Rostock. Math. Kollog. 65, 51-69 (2010)

MARIE-HÉLÈNE LÉCUREUX

Comparison with ground state for solutions of non cooperative systems of Schrödinger operators on \mathbb{R}^N

ABSTRACT. We study the sign of solutions of a system $\mathcal{L}U = \lambda U + MU + F$, on the whole space \mathbb{R}^N , more precisely, we compare the components of U with the ground state solution. Here \mathcal{L} is a diagonal matrix of Schrödinger operators of the form $Lu := -\Delta u + qu$, F is a vector of functions in $L^2(\mathbb{R}^N)$, and M is a matrix, not necessarily cooperative. When M is a constant matrix, we prove the existence of a real Λ playing the role of principal eigenvalue: if $|\lambda - \Lambda|$ is sufficiently small, U exists and the sign of each entry is fixed. The sign of each entry changes as λ grows and get over Λ . We study the case of a variable M for a 2×2 system.

1 Introduction

In this paper we study systems defined on the whole space \mathbb{R}^N and acting on $(L^2(\mathbb{R}^N))^n$:

$$Lu_{i} := (-\Delta + q(x))u_{i} = \lambda u_{i} + \sum_{j=1}^{n} m_{ij}u_{j} + f_{i}, \ 1 \le i \le n$$
(1)

which we write:

$$\mathcal{L}U = \lambda U + MU + F,\tag{2}$$

with $U = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$, $F = \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix}$, $\mathcal{L} = \begin{pmatrix} L & 0 \\ & \ddots & \\ 0 & & L \end{pmatrix}$, and M is a $n \times n$ matrix with coefficients m_{ii} .

The potential q(x) is assumed to be a continuous function $q: \mathbb{R}^N \to \mathbb{R}$ such that

$$\inf_{\mathbb{R}^N} q > 0 \quad \text{and} \quad q(x) \to +\infty \text{ as } |x| \to \infty.$$
(3)

The potential is a "relatively small" perturbation of a radially symmetric potential which is assumed to be monotone increasing (in the radial variable) and growing somewhat faster than $|x|^2$ as $|x| \to \infty$.

For a unique equation

$$(-\Delta + q(x)) u = \lambda u + f \text{ on } \mathbb{R}^N,$$

where q is a perturbation of a radially symmetric function, under the hypothesis $f \geq 0$, B. ALZIARY, J. FLECKINGER, and P. TAKÁČ consider the eigenvalue λ^* , associated to a function $\varphi^* > 0$. They show that for $|\lambda - \lambda^*|$ sufficiently small, if $\lambda < \lambda^*$ then $u > C\varphi^* > 0$ (fundamental positivity), and if $\lambda > \lambda^*$, and f comparable to φ^* , then $u < -C\varphi^* < 0$ (fundamental negativity).

First we are concerned with the anti-maximum principle for the system when M is a constant matrix. In the case of cooperative systems, there are several results related to the maximum principle. B. ALZIARY L. CARDOULIS, and J. FLECKINGER, obtained a maximum principle for cooperative systems, then B. ALZIARY, J. FLECKINGER, and P. TAKÁČ, proved a result of fundamental positivity. For the anti-maximum principle N. BESBAS [10, Theorem 4.3.2, p. 40] gave a theorem on the fundamental negativity for a special cooperative problem involving a radial potential q. In the present work, we study general systems (in particular non cooperative systems are allowed) and we obtain a comparison with the ground state, for the spectral parameter λ close to the ground state energy level. In this part, we extend to a $n \times n$ system some results of fundamental positivity or negativity established by B. ALZIARY, J. FLECKINGER and MH. LÉCUREUX [3] for 2×2 systems.

In the second part, we tackle the case of a variable matrix M. Our result concerns 2×2 systems with M restricted to very specific forms.

Organization:

The paper is organized as follows. In Section 2, we introduce some notation. In Section 3 we recall some known results, in Section 4 we state our main results. Finally, in Section 5, we prove them.

2 Notations and hypotheses

2.1 Fundamental positivity, fundamental negativity, notation

It is established that the Schrödinger operator: $L_q \stackrel{\text{def}}{=} -\Delta + q(x) \bullet$ defined on $L^2(\mathbb{R}^N)$ with a positive continuous potential tending to $+\infty$ as $|x| \to \infty$ has a compact inverse and therefore a discrete spectrum. This holds since the variational space V_q is compactly

embedded in $L^2(\mathbb{R}^N)$ (see D. E. EDMUNDS AND W. D. EVANS, [14], J. FLECKINGER, [16]) where

$$V_q(\mathbb{R}^N) \stackrel{\text{def}}{=} \left\{ u \in L^2(\mathbb{R}^N) : \int_{\mathbb{R}^N} |\nabla u|^2 dx + \int_{\mathbb{R}^N} q(x)|u|^2 < \infty \right\}.$$
(4)

The smallest eigenvalue is simple and is given by:

$$\lambda^*(q) = \inf_{u \in V_q(\mathbb{R}^N)} \left\{ \frac{\int_{\mathbb{R}^N} |\nabla u|^2 dx + \int_{\mathbb{R}^N} q(x)|u|^2 dx}{\int_{\mathbb{R}^N} |u|^2 dx} \right\}.$$
(5)

Eigenfunctions associated to $\lambda^*(q)$ do not change sign and $\lambda^*(q)$ is referred to as the "**principal eigenvalue**". Denote by φ^* (or $\varphi^*(q)$) the associated eigenfunction which is positive and normalized by $\|\varphi^*\|_{L^2(\mathbb{R}^N)}^2 = 1$. The function φ^* is $C^1(\mathbb{R}^N)$, and exponentially decreasing near infinity. Usually, φ^* is called the "**ground state**" or "**principal eigenfunction**".

As in the paper of B. ALZIARY and P. TAKÁČ [8], we consider the operator $L_q \stackrel{\text{def}}{=} -\Delta + q(x) \bullet$ on a subspace X of $L^2(\mathbb{R}^N)$ defined, by

$$X \stackrel{\text{def}}{=} \{ u \in L^2(\mathbb{R}^N) \colon u/\varphi^* \in L^\infty(\mathbb{R}^N) \}.$$
(6)

The space X equipped with the norm

$$||u||_X \stackrel{\text{def}}{=} \operatorname{ess\,sup}_{\mathbb{R}^N} (|u|/\varphi^*)$$

is a Banach space.

Notation: We note $u \succeq 0$ and we say that $u \in X$ is fundamentally positive if there exists a real number c > 0 such that $u > c\varphi^*$.

Similarly we write $u \stackrel{*}{\prec} 0$ and we say that $u \in X$ is fundamentally negative if there exists a real number c > 0 such that $u < -c\varphi^*$.

