
Rostock. Math. Kolloq. 66, 45–67 (2011) Subject Classification (AMS)
11A63, 39B22, 26A27

Manfred Krüppel

The partial derivatives of de Rham’s singular
function and power sums of binary digital sums

ABSTRACT. This note is a supplement to the paper [9] on the partial derivatives Tn of de
Rham’s function Ra(x) with respect to the parameter a at a = 1/2. In particular, T0(x) = x

and T1(x) = 2T (x) where T is Takagi’s continuous nowhere differentiable function. We
present a new representation of Tn. From this we derive a limit relation at dyadic rational
points. Moreover, we show that real linear combinations of Tn with n ≥ 1 are nowhere
differentiable. Thus we are able to prove that the functions which appear e.g. in the well
known formula of Coquet for power sums of binary digital sums are nowhere differentiable.
Finally, we derive a corresponding formula for power sums of the number of zeros.
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1 Introduction

For a fixed parameter a ∈ (0, 1) the system of functional equations

f
(
x
2

)
= af(x),

f
(
x+1
2

)
= a+ (1− a)f(x)

 (x ∈ [0, 1]) (1.1)

has a unique bounded solution f = Ra(x) with Ra(0) = 0 and Ra(1) = 1, cf. [6]. It is
R1/2(x) = x, but for a 6= 1

2
de Rham’s function Ra(x) is a strictly singular function which

is also called Lebesgue singular function, cf. e.g. [1]. In [2] it was shown that for ` ∈ N and
n = 0, 1, . . . , 2` it holds

Ra

( n
2`

)
= a`

n−1∑
j=0

qs(j) (1.2)

where q = (1−a)/a and where s(j) denotes the number of ones in the binary representation
of j. As consequence of (1.2) it was shown in [9] that for q > 0 it holds

N−1∑
j=0

qs(j) = NαGq(log2N) (1.3)
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where α = log2(1+q) and where Gq(u) is a continuous, 1-periodic function which is connected
with de Rham’s function by

Gq(u) = auRa(2
u) (u ≤ 0) (1.4)

where a = 1
1+q

. Formula (1.3) was the start point for the proof of explicit formulas for digital
sums. For the binomial sum

Bk(N) =
N−1∑
j=0

(
s(j)

k

)
(1.5)

with integer k ≥ 1 it holds the formula ([9])

1

N
Bk(N) =

1

k!

(
log2N

2

)k
+

1

k!

k−1∑
`=0

(log2N)`Fk,`(log2N) (1.6)

and for the power sum

Sk(N) =
N−1∑
j=0

s(j)k (1.7)

with k ≥ 1 it holds the formula of Coquet [3], (cf. also [5], [11] and [9])

1

N
Sk(N) =

(
log2N

2

)k
+

k−1∑
`=0

(log2N)`Gk,`(log2N) (1.8)

where Fk,`(u) and Gk,`(u) are continuous, 1-periodic functions. In this note we show that the
functions Fk,`(u) and Gk,`(u) are nowhere differentiable. (For Gk,`(u) this is already known
from [5]). In case k = 1 both formulas yield the well-known formula of Trollope-Delange
([13], [4]) for the sum of digits

1

N

N−1∑
j=0

s(j) =
1

2
log2N + F1 (log2N) (1.9)

where the 1-periodic function F1(u) is connected with Takagi’s function T (x) by

F1(u) = −u
2
− 1

2u+1
T (2u) (u ≤ 0), (1.10)

cf. [8, Theorem 2.1]. In [9] the functions Fk,`(u) and Gk,`(u) were expressed by means of the
partial derivatives of de Rham’s function Ra(x) with respect to the parameter a at a = 1

2
,

i.e.
Tn(x) =

∂n

∂an
Ra(x)

∣∣∣∣
a=1/2

(x ∈ [0, 1]). (1.11)

In particular, T0(x) = x and T1(x) = 2T (x) where T is the Takagi function, cf. [9]. We show
that for 0 < x ≤ 1 we have

1

x
Tn(x) = (−2)n(log2 x)n +

n−1∑
ν=0

(log2 x)νgn,ν(log2 x)
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where the functions gn,ν(u) are 1-periodic, continuous and nowhere differentiable. At dyadic
points x = k

2`
it hold the one-sided limits

lim
h→+0

Tn(x+ h)− Tn(x)

h(log2
1
h
)n

= 2n

and
lim
h→−0

Tn(x+ h)− Tn(x)

|h|(log2
1
|h|)

n
= (−1)n+12n.

Finally, if s0(j) denotes the number of zeros in the binary expansion of j then

1

N

N−1∑
j=1

s0(j)
k =

(
log2N

2

)k
+

(−1)k−1

N
+

k−1∑
`=0

(log2N)`Hk,`(log2N) (1.12)

where Hk,`(u) are 1-periodic continuous, nowhere differentiable functions.

In this note we use the Stirling numbers of first and second kind s(1)k,`, s
(2)
k,` given by

k!

(
x

k

)
=

k∑
`=0

s
(1)
k,`x

` (1.13)

and

xk =
k∑
`=0

s
(2)
k,` `!

(
x

`

)
. (1.14)

These numbers are integers. In particular, s(1)k,0 = s
(2)
k,0 = 0 for k ≥ 1 and s(1)k,k = s

(2)
k,k = 1 for

k ≥ 0.

2 Partial derivatives

In [9] were introduced the partial derivatives of de Rham’s function Ra(x) at a = 1
2
, i.e.

