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Comparison with ground state
for solutions of non cooperative systems of Schrödinger
operators on RN

ABSTRACT. We study the sign of solutions of a system LU = λU +MU +F , on the whole
space RN , more precisely, we compare the components of U with the ground state solution.
Here L is a diagonal matrix of Schrödinger operators of the form Lu := −∆u+ qu, F is a
vector of functions in L2(RN), and M is a matrix, not necessarily cooperative. When M is a
constant matrix, we prove the existence of a real Λ playing the role of principal eigenvalue:
if |λ− Λ| is sufficiently small, U exists and the sign of each entry is fixed. The sign of each
entry changes as λ grows and get over Λ. We study the case of a variable M for a 2 × 2

system.

1 Introduction

In this paper we study systems defined on the whole space RN and acting on (L2(RN))n:

Lui := (−∆ + q(x))ui = λui +
n∑

j=1

mijuj + fi, 1 ≤ i ≤ n (1)

which we write:

LU = λU +MU + F, (2)

with U =

 u1
...
un

, F =

 f1
...
fn

, L =

 L 0
. . .

0 L

, and M is a n × n matrix with

coefficients mij.

The potential q(x) is assumed to be a continuous function q : RN → R such that

inf
RN

q > 0 and q(x)→ +∞ as |x| → ∞. (3)
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The potential is a “relatively small” perturbation of a radially symmetric potential which
is assumed to be monotone increasing (in the radial variable) and growing somewhat faster
than |x|2 as |x| → ∞.

For a unique equation

(−∆ + q(x))u = λu+ f on RN ,

where q is a perturbation of a radially symmetric function, under the hypothesis f ≥ 0,
B. Alziary, J. Fleckinger, and P. Takáč consider the eigenvalue λ∗, associated to a
function ϕ∗ > 0. They show that for |λ− λ∗| sufficiently small, if λ < λ∗ then u > Cϕ∗ > 0

(fundamental positivity), and if λ > λ∗, and f comparable to ϕ∗, then u < −Cϕ∗ < 0

(fundamental negativity).

First we are concerned with the anti-maximum principle for the system when M is a con-
stant matrix. In the case of cooperative systems, there are several results related to the
maximum principle. B. Alziary L. Cardoulis, and J. Fleckinger, obtained a maxi-
mum principle for cooperative systems, then B. Alziary, J. Fleckinger, and P. Takáč,
proved a result of fundamental positivity. For the anti-maximum principle N. Besbas [10,
Theorem 4.3.2, p. 40] gave a theorem on the fundamental negativity for a special cooperative
problem involving a radial potential q. In the present work, we study general systems (in
particular non cooperative systems are allowed) and we obtain a comparison with the ground
state, for the spectral parameter λ close to the ground state energy level. In this part, we
extend to a n×n system some results of fundamental positivity or negativity established by
B. Alziary,J. Fleckinger and MH. Lécureux [3] for 2× 2 systems.

In the second part, we tackle the case of a variable matrix M . Our result concerns 2 × 2

systems with M restricted to very specific forms.

Organization:

The paper is organized as follows. In Section 2, we introduce some notation. In Section 3
we recall some known results, in Section 4 we state our main results. Finally, in Section 5,
we prove them.

2 Notations and hypotheses

2.1 Fundamental positivity, fundamental negativity, notation

It is established that the Schrödinger operator: Lq
def
= −∆ + q(x)• defined on L2(RN)

with a positive continuous potential tending to +∞ as |x| → ∞ has a compact inverse
and therefore a discrete spectrum. This holds since the variational space Vq is compactly



Non cooperative Systems of . . . 53

embedded in L2(RN) (see D. E. Edmunds and W. D. Evans, [14], J. Fleckinger,[16])
where

Vq(RN)
def
=

{
u ∈ L2(RN) :

∫
RN

|∇u|2dx+

∫
RN

q(x)|u|2 <∞
}
. (4)

The smallest eigenvalue is simple and is given by:

λ∗(q) = inf
u∈Vq(RN )

{ ∫
RN |∇u|2dx+

∫
RN q(x)|u|2dx∫

RN |u|2dx

}
. (5)

Eigenfunctions associated to λ∗(q) do not change sign and λ∗(q) is referred to as the “prin-
cipal eigenvalue” . Denote by ϕ∗ (or ϕ∗(q)) the associated eigenfunction which is positive
and normalized by ‖ϕ∗‖2L2(RN ) = 1. The function ϕ∗ is C1(RN), and exponentially decreasing
near infinity. Usually, ϕ∗ is called the “ground state” or “principal eigenfunction” .

