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Existence of solutions of nonlinear differential
equations with generalized dichotomous linear part in
a Banach space

ABSTRACT. A generalization of the well known dichotomies for a class of homogeneous
differential equations in an arbitrary Banach space is introduced. The aim of this paper is
the consideration of the nonlinear differential equation with generalized dichotomous linear
part. By the help of the fixpoint principle of Banach and Schauder-Tychonoff are found
sufficient conditions for the existence of solutions of the nonlinear equation.
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1 Introduction

The notion of exponential and ordinary dichotomy is fundamental in the qualitative theory
of ordinary differential equations. It is considered in detail for example in the monographs
[2], [3],[6–8].

In the given paper we use a (M,N,R) dichotomy, introduced in [5], which is a generalization
of all dichotomies known by the authors.

It is considered a nonlinear differential equation with generalized dichotomous linear part.
A nonlinear operator, acting in the phase space is introduced. Sufficient conditions for the
existence of fixed point of this operator are found. These fixed points are solutions of the
differential equation.

2 Problem statement

Let X is an arbitrary Banach space with norm |.| and identity I and let J = [c,∞) where
c ∈ R. Let L(X) is the space of all linear bounded operators acting in X with the norm ||.||.

We consider the nonlinear differential equation

dx

dt
= A(t)x+ F (t, x), (1)
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where A(.) : J → L(X), F (., .) : J ×X → X. Let F is continuous.

By V (t) we will denote the Cauchy operator of

dx

dt
= A(t)x (2)

where A(t) ∈ L(X), t ∈ J .

We consider also the nonhomogeneous equation

dx

dt
= A(t)x+ f(t) (3)

where f(.) : J → X is continuous and bounded.

In this paper we will use the (M,N,R)-dichotomy, introduced in [5] with both following
theorems.

Let R(t) : X → X (t ∈ J) is an arbitrary bounded operator.

Lemma 1 [5] The function

x(t) =

∫ t

c

V (t)R(s)V −1(s)f(s)ds−
∫ ∞
t

V (t)(I −R(s))V −1(s)f(s)ds (4)

is a solution of the equation (3) if the integrals in (4) exist.

Following conditions are introduced

H1. | V (t)R(s)V −1(s)z |≤M(t, s, z), t ≥ s, z ∈ X

H2. | V (t)(I −R(s))V −1(s)z |≤ N(t, s, z), t < s, z ∈ X

For all considered cases the right hand part of (H1) and (H2) will have the formM(t, s, z) = ϕ1(t)ϕ2(s) | z |, (t ≥ s), z ∈ X

N(t, s, z) = ψ1(t)ψ2(s) | z |, (t < s), z ∈ X
(5)

where ϕ1(t), ϕ2(t), ψ1(t), ψ2(t) are positive scalar functions. We set

α(t) = max{ϕ1(t), ψ1(t), 1},

µ(t) = min{ϕ1(t), ψ1(t)},

β(t) = max{ϕ2(t), ψ2(t)} (t ∈ J).

Definition 1 We call the equation (2) be a (M,N,R) - dichotomous if the conditions
(H1), (H2) are fulfilled.
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Let a(t) is an arbitrary positive scalar function. We consider the following Banach spaces :

Ka = {g : J → X : sup
t∈J

a(t)

∫ t

c

M(t, s, g(s))ds <∞}

with the norm

| g |Ka = sup
t∈J

a(t)

∫ t

c

M(t, s, g(s))ds,

La = {g : J → X : sup
t∈J

a(t)

∫ ∞
t

N(t, s, g(s))ds <∞}

with the norm
| g |La = sup

t∈J
a(t)

∫ ∞
t

N(t, s, g(s))ds,

Ca = {g : J → X : sup
t∈J

a(t) | g(t) |<∞}

with the norm
| g |Ca = sup

t∈J
a(t) | g(t) |

and
Ta = {g : J → X :

∫ ∞
c

a(s) | g(s) | ds <∞}

with the norm
| g |Ta =

∫ ∞
c

a(s) | g(s) | ds.