Tn(x) =
∂n

∂an
Ra(x)

∣∣∣∣
a=1/2

(x ∈ [0, 1]). (2.1)

Thus T0(x) = x and T1(x) = 2T (x) where T is Takagi’s function. For n ≥ 1 the function Tn
is continuous and has the symmetry property

Tn(1− x) = (−1)n+1Tn(x) (2.2)

and for n ≥ 2 it satisfies the functional equations

Tn
(
x
2

)
= nTn−1(x) + 1

2
Tn(x)

Tn
(
x+1
2

)
= −nTn−1(x) + 1

2
Tn(x)

 (x ∈ [0, 1]). (2.3)
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In [1] were investigated the functions

T̃n(x) =
1

n!
Tn(x), (2.4)

there with the notation Tn(x). For every ε > 0 there exist constants Cn,ε such that if
0 ≤ x < x+ y ≤ 1, then

|T̃n(x+ y)− T̃n(x)| ≤ Cn,εy
1−ε, (2.5)

cf. [1]. By [9, Proposition 4.2] we know that for n ≥ 1 the derivatives (2.1) of de Rham’s
function Ra satisfy the functional relations

Tn

(
k + x

2`

)
= Tn

(
k

2`

)
+

n∑
ν=0

aνTν(x) (2.6)

where ` ∈ N, k = 0, 1, . . . , 2` − 1, x ∈ [0, 1], T0(x) = x and where aν are the constants

aν =

(
n

ν

)
∂n−ν

∂an−ν
a`−s(k)(1− a)s(k)

∣∣∣∣
a=1/2

(2.7)

which depend on n, k and `. In particular, an = 1/2`. Moreover, for k = 0, 1, . . . , 2` it holds

Tn

(
k

2`

)
=

n!

2`−n

k−1∑
j=0

n∑
r=0

(−1)r
(
s(j)

r

)(
`− s(j)
n− r

)
. (2.8)

Proposition 2.1 For ` ∈ N, k = 0, 1, . . . , 2` − 1, x ∈ [0, 1] we have

Tn

(
k − x

2`

)
= Tn

(
k

2`

)
+

n∑
ν=0

bνTν(x) (2.9)

where bν are the constants

bν = (−1)ν+1

(
n

ν

)
∂n−ν

∂an−ν
a`−s(k−1)(1− a)s(k−1)

∣∣∣∣
a=1/2

(2.10)

which depend on n, k and `. In particular, bn = (−1)n+1/2`.

Proof: If we denote the coefficients (2.7) more precisely by aν,k (for fixed n and `) then
from (2.6) with k − 1 instead of k and 1− x instead of x we get

Tn

(
k − x

2`

)
= Tn

(
k − 1

2`

)
+

n∑
ν=0

aν,k−1Tν(1− x)

= Tn

(
k − 1

2`

)
+ a0,k−1 +

n∑
ν=0

(−1)ν+1aν,k−1Tν(x)

where we have used (2.2) and T0(x) = x. For x = 0 it follows

Tn

(
k

2`

)
= Tn

(
k − 1

2`

)
+ a0,k−1

and hence (2.9) with the coefficients bν given by (2.10).
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3 Non-differentiability of linear combinations of Tn

The following proposition is a generalization of [1, Theorem 1.5] to linear combinations

fn(x) =
n∑
ν=1

cνT̃ν(x) =
n∑
ν=1

cν
ν!
Tν(x) (x ∈ [0, 1]) (3.1)

with certain constants c1, . . . , cn. We will modify a bit the nice proof in [1] where we use
largely the same notations.

Proposition 3.1 If cn 6= 0 then the function fn(x) from (3.1) is nowhere differentiable.

Proof: For x0 ∈ [0, 1) and positive integers k we put jk = [2kx0] such that 0 ≤ jk ≤ 2k− 1

and
jk
2k
≤ x0 <

jk + 1

2k
, k ∈ N. (3.2)

Observe that jk+1 = 2jk or jk+1 = 2jk + 1 where A = {k : jk+1 = 2jk} is always infinite and
N \ A = {k : jk+1 = 2jk + 1} is finite if and only if x0 is dyadic rational.

For an arbitrary function f : [0, 1] 7→ R we define

∆f (k, j) :=
f((j + 1) · 2−k)− f(j · 2−k)

2−k
k ∈ N, j = 0, 1, . . . , 2k − 1. (3.3)

Let be Kn the set of all functions (3.1) with cn 6= 0. We show by induction on n that for no
f ∈ Kn the limit

lim
k→∞

∆f (k, jk) (3.4)

exists. For n = 1 this is true since each f ∈ K1 has the form f(x) = c1T̃1(x) = 2c1T (x) with
c1 6= 0 and the Takagi function T (x) for which the nonexistence of the limit is well known
(cf. [12]). Assume for a fixed n ≥ 2 that for no f ∈ Kn−1 the limit (3.4) exists. Now we
consider the function fn(x) from (3.1) with cn 6= 0 which belongs to Kn and assume that
there exists a finite number λ such that

lim
k→∞

∆fn(k, jk) = λ. (3.5)

It follows
lim

k→∞,k∈A
∆fn(k + 1, 2jk) = λ (3.6)

and
lim

k→∞,k 6∈A
∆fn(k + 1, 2jk + 1) = λ (3.7)

whenever N \ A is infinite, cf. [1].
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Put ∆ν(k, j) = ∆T̃ν
(k, j) then ∆0(k, j) = 1 since T̃0(x) = x and by (3.1) we have

∆fn(k, j) =
n∑
ν=1

cν∆ν(k, j).