As in the paper of B. Alziary and P. Takáč [8], we consider the operator Lq
def
=

−∆ + q(x)• on a subspace X of L2(RN) defined, by

X
def
= {u ∈ L2(RN) : u/ϕ∗ ∈ L∞(RN)}. (6)

The space X equipped with the norm

‖u‖X
def
= ess sup

RN

(|u|/ϕ∗)

is a Banach space.

Notation: We note u
∗
� 0 and we say that u ∈ X is fundamentally positive if there exists

a real number c > 0 such that u > cϕ∗.
Similarly we write u

∗
≺ 0 and we say that u ∈ X is fundamentally negative if there exists a

real number c > 0 such that u < −cϕ∗.

2.2 Hypotheses on potential

Now we give the precise assumptions on the potential q, which guarantee the compactness of
the resolvant (λI−L)−1. For a single equation, Alziary, Fleckinger, and Takáč obtain
this compactness and so the fundamental positivity and negativity for different classes of
potentials [6], [9]. We choose here hypotheses used in [9], but there is no problem for
obtaining the same results with the class of potential used in [6].

More precisely, we introduce a class of growth for potentials:

CQ := {Q ∈ C(R+, (0,∞)) / ∃r0 > 0, Q′ > 0 a.e. on [r0,∞),

∫ ∞
r0

Q(r)−1/2 dr <∞}. (7)

We assume that the potential q satisfies Hypothesis (Hq):
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Hypothesis (Hq) The potential q is positive continuous and tends to +∞ as |x| → ∞.
Moreover, there exist two functions Q1 and Q2 in CQ and two positive constants C0, r0 ∈
(0,∞), such that

Q1(|x|) ≤ q(x) ≤ Q2(|x|) ≤ C0Q1(|x|) for all x ∈ RN , (8)∫ ∞
r0

(Q2(s)−Q1(s))

∫ s

r0

exp
(
−
∫ s

r

[Q1(t)
1/2 +Q2(t)

1/2] dt
)

dr ds <∞ . (9)

In their paper, Alziary, and Takáč ([9] Corollary 3.3) show that the ground states ϕ∗(q),
ϕ∗(Q1) and ϕ∗(Q2) are comparable: there exist some constants 0 < γ1 ≤ γ2 <∞ such that
γ1ϕ

∗(q) ≤ ϕ∗(Qj) ≤ γ2ϕ
∗(q) with j = 1, 2. We have Xq = XQ1 = XQ2.

Remark 2.1 The set X does not change if we change q into q − q̃ where q̃ is a bounded
function such that q − q̃ ≥ 0.

2.3 Hypotheses on matrix M and vector F

2.3.1 Case of constant matrix M

� Hypothesis on M

In this case, we suppose the whole spectrum of M real. More precisely:

Hypothesis (HM): The whole spectrum of Matrix M is in R. We denote the p real
eigenvalues (µi)1≤i≤p of matrix M , by

µ1 > µ2 ≥ . . . ≥ µp.

We assume that the largest eigenvalue µ1 of M is algebraically and geometrically simple.

Remark 2.2 We choose to write eigenvalues µi in decreasing order. The Jordan’s canonical
form allows us to write M = PTP−1 with :

T =


J1 0

J2 0

0
. . .

Jp


where P is a change-of-basis matrix.
Every Jordan’s block Ji is a square ki × ki matrix, in the form :

Ji =


µi 1 0

. . . . . .

0
. . . 1

µi


By Hypothesis (HM), the first block is 1× 1 : J1 = (µ1).
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Notation: Let G be the eigenspace associated with µ1 (dimG = 1) and H the hyperplan
spanned by other column vectors of Matrix P . By hypothesis (HM), we have Rn = G⊕H.
It is important to notice that, in matrix P , we can choose for the first column, every non
null vector of G.

� Hypothesis on F

We recall that in the whole space, the anti-maximum principle could be violated for the
equation

−∆u+ q(x)u = λu+ f

if the function f is in L2(RN) \X (cf. [5, Example 4.1, pp. 377–379]). So the fundamental
negativity does not hold for 0 ≤ f 6≡ 0. For results on systems presented in this article, of
course we need to consider vector F with all the components fk in X.
We can decompose F (x) into F (x) = FG(x) + FH(x) with FG(x) ∈ G and FH(x) ∈ H.