2.2 Hypotheses on potential

Now we give the precise assumptions on the potential q, which guarantee the compactness of the resolvant $(\lambda I - L)^{-1}$. For a single equation, ALZIARY, FLECKINGER, and TAKÁČ obtain this compactness and so the fundamental positivity and negativity for different classes of potentials [6], [9]. We choose here hypotheses used in [9], but there is no problem for obtaining the same results with the class of potential used in [6].

More precisely, we introduce a class of growth for potentials:

$$\mathcal{C}_Q := \{ Q \in \mathcal{C}(\mathbb{R}_+, (0, \infty)) \, / \, \exists r_0 > 0, \, Q' > 0 \, a.e. \text{ on } [r_0, \infty), \, \int_{r_0}^{\infty} Q(r)^{-1/2} \, \mathrm{d}r < \infty \}.$$
(7)

We assume that the potential q satisfies Hypothesis (H_q) :

Hypothesis (H_q) The potential q is positive continuous and tends to $+\infty$ as $|x| \to \infty$. Moreover, there exist two functions Q_1 and Q_2 in C_Q and two positive constants $C_0, r_0 \in (0, \infty)$, such that

$$Q_1(|x|) \le q(x) \le Q_2(|x|) \le C_0 Q_1(|x|) \quad \text{for all } x \in \mathbb{R}^N,$$
(8)

$$\int_{r_0}^{\infty} (Q_2(s) - Q_1(s)) \int_{r_0}^{s} \exp\left(-\int_{r}^{s} [Q_1(t)^{1/2} + Q_2(t)^{1/2}] \,\mathrm{d}t\right) \,\mathrm{d}r \,\mathrm{d}s < \infty \,. \tag{9}$$

In their paper, ALZIARY, and TAKÁČ ([9] Corollary 3.3) show that the ground states $\varphi^*(q)$, $\varphi^*(Q_1)$ and $\varphi^*(Q_2)$ are comparable: there exist some constants $0 < \gamma_1 \le \gamma_2 < \infty$ such that $\gamma_1 \varphi^*(q) \le \varphi^*(Q_j) \le \gamma_2 \varphi^*(q)$ with j = 1, 2. We have $X_q = X_{Q1} = X_{Q2}$.

Remark 2.1 The set X does not change if we change q into $q - \tilde{q}$ where \tilde{q} is a bounded function such that $q - \tilde{q} \ge 0$.

2.3 Hypotheses on matrix M and vector F

2.3.1 Case of constant matrix M

\diamond Hypothesis on M

In this case, we suppose the whole spectrum of M real. More precisely:

Hypothesis (H_M) : The whole spectrum of Matrix M is in \mathbb{R} . We denote the p real eigenvalues $(\mu_i)_{1 \leq i \leq p}$ of matrix M, by

$$\mu_1 > \mu_2 \ge \ldots \ge \mu_p.$$

We assume that the largest eigenvalue μ_1 of M is algebraically and geometrically simple.

Remark 2.2 We choose to write eigenvalues μ_i in decreasing order. The Jordan's canonical form allows us to write $M = PTP^{-1}$ with :

$$T = \begin{pmatrix} J_1 & 0 & \\ \hline & J_2 & 0 & \\ \hline & 0 & \ddots & \\ \hline & & & J_p \end{pmatrix}$$

where P is a change-of-basis matrix.

Every Jordan's block J_i is a square $k_i \times k_i$ matrix, in the form :

$$J_{i} = \begin{pmatrix} \mu_{i} & 1 & 0 & \\ & \ddots & \ddots & \\ & 0 & \ddots & 1 \\ & & & \mu_{i} \end{pmatrix}$$

By Hypothesis (H_M) , the first block is 1×1 : $J_1 = (\mu_1)$.

Notation: Let G be the eigenspace associated with μ_1 (dim G = 1) and H the hyperplan spanned by other column vectors of Matrix P. By hypothesis (H_M) , we have $\mathbb{R}^n = G \oplus H$. It is important to notice that, in matrix P, we can choose for the first column, every non null vector of G.

\diamond Hypothesis on F

We recall that in the whole space, the anti-maximum principle could be violated for the equation

$$-\Delta u + q(x)u = \lambda u + f$$

if the function f is in $L^2(\mathbb{R}^N) \setminus X$ (cf. [5, Example 4.1, pp. 377–379]). So the fundamental negativity does not hold for $0 \leq f \neq 0$. For results on systems presented in this article, of course we need to consider vector F with all the components f_k in X.

We can decompose F(x) into $F(x) = F_G(x) + F_H(x)$ with $F_G(x) \in G$ and $F_H(x) \in H$.

Hypothesis (H_F) : All components f_i of vector F are in X and let us decompose $F(x) = F_G(x) + F_H(x)$ where $F_G(x) \in G$ and $F_H(x) \in H$. We assume there exists $\Psi \in G$ such that $F(x) = \tilde{f}_1(x)\Psi + F_H(x)$ with $\tilde{f}_1 \ge 0$ (a.e.), and $F_G = \tilde{f}_1\Psi \not\equiv 0$.

Vector Ψ is in G so we have : $M\Psi = \mu_1 \Psi$. Its components ψ_i are constant real numbers. In Matrix $P = (p_{ij})$ we choose Ψ for the first column. So $\psi_i = p_{i1}$.

2.3.2 Case of variable M

In this case, M is a 2 × 2 matrix. We note $M = \begin{pmatrix} a(x) & b(x) \\ c(x) & d(x) \end{pmatrix}$.

Assumptions on Matrix M allow us to diagonalise this matrix with the help of a change-ofbasis matrix with real and constant coefficients. These very particular forms of matrix are studied by COSNER and SCHAEFER [13]. If $a \neq d$, we need b and c proportional to a - d; if $a \equiv d, b$ is proportional to c and have the same sign. In the first case, where $a \neq d$, we need to have a constant sign for a - d. In the second case, we suppose $a \equiv d$.

Hypothesis (H_{Mv1}) (case $a \neq d, a \geq d$): We assume:

- \diamond Functions a and d are continuous, in $L^{\infty}(\mathbb{R}^N)$, and $a \ge d \ge 0$ with $a \ne d$.
- ♦ There exist two real numbers \hat{b} and \hat{c} such that $b = \hat{b}(a d)$ and $c = \hat{c}(a d)$, and $\hat{D} = 1 + 4\hat{b}\hat{c} > 0$.

Note that with hypotheses $a(x) \ge 0$ and $d(x) \ge 0$ we do not loose generality: we can add a positive number to each side to obtain these hypotheses.

In this case, we always use Hypothesis (H_F) , but we can write it differently.