In view of
∆ν(k + 1, 2j)−∆ν(k + 1, 2j + 1) = 4∆ν−1(k, j), (ν ≥ 1) (3.8)

cf. [1], we find

∆fn(k + 1, 2jk)−∆fn(k + 1, 2jk + 1) =
n∑
ν=1

4cν∆ν−1(k, jk)

= 4c1∆0(k, jk) +
n−1∑
µ=1

4cµ+1∆µ(k, jk)

and hence
∆fn(k + 1, 2jk)−∆fn(k + 1, 2jk + 1) = 4c1 + ∆f (k, jk) (3.9)

where f is the function
f(x) = 4c2T̃1(x) + · · ·+ 4cnT̃n−1(x). (3.10)

Obviously,
∆fn(k + 1, 2jk) + ∆fn(k + 1, 2jk + 1) = 2∆fn(k, jk). (3.11)

Now we consider two cases:

1. If x0 is not dyadic rational, i.e. N \ A is infinite, then (3.5), (3.6) and (3.7) imply

lim
k→∞

∆fn(k + 1, 2jk) = lim
k→∞

∆fn(k + 1, 2jk + 1) = λ.

2. If x0 is dyadic rational, i.e. N \ A is finite, then there exists k0 such that jk+1 = 2jk for
k > k0 and (3.6) can be written as

lim
k→∞

∆fn(k + 1, 2jk) = λ. (3.12)

Now, (3.11), (3.5) and (3.12) imply

lim
k→∞

∆fn(k + 1, 2jk + 1) = λ.

So in both cases from (3.9) we get limk→∞∆f (k, jk) = −4c1 for f from (3.10) which belongs
to Kn−1 since cn 6= 0. This is a contradiction to the induction hypothesis. Thus fn(x) with
cn 6= 0 is not differentiable at x0 ∈ [0, 1) which is valid also at x0 = 1 in view of (2.2).

Remark 3.2 The proof makes use of the recursion (3.8) which in [1] was derived by a
system of infinitely many difference equations for the functions T̃n(x), cf. [1, Corollary 2.5].
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Theorem 3.3 If gν(x) (ν = 1, . . . , n) are differentiable functions for x ∈ [0, 1] then the
function

f(x) =
n∑
ν=1

gν(x)Tν(x) (x ∈ [0, 1])

is differentiable at a point x0 if and only if gν(x0) = 0 for ν = 1, . . . , n.

Proof: For x0 ∈ [0, 1] we consider h 6= 0 such that also x0 + h ∈ [0, 1]. Obviously,

f(x0 + h)− f(x0)

h
= Σ1 + Σ2

where

Σ1 =
n∑
ν=1

gν(x0 + h)− gν(x0)
h

Tν(x0 + h), Σ2 =
n∑
ν=1

gν(x0)
Tν(x0 + h)− Tν(x0)

h
.

Note that Σ1 converges as h → 0 since gν(x) is differentiable and Tν(x) is continuous and
that Σ2 is convergent by Proposition 3.1 if and only if gν(x0) = 0 for all ν = 1, . . . , n.

4 Relations to periodic functions

In [9] were introduced the continuous, 1-periodic functions Fk(u) given for u ≤ 0 by

Fk(u) =
∂k

∂qk
auRa(2

u)

∣∣∣∣
q=1

(u ≤ 0). (4.1)

In particular, F0(u) = 1 and F1(u) is the function from (1.10) which appears in the formula
(1.9) of Trollope-Delange. For k ≥ 1 the 1-periodic functions Fk(u) have the representations

Fk(u) =
1

2u+k

k∑
`=0

Pk,`(u)

2`
T`(2

u) (u ≤ 0) (4.2)

with the binomial polynomials

Pk,`(u) = (−1)k
k!

`!

(
u+ k − 1

k − `

)
(0 ≤ ` ≤ k) (4.3)

of degree k − ` and the partial derivatives T` from (2.1). In particular,

Pk,0(u) = (−1)ku(u+ 1) · · · (u+ k − 1), Pk,k(u) = (−1)k, (4.4)

cf. [9, Proposition 5.1]. From (2.4), (2.5) and (4.2) it follows

Proposition 4.1 For h > 0 and ε > 0 we have

|Fk(u+ h)− Fk(u)| ≤ Ak,εh
1−ε

with a constant Ak,ε.
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A consequence of Theorem 3.3 and (4.2) is the following

Proposition 4.2 If the functions hk(u) are differentiable then

F (u) =
n∑
k=1

hk(u)Fk(u)

is differentiable at u0 if and only if hk(u0) = 0 for all k ∈ {1, 2, . . . , n}.

If we put Pk,`(u) = 0 for ` > k then for n ∈ N equation (4.2) can also be written in the
matrix form

(1, 2F1(u), . . . , 2nFn(u))> = An

(
1

2u
,

1

2u+1
T1(u), . . . ,

1

2u+n
Tn(u)

)>
(4.5)

with the lower triangular matrix An = (Pk,`(u)), 0 ≤ k, ` ≤ n.

Lemma 4.3 For arbitrary integer n ≥ 1 the matrix An is invertible and for the inverse
matrix it holds A−1n = An.

Proof: We have to show that Bn = (bk,`) = A2
n is the unit matrix, i.e. bk,` = δk,`. We have

bk,` =
n∑
j=0

Pk,j(u)Pj,`(u) =
k∑
j=`

Pk,j(u)Pj,`(u)

and hence bk,` = 0 for 0 ≤ k ≤ `− 1. In view of P`,`(u) = (−1)` we get b`,` = 1. Now let be
k ≥ `+ 1. Note that

Pk,`(u) = (−1)k
(
k

`

)
(u+ k − 1)(u+ k − 2) · · · (u+ `)

so that
Pk,j(u)Pj,`(u) = (−1)k+j

(
k

j

)(
j

`

)
(u+ k − 1)(u+ k − 2) · · · (u− `)

and therefore

bk,` = (−1)k(u− k − 1)(u− k − 2) · · · (u− `)
k∑
j=`

(−1)j
(
k

j

)(
j

`

)
.