Hypothesis (HF ): All components fi of vector F are in X and let us decompose F (x) =

FG(x) + FH(x) where FG(x) ∈ G and FH(x) ∈ H. We assume there exists Ψ ∈ G such that
F (x) = f̃1(x)Ψ + FH(x) with f̃1 ≥ 0 (a.e.), and FG = f̃1Ψ 6≡ 0.

Vector Ψ is in G so we have : MΨ = µ1Ψ. Its components ψi are constant real numbers. In
Matrix P = (pij) we choose Ψ for the first column. So ψi = pi1.

2.3.2 Case of variable M

In this case, M is a 2× 2 matrix. We note M =

(
a(x) b(x)

c(x) d(x)

)
.

Assumptions on Matrix M allow us to diagonalise this matrix with the help of a change-of-
basis matrix with real and constant coefficients. These very particular forms of matrix are
studied by Cosner and Schaefer [13]. If a 6≡ d, we need b and c proportional to a− d ; if
a ≡ d, b is proportional to c and have the same sign. In the first case, where a 6≡ d, we need
to have a constant sign for a− d. In the second case, we suppose a ≡ d.

Hypothesis (HMv1) (case a 6≡ d, a ≥ d): We assume:

� Functions a and d are continuous, in L∞(RN), and a ≥ d ≥ 0 with a 6≡ d.

� There exist two real numbers b̂ and ĉ such that b = b̂(a − d) and c = ĉ(a − d), and
D̂ = 1 + 4b̂ ĉ > 0.

Note that with hypotheses a(x) ≥ 0 and d(x) ≥ 0 we do not loose generality: we can add a
positive number to each side to obtain these hypotheses.
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In this case, we always use Hypothesis (HF ), but we can write it differently.

Hypothesis (HFv1) (case a 6≡ d, a ≥ d): We assume f1, f2 ∈ X,

f̃1 = f1 +
2b̂

1 +
√
D̂
f2 ≥ 0 and f̃1 6≡ 0.

Hypothesis (HMv2) (case a ≡ d): We assume:

� The equality a = d and this function is in L∞(RN). Moreover ∀x ∈ RN , a(x) ≥ 0.

� There exist two positive real numbers b̂ and ĉ such that b = ε̂br and c = εĉr, where ε is
±1 and r ∈ L∞(RN) is a bounded, positive and continuous function.

Hypothesis (HF ) can now be written:

Hypothesis (HFv2) (case a ≡ d): We assume f1, f2 ∈ X,

√
ĉf1 + ε

√
b̂f2 ≥ 0 and

√
ĉf1 + ε

√
b̂f2 6≡ 0.

Remark 2.3 Under Hypotheses (HMv1) or (HMv2),M has two real eigenvalues. We denote
them by ν+(x) ≥ ν−(x). The two functions ν+ and ν− are in L∞(RN).

3 Known Results

We recall here some results of fundamental positivity and fundamental negativity.

Our proof uses some results in Alziary, Takáč, ([8]) then Alziary, Fleckinger, Takáč,([5]) and
Alziary, Takáč, ([9]) for fundamental positivity, in Besbas, ([10]) for fundamental negativity.

For q with superquadratical growth and for f/ϕ∗(q) ∈ L∞, they study

(−∆ + q)u = λu+ f (10)

and they show that there exist positive numbers c and δ (depending on q, f and λ) such
that:

λ < λ∗(q) ⇒ u
∗
� 0, (fundamental positivity)

λ∗(q) < λ < λ∗(q) + δ ⇒ u
∗
≺ 0, (fundamental negativity).



Non cooperative Systems of . . . 57

Fundamental Positivity

Theorem 3.1 ([8, Theorem 2.1, p. 284])([9, Theorem 3.1, p. 41])

Assume (Hq) is satisfied and f ∈ L2(RN), f ≥ 0 a.e. on RN , f 6≡ 0. For λ < λ∗(q) there
exists a unique solution u to Equation (10) which is positive; and there exists a constant
c > 0 such that

u > cϕ∗(q) > 0 (fundamental positivity). (11)

Moreover, if also f ≤ Cϕ∗(q), with some constant C > 0, then we have

u ≤ c′ϕ∗(q) everywhere, with c′ =
C

λ∗(q)− λ
. (12)

Corollary 3.2 ([9]): The constant c defined in (11) tends to ∞ as λ→ λ∗(q) .