Hypothesis (H_{Fv1}) (case $a \neq d, a \geq d$): We assume $f_1, f_2 \in X$,

$$\widetilde{f}_1 = f_1 + \frac{2\widetilde{b}}{1 + \sqrt{\widetilde{D}}} f_2 \ge 0 \quad and \quad \widetilde{f}_1 \neq 0.$$

Hypothesis (H_{Mv2}) (case $a \equiv d$): We assume:

- ♦ The equality a = d and this function is in $L^{\infty}(\mathbb{R}^N)$. Moreover $\forall x \in \mathbb{R}^N$, $a(x) \ge 0$.
- ♦ There exist two positive real numbers \hat{b} and \hat{c} such that $b = \epsilon \hat{b}r$ and $c = \epsilon \hat{c}r$, where ϵ is ±1 and $r \in L^{\infty}(\mathbb{R}^N)$ is a bounded, positive and continuous function.

Hypothesis (H_F) can now be written:

Hypothesis (H_{Fv2}) (case $a \equiv d$): We assume $f_1, f_2 \in X$,

$$\sqrt{\hat{c}}f_1 + \epsilon\sqrt{\hat{b}}f_2 \ge 0 \text{ and } \sqrt{\hat{c}}f_1 + \epsilon\sqrt{\hat{b}}f_2 \neq 0.$$

Remark 2.3 Under Hypotheses (H_{Mv1}) or (H_{Mv2}) , M has two real eigenvalues. We denote them by $\nu^+(x) \ge \nu^-(x)$. The two functions ν^+ and ν^- are in $L^{\infty}(\mathbb{R}^N)$.

3 Known Results

We recall here some results of fundamental positivity and fundamental negativity.

Our proof uses some results in Alziary, Takáč, ([8]) then Alziary, Fleckinger, Takáč, ([5]) and Alziary, Takáč, ([9]) for fundamental positivity, in Besbas, ([10]) for fundamental negativity. For q with superquadratical growth and for $f/\varphi^*(q) \in L^\infty$, they study

$$(-\Delta + q)u = \lambda u + f \tag{10}$$

and they show that there exist positive numbers c and δ (depending on q, f and λ) such that:

 $\lambda < \lambda^*(q) \Rightarrow u \stackrel{*}{\succ} 0$, (fundamental positivity) $\lambda^*(q) < \lambda < \lambda^*(q) + \delta \Rightarrow u \stackrel{*}{\prec} 0$, (fundamental negativity).

Fundamental Positivity

Theorem 3.1 ([8, Theorem 2.1, p. 284])([9, Theorem 3.1, p. 41])

Assume (H_q) is satisfied and $f \in L^2(\mathbb{R}^N)$, $f \ge 0$ a.e. on \mathbb{R}^N , $f \not\equiv 0$. For $\lambda < \lambda^*(q)$ there exists a unique solution u to Equation (10) which is positive; and there exists a constant c > 0 such that

$$u > c\varphi^*(q) > 0$$
 (fundamental positivity). (11)

Moreover, if also $f \leq C\varphi^*(q)$, with some constant C > 0, then we have

$$u \le c'\varphi^*(q)$$
 everywhere, with $c' = \frac{C}{\lambda^*(q) - \lambda}$. (12)

Corollary 3.2 ([9]): The constant c defined in (11) tends to ∞ as $\lambda \to \lambda^*(q)$.

This result plays an important role in the proof of our main Theorems:

Corollary 3.3 Assume $f \in X$ (not necessarily $f \ge 0$), for $\lambda < \lambda^*(q)$, u exists and we have

$$|u| \le \frac{\|f\|_X}{\lambda^*(q) - \lambda} \varphi^*(q).$$
(13)

Indeed if we denote by $\mathcal{K}|_X$ the restriction of $\mathcal{K} = (L_q - \lambda I)^{-1}$ to the Banach space X, the operator $\mathcal{K}|_X$ is linear and bounded in X with norm $\leq \frac{1}{\lambda^*(q) - \lambda}$ ([9], p. 41).

Fundamental Negativity

It has been shown first in [1] for a radial potential and then in [9].

Theorem 3.4 ([9, Theorem 3.4, p. 42]) Assume (H_q) is satisfied; let $f \in X$ be such that $f \geq 0$ a.e. on \mathbb{R}^N , $f \neq 0$. Then there exists $\delta(f) > 0$ and c > 0 such that for all $\lambda \in (\lambda^*(q); \lambda^*(q) + \delta)$,

$$u \le -c\varphi^*(q)$$
 (fundamental negativity). (14)

Remark 3.5 The same holds if we assume only $\int_{\mathbb{R}^N} f\varphi^*(q) dx > 0$.

Corollary 3.6 ([10]): The constant c defined in (14) tends to ∞ as $\lambda \to \lambda^*(q)$.

Remark 3.7 Besbas ([10]) uses a slightly different space $X^{1,2} \subset X$; it coincides with X for radially symmetric functions.

Remark 3.8 Fundamental negativity improves the antimaximum principle introduced in Clément-Pelletier ([12]).

4 Main Results

4.1 System $n \times n$

This result concerns System (2) where M is a constant matrix:

(2)
$$\mathcal{L}U := \begin{pmatrix} (-\Delta + q(x)) & 0 \\ & \ddots & \\ 0 & & (-\Delta + q(x)) \end{pmatrix} \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = \lambda U + MU + F,$$

Recall that, by hypothesis (H_q) , (H_M) and (H_F) , M has only real eigenvalues; its largest eigenvalue μ_1 is simple and there exists Ψ eigenvector of M associated with μ_1 , such that $F(x) = \tilde{f}_1(x)\Psi + F_H(x)$ with $\tilde{f}_1 \ge 0$ (a.e.) Denote (ψ_i) the components of Ψ .

Theorem 4.1 We assume Hypotheses (H_q) , (H_M) and (H_F) .

Let $\Lambda := \lambda^*(q) - \mu_1$. Then there exist two real numbers $\delta > 0$ and $\delta' > 0$, depending on q, M, F, such that

- If $\lambda \in (\Lambda \delta; \Lambda)$ then System (2) admits a unique solution $U = (u_i)$. Moreover, for each integer $i \in [1, n]$, $u_i \in X$ and $\psi_i u_i \stackrel{*}{\succ} 0$.
- If $\lambda \in (\Lambda; \Lambda + \delta')$ then System (2) admits a unique solution $U = (u_i)$. Moreover, for each integer $i \in [1, n]$ $u_i \in X$ and $\psi_i u_i \stackrel{*}{\prec} 0$.

Remark 4.2 If M is irreducible and cooperative, we know that there exists Ψ with all components strictly positive. We obtain the fundamental positivity below Λ and the fundamental negativity above Λ .