Now (
k

j

)(
j

`

)
=

(
k

`

)(
k − `
j − `

)
and

k∑
j=`

(−1)j
(
k − `
j − `

)
= (−1)`(1− 1)k−` = 0.

Hence bk,` = 0 for k ≥ `+ 1.
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As consequence we get from (4.5)

Proposition 4.4 The partial derivatives (2.1) of de Rham’s function Ra(x) have the
representations

1

2u+k
Tk(2

u) =
k∑
`=0

Pk,`(u)2`F`(u) (u ≤ 0) (4.6)

with the polynomials (4.3) and the 1-periodic functions (4.1).

Remark 4.5 According to P1,0(u) = −u, P1,1(u) = −1, F0(u) = 1 and F1(u) in (1.9) we
get

1

2u+1
T1(2

u) = −u− 2F1(u) (u ≤ 0).

Putting x = 2u and using the fact that T1(x) = 2T (x) where T (x) is the Takagi function,
we find

1

x
T (x) = − log2 x− 2F1(log2 x) (0 < x ≤ 1), (4.7)

cf. [8, Formula (2.5)].

By means of (4.6) we can give a new representation of Tn using the explicit representation
of the polynomials Pk,`(u) of degree k − `

Pk,`(u) =
k−∑̀
j=0

ck,`,ju
j. (4.8)

In view of (4.3) and the Stirling numbers of first kind s(1)k,` given by (1.13) it is easy to compute
the coefficients

ck,`,j = (−1)k
(
k

`

) k−`−j∑
r=0

s
(1)
k−`,j+r

(
j + r

r

)
(k − 1)r. (4.9)

In particular, the coefficient of uk−` reads

ck,`,k−` = (−1)k
(
k

`

)
(4.10)

which can be seen directly from (4.3).

Theorem 4.6 For n ≥ 1 the derivatives (2.1) of de Rham’s function Ra have the repre-
sentations

1

x
Tn(x) = (−2)n(log2 x)n +

n−1∑
ν=0

(log2 x)νgn,ν(log2 x) (0 < x ≤ 1) (4.11)

where gn,ν(u) are 1-periodic functions given by

gn,ν(u) = 2n
n−ν∑
`=0

cn,`,ν2
`F`(u) (4.12)

with the coefficients from (4.9). They are continuous and nowhere differentiable.
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Proof: For u ≤ 0 we have by (4.6) and (4.8)

1

2u+k
Tk(2

u) =
k∑
`=0

k−∑̀
j=0

ck,`,ju
j2`F`(u)

=
k∑
j=0

k−j∑
`=0

ck,`,ju
j2`F`(u).

For k = n we get

1

2u+n
Tn(2u) =

n∑
ν=0

uν
n−ν∑
`=0

cn,`,ν2
`F`(u)

= (−1)nun +
n−1∑
ν=0

uν
n−ν∑
`=0

cn,`,ν2
`F`(u)

where we have used that cn,0,n = (−1)n and F0(u) = 1. With u = log2 x it follows (4.11)
with (4.12). Obviously, the function gn,ν(u) is 1-periodic and continuous. By (4.12) we have

gn,ν(u) = 22n−νcn,n−ν,νFn−ν(u) + 2n
n−ν−1∑
`=0

cn,`,ν2
`F`(u)

where according to (4.10) it is cn,n−ν,ν = (−1)n
(
n
ν

)
6= 0. Therefore, by Proposition 4.2 the

function gn,ν(u) is nowhere differentiable.

5 Limit relations

For the Takagi function T it is known that at each dyadic point x = k
2`

it holds

lim
h→0

T (x+ h)− T (x)

h log2
1
h

= 1, (5.1)

cf. [7, Proposition 3.2]. We remember T1(x) = 2T (x) so that the following result is a gener-
alization of (5.1).

Proposition 5.1 For n ≥ 1 the derivatives (2.1) of de Rham’s function Ra satisfy at
each dyadic rational point x = k

2`
the limit relations

lim
h→+0

Tn(x+ h)− Tn(x)

h(log2
1
h
)n

= 2n (5.2)

and
lim
h→−0

Tn(x+ h)− Tn(x)

|h|(log2
1
|h|)

n
= (−1)n+12n. (5.3)
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Proof: For x = 0 equation (5.2) is a consequence of Theorem 4.6. Let x = k
2`

and
0 < h < 1/2`. According to (2.6) we have

Tn(x+ h)− Tn(x) =
n∑
ν=0

aνTν(2
`h)

where an = 1/2` so that

Tn(x+ h)− Tn(x)

h(log2
1
h
)n

=
Tn(2`h)

2`h(log2
1
h
)n

+
n−1∑
ν=0

aν
Tν(2

`h)

h(log2
1
h
)n
.

In view of (log2
1
h
)ν ∼ (log2

1
2`h

)ν as h→ 0 it follows (5.2) by Proposition 4.6.

According to (2.9) we have

Tn(x− h)− Tn(x) =
n∑
ν=0

bνTν(2
`h)

where bn = (−1)n+1/2` and hence

Tn(x− h)− Tn(x)

h(log2
1
h
)n

= (−1)n+1 Tn(2`h)

2`h(log2
1
h
)n

+
n−1∑
ν=0

bν
Tν(2

`h)

h(log2
1
h
)n

which implies (5.3).

