ Y . We set BXt : ={D ⊂ X : ∃B ∈ BXt(B) ⊃ D} and DδtA iff
t(D) ∩ t(A) 6= ∅. Then (X,BXt , δt) is LODATO space.

Remark 2.16 Now, surely it seems to be of interest to characterize those LODATO spaces
whichever are induced by a topologival space Y as above so that bounded and arbitrary sets
are near iff their closures meet in Y . But this problem already has been solved under more
general conditions in [9].

Remark 2.17 Returning to nearness spaces we already know that in general subspaces of
topological nearness spaces need not to be topological again, hence Bentley [2] has called
them subtopological. But now here, we will give an extended description of this definition
in term of supernear spaces as follows:

Definition 2.18 A supernear space (X,BX , N) is called supergrill space if N satisfies
(gri), e.g.

(gri) B ∈ BX and ρ ∈ N(B) imply the existence of γ ∈ GRL(X) ∩N(B) with ρ ⊂ γ.

Remark 2.19 We point out that this definition generalize that of 2.6. Moreover, if
(X,BX , N) ∈ PN satisfies (gri), we analogously call it a paragrill space. By G-SN respec-
tively G-PN we denote the corresponding full subcategory of SN respectively PN.

Proposition 2.20 For a nearness space (X, ξ) the following statements are equivalent:

(i) (X, ξ) is subtopological;

(ii) (X,PX,Nξ) is paragrill space.

Remark 2.21 According to example (iv) we also note that (X,BX , N δ) is a supergrill
space.

Definition 2.22 A supergrill space (X,BX , N) then is called conic iff N satisfies (c),
e.g.

(c) B ∈ BX implies {F ⊂ X : ∃ρ ∈ N(B)F ∈ ρ}=:∪N(B) ∈ N(B).

Theorem 2.23 The category pLESP is isomorphic to the full subcategory CG-SN of
G-SN, whose objects are the conic supergrill spaces.

Proof: According to example (iv) in connexion with the definition of ”pN ” in 2.12.
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Definition 2.24 A preLEADER space (X,BX , δ) then is called LEADERspace iff δ in
addition satisfies (bp6) in (iii).

Remark 2.25 We point out that in the ”saturated” case LEADER spaces and LEADER
proximity spaces [6] essentially are the same. Moreover, each supertopological space [4]
(X,BX ,Θ), where Θ : BX −→ FIL(X) : ={F ⊂ PX : F is filter} satisfies the following
conditions, e.g.

(stop1) Θ(∅) = PX;

(stop2) B ∈ BX and U ∈ Θ(B) imply U ⊃ B;

(stop3) B ∈ BX and U ∈ Θ(B) imply there exists a set V ∈ Θ(B) such that always
U ∈ Θ(B′)∀B′ ∈ BXB′ ⊂ V is leading us to the preLEADER space (X,BX , δΘ)

by setting BδΘA iff A ∈ secΘ(B). If in addition (X,BX ,Θ) ∈ ASTOP [11], then
(X,BX , δΘ) is LEADER space, too. The above assignment now is ”bi-functoriell”,
hence STOP can be considered as a subcategory of CG-SN. In the second case we
note that the corresponding supergrill operator N δΘ is in addition linked, hence it
satisfies (l), e.g.

(l) B1 ∪ B2 ∈ BX and ρ ∈ N δΘ(B1 ∪ B2) imply {F} ∈ N δΘ(B1) ∪ N δΘ(B2) for
each F ∈ ρ.

Definition 2.26 A conic supergrill space (X,BX , N) then is called LEproximal iff N is
linked. By LE-SN we denote the full subcategory of SN.

Theorem 2.27 The category LE-SN is isomorphic to the full subcategory LESP of
pLESP, whose objects are the LEADER spaces.

Remark 2.28 According to 2.25 we also note that ASTOP now can be considered as
subcategory of LE-SN.

Proposition 2.29 Let (Y, t) be a topological space given by closure operator t and BX

B-set with X ⊂ Y . We set BδtA iff B ∩ t(A) 6= ∅ for each B ∈ BX and A ⊂ X. Then
(X,BX , δt) is LEADER space

Proof: straightforward.

Remark 2.30 According to 2.16 now it seems to be of interest to characterize those
LEADER spaces, whichever are included by a topological space Y as above so that a bounded
set B is near to an arbitrary one iff B intersects its closure in Y . But we will solve this
problem under more general conditions in a forthcoming paper!
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Remark 2.31 Returning to conic supergrill spaces we point out that for such a space
(X,BX , N) and for each B ∈ BX\{∅} ∪N(B) is a B-clan in N . hence, we claim that conic
supergrill spaces even are superclan spaces!