4.2 Variable Matrix M

Here *M* is a variable 2×2 matrix $M = \begin{pmatrix} a(x) & b(x) \\ c(x) & d(x) \end{pmatrix}$. The system is:

 $\begin{pmatrix} -\Delta + q(x) & 0\\ 0 & -\Delta + q(x) \end{pmatrix} \begin{pmatrix} u_1\\ u_2 \end{pmatrix} = \lambda \begin{pmatrix} u_1\\ u_2 \end{pmatrix} + \begin{pmatrix} a(x) & b(x)\\ c(x) & d(x) \end{pmatrix} \begin{pmatrix} u_1\\ u_2 \end{pmatrix} + \begin{pmatrix} f_1\\ f_2 \end{pmatrix}.$ (15)

As we will see in the proof, the two real eigenvalues of M are $\nu^+(x) \ge \nu^-(x)$, and the functions ν^+ and ν^- are continuous, bounded. Let $\nu^+_{max} = \sup \{\nu^+(x), x \in \mathbb{R}\}.$

By Remark 2.1, we know that X is the same set for q, for $q^+ = q - \nu^+ + \nu_{max}^+$ and for $q^- = q - \nu^- + \nu_{max}^+$. We denote $\lambda^*(q^+)$ the principal eigenvalue of $-\Delta + q^+$ and $\lambda^*(q^-)$ the principal eigenvalue of $-\Delta + q^-$.

1. First case

Under Hypothesis 2.3.2 (H_{Mv1}) , let us set \hat{b} , \hat{c} the two real numbers such that $b = \hat{b}(a-d)$ and $c = \hat{c}(a-d)$.

Theorem 4.3 (case $a \neq d$) We assume Hypotheses (H_q) , (H_{Mv1}) and (H_{Fv1}) :

$$f_1 + \frac{2\hat{b}}{1 + \sqrt{\hat{D}}} f_2 \ge 0 \ a.e., \ f_1 + \frac{2\hat{b}}{1 + \sqrt{\hat{D}}} f_2 \neq 0$$

Let $\Lambda = \lambda^*(q^+) - \nu_{max}^+$. Then there exist two real numbers $\delta > 0$ and $\delta' > 0$, depending on q, M, F, such that

• If $\Lambda - \delta < \lambda < \Lambda$, then System (15) admits a unique solution $U = (u_i)$. Moreover,

$$u_1 \stackrel{*}{\succ} 0 and \quad \widehat{c}u_2 \stackrel{*}{\succ} 0.$$

• If $\Lambda < \lambda < \Lambda + \delta'$, then System (15) admits a unique solution $U = (u_i)$. Moreover,

$$u_1 \stackrel{*}{\prec} 0 and \quad \widehat{c}u_2 \stackrel{*}{\prec} 0.$$

Under Hypothesis 2.3.2 (H_{Mv2}), recall that functions $b = \epsilon \hat{b}r$ and $c = \epsilon \hat{c}r$ have the same sign, given by $\epsilon = \pm 1$.

Theorem 4.4 (case $a \equiv d$) We assume Hypotheses (H_q) , (H_{Mv2}) and (H_{Fv2}) :

$$\sqrt{\hat{b}}f_1 + \epsilon\sqrt{\hat{c}}f_2 \ge 0 \ a.e., \ \sqrt{\hat{b}}f_1 + \epsilon\sqrt{\hat{c}}f_2 \not\equiv 0.$$

Let $\Lambda = \lambda^*(q^+)$. Then there exist two real numbers $\delta > 0$ and $\delta' > 0$, depending on q, M, F, such that

• If $\Lambda - \delta < \lambda < \Lambda$, then System (15) admits a unique solution $U = (u_i)$. Moreover,

$$u_1 \stackrel{*}{\succ} 0 and \epsilon u_2 \stackrel{*}{\succ} 0.$$

• If $\Lambda < \lambda < \Lambda + \delta'$, then System (15) admits a unique solution $U = (u_i)$. Moreover,

$$u_1 \stackrel{*}{\prec} 0 and \epsilon u_2 \stackrel{*}{\prec} 0.$$

5 Proofs

5.1 Proof of Theorem 4.1

1/ First case: $\lambda < \Lambda = \lambda^*(q) - \mu_1$ First step: change of basis

We use the Jordan's block matrix
$$T = \begin{pmatrix} J_1 & 0 & \\ \hline & J_2 & 0 & \\ \hline & 0 & \ddots & \\ \hline & & & J_p \end{pmatrix}$$
 associated with matrix M in System (2):

System (2):

$$\mathcal{L}U := \lambda U + MU + F.$$

There is a matrix P such that $T = P^{-1}MP$. More precisely, by Hypothesis (H_M) and Hypothesis (H_F) we can choose for the first column of change-of-basis matrix $P : \Psi \in G$ such that $F = \tilde{f}_1 \Psi + F_H$ with $\tilde{f}_1 \ge 0$ and $F_H(x) \in H$.

Now let us introduce the following notation:

$$U = P\widetilde{U} \iff \widetilde{U} = \begin{pmatrix} \widetilde{u_1} \\ \vdots \\ \widetilde{u_n} \end{pmatrix} = P^{-1}U \quad \text{and} \quad F = P\widetilde{F} \iff \widetilde{F} = \begin{pmatrix} \widetilde{f_1} \\ \vdots \\ \widetilde{f_n} \end{pmatrix} = P^{-1}F.$$

All potentials are equal, so System (2) becomes

$$\mathcal{L}\widetilde{U} = \lambda \widetilde{U} + T\widetilde{U} + \widetilde{F}.$$
(16)

By Hypothesis (H_M) the first equation in System (16) is

$$L\widetilde{u}_1 = \lambda \widetilde{u}_1 + \mu_1 \widetilde{u}_1 + f_1, \tag{17}$$

where, by Hypothesis (H_F) , $\tilde{f}_1 \ge 0$ and $\tilde{f}_1 \not\equiv 0$.

Look at the Jordan's block J_i with $2 \le i \le p$. The matrix J_i is $k_i \times k_i$. Set $s_i = \sum_{m=1}^{i-1} k_m$ with $k_1 = 1$.

From line $s_i + 1$ to line $s_i + k_i - 1$, we obtain $k_i - 1$ equations:

$$L\widetilde{u}_j = \lambda \widetilde{u}_j + \mu_i \widetilde{u}_j + \widetilde{u}_{j+1} + \widetilde{f}_j \qquad \text{if } s_i + 1 \le j < s_i + k_i - 1, \tag{18}$$

and the last one:

$$L\widetilde{u}_j = \lambda \widetilde{u}_j + \mu_i \widetilde{u}_j + \widetilde{f}_j \qquad \text{for } j = s_i + k_i = s_{i+1}.$$
(19)

Second step: study of the triangular system (16)

In the first line

Using Theorem 3.1, we obtain that $L\tilde{u}_1 = \lambda \tilde{u}_1 + \mu_1 \tilde{u}_1 + \tilde{f}_1$ has a solution, $u_1 \succeq 0$ (fundamental positivity), and since $\tilde{f}_1 \ge 0$ a.e. on \mathbb{R}^N ,

$$c(\lambda)\varphi^* \le \widetilde{u_1}.$$

If $\lambda \to \Lambda$, by Corollary (3.2) $c(\lambda) \to +\infty$.