Remark 5.2 Relations (5.2) and (5.3) imply that at dyadic rational points x = k
2`

there
exists the improper derivative

lim
h→0

Tn(x+ h)− Tn(x)

h
= +∞,

whenever n ≥ 2 is even, whereas for odd n it holds

lim
h→0

Tn(x+ h)− Tn(x)

|h|
= +∞,

i.e. Tn with odd n has at x a local minimum. Note that in case n = 3 there are further
points x where T3 has a local minimum, cf. Theorem 6.24 in [1].

Start point for the proof of (5.1) in [7] was the fact that for 0 < x ≤ 1
2
the Takagi function

T satisfies the estimate
x log2

1

x
≤ T (x) ≤ x log2

1

x
+ cx (5.4)

with a constant c < 2
3
, cf. [7, Lemma 3.1]. By [10, Lemma 2.1] the estimate (5.4) is valid for

0 < x ≤ 1.
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Proposition 5.3 The Takagi function T satisfies for 0 < x ≤ 1 the estimate (5.4) with
the optimal constant c = 2− log2 3 = 0, 415 . . . where on the right-hand side we have equality
if and only if x = 1

3
· 21−` (` = 0, 1, 2, . . .).

Proof: For the Takagi function T we know that
1

x
T (x) = − log2 x− 2F1(log2 x) (0 < x ≤ 1)

where F1(u) is the the fractal function in (1.9), cf. (4.7). The assertion follows by Proposition
2.2 and Proposition 2.5 in [8] in view of c = −2 minF1(.) = −2( log 3

log 4
− 1) = 2− log2 3.

Proposition 5.4 For n ≥ 1 the 1-periodic functions Fn(u) given by (4.2) for u ≤ 0

satisfy at each point u with 2u = k
2`

the limit relations

lim
h→+0

Fn(u+ h)− Fn(u)

h(log2
1
h
)n

=
(−1)n

2n
ln 2 (5.5)

and
lim
h→−0

Fn(u+ h)− Fn(u)

|h|(log2
1
|h|)

n
=
−1

2n
ln 2. (5.6)

Proof: For 2u = k
2`
< 1 and h > 0 such that 2u+h ≤ 1 we have

1

2u+h
Tn(2u+h)− 1

2u
Tn(2u) =

1

2u
{
Tn(2u+h)− Tn(2u)

}
+

1

2u

(
1

2h
− 1

)
Tn(2u+h)

and by (5.2) the asymptotic relation
1

2u+h
Tn(2u+h)− 1

2u
Tn(2u) ∼ 2n(2h − 1)

(
log2

1

2u+h − 2u

)n
(h→ +0).

In view of (2h − 1)/h→ ln 2 as h→ 0 as well as

log2

1

2u+h − 2u
= −u+ log2

1

2h − 1

and
log2

1

2h − 1
= log2

h

2h − 1
+ log2

1

h
∼ log2

1

h
(h→ +0)

we get
1

2u+h
Tn(2u+h)− 1

2u
Tn(2u) ∼ 2nh ln 2

(
log2

1

h

)n
(h→ +0).

By (4.2) we have

Fn(u) =
1

2u+n
(−1)n

2n
Tn(2u) +

1

2u+n

n−1∑
`=0

Pn,`(u)

2`
T`(2

u) (u ≤ 0)

and it follows
Fn(u+ h)− Fn(u)

h(log2
1
h
)n

∼ (−1)n

2n
ln 2

Tn(2u+h)− Tn(2u)

h(log2
1
h
)n

(h→ +0).

Hence (5.2) implies (5.5) at u with 2u = k
2`
< 1 which is true for arbitrary u with 2u = k

2`

since Fk(u) is an 1-periodic function.
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6 Binomial and Power sums

In [9] it was shown that for integer k ≥ 1 it holds

∂k

∂qk
Nα =

Nα

(1 + q)k

k∑
`=1

(log2N)`ak,` (6.1)

with certain coefficients ak,` which satisfy a recurrence relation. However, we have overlooked
that ak,` is the Stirling number s(1)k,` of first kind, given by (1.13). By a hint of L. Berg this
can be seen as follows: We have Nα = (1 + q)β with β = log2N and hence

∂k

∂qk
Nα = β(β − 1) · · · (β − k + 1)(1 + q)β−k.

In view of (1.13) it follows (6.1) with

ak,` = s
(1)
k,`. (6.2)

Theorem 6.1 For the binary binomial sum (1.5) with integer k ≥ 1 we have the explicit
formula

1

N
Bk(N) =

1

k!

(
log2N

2

)k
+

1

k!

k−1∑
`=0

(log2N)`Fk,`(log2N) (6.3)

where

Fk,`(u) =
1

2`

(
k

`

)
Fk−`(u) +

k−`−1∑
j=0

(
k

j

)
s
(1)
k−j,`

2k−j
Fj(u) (6.4)

with the Stirling numbers of first kind s
(1)
k,` and the 1-periodic functions Fk(u) from (4.1).

In particular, Fk,0(u) = Fk(u) and Fk,k(u) = 1/2k. For ` < k the functions Fk,`(u) are
continuous, nowhere differentiable and of period 1.

Proof: In view of (6.2) and s(1)`,` = 1 the representation (6.3) with (6.4) is already proved
in [9, Theorem 5.3] where Fk,`(u) (` < k) is continuous and of period 1. By Proposition 4.2
the function Fk,`(u) is nowhere differentiable since the coefficient of Fk−`(u) is different from
zero.