Theorem 2.32 The category CG-SN is bicoreflective in G-SN.

Proof: For a supergrill space (X,BX , N) we set for each B ∈ BX :

NC(B) : ={ρ ⊂ PX : {clN(F ) : F ∈ ρ} ⊂ ∪N(B)}.

Then (X,BX , Nc) is a conic supergrill space and 1X : (X,BX , Nc) −→ (X,BX , N) to be the
bicoreflection in demand. First, we only show that NC satisfies (sn7): Let be {clNc(A) : A ∈
A} ∈ Nc(B) for B ∈ BX , we have to verify clN(A) ∈ ∪N(B) for each A ∈ A.

A ∈ A implies clN(clNc(A)) ∈ ∪N(B) by hypothesis. We claim now that the statement
clNc(A) ⊂ clN(A) is valid. x ∈ clNc(A) implies {A} ∈ Nc({x}), hence clN(A) ∈ ∪Nc({x}).
We can find ρ ∈ N({x}) such that clN(A) ∈ ρ. Consequently {clN(A)} ∈ N({x}) follows,
which shows {A} ∈ N({x}), hence x ∈ clN(A) results.

Altogether we get clN(A) ⊃ clN(clN(A)) ⊃ clN(clNc(A)) implying clN(A) ∈ ∪N(B), since
∪N(B) ∈ GRL(X). Secondly, we prove ∪Nc(B) ∈ GRL(X) for each B ∈ BX . Let be given
B ∈ BX , evidently ∅ /∈ ∪Nc(B). Now, if F1 ∈ ∪Nc(B) and F1 ⊂ F2 ⊂ X, then there exists
ρ1 ∈ Nc(B)F1 ∈ ρ1. Consequently {clN(A) : A ∈ ρ1} ⊂ ∪N(B) follows by definition. We
put ρ2 : ={F2}, hence ρ2 ∈ NC(B), because {clN(F ) : F ∈ ρ2} = {clN(F2)} and clN(F2) ⊃
clN(F1) ∈ ∪N(B) implies clN(F2) ∈ ∪N(B). But F2 ∈ {F2} = ρ2 immediately leading us to
F2 ∈ ∪Nc(B). At last let be F1 ∪F2 ∈ ∪Nc(B), hence there exists ρ ∈ Nc(B)F1 ∪F2 ∈ ρ By
definition {clN(F ) : F ∈ ρ} ⊂ ∪N(B) is valid showing that clN(F1)∪clN(F2) ⊃ clN(F1∪F2) ∈
∪N(B). Consequently, clN(F1) ∈ ∪N(B) or clN(F2) ∈ ∪N(B) results, since ∪N(B) ∈
GRL(X). If clN(F1) ∈ ∪N(B) then we put ρ1 : ={F1},hence F1 ∈ ∪Nc(B) results.

Analogously, this also holds in the second case. Evidently, 1X : (X,BX , Nc) −→ (X,BX , N)

is sn-map. Now, let be given (Y,BY ,M) ∈ CG-SN and sn-map f : (Y,BY ,M)−→ (X,BX , N),
we have to prove f : (Y,BY ,M) −→ (X,BX , Nc) is sn-map. For B ∈ BY and ρ ∈ M(B) we
must show fρ ∈ Nc(f [B]), which means {clN(A) : A ∈ fρ} ⊂ ∪N(f [B]). A ∈ fρ implies
A = f [F ] for some F ∈ ρ. By supposition fρ ∈ N(f [B]) follows, and clN(A) = clN(f [F ]) ⊃
f [clM(F )] ⊃ f [F ] ∈ fρ ∈ ∪N(f [B]) is valid. Consequently, clN(A) ∈ ∪N(f [B]) results!

Remark 2.33 As mentioned in 2.7 we already know, that pointed supernear spaces are
superclan spaces as well. Moreover, in the next, we will show that PT-SN can be ”nicely
embedded” in SN as follows:

Theorem 2.34 PT-SN is bicoreflective subcategory of SN.
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Proof: For a supernear space (X,BX , N) we set:

NP (∅) : ={∅} and

NP (B) : =[A ⊂ PX : ∃x ∈ B∃γ ∈ N({x})∩ GRL(X){clN(A) : A ∈ A} ⊂ γ},
otherwise.