In other lines we look at every Jordan's block.

In i^{th} block, with $2 \le i \le p$, from line $s_i + 1$ to line s_{i+1} .

• Line s_{i+1} : In Equation (19) $L\tilde{u}_{s_{i+1}} = \lambda \tilde{u}_{s_{i+1}} + \mu_i \tilde{u}_{s_{i+1}} + \tilde{f}_{s_{i+1}}$ by Corollary 3.3 the solution $\tilde{u}_{s_{i+1}}$ exists and satisfies the inequality

$$|\widetilde{u}_{s_{i+1}}| \le \frac{\|\widetilde{f}_{s_{i+1}}\|_X}{\lambda^*(q) - \mu_i - \lambda} \varphi^*.$$

$$\tag{20}$$

By (H_M) , $\lambda < \lambda^*(q) - \mu_1 < \lambda^*(q) - \mu_i$. So $|\widetilde{u}_{s_{i+1}}| \le \frac{\|\widetilde{f}_{s_{i+1}}\|_X}{\mu_1 - \mu_i} \varphi^*$.

Hence, for i > 1, the function $\widetilde{u}_{s_{i+1}}$ is in X, and $\|\widetilde{u}_{s_{i+1}}\|_X \leq c_{s_{i+1}}$ where the constant $c_{s_{i+1}}$ depends only on F and M.

• From line $s_i + 1$ to line $s_{i+1} - 1$

For $j = s_{i+1} - 1$, we have $L\widetilde{u}_j = \lambda \widetilde{u}_j + \mu_i \widetilde{u}_j + \widetilde{u}_{s_{i+1}} + \widetilde{f}_j$.

Set $\tilde{g}_j = \tilde{u}_{s_{i+1}} + \tilde{f}_{s_{i+1}}$. This function \tilde{g}_j is in X, and $\|\tilde{g}_j\|_X \leq l_j$ where the constant l_j depends only on F and M.

Therefore, by Corollary 3.3 we obtain the existence of \tilde{u}_j and

$$|\widetilde{u}_j| \le \frac{\|\widetilde{g}_j\|_X}{\lambda^*(q) - \mu_i - \lambda} \varphi^* \le \frac{l_j}{\mu_1 - \mu_i} \varphi^*.$$

So, for $j = s_{i+1} - 1$, $\tilde{u}_j \in X$, and $\|\tilde{u}_j\|_X \leq c_j$ where c_j depends only on F and M.

Step by step, we can use the same argument from line $s_{i+1} - 1$ to line $s_i + 1$. Therefore we obtain, in each block, for each integer j with $s_i + 1 \leq j \leq s_{i+1} - 1$, the existence of the solution \tilde{u}_j which is in X. Moreover, $\|\tilde{u}_j\|_X \leq c_j$ where the real c_j depends only on F and M.

To sum up, we have, for $2 \le j \le n$,

$$|\widetilde{u}_j| \le c_j \varphi^*,\tag{21}$$

where the real c_j depends only on F and M, and for j = 1,

$$c(\lambda)\varphi^* \le \widetilde{u_1},\tag{22}$$

where $c(\lambda)$ depends on F, M, λ and $c(\lambda) \nearrow +\infty$ when $\lambda \nearrow \Lambda$.

Third step: consequence for the initial system (2)

 $U = P\widetilde{U}$ implies for each component $1 \leq i \leq n$:

$$u_i = p_{i1}\widetilde{u_1} + \sum_{j=2}^n p_{ij}\widetilde{u_j}.$$

As $\lambda \to \Lambda$, we have $\widetilde{u_1} \ge c(\lambda)\varphi^*(q)$, where $c(\lambda)$ tends to infinity; and by (21), $\sum_{j=2}^n p_{ij}\widetilde{u_j}$ is bounded by a constant times φ^* .

Therefore there exists $\delta_i > 0$ such that for $\lambda \in (\Lambda - \delta_i; \Lambda)$ the function

$$u_i = p_{i1}\widetilde{u_1} + \sum_{j=2}^n p_{ij}\widetilde{u_j}$$

has the same sign than p_{i1} . More precisely, if $p_{i1} > 0$, $u_i \succeq 0$, and if $p_{i1} < 0$ $u_i \rightleftharpoons 0$.

But the first eigenvector Ψ is the first column of the change-of-basis matrix P: $\psi_i = p_{i1}$ We obtain, in the case $\Lambda - \delta \leq \lambda < \Lambda$, where $\delta = \min_i \delta_i$,

 $\psi_i u_i \stackrel{*}{\succ} 0$ (fundamentally positive)

2/ Second case $\lambda > \Lambda = \lambda^* - \mu_1$ and $|\lambda - \Lambda|$ small: there is $\delta_0 > 0$ with $\Lambda < \lambda < \Lambda + \delta_0 < \lambda^* - \mu_2 \le \ldots \le \lambda^* - \mu_n$.

First step

We transform System (2) into System (16) exactly as above.

Second step: study of the triangular system (16)

In the first line (17) $L\widetilde{u_1} = \lambda \widetilde{u_1} + \mu_1 \widetilde{u_1} + \widetilde{f_1},$

we can apply the fundamental negativity results (Theorem 3.4): there is $\delta_1(F) > 0$ such that if $\Lambda < \lambda < \Lambda + \delta_1 < \Lambda + \delta_0$, then $\widetilde{u_1} \leq -c(\lambda)\varphi^*(q)$, and by Corollary 3.6: $c(\lambda)$ grows to $+\infty$ when $\lambda \to \Lambda$. In the other equations, $L\widetilde{u}_i = \lambda \widetilde{u}_i + \mu_k \widetilde{u}_i + \widetilde{f}_i$ we have $\lambda < \lambda^* - \mu_i$. Hence by fundamental positivity and corollary 3.2, as in the case $\lambda < \Lambda$, we have by (21), $\sum_{j=2}^n p_{ij}\widetilde{u}_j$ bounded by a constant times φ^* .

Third step: consequence for the initial system (2)

In $u_i = p_{i1}\widetilde{u_1} + \sum_{j=2}^n p_{ij}\widetilde{u_j}$, we have $\sum_{j=2}^n p_{ij}\widetilde{u_j}$ bounded by a constant times φ^* and $\widetilde{u_1} < -c(\lambda)\varphi^*(q)$ tending to $-\infty$ when λ tends to Λ . So there is $\delta' > 0$ such that : if $\Lambda < \lambda < \Lambda + \delta'$ we obtain $p_{j1}u_j = \psi_j u_j$ fundamentally negative: $\psi_j u_j \stackrel{*}{\prec} 0$.