Remarks 6.2 1. By Proposition 5.4 it holds that if 2u is dyadic rational then for ` < k

the functions Fk,` from (6.4) satisfy the limit relations

lim
h→+0

Fk,`(u+ h)− Fk,`(u)

h(log2
1
h
)k−`

=
(−1)k−`

2k

(
k

`

)
ln 2 (6.5)

and
lim
h→−0

Fk,`(u+ h)− Fk,`(u)

|h|(log2
1
|h|)

k−` =
−1

2k

(
k

`

)
ln 2. (6.6)
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2. In case k = 1 formula (6.3) yields the formula (1.9) of Trollope-Delange and in case k = 2

we get

1

N
B2(N) =

1

2

(
log2N

2

)2

+
log2N

2

{
−1

4
+ F1(log2N)

}
+

1

2
F2(log2N).

(In the corresponding formula in [9, p. 702] the term 1
2
F1(L) is to cancel and in the previous

formula the term
(
m
2

)
F1(u) is to replace by

(
m−1
2

)
F1(u)).

Next, we consider the formula (1.8) of Coquet for the sum of digital power sums.

Theorem 6.3 For the power sum (1.7) it holds the formula of Coquet

1

N
Sk(N) =

(
log2N

2

)k
+

k−1∑
`=0

(log2N)`Gk,`(log2N) (6.7)

where

Gk,`(u) =
k−∑̀
j=0

k∑
n=`+j

(
n

j

)
s
(1)
n−j,`

2n−j
s
(2)
k,nFj(u) (6.8)

with the Stirling numbers of the first and second kind given by (1.13), (1.14) and the 1-
periodic functions Fj(u) from (4.1). So Gk,k(u) = 1/2k and for ` < k they are continuous,
nowhere differentiable 1-periodic functions which can be written as

Gk,`(u) =
1

2`

(
k

`

)
Fk−`(u) +

k−`−1∑
j=0

ajFj(u) (6.9)

with certain constants aj which depend on k and `.

Proof: In view of (6.2) the representation (6.7) with (6.8) is already proved in [9, Theorem
6.1] where Gk,`(u) is continuous and of period 1. Obviously, the function Gk,`(u) has the
form

Gk,`(u) =
k−∑̀
j=0

ajFj(u)

where the constants aj depend on k and `. From (6.8) we get for the main coefficient ak−`
the term

ak−` =

(
k

`

)
s
(1)
`,`

2`
s
(2)
k,k =

1

2`

(
k

`

)
which yields representation (6.9). By Proposition 4.2 the function Gk,`(u) (` < k) is nowhere
differentiable since ak−` 6= 0.
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Remarks 6.4 1. In view of (6.9) the statements for Fk,` in Remarks 6.2/1. are valid also
for the functions Gk,`.

2. In case k = 1 formula (6.7) yields the formula of Trollope-Delange (1.9) and in case k = 2

we get the formula of Coquet [3]

1

N
S2(N) =

(
log2N

2

)2

+ log2N

{
1

4
+ F1(log2N)

}
+G(log2N)

where G(u) = F1(u) + F2(u).

Proposition 6.5 For every integer k ≥ 1 we have

∂k

∂tk
NαGq(log2N)

∣∣∣∣
t=0

= N

(
log2N

2

)k
+N

k−1∑
`=0

(log2N)`Gk,`(log2N)

where q = et and α = log2(1 + et).

Proof: With q = et we get from (1.3)

N−1∑
j=0

ets(j) = NαGq(log2N) (6.10)

where α = log2(1 + et) and where the 1-periodic function Gq is connected with de Rham’s
function by (1.4) with a = 1

1+q
. It follows

N−1∑
j=0

s(j)k =
∂k

∂tk
NαGq(log2N)

∣∣∣∣
t=0

and by (6.7) the assertion.

7 The number of zeros

If 2n ≤ j < 2n+1 then the number of zeros is s0(j) = n + 1 − s(j) where s(j) denotes the
number of ones.

Lemma 7.1 For q > 0 and 2n ≤ N < 2n+1 we have

N−1∑
j=1

(
1

q

)s0(j)
=

1

qn+1
NαGq(log2N)− q +

(
q − 1

q

)(
1 +

1

q

)n
(7.1)

where α = log2(1 + q) and where Gq(u) is a continuous, 1-periodic function given by (1.4).
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Proof: By formula (1.2) we get for 2n ≤ N < 2n+1

Ra

(
N

2n+1

)
−Ra

(
1

2

)
= an+1

N−1∑
j=2n

qs(j)

= an+1qn+1

N−1∑
j=2n

(
1

q

)s0(j)
.

Moreover, (1.2) yields Ra(1/2
r) = ar. If 2r−1 ≤ j < 2r the number of zeros is s0(j) = r−s(j)

and by (1.2) we get

Ra

(
2r

2n

)
−Ra

(
2r−1

2n

)
= an

2r−1∑
j=2r−1

qs(j)

= anqr
2r−1∑
j=2r−1

(
1

q

)s0(j)

and hence
2r−1∑
j=2r−1

(
1

q

)s0(j)
=

1

a`qr
(
an−r − an−r+1

)
=

1− a
(aq)r

=
1

(aq)r−1
.

In view of aq = 1− a and

n∑
r=1

1

(aq)r−1
=

1− 1
(aq)n

1− 1
aq

= −q
(

1− 1

(aq)n

)
= −q +

1

anqn−1

we get
N−1∑
j=1

(
1

q

)s0(j)
=

1

(1− a)n+1
Ra

(
N

2n+1

)
− 1

anqn+1
− q +

1

anqn−1

i.e.
N−1∑
j=1

(
1

q

)s0(j)
=

1

qn+1an+1
Ra

(
N

2n+1

)
− q +

q2 + 1

anqn−1
.