The case, when X = R+ will be denoted with T̄a :

T̄a = {g : J → R+ :

∫ ∞
c

a(s)g(s)ds <∞}

with the norm
| g |T̄a =

∫ ∞
c

a(s)g(s)ds.

Theorem 1 [5] Let the equation (2) is (M,N,R) - dichotomous. Then for every function
f ∈ Ka

⋂
La the equation (3) has a solution in the space Ca.

Corollary 1 [5] Let the equation (1) is (M,N,R) - dichotomous of the form (5).

Then for every function f ∈ Tβ the equation (2) has a solution in the space Cα−1 and the
following estimates hold

sup
t∈J

α−1(t) | x(t) |≤
∫ t

c

β(s) | f(s) | ds+

∫ ∞
t

β(s) | f(s) | ds <∞
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Theorem 2 [5] Let the equation (2) is (M,N,R) - dichotomous.

Then following estimates hold

| x1(t) |≤M(t, s, x1(s)), t ≥ s ≥ c (6)

for all solutions x1(t) of (1) ,(t ≥ c), which started in the set⋂
s∈J

Fix R(s)

and
| x2(t) |≤ N(t, s, x2(s)), c ≤ t < s (7)

for all solutions x2(t) of (1) ,(t ≥ c), which started in the set⋂
s∈J

Fix(I −R(s))

(By FixS we denote the set of all fixed points of the map S, S : X → X.)

Remark 1 Let R(t) = P ,where P : X → X is a projector.

For
M(t, s, z) = K1e

−
∫ t
s δ1(τ)dτ |z| (t ≥ s, z ∈ X)

N(t, s, z) = K2e
−

∫ s
t δ1(τ)dτ |z| (s > t, z ∈ X)

where K1, K2 are positive constants and δ1, δ2 are continuous real-valued functions on J , we
obtain the exponential dichotomy of [7]:

‖ V (t)PV −1(s) ‖≤ K1e
−

∫ t
s δ1(τ)dτ (t ≥ s)

‖ V (t)(I − P )V −1(s) ‖≤ K2e
−

∫ s
t δ2(τ)dτ (s > t).

For δi(t) = 0 (c ≤ t < ∞, i = 1, 2) we obtain the exponential dichotomy of [2], [3], [6], for
which case we have Ka

⋂
La = Ca by a(t) ≡ 1.

For
M(t, s, z) = Kh(t)h−1(s)|z| (t ≥ s ≥ c, , z ∈ X)

N(t, s, z) = Kk(t)k−1(s)|z| (c ≤ t ≤ s, z ∈ X)

where K is a positive constant and h, k : [0,∞) → (0,∞) are two continuous functions, we
obtain the dichotomy of [8–10]:

‖ V (t)PV −1(s) ‖≤ Kh(t)h−1(s) , (t ≥ s ≥ c)

‖ V (t)(I − P )V −1(s) ‖≤ Kk(t)k−1(s) , (c ≤ t ≤ s)

It may be also noted, that the dichotomies [1], [7–10] are a generalization of the dichotomy
in [3].
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3 Main results

By the help of the fixpoint principle of Banach we will find sufficient conditions for the
existence of solutions of the nonlinear equation (1).

Let r > 0. We introduce following conditions

H3. There exists a positive function m ∈ T̄β, such that

|F (t, x)| ≤ m(t) (|x| ≤ r, t ∈ J).

H4. There exists a positive function k ∈ T̄β, such that

|F (t, x2)− F (t, x1)| ≤ α−1(t)k(t)|x2 − x1| (|x1|, |x2| ≤ r, t ∈ J).

We set a1 = |m|T̄β , a2 = |k|T̄β .

Definition 2 We say that the equation (1) belongs to the class D(a1, a2, r) if there exists
r > 0, such that the conditions (H3) and (H4) are fulfilled.