5.2 Proof of Theorems 4.3 and 4.4

Here we study System (15):

$$\begin{pmatrix} -\Delta + q(x) & 0\\ 0 & -\Delta + q(x) \end{pmatrix} \begin{pmatrix} u_1\\ u_2 \end{pmatrix} = \lambda \begin{pmatrix} u_1\\ u_2 \end{pmatrix} + \begin{pmatrix} a(x) & b(x)\\ c(x) & d(x) \end{pmatrix} \begin{pmatrix} u_1\\ u_2 \end{pmatrix} + \begin{pmatrix} f_1\\ f_2 \end{pmatrix}$$

1/ Proof of Theorem 4.3

First step : study of eigenvalues

By Hypothesis (H_{Mv1}) , there exist two real numbers \hat{b} , \hat{c} such that $b = \hat{b}(a-d)$ and $c = \hat{c}(a-d)$. Since $a \ge d$, the two functions b and c never change sign. Moreover $\hat{D} = 1 + 4\hat{b}\hat{c}$ is positive.

By calculation we obtain two eigenvalues : $\nu^+(x) = \frac{1}{2} \left(a(x) + d(x) + (a(x) - d(x))\sqrt{\widehat{D}} \right)$, and $\nu^-(x) = \frac{1}{2} \left(a(x) + d(x) - (a(x) - d(x))\sqrt{\widehat{D}} \right)$.

Since $a \ge d$, $a \not\equiv d$ and $\widehat{D} > 0$, we have $\nu^+ \ge \nu^-$, $\nu^+ \not\equiv \nu^-$. By (H_{Mv1}) , the two functions a and d are continuous and bounded, so ν^+ and ν^- are continuous and bounded. Set $\nu_{max}^+ = \sup_x \nu^+(x)$.

By Remark 2.1, the set X is the same for the two potentials $q^+ = q + \nu_{max}^+ - \nu^+$ and $q^- = q + \nu_{max}^+ - \nu^-$. We have $q^- \ge q^+ > 0$, with $q^- \ne q^+$.

The principal eigenvalue of $L_{q^-} \stackrel{\text{def}}{=} -\Delta + q^-(x) \bullet$ is

$$\lambda^{*}(q^{-}) = \inf_{u \in V_{q^{-}}(\mathbb{R}^{N})} \left\{ \frac{\int_{\mathbb{R}^{N}} |\nabla u|^{2} dx + \int_{\mathbb{R}^{N}} q^{-}(x) |u|^{2} dx}{\int_{\mathbb{R}^{N}} |u|^{2} dx} \right\}$$

and we know that

$$\lambda^{*}(q^{-}) = \int_{\mathbb{R}^{N}} |\nabla \varphi^{*}(q^{-})|^{2} dx + \int_{\mathbb{R}^{N}} q^{-} |\varphi^{*}(q^{-})|^{2} dx,$$

where $\varphi^*(q^-)$ is the ground state of $-\Delta + q^-(x) \bullet$, which is positive and normalized by
$$\begin{split} \|\varphi^*(q^-)\|_{L^2(\mathbb{R}^N)}^2 &= 1.\\ \text{By } \nu^-(x) \leq \nu^+(x), \ \nu^- \not\equiv \nu^+, \text{ and by continuity we have} \end{split}$$

$$\int_{\mathbb{R}^N} \left(\nu_{max}^+ - \nu^-(x) \right) |\varphi^*(q^-(x))|^2 dx > \int_{\mathbb{R}^N} \left(\nu_{max}^+ - \nu^+(x) \right) |\varphi^*(q^-(x))|^2 dx,$$

 \mathbf{SO}

$$\int_{\mathbb{R}^N} q^{-}(x) |\varphi^*(q^{-})|^2 dx > \int_{\mathbb{R}^N} q^{+}(x) |\varphi^*(q^{-})|^2 dx.$$

Therefore

$$\lambda^{*}(q^{-}) > \int_{\mathbb{R}^{N}} |\nabla \varphi^{*}(q^{-})|^{2} dx + \int_{\mathbb{R}^{N}} q^{+}(x) |\varphi^{*}(q^{-})|^{2} dx$$

We obtain $\varphi^*(q^-) \in V_{q^+}$ and

$$\lambda^{*}(q^{-}) > \inf_{u \in V_{q^{+}}(\mathbb{R}^{N})} \left\{ \frac{\int_{\mathbb{R}^{N}} |\nabla u|^{2} dx + \int_{\mathbb{R}^{N}} q^{+}(x)|u|^{2} dx}{\int_{\mathbb{R}^{N}} |u|^{2} dx} \right\} = \lambda^{*}(q^{+}).$$

Second step: diagonalization of the system (15)

We choose the eigenvectors $v^+ = \begin{pmatrix} \frac{1+\sqrt{\widehat{D}}}{2} \\ \frac{2}{\widehat{c}} \end{pmatrix}$ associated with ν^+ and $v^- = \begin{pmatrix} -\widehat{b} \\ \frac{1+\sqrt{\widehat{D}}}{2} \end{pmatrix}$ associated with ν^{-} .

Let P the matrix with columns vectors v^+ and v^- . The inverse matrix is

$$P^{-1} = \frac{1}{\sqrt{\widehat{D}}} \begin{pmatrix} 1 & \frac{2\widehat{b}}{1+\sqrt{\widehat{D}}} \\ \frac{-2\widehat{c}}{1+\sqrt{\widehat{D}}} & 1 \end{pmatrix}.$$

As before, we note: $\widetilde{U} = \begin{pmatrix} \widetilde{u_1} \\ \widetilde{u_2} \end{pmatrix} = P^{-1} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ and $\begin{pmatrix} \widetilde{f_1} \\ \widetilde{f_2} \end{pmatrix} = P^{-1} \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}$. The components of P and P^{-1} are constants. So, if $f_1, f_2 \in X$, then $\tilde{f_1}$ and $\tilde{f_2}$ are also in X.

By this change of basis, System (15)

$$\mathcal{L}U = \lambda \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} + \begin{pmatrix} a(x) & b(x) \\ c(x) & d(x) \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} + \begin{pmatrix} f_1 \\ f_2 \end{pmatrix},$$

64

is written in two equations:

$$-\Delta \widetilde{u}_1 + q\widetilde{u}_1 = \lambda \widetilde{u}_1 + \nu^+ \widetilde{u}_1 + \widetilde{f}_1,$$
$$-\Delta \widetilde{u}_2 + q\widetilde{u}_2 = \lambda \widetilde{u}_2 + \nu^- \widetilde{u}_2 + \widetilde{f}_2$$

where $\tilde{f}_1 \ge 0$, $\tilde{f}_1 \not\equiv 0$ by Hypothesis (H_{Fv1}) Set $q^+ = q + \nu_{max}^+ - \nu^+$, and $q^- = q + \nu_{max}^+ - \nu^-$, we derive

$$-\Delta \widetilde{u}_1 + q^+ \widetilde{u}_1 = \left(\lambda + \nu_{max}^+\right) \widetilde{u}_1 + \widetilde{f}_1, \qquad (23)$$

$$-\Delta \widetilde{u}_2 + q^- \widetilde{u}_2 = \left(\lambda + \nu_{max}^+\right) \widetilde{u}_2 + \widetilde{f}_2.$$
(24)