Then (X,BX , NP ) is pointed supernear space and 1X : (X,BX , NP ) −→ (X,BX , N) to be the
bicoreflection in demand. First, we will show that NP satisfies (sn7). Let be B ∈ BX\{∅}
and {clNP

(A) : A ∈ A} ∈ NP (B), then we can choose x ∈ B and γ ∈ N({x})∩ GRL(X)

such that {clN(F ) : F ∈ {clNP
(A) ∈ A}} ⊂ γ. In showing A ∈ NP (B) we have to verify

clN(A) ∈ γ for each A ∈ A : A ∈ A implies clN(clNP
(A)) ∈ γ by hypothesis. Now,

we claim that clNP
(A) ⊂ clN(A), because x ∈ clNP

(A) implies {A} ∈ NP ({x}), hence
there exists γ′ ∈ N({x})∩ GRL(X){clN(A)} ⊂ γ′. Then {clN(A)} ∈ N({x}) is valid,
and consequently {A} ∈ N({x}) follows which shows x ∈ clN(A). Altogether we have
clN(A) ⊃ clN(clN(A)) ⊃ clN(clNP

(A)) ∈ γ, hence clN(A) ∈ γ results! Evidently, NP fulfills
the axioms (sn1) to (sn5).

to (sn6): A1 ∨ A2 ∈ NP (B) for B ∈ BX\{∅} implies the existence of x ∈ B and γ ∈
N({x})∩ GRL(X) so that {clN(A) : A ∈ A1 ∨ A2} ⊂ γ. If supposing A1,A2 /∈
NP (B) we get {clN(A1) : A1 ∈ A1} 6⊂ γ and {clN(A2) : A2 ∈ A2} 6⊂ γ, hence
there exist A1 ∈ A1clN(A1) /∈ γ and A2 ∈ A2clN(A2) /∈ γ implying A1 ∪ A2 ∈ A
and clN(A1) ∪ clN(A2) /∈ γ. Consequently clN(A1 ∪ A2) /∈ γ follows, since γ ∈
GRL(X). On the other hand clN(A1 ∪ A2) ∈ γ by hypothesis is leading us to a
contradiction! By definition NP is pointed and 1X : (X,BX , NP ) −→ (X,BX , N))

sn-map. Now, let be given a pointed supernear space (Y,BY ,M) and sn-map
f : (Y,BY ,M) −→ (X,BX , N), we will show that f : (Y,BY ,M) −→ (X,BX , NP )

is sn-map as well. Without restriction let be B ∈ BY \ {∅} and A ∈ M(B),
hence by hypothesis there exists y ∈ B such that A ∈M({y}). Since f is sn-map
fA ∈ N({f(y)}) follows with f(y) ∈ f [B]. But f(y)N ∈ N({f(y)})∩ GRL(X),
according to 2.7. Now, for F ∈ fA we will show that clN(F ) ∈ f(y)N . F ∈ fA
implies F = f [A] for some A ∈ A. We claim {f [A]} ∈ N({f(y)}). By hypothesis
fA ∈ N({f(y)}), hence {f [A]} << fA, which shows {f [A]} ∈ N({f(y)}), and
at last fA ∈ NP (f [B]) results.
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Remark 2.35 The following diagram illustrates the relationship between important former
mentioned categories:

SN

pLESP

44

PN

OO

TOP

jj

STOP

88

LESP

OO

ASTOP

OO 77

LOSP

OO

77

LEPROX

gg

NEAR

[[

TOP

OO

LOPROX

gg OO 44

R0 − TOP

OO

gg

3 Topological extensions and related superclan spaces

Taking into account example (v), we will now consider the problem for finding a one-to-one
corresponding between certain topological extensions and their related supernear spaces. It
turns out that there exists an interesting one between pointed supernear spaces and some
strict topological extensions.

Lemma 3.1 For a topological extension (e,BX , Y ), (X,BX , Ne) is a pointed supernear
space such that clNe = clX .