Theorem 3 Let the linear part of (1) is (M,N,R) dichotomous with R(s) (s ∈ J) be
linear and the conditions (H1) and (H2) have the form (5).

Then there exist numbers ā1, ā2 > 0 and ρ < r with following property:

If the initial value ξ fulfilled |ξ| ≤ ρ and if the equation (1) belongs to the class D(a1, a2, r)

for a1 ∈ (0, ā1), a2 ∈ (0, ā2) then there exists an unique solution x(t) in the ball | x |Cα−1
≤ r,

i.e.
sup
t∈J

α−1(t)|x(t)| ≤ r

Proof: First we shall prove, that the operator Q, defined by the formula

(Qx)(t) = V (t)ξ +

∫ t

c

V (t)R(s)V −1(s)F (s, x(s))ds−

−
∫ ∞
t

V (t)(I −R(s))V −1(s)F (s, x(s))ds

maps the ball | x |Cα−1
≤ r into itself. Indeed we have

|(Qx)(t)| ≤ ϕ1(t)ϕ2(c)|ξ|+ ψ1(t)ψ2(c)|ξ|+
∫ t

c

ϕ1(t)ϕ2(s)m(s)ds+

∫ ∞
t

ψ1(t)ψ2(s)m(s)ds

|(Qx)(t)| ≤ α(t)(ϕ2(c) + ψ2(c))|ξ|+ α(t)

∫ ∞
c

β(s)m(s)ds
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Hence
α−1(t)|(Qx)(t)| ≤ (ϕ2(c) + ψ2(c))ρ+ a1

For sufficiently small ρ and a1, Q will map the ball | x |Cα−1
≤ r into itself.

Now we shall prove, that the operator Q is a contraction in the ball | x |Cα−1
≤ r

Indeed, we have

|(Qx1)(t)−(Qx2)(t)| ≤
∫ t

c

|V (t)R(s)V −1(s)(F (s, x1(s))− F (s, x2(s)))|ds+

+

∫ ∞
t

|V (t)(I −R(s))V −1(s)(F (s, x1(s))− F (s, x2(s)))|ds ≤

≤
∫ t

c

ϕ1(t)ϕ2(s)|F (s, x1(s))− F (s, x2(s))|ds+

+

∫ ∞
t

ψ1(t)ψ2(s)|F (s, x1(s))− F (s, x2(s))|ds ≤

≤ α(t)

∫ ∞
c

β(s)α−1(s)k(s)|x1(s)− x2(s)|ds

We obtain

α−1(t)|(Qx1)(t)− (Qx2)(t)| ≤ sup
t∈J

α−1(t)|x1(t)− x2(t)|
∫ ∞
c

β(s)k(s)ds

|Qx1 −Qx2|Cα−1
≤ |x1 − x2|Cα−1

|k|Tβ̄ = |x1 − x2|Cα−1
a2

Hence for sufficiently small a2, the operator Q is a contraction in the ball | x |Cα−1
≤ r.

The assertion of the theorem follows from the theorem of Banach - Cacciopolli [4].

Other sufficient conditions for existence of solution of the equation (1) we will find, using
the fixed point principle of Schauder-Tychonoff. In connection with its applying, we will use
a generalization of the Arzella-Ascoli’s theorem for locally convex spaces.

Let S(J,X) is the linear set of all functions, acting from J in X, which are continuous. The
set S(J,X) is a locally convex space w.r.t. the metric

ρ(u, v) = sup
c<T<∞

(1 + T )−1
max
c≤t≤T

‖u(t)− v(t)‖

1 + max
c≤t≤T

‖u(t)− v(t)‖
.

The convergence with respect to this metric coincides with the uniform convergence on each
bounded interval. For this space an analog of Arzella-Ascoli’s theorem is valid.

Lemma 2 The set H ⊂ S(J,X)is relatively compact if the intersections H(t) = {h(t) :

h ∈ H} are relatively compact subsets of X for every t ∈ J and H is equicontinuous on each
finite closed interval.
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Proof: We apply Arzella-Ascoli’s theorem to each finite and closed interval.