Hence
N−1∑
j=1

(
1

q

)s0(j)
=

1

qn+1
NαGq(log2N)− q +

q2 + 1

anqn−1

with a = 1
1+q

which yields the representation (7.1).
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With q = et we get from (7.1)

N−1∑
j=1

e−ts0(j) = e−t(n+1)NαGq(log2N)− et + (et − e−t)(1 + e−t)n (7.2)

where α = log2(1 + et) and n = [log2N ] since 2n ≤ N ≤ 2n+1 − 1 and it follows for every
integer k ≥ 1

(−1)k
N−1∑
j=1

s0(j)
k = Ak(N) +Bk(N)− 1 (7.3)

where

Ak(N) =
∂k

∂tk
[
e−t(n+1)NαGq(log2N)

]∣∣∣∣
t=0

(7.4)

and

Bk(N) =
∂k

∂tk
[
(et − e−t)(1 + e−t)n

]∣∣∣∣
t=0

. (7.5)

Lemma 7.2 For (7.4) we have the representations

Ak(N) = (−1)kN

(
log2N

2

)k
+N

k−1∑
`=0

(log2N)`Ak,`(log2N) (7.6)

where Ak,`(u) are 1-periodic function given for 0 ≤ u < 1 by

Ak,`(u) =
∑̀
i=0

(−1)i
k∑

m=i

(
k

m

)(
m

i

)
(u− 1)m−iGk−m,`−i(u) (7.7)

with the functions Gk,`(u) from (6.8).

Proof: We put L = log2N . Observe that

∂k

∂tk
[
e−t(n+1)NαGq(L)

]
=

k∑
m=0

(
k

m

)
(−n− 1)me−t(n+1) ∂

k−m

∂tk−m
[NαGq(L)] .

It follows by (7.4) and Proposition 6.5 with n = [log2N ]

Ak(N) =
k∑

m=0

(
k

m

)
(−n− 1)mN

k−m∑
j=0

LjGk−m,j(L)

with the 1-periodic functions Gk−m,j(u) from (6.8). For 2n ≤ N ≤ 2n+1 − 1 we write N =

2n+uN with 0 ≤ uN < 1. In view of L = log2N = n + uN we have Gk−m,j(L) = Gk−m,j(uN)

and

Ak(N) = N
k∑

m=0

(
k

m

)
(uN − 1− L)m

k−m∑
j=0

LjGk−m,j(uN).
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We want to sort the right-hand side by powers of L = log2N . From

Ak(N) = N
k∑

m=0

(
k

m

) m∑
i=0

(
m

i

)
(uN − 1)m−i(−L)i

k−m∑
j=0

LjGk−m,j(uN)

we get

Ak(N) = N
k∑
`=0

L`Ak,`(uN)

with

Ak,`(u) =
∑
i+j=`

(−1)i
k∑

m=i

(
k

m

)(
m

i

)
(u− 1)m−iGk−m,j(u)

which can be written as (7.7). In particular,

Ak,k(u) =
k∑
i=0

(−1)i
(
k

i

)
Gk−i,k−i(u) =

k∑
i=0

(−1)i
(
k

i

)
1

2k−i
=

1

2k

k∑
i=0

(
k

i

)
(−2)i =

(−1)k

2k

where we have used (6.9) and F0(u) = 1. If we continue the functions Ak,`(u) to 1-periodic
functions on R then we also get Ak,`(uN) = Ak,`(L) since uN = L−n, and it follows (7.6).

Remark 7.3 In particular, for 0 ≤ u < 1 we get by (7.7) in case k = 1

A1,0(u) = u− 1 + F1(u)

and in case k = 2

A2,0(u) = u2 − 2u+ 2 + (1− 2u)F1(u) + F2(u),

A2,1(u) =
1

4
− (u− 1)− F1(u)

where we have used (6.8) with the 1-periodic functions Fj(u) from (4.1).

Now, for integer k ≥ 1 we compute (7.5). Applying Leibniz formula it is easy to see that

Bk(N) = 2n
k−1∑
i=0

bk,in
i (7.8)

with certain coefficients bk,i. The first sums read

B1(N) = 2 · 2n, B2(N) = −2n · 2n, B3(N) = (n2 + 2n+ 2)2n. (7.9)
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Lemma 7.4 For (7.5) we have the representations

Bk(N) = N

k−1∑
`=0

(log2N)`Bk,`(log2N) (7.10)

where Bk,`(u) are 1-periodic functions given for 0 ≤ u < 1 by

Bk,`(u) =
1

2u

k−1∑
i=`

bk,i

(
i

`

)
(−u)i−` (7.11)

with the numbers bk,i from (7.8).

Proof: Starting with (7.8) we prove (7.10) with (7.11). As before we write N = 2n+uN

with 0 ≤ uN < 1 so that L = log2N = n+ uN , 2n = 2L−uN = N/2uN and

ni = (L− uN)i =
i∑

`=0

(
i

`

)
L`(−uN)i−`.

From (7.8) we get

Bk(N) = N
k−1∑
`=0

(log2N)`Bk,`(uN)

with Bk,`(u) from (7.11) for 0 ≤ u < 1. If we Bk,` continue to 1-periodic functions on R then
we have Bk,`(log2N) = Bk,`(uN) since N = 2n+uN . So we get (7.10) with (7.11).

Remark 7.5 In particular, for 0 ≥ u < 1 we get by (7.11), (7.8) and (7.9) in case k = 1

B1,0(u) = 2 · 1

2u

and in case k = 2

B2,0(u) =
u

2u−1
, B2,1(u) = − 1

2u−1
.

Lemma 7.6 For ` < k the 1-periodic function Ak,`(u) given for 0 ≤ u < 1 by (7.7) is
nowhere differentiable.