Proof: First, we will show the equality of the closure operators. So, let A ∈ PX and
x ∈ clX(A). Then by (tx1) e(x) ∈ clY (e[A]) hence {A} ∈ Ne({x}), and x ∈ clNe(A)

follows. Conversely, let x ∈ clNe(A), then {A} ∈ Ne({x}). Consequently there exists
y ∈ e[{x}] = {e(x)} with y ∈ clY (e[A]). Hence y = e(x), and as a consequence of (tx1) we
get x ∈ e−1[clY (e[A])] ⊂ clX(A), which was to be proven. Secondly, it is easy to check the
axioms (sn1) to (sn6).

to (sn7): Let be {clNe(F ) : F ∈ ρ} ∈ Ne(B) for ρ ⊂ PX,B ∈ BX and without restriction
B 6= ∅, then there exists y ∈ e[B] with y ∈ ∩{clY (e[A]) : A ∈ {clNe(F ) : F ∈ ρ}}.
For F ∈ ρ we get y ∈ clY (e[clNe [F ]]) = clY (e[clX(F )]) according to the first
approved equality. Consequently, y ∈ clY (clY (e[F ])) ⊂ clY (e[F ]) results, which
shows ρ ∈ Ne(B), according to (tx1). By definition Ne is automatically pointed.
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Theorem 3.2 Let F : TEXT −→ PT-SN be defined by:

(a) For a TEXT-object (e,BX , Y ) we put F (e,BX , Y ) : =(X,BX , Ne);

(b) for a TEXT-morphism (f, g) : (e,BX , Y ) −→ (e′,BX′
, Y ′) we put F (f, g) : = f . Then

F : TEXT −→ PT-SN is a functor.

Proof: With respect to 3.1 we already know that F (e,BX , Y ) is an object of PT-SN.
Let (f, g) : (e,BX , Y ) −→ (e′,BX′

, Y ′) be a TEXT-morphism such that F (e,BX , Y ) =

(X,BX , Ne) and F (e′,BX′
, Y ′) = (X ′,BX′

, Ne′). It has to be shown that f : (X,BX , Ne) −→
(X ′,BX′

, Ne′) preserves B-near collections for each B ∈ BX . Without loss of generality, let be
B ∈ BX\{∅} and ρ ∈ Ne(B), hence there exists y ∈ e[B] such that y ∈ ∩{clY (e[F ]) : F ∈ ρ}.
Our goal is to verify that fρ ∈ Ne′(f [B]). By hypothesis we have g(y) ∈ g[e[B]] = e′[f [B]].
On the other hand let D ∈ fρ. We have to verify that g(y) ∈ clY ′(e′[D]). As D =

f [F ] for some F ∈ ρ, y ∈ clY (e[F ]). Consequently, g(y) ∈ g(clY (e[F ])) ⊂ clY ′(g(e[F ]]) =

clY ′(e′(f [F ])) = clY ′(e′[D]), which results in fρ ∈ Ne′(f [B]) according to the definitions in
1.4. Then the remainder is clear.

4 Pointed supernear spaces and strict topological extensions

In the previous paragraph we have found a functor from TEXT to PT-SN. Now, we are
going to introduce a related one from PT-SN to STREXT.

Lemma 4.1 Let (X,BX , N) be a supernear space. We put XC : ={C ⊂ PX : C is B-clan
in N for some B ∈ BX}, and for each AC ⊂ XC we set: clXC (AC) : ={C ∈ XC : 4AC ⊂ C},
where 4AC : ={F ⊂ X : ∀C ∈ ACF ∈ C}, so that by convention 4AC = PX if AC = ∅.
Then clXC is a topological closure operator on XC.

Proof: First, we note that for any C ∈ XC , C /∈ clXC (∅), because ∅ /∈ C according to 2.6
and (sn2) respectively. Now, let AC1 ⊂ AC2 . Then 4AC2 ⊂ 4AC1 which yields clXC (AC1 ) ⊂
clXC (AC2 ). Further, let AC1 and AC2 be subsets of XC . Let C be an elements of XC and
suppose C /∈ clXC (AC1 ) ∪ clXC (AC2 ). Then we have 4AC1 6⊂ C and 4AC2 6⊂ C. Choose
F1 ∈ 4AC1 with F1 /∈ C and F2 ∈ 4AC2 with F2 /∈ C, hence F1 ∪ F2 /∈ C, according to 2.6.
On the other hand, we have F1 ∪ F2 ∈ 4(AC1 ∪ AC2 ), and consequently C /∈ clXC (AC1 ∪ AC2 )

results. Now, let C be the element of clXC (clXC (AC)) and suppose C /∈ clXC (AC). Choose
F ∈ 4AC F /∈ C. By hypothesis we have 4clXC (AC) ⊂ C, hence F /∈ 4clXC (AC). Choose
D ∈ clXC (AC) F /∈ D. Then 4AC ⊂ D, hence F ∈ D, which leads us to a contradiction!