Let C is an unempty subset of X and let

C̃ = {u ∈ S(J,X) : u(t) ∈ C, t ∈ J}

Lemma 3 Let C is an unempty, convex and closed subset of X and the operator F maps
C̃ into itself and is continuous. Let F (C̃) is relatively compact subset of C̃.

Then F has a fixed point in C̃.

Proof: It follows from the fixed point principle of Schauder-Tychonoff [4].

Let
C(r) = {x ∈ S(J,X) : |x|Cα−1

≤ r}

Obviously C(r) is unempty, convex and closed.

Theorem 4 Let the following conditions are fulfilled:

1. Let the linear part of (1) is (M,N,R) dichotomous and the conditions (H1) and (H2)
have the form (5).

2. There exists a number r > 0 such that

sup
|u|≤r
|F (t, u)| = m(t),where m ∈ T̄β.

3. The function F (t, u) is continuous (t ∈ J, |u| ≤ r).

4. The set K(r) = {m−1(t)F (t, x) : t ∈ J, |u| ≤ r} is relatively compact.

5. R(t)u is continuous for every u ∈ X by any fixed t ∈ J .

Then for sufficient small |m|T̄β and initial value |ξ| ≤ r the nonlinear equation (1) has a
solution x ∈ C(r).

Proof: We consider the operator Q defined by the formula

(Qx)(t) = V (t)ξ +

∫ t

c

V (t)R(s)V −1(s)F (s, x(s))ds−

−
∫ ∞
t

V (t)(I −R(s))V −1(s)F (s, x(s))ds,

where (|ξ| ≤ r). First we shall prove, that Q maps C(r) into itself. Let x ∈ C(r). Then

|(Qx)(t)| ≤ ϕ1(t)ϕ2(c)|ξ|+ ψ1(t)ψ2(c)|ξ|+
∫ t

c

ϕ1(t)ϕ2(s)m(s)ds+

∫ ∞
t

ψ1(t)ψ2(s)m(s)ds
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|(Qx)(t)| ≤ α(t)(ϕ2(c) + ψ2(c))|ξ|+ α(t)

∫ ∞
c

β(s)m(s)ds

Hence
α−1(t)|(Qx)(t)| ≤ (ϕ2(c) + ψ2(c))ρ+ a1

For sufficiently small |ξ| and |m|T̄β we obtain α−1(t)|(Qx)(t)| ≤ r (t ∈ J), i.e. Q maps C(r)

into itself.

Now we shall prove that the set QC(r) is relatively compact in S(J,X). For this aim we shall
show, that the functions of QC(r) are equicontinuous on each finite closed interval [a, b].

Let a and b are fixed and t′, t′′ ∈ [a, b], t′ < t′′. Then for x ∈ C(r) we have

|(Qx)(t′)− (Qx)(t′′)| ≤ I1 + I2 + I3

where
I1 = |V (t′)ξ − V (t′′)ξ|

I2 = |
∫ t′

c

V (t′)R(s)V −1(s)F (s, x(s))ds−
∫ t′

c

V (t′′)R(s)V −1(s)F (s, x(s))ds−

−
∫ t′′

t′
V (t′′)R(s)V −1(s)F (s, x(s))ds |

I3 = |
∫ ∞
t′

V (t′)(I −R(s))V −1(s)F (s, x(s))ds−

−
∫ ∞
t′′

V (t′′)(I −R(s))V −1(s)F (s, x(s))ds |

For t′′ → t′ we have I1, I2 → 0, because V(t) is continuous in respect to t. For I3 we obtain
the estimate

I3 ≤
∞∫
t′

|V (t′)(I −R(s))V −1(s)F (s, x(s))−

− V (t′′)(I −R(s))V −1(s)F (s, x(s))|ds+

+

t′′∫
t′

|V (t′′)(I −R(s))V −1(s)F (s, x(s))|ds

(8)