Proof: We apply Proposition 4.2. According to (7.7) and (6.9) the function Ak,`(u) has
the form

Ak,`(u) =
k−∑̀
j=0

hj(u)Fj(u) (0 ≤ u < 1)

where

hk−`(u) =
∑̀
i=0

(−1)i
(
k

i

)
1

2k−i

(
k − i
`− i

)
.
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In view of (
k

i

)(
k − i
`− i

)
=

(
k

`

)(
`

i

)
we get

hk−`(u) =
1

2k

(
k

`

)∑̀
i=0

(−2)i
(
`

i

)
= (−1)`

1

2k

(
k

`

)
such that hk−`(u) 6= 0 for 0 ≤ u < 1. By Proposition 4.2 the function Ak,`(u) is nowhere
differentiable.

Theorem 7.7 If s0(j) denotes the number of zeros in the binary expansion of the integer
j then for integer k ≥ 1 we have

1

N

N−1∑
j=1

s0(j)
k =

(
log2N

2

)k
+

(−1)k−1

N
+

k−1∑
`=0

(log2N)`Hk,`(log2N) (7.12)

where
Hk,`(u) = (−1)kAk,`(u) + (−1)kBk,`(u) (7.13)

with the functions Ak,` from (7.6) and Bk,` from (7.10). They are 1-periodic functions which
are continuous and nowhere differentiable.

Proof: The representation (7.12) follows from (7.3) in view of (7.6), (7.10) and (7.13) where
Hk,k(u) = 1/2k since Bk,k(u) = 0. For ` < k the functions Ak,`(u) are nowhere differentiable
(Lemma 7.6) and Bk,`(u) from (7.11) are differentiable in [0,1) so that Hk,`(u) are nowhere
differentiable. By Lemma 7.2 we know that the 1-periodic functions Hk,`(u) are continuous
in [0, 1) and that Hk,`(1− 0) there exist. It remains to show that Hk,`(1− 0) = Hk,`(1). For
that we show that for integer n it holds

S(n) =
k∑
`=0

n`{Hk,`(1)−Hk,`(1− 0)} = o(1) (n→∞)

which is possible only if Hk,`(1) −Hk,`(1 − 0) = 0 for ` = k, k − 1, . . . , 0. We write S(n) =

Σ1(n) + Σ2(n) where

Σ1(n) =
k∑
`=0

n`{Hk,`(1)−Hk,`(1 + log2(1− 2−n)},

Σ2(n) =
k∑
`=0

n`{Hk,`(1 + log2(1− 2−n)−Hk,`(1− 0)}

and investigate both sums separately.
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1. Using (7.12) we get for s0(N − 1)k the representation

k∑
`=0

{
N(log2N)`Hk,`(log2N)− (N − 1)(log2(N − 1))`Hk,`(log2(N − 1))

}
.

As N →∞ we get the asymptotic equation

1

N
s0(N − 1)k =

k∑
`=0

(log2N)` {Hk,`(log2N)−Hk,`(log2(N − 1))}+ o(1)

since in view of

(log2(N − 1))` = (log2N + log2(1− 1/N))` = (log2N)` +
(log2N)`−1

N
O(1)

and (log2N)`−1/N → 0 we have

(log2(N − 1))`Hk,`(log2(N − 1)) = (log2N)`Hk,`(log2(N − 1)) + o(1).

We choose N = 2n with integer n. Note that s0(2n − 1) = 0 so that

0 =
k∑
`=0

n`{Hk,`(n)−Hk,`(log2(2
n − 1))}+ o(1) (n→∞),

and in view of log2(2
n−1) = n+log2(1−2−n) and Hk,`(u+1) = Hk,`(u) we get Σ1(n) = o(1)

as n→∞.

2. Now, we consider the sum Σ2(n). In view of (7.13), (7.6), (7.7), (6.8) and the fact that
Bk,`(u) are continuous differentiable in [0, 1) (Lemma 7.2) we conclude that each function
Hk,` can be written as

Hk,`(u) =
k−∑̀
j=0

fj(u)Fj(u) (0 ≤ u < 1)

with certain continuous differentiable functions fj(u) which depend on k and `. By Proposi-
tion 4.1 the functions Fj(u) are Hölder continuous with Hölder exponents 1− ε where ε > 0.
It follows that for 0 ≤ u < 1 the function Hk,`(u) is Hölder continuous which is true for
0 ≤ u ≤ 1 if we choose Hk,`(1− 0) for u = 1. So we get

|Hk,`(1− 0)−Hk,`(1 + log2(1− 2−n))| ≤ Cε| log2(1− 2−n)|1−ε

with ε > 0 and in view of | log2(1 − 2−n)| ∼ 2−n and n`/2n(1−ε) = o(1) as n → ∞ we get
Σ2(n) = o(n).

Consequently, S(n) = o(n) as n→∞ and the functions Hk,`(u) are continuous.
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Remark 7.8 In view of Remarks 7.3 and 7.5 we get in case k = 1 the known representation

1

N

N−1∑
j=1

s0(j) =
1

2
log2N +

1

N
+H1,0(log2N)

with the 1-periodic function H1,0(u), given for 0 ≤ u < 1 by

H1,0(u) =
1− u

2
− 21−u +

1

2u
T (2u−1)

cf. [8, Theorem 3.2], and in case k = 2

1

N

N−1∑
j=1

(s0(j))
2 =

(
1

2
log2N

)2

− 1

N
+H2,0(log2N) + log2NH2,1(log2N)

with the 1-periodic functions H2,0(u), H2,1(u), given for 0 ≤ u < 1 by

H2,0(u) = u2 − 2u+ 2 + (1− 2u)F1(u) + F2(u) +
u

2u−1

and
H2,1(u) =

1

4
− (u− 1)− 1

2u−1
− F1(u).
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