Theorem 4.2 For supernear spaces (X,BX , N), (Y,BY ,M) let f : X −→ Y be a sn-
map. Define a function fC : XC −→ Y C by setting for each C ∈ XC: fC(C) : ={D ⊂ Y :

f−1[clM(D)] ∈ C}. Then the following statements are valid:



Improved nearness research II 99

(i) fC : (XC , clXC ) −→ (Y C , clY C ) is a continuous map;

(ii) the equality fC ◦ eX = eY ◦ f holds, where eX : X −→ XC denotes that function which
assigns the {x}-clan xN to each x ∈ X.

Proof: First, let C ∈ XC , we must show that fC(C) ∈ Y C . fC(C) ∈ GRL(Y ), since
C ∈ GRL(X) and f−1 respectively clM are compatible with finite union. By hypothesis
C ∈ N(B) for some B ∈ BX , hence fC ∈ N(f [B]), because f is sn-map. Now, we will show
that {clM(D) : D ∈ fC(C)} << fC. clM(D) for some D ∈ fC(C) implies f−1[clM(D)] ∈ C,
hence clM(D) ⊃ f [f−1[clM(D)]] ∈ fC. According to (sn7), fC(C) ∈M(f [B]) follows. f [B] ∈
fC(C), since f−1[clM(f [B])] ⊃ f−1[f [clN(B)]] ⊃ B ∈ C by hypothesis.

At last, let be D ∈ fC(C) and D ⊂ clM(F ), we have to verify F ∈ fC(C). By supposition
f−1[clM(D)] ∈ C. f−1[clM(D)] ⊂ clN(f−1[clM(F )]), because x ∈ f−1[clM(D)] implies f(x) ∈
clM(D); but clM(D) ⊂ clM(clM(F )) ⊂ clM(F ), hence f(x) ∈ clM(F ). Consequently, x ∈
f−1[clM(F )] ⊂ clN(f−1[clM(F )]) results. Since C satisfies (cla2), f−1[clM(F )] ∈ C is valid,
which shows F ∈ fC(C).

to (i): Let AC ⊂ XC , C ∈ clXC (AC) and suppose fC(C) /∈ clY C (fC [AC ]). Then 4fC [AC ] 6⊂
fC(C), hence D /∈ fC(C) for some D ∈ 4fC [AC ], which means f−1[clM(D)] /∈ C.

But 4AC ⊂ C implies f−1[clM(D)] /∈ D for some D ∈ AC . Therefore D /∈ fC(D),
which leads us to a contradiction, because D ∈ 4fC [AC ].

to (ii): Let x be an element of X. We will prove that the equality fC(eX(x)) = eY (f(x))

is valid. To this end let T ∈ eY (f(x)), hence f(x) ∈ clM(T ), and consequently x ∈
f−1[clM(T )] follows, which shows f−1[clM(T )] ∈ xN = eX(x). Thus, T ∈ fC(eX(x))

which proves the inclusion eY (f(x)) ⊂ fC(eX(x)).

Consequently, since eY (f(x)) is maximal in M({f(x)}) \ {∅} (see 2.7 and note also
that {clM(D) : D ∈ fC(eX(x))} << fxN ∈ M({f(x)}), since by hypothesis f is
sn-map) we obtain the desired equality.

Theorem 4.3 Let G : SN −→ STREXT be defined as follows:

(a) For any supernear space (X,BX , N) we put G(X,BX , N) : =(eX ,BX , XC) with
X : =(X, clN) and XC : =(XC , clXC );

(b) for any sn-map f : (X,BX , N) −→ (Y,BY ,M) we put: G(f) : =(f, fC).

Then G : SN −→ STREXT is a functor.
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Proof: With respect to (sn7) clN is topological, and by 4.1 this also holds for clXC .
Therefore we get topological spaces with B-set BX , and eX : X −→ XC is a map according
to 4.2. Now, we have to verify that (eX ,BX , XC) satisfies the axioms (tx1) to (tx3).

to (tx1): Let A be a subset of X and suppose x ∈ clN(A). Since 4eX [A] = {T ⊂ X :

A ⊂ clN(T )} we get eX(x) ∈ clXC (eX [A]), hence x ∈ e−1
X [clXC [eX [A]]] follows.

Conversely, let x be an element of e−1
X [clXC (eX [A])], then by definition we have

eX(x) ∈ clXC (eX [A]), and consequently the statement 4eX [A] ⊂ eX(x) results. In
applying the above mentioned equation we get A ∈ eX(x), which means x ∈ clN(A).

to (tx2): Let C ∈ XC and suppose C /∈ clXC (eX [X]). By definition we get 4eX [X] 6⊂ C, so
that there exists a set F ∈ 4eX [X]F /∈ C.