For t′′ → t′ the second integral in (8) converges to zero. We will use the Lebesgue’s theorem
to prove, that the first integral in (8) by t′′ → t′ converges to zero too. Because V(t) is
continuous in respect to t we have

|V (t′)(I −R(s))V −1(s)F (s, x(s))− V (t′′)(I −R(s))V −1(s)F (s, x(s))| −→
t′′→t′

0
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From the estimates∫ ∞
c

|V (t′)(I −R(s))V −1(s)F (s, x(s))|ds+

+

∫ ∞
c

|V (t′′)(I −R(s))V −1(s)F (s, x(s))|ds ≤

≤
∫ ∞
c

ϕ1(t′)ϕ2(s)|F (s, x(s))|ds+

∫ ∞
c

ψ1(t′′)ψ2(s)|F (s, x(s))|ds ≤

≤
∫ ∞
c

α(t′)β(s)m(s)ds+

∫ ∞
c

α(t′′)β(s)m(s)ds ≤

≤ (α(t′) + α(t′′))|m|T̄β

and from the Lebesgue’s theorem follows, that the first integral in (8) converges to zero.

Let t ∈ [a, b] be fixed. We shall show, that the set (Qx)(t) (x ∈ C(r)) is relatively compact
in S(J,X).

Let ε > 0 be an arbitrary number. If the numbers T and N are large enough, we obtain the
inequality

|
∫ ∞
c

W (t, s)F (s, x(s))ds−
∫ T

c

W (t, s)FN(s, x(s))ds| < ε

where

W (t, s) =

V (t)R(s)V −1(s) t ≥ s

−V (t)(I −R(s))V −1(s) t < s

and

FN(t, u) =

F (t, u) m(t) ≤ N

0 m(t) > N

From condition 4 of the Theorem follows, that for F (s, x(s)) ∈ NK we have the inclusion∫ T

c

W (t, s)F (s, x(s))ds ∈ TN
⋃

c≤s≤T

W (t, s)K (9)

The set in the right hand of (9) is compact. Hence the set

{
∫ T

c

W (t, s)F (s, x(s))ds : x ∈ C(r)}

is compact too. From the theorem of Hausdorff follows the compactness of the set

{
∫ ∞
c

W (t, s)F (s, x(s))ds : x ∈ C(r)}

Hence the set QC(r) is relatively compact in S(J,X).

Now we shall prove that the operator Q is continuous.
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Let {zn(t)} ⊂ C(r) is an arbitrary sequence which converges to z(t) in S(J,X) and let t ∈ J
is fixed. Then

|(Qz)(t)− (Qzn)(t)| ≤
∫ t

c

|V (t)R(s)V −1(s)F (s, z(s))−

− V (t)R(s)V −1(s)F (s, zn(s))|ds+

+

∫ ∞
t

|V (t)(I −R(s))V −1(s)F (s, z(s))−

− V (t)(I −R(s))V −1(s)F (s, zn(s))|ds

(10)

Because F and V (t)R(s)V −1(s) are continuous, the first integral in (10) converges to zero,
by n→∞.

Let

J1(s) = |V (t)(I −R(s))V −1(s)F (s, z(s))− V (t)(I −R(s))V −1(s)F (s, zn(s))|

Because V (t)(I −R(s))V −1(s) is continuous, so we have

J1(s) −→
n→∞

0 for any s ≥ t.

From the estimate ∫ ∞
c

J1(s)ds ≤
∫ ∞
c

ψ1(t)ψ2(s)m(s)ds ≤ α(t)|m|T̄β

and the Lebesgue’s theorem follows, that the second integral in (10) converges to zero for
n→∞. Because QC(r) is compact it follows, that

Qzn −→
n→∞

Qz in S(J,X).

From the Schauder-Tychonoff theorem [4] it follows the existence of a fixpoint x of the
operator Q in the set C(r).

Remark 2 By dimX <∞ the condition 4 of Theorem 4 is not necessary.
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