If $\lambda < \lambda^*(q^-) - \nu_{max}^+$, Equation (24) satisfies the Theorem of Fundamental Positivity, and by Corollary 3.3 we have

$$|\widetilde{u_2}| \le \left(\lambda^*(q^-) - \nu_{max}^+ - \lambda\right)^{-1} C_{\widetilde{f_2}} \varphi^*$$

• If $\lambda < \lambda^*(q^+) - \nu^+_{max} < \lambda^*(q^-) - \nu^+_{max}$, we obtain

$$|\widetilde{u_2}| \le \left(\lambda^*(q^-) - \lambda - \nu_{max}^+\right)^{-1} C_{\widetilde{f_2}} \varphi^* \le \frac{C_{\widetilde{f_2}}}{\lambda^*(q^-) - \lambda^*(q^+)} \varphi^*.$$

Equation (23) satisfies the fundamental positivity result, so we have

$$\widetilde{u_1} \ge C(\lambda, \widetilde{f_1})\varphi^*$$

and $C(\lambda, \tilde{f}_1)$ tends to infinity, when λ tends to $\lambda^*(q^+) - \nu_{max}^+$. Consequently \tilde{u}_2 is bounded, and \tilde{u}_1 tends to infinity.

Now we can derive U from $U = P\widetilde{U}$; we have:

$$u_1 = \frac{1 + \sqrt{\widehat{D}}}{2} \widetilde{u_1} - \widehat{b}\widetilde{u_2},\tag{25}$$

$$u_2 = \widehat{c}\widetilde{u}_1 + \frac{1+\sqrt{\widehat{D}}}{2}\widetilde{u}_2.$$
(26)

So there exists a real number $\delta > 0$, depending on F and M, such that for all $\lambda^*(q^+) - \nu_{max}^+ - \delta < \lambda < \lambda^*(q^+) - \nu_{max}^+$,

$$u_1 \stackrel{*}{\succ} 0 \text{ and } \widehat{c}u_2 \stackrel{*}{\succ} 0.$$

M.-H. Lécureux

• If $\lambda^*(q^+) - \nu^+_{max} < \lambda < \lambda^*(q^-) - \nu^+_{max}$

By Theorem 3.4 in Equation (23) there exists δ_1 (depending on F) such that for all λ with $\lambda^*(q^+) < \lambda + \nu_{max}^+ < \lambda^*(q^+) + \delta_1$, $\widetilde{u_1}$ exists and $\widetilde{u_1} \stackrel{*}{\prec} 0$. We can choose $\delta_1 < \lambda^*(q^-) - \lambda^*(q^+)$, and assume $\lambda^*(q^+) - \nu_{max}^+ < \lambda < \lambda^*(q^+) - \nu_{max}^+ + \delta_1 < \lambda^*(q^-) - \nu_{max}^+$.

In Equation 24, by $\lambda < \lambda^*(q^-) - \nu_{max}^+$ we can apply the Fundamental Positivity Result. So \tilde{u}_2 exists, and

$$|\widetilde{u_2}| \le \left(\lambda^*(q^-) - \lambda - \nu_{max}^+\right)^{-1} C_{\widetilde{f_2}}\varphi^* \le \frac{1}{\lambda^*(q^-) - \lambda^*(q^+) - \delta_1}\varphi^*.$$

We have $\widetilde{u_2}$ bounded by a constant times φ^* , and $\widetilde{u_1} \leq -C(\lambda, \widetilde{f_1})\varphi^*$, with $C(\lambda, \widetilde{f_1})$ tending to infinity when λ tends to $\lambda^*(q^+) - \nu_{max}^+$.

Relations (25) and (26) are always true. So there exists a real $0 < \delta \leq \delta_1$ such that: if $\lambda^*(q^+) - \nu_{max}^+ < \lambda < \lambda^*(q^+) - \nu_{max}^+ + \delta < \lambda^*(q^-) - \nu_{max}^+$, we have $u_1 \stackrel{*}{\prec} 0$ and $\widehat{c}u_2 \stackrel{*}{\prec} 0$. \Box

2/ Proof of Theorem 4.4

By Hypothesis (H_{Mv2}) , a = d and there exist two real numbers \hat{b} , \hat{c} such that $b = \epsilon \hat{b}r$ and $c = \epsilon \hat{c}r$, with $\epsilon = \pm 1$. The function $r \in L^{\infty}(\mathbb{R}^N)$ is continuous, positive and bounded. The matrix M(x) has two eigenvalues, $\nu^+(x) = a(x) + \sqrt{\hat{b}\hat{c}}r(x)$ and $\nu^-(x) = a(x) - \sqrt{\hat{b}\hat{c}}r(x)$. The function r is positive, bounded and continuous so the function $\nu^+ - \nu^- = 2\sqrt{\hat{b}\hat{c}}r(x)$ is positive, bounded and continuous. Let $q^+ = q + \nu_{max}^+ - \nu^+$ and $q^- = q + \nu_{max}^+ - \nu^-$. We have, as in the first step of the proof of Theorem 4.3, $\lambda(q^-) > \lambda(q^+)$.

Eigenvectors associated to ν^+ and ν^- are $v^+ = \begin{pmatrix} \sqrt{\hat{b}} \\ \epsilon \sqrt{\hat{c}} \end{pmatrix}$ and $v^- = \begin{pmatrix} -\epsilon \sqrt{\hat{b}} \\ \sqrt{\hat{c}} \end{pmatrix}$. With these eigenvectors, we obtain

$$P^{-1} = \begin{pmatrix} \frac{1}{2\sqrt{\hat{b}}} & \frac{\epsilon}{2\sqrt{\hat{c}}} \\ \frac{-\epsilon}{2\sqrt{\hat{b}}} & \frac{1}{2\sqrt{\hat{c}}} \end{pmatrix}.$$

The components of P and P^{-1} are constants.

We always denote $\begin{pmatrix} \widetilde{u_1} \\ \widetilde{u_2} \end{pmatrix} = P^{-1} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ and $\begin{pmatrix} \widetilde{f_1} \\ \widetilde{f_2} \end{pmatrix} = P^{-1} \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}$. Functions $\widetilde{f_1}$ and $\widetilde{f_2}$ are in X, and by Hypothesis $(H_{Fv2}), \widetilde{f_1} \ge 0$, and $\widetilde{f_1} \ne 0$. We obtain the same equations as above:

(23)
$$-\Delta \widetilde{u_1} + q^+ \widetilde{u_1} = \left(\lambda + \nu_{max}^+\right) \widetilde{u_1} + \widetilde{f_1},$$

(24)
$$-\Delta \widetilde{u}_2 + q^- \widetilde{u}_2 = \left(\lambda + \nu_{max}^+\right) \widetilde{u}_2 + \widetilde{f}_2,$$

where $\tilde{f}_1 \ge 0$, $\tilde{f}_1 \not\equiv 0$ by Hypothesis (H_{Fv1}) .