Consequently, the inclusion X ⊂ clN(F ) holds. By hypothesis C is B-clan for some
B ∈ BX , hence B ∈ C according to (cla1), and B ⊂ X ⊂ clN(F ) follows, which
imply F ∈ C according to (cla2). But this is a contradiction, hence C ∈ clXC (eX [X])

holds.

to (tx3): Let C ∈ XC and let AC be closed in XC with C /∈ AC . Then C /∈ clXC (AC) and
so 4AC 6⊂ C. There exists F ∈ 4AC such that F /∈ C. Now, for each D ∈ AC we
have F ∈ D, which implies 4eX [F ] ⊂ D, and so at last D ∈ clXC (eX [F ]) results.
On the other hand since F /∈ C we have 4eX [F ] 6⊂ C, and so C /∈ clXC (eX [F ]).

Now it is interesting to see, how the composite functor F ◦G works on the category PT-SN.

Theorem 4.4 Let G : PT-SN −→ TEXT and F : TEXT −→ PT-SN be the func-
tors given in theorem 3.2 and 4.3. For each object (X,BX , N) of PT-SN let t(X,BX , N)

denote the identity map t(X,BX , N) : = idX : F (G(X,BX , N)) −→ (X,BX , N). Then t :

F ◦G −→ 1PT-SN is natural equivalence from F ◦G to the identity functor 1PT-SN, i.e. idX :

F (G(X,BX , N)) −→ (X,BX , N) is in both directions a sn-map for each object (X,BX , N),
and the following diagram commutes for each sn-map f : (X,BX , N) −→ (Y,BY ,M):

F (G(X,BX , N))
idX //

F (G(f))
��

(X,BX , N)

f
��

F (G(Y,BY ,M)))
idY

// (Y,BY ,M).

Proof: The commutativity of the diagram is obvious, because F (G(f)) = f .

It remains to prove that in each case F (G(X,BX , N))
idX−−→ (X,BX , N)

idX−−→ F (G(X,BX , N))

is sn-map for any object (X,BX , N) ∈ PT-SN. To fix the notation, let N1 be such that
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F (G(X,BX , N)) = F (eX ,BX , XC) = (X,BX , N1). First we show that for each B ∈
BX\{∅}, ρ ∈ N1(B) implies ρ ∈ N(B). To this end assume that ρ ∈ N1(B), then there
exists C ∈ eX [B] such that C ∈ ∩{clXC (eX [F ]) : F ∈ ρ}. We have C = eX(x) for some
x ∈ B, hence C ∈ N(B) according to 2.7 and 4.2, respectively. ρ ⊂ C, because F ∈ ρ implies
C ∈ clXC (eX [F ]), and in consequence 4eX [F ] ⊂ C results. Since F ∈ 4eX [F ] we get F ∈ C,
which shows ρ ∈ N(B), according to (sn1). Conversely, let be B ∈ BX\{∅} and ρ ∈ N(B),
we have to show that ρ ∈ N1(B).

In assuming the above we get ρ ∈ N({x}) for some x ∈ B, since (X,BX , N) is pointed. But
xN = eX(x) ∈ eX [B]. We have to show that for each F ∈ ρ the statement xN ∈ clXC (eX [F ])

is valid. So let be F ∈ ρ and T ∈ 4eX [F ]. By hypothesis F ⊂ clN(T ) results with F ∈ xN ,
hence x ∈ clN(F ), and consequently we get T ∈ xN , which concludes the proof.

Now, in making this part of searching more transparent, we give a short characterization of
the subject as follows:

Comment 1 Let be given an arbitrary supernear space (X,BX , N). Then his property of
being pointed can be described in such a way that there exists a topological space Y in which
it is densely ”embedded”, so that non-empty B-near collections are characterized by the fact,
that its closure meet in Y by the image of an element of B. Hence, we can resume, that
pointed supernear spaces can be strictly extended in such a manner!

Corollary 4.5 If (X,BX , N) is separated, which means N satisfies (sep), e.g.

(sep) x, z ∈ X and {{z}} ∈ N({x}) imply x = z, then eX : X −→ XC is injective!
Conversely, for a T1-extension (e,BX , Y ), where e is a topological embedding, and Y
is a T1-space, then (X,BX , Ne) is separated!
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