The study of the comparison with the ground state is the same as in Theorem 4.3. So \tilde{u}_2 is still bounded in X. For \tilde{u}_1 :

• if $\lambda < \lambda^*(q^+) - \nu_{max}^+$, then $\widetilde{u_1} \ge C(\lambda, F)\varphi^*$, where $C(\lambda, F) \to \infty$ when $\lambda \to \lambda^*(q^+) - \nu_{max}^+$, • if $\lambda > \lambda^*(q^+) - \nu_{max}^+$ and $|\lambda - (\lambda^*(q^+) - \nu_{max}^+)|$ small, we have $\widetilde{u_1} \le -C(\lambda, F)\varphi^*$, where $C(\lambda, F) \to \infty$ when $\lambda \to \lambda^*(q^+) - \nu_{max}^+$.

But now the change of basis gives:

$$u_1 = \sqrt{\hat{b}}\,\widetilde{u}_1 - \epsilon\sqrt{\hat{b}}\,\widetilde{u}_2,\tag{27}$$

$$u_2 = \epsilon \sqrt{\widehat{c}} \, \widetilde{u}_1 + \sqrt{\widehat{c}} \, \widetilde{u}_2. \tag{28}$$

By similar arguments, we obtain

- the existence of δ such that: if $\lambda^*(q^+) - \nu_{max}^+ - \delta < \lambda < \lambda^*(q^+) - \nu_{max}^+ < \lambda^*(q^-) - \nu_{max}^+$, then $u_1 \succeq 0$ and $\epsilon u_2 \succeq 0$, - the existence of δ' such that: if $\lambda^*(q^+) - \nu_{max}^+ < \lambda < \lambda^*(q^+) - \nu_{max}^+ + \delta' < \lambda^*(q^-) - \nu_{max}^+$, then $u_1 \stackrel{*}{\prec} 0$ and $\epsilon u_2 \stackrel{*}{\prec} 0$.

References

- Alziary, B., and Besbas, N. : Anti-Maximum principle for a Schrödinger Equation in ℝ^N, with a non radial potential. Rostock Math. Kolloq. 59, 51-62 (2005)
- [2] Alziary, B.; Cardoulis, L., and Fleckinger, J. : Maximum principle and existence of solutions for elliptic systems involving Schrödinger operators. Revista de la Real Academia de Ciencias, Exactas, Fisicas y Naturales, 91(1), 47-52 (1997)
- [3] Alziary, B.; Fleckinger, J., and Lécureux, M. H. : Systems of Schrödinger equations : Positivity and Negativity. Monografías del Seminarion Matemático García de Galdeano 33, 19–26 (2006)
- [4] Alziary, B.; Fleckinger, J., and Takáč, P. : An extension of maximum and antimaximum principles to a Schrödinger equation in ℝ². J. Differential Equations, 156, 122-152 (1999)
- [5] Alziary, B.; Fleckinger, J., and Takáč, P. : Maximum and anti-maximum principles for some systems involving Schrödinger operator. Operator Theory: Advances and applications, 110, 13–21 (1999)

- [6] Alziary, B.; Fleckinger, J., and Takáč, P. : Positivity and Negativity of Solutions to a Schrödinger Equation in ℝ^N. Positivity, 5(4), 359-382 (2001)
- [7] Alziary, B.; Fleckinger, J., and Takáč, P. : Ground-state positivity, negativity, and compactness in X for a Schrödinger operator in ℝ^N. J. Funct. Anal., 245, 213–248 (2007). Online: doi: 10.1016/j.jfa.2006.12.007
- [8] Alziary, B., and Takáč, P. : A pointwise lower bound for positive solutions of a Schrödinger equation in ℝ^N. J. Differential Equations, 133(2), 280-295 (1997)
- [9] Alziary, B., and Takáč, P. : Compactness for a Schrödinger operator in the ground--state space over ℝ^N. Electr. J. Differential Equations, Conf. 16, 35–58 (2007). In Proceedings of the 2006 International Conference on "Partial Differential Equations and Applications" in honor of Jacqueline Fleckinger, June 30 – July 1, Toulouse 2006
- [10] **Besbas, N.** : Principe d'anti-maximum pour des équations et des systèmes de type Schrödinger dans \mathbb{R}^N . Thèse de doctorat de l'Université des Sciences Sociales de Toulouse 1, (2004)
- [11] Cardoulis, L. : Problèmes elliptiques : applications de la théorie spectrale et étude de systmes, existences de solutions. Thèse de doctorat de l'Université des Sciences Sociales de Toulouse 1, (1997)
- [12] Clément, Ph., and Peletier, L. A. : An anti-maximum principle for second order elliptic operators. J. Differential Equations, 34, 218–229 (1979)
- [13] Cosner, C., and Schaefer, P.W. : Sign-definite solutions in some linear elliptic systems. Roy. Soc. Edinburgh, vol 111. N3-4, p. 347-358 (1989)
- [14] Edmunds, D. E., and Evans, W. D. : "Spectral Theory and Differential Operators". Oxford University Press, Oxford 1987
- [15] Fleckinger, J. : Répartition des valeurs propres d'opérateurs de type Schrödinger. Comptes Rendus Acad SC. Paris t 292 A, 359 (1981)
- [16] Fleckinger, J.: Estimate of the number of eigenvalues for an operator of Schrödinger type. Proc. Royal Soc. Edinburgh 89 A(3-4), 355-361 (1981)
- [17] M.-H. Lécureux-Tétu : Au delà du principe du maximum pour des systèmes d'opérateurs elliptiques. Thèse de doctorat de l'Université de Toulouse 1, (2008)
- [18] Reed, M., and Simon, B. : Methods of Modern Mathematical Physics, Vol. IV: Analysis of Operators. Academic Press, Inc., Boston 1978

- [19] Sweers, G. : Strong positivity in $C(\overline{\Omega})$ for elliptic systems. Math. Z. 209, 251–271 (1992)
- [20] Takáč, P. : An abstract form of maximum and anti-maximum principles of Hopf's type. J. Math. Anal. Appl. 201, 339-364 (1996)

received: March 1, 2010

Author:

Marie-Hélène Lécureux Université de Toulouse; UT1; CEREMATH F-31042 Toulouse Cedex, France CNRS; Institut de Mathématiques UMR 5219 F-31062 Toulouse, France e-mail: marie-helene.lecureux@toulouse.iufm.fr