This result plays an important role in the proof of our main Theorems:

Corollary 3.3 Assume f ∈ X (not necessarily f ≥ 0), for λ < λ∗(q), u exists and we
have

|u| ≤
‖f‖X

λ∗(q)− λ
ϕ∗(q). (13)

Indeed if we denote by K|X the restriction of K = (Lq − λI)−1 to the Banach space X, the

operator K|X is linear and bounded in X with norm ≤
1

λ∗(q)− λ
([9], p. 41).

Fundamental Negativity

It has been shown first in [1] for a radial potential and then in [9].

Theorem 3.4 ([9, Theorem 3.4, p. 42]) Assume (Hq) is satisfied; let f ∈ X be such
that f ≥ 0 a.e. on RN , f 6≡ 0. Then there exists δ(f) > 0 and c > 0 such that for all
λ ∈ (λ∗(q);λ∗(q) + δ),

u ≤ −cϕ∗(q) (fundamental negativity). (14)

Remark 3.5 The same holds if we assume only
∫
RN fϕ

∗(q) dx > 0.

Corollary 3.6 ([10]): The constant c defined in (14) tends to ∞ as λ→ λ∗(q) .

Remark 3.7 Besbas ([10]) uses a slightly different space X1,2 ⊂ X ; it coincides with X
for radially symmetric functions.

Remark 3.8 Fundamental negativity improves the antimaximum principle introduced in
Clément-Pelletier ([12]).
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4 Main Results

4.1 System n× n

This result concerns System (2) where M is a constant matrix:

(2) LU :=

 (−∆ + q(x)) 0
. . .

0 (−∆ + q(x))


 u1

...
un

 = λU +MU + F,

Recall that, by hypothesis (Hq), (HM) and (HF ), M has only real eigenvalues; its largest
eigenvalue µ1 is simple and there exists Ψ eigenvector of M associated with µ1, such that
F (x) = f̃1(x)Ψ + FH(x) with f̃1 ≥ 0 (a.e.) Denote (ψi) the components of Ψ.

Theorem 4.1 We assume Hypotheses (Hq), (HM) and (HF ).
Let Λ := λ∗(q) − µ1. Then there exist two real numbers δ > 0 and δ′ > 0, depending on q,
M , F , such that

• If λ ∈ (Λ − δ; Λ) then System (2) admits a unique solution U = (ui). Moreover, for
each integer i ∈ [1, n], ui ∈ X and ψiui

∗
� 0.

• If λ ∈ (Λ; Λ + δ′) then System (2) admits a unique solution U = (ui). Moreover, for
each integer i ∈ [1, n] ui ∈ X and ψiui

∗
≺ 0.

Remark 4.2 If M is irreducible and cooperative, we know that there exists Ψ with all
components strictly positive. We obtain the fundamental positivity below Λ and the funda-
mental negativity above Λ.

4.2 Variable Matrix M

Here M is a variable 2× 2 matrix M =

(
a(x) b(x)

c(x) d(x)

)
.

The system is:(
−∆ + q(x) 0

0 −∆ + q(x)

)(
u1

u2

)
= λ

(
u1

u2

)
+

(
a(x) b(x)

c(x) d(x)

)(
u1

u2

)
+

(
f1

f2

)
.

(15)
As we will see in the proof, the two real eigenvalues of M are ν+(x) ≥ ν−(x), and the
functions ν+ and ν− are continuous, bounded. Let ν+max = sup {ν+(x), x ∈ R}.
By Remark 2.1, we know that X is the same set for q, for q+ = q − ν+ + ν+max and for
q− = q − ν− + ν+max. We denote λ∗(q+) the principal eigenvalue of −∆ + q+ and λ∗(q−) the
principal eigenvalue of −∆ + q−.
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1. First case

Under Hypothesis 2.3.2 (HMv1), let us set b̂, ĉ the two real numbers such that b = b̂(a− d)

and c = ĉ(a− d).

Theorem 4.3 (case a 6≡ d) We assume Hypotheses (Hq), (HMv1) and (HFv1):

f1 +
2b̂

1 +
√
D̂
f2 ≥ 0 a.e., f1 +

2b̂

1 +
√
D̂
f2 6≡ 0

Let Λ = λ∗(q+) − ν+max. Then there exist two real numbers δ > 0 and δ′ > 0, depending on
q, M , F , such that

• If Λ− δ < λ < Λ, then System (15) admits a unique solution U = (ui). Moreover,

u1
∗
� 0 and ĉu2

∗
� 0.

• If Λ < λ < Λ + δ′, then System (15) admits a unique solution U = (ui). Moreover,

u1
∗
≺ 0 and ĉu2

∗
≺ 0.

Under Hypothesis 2.3.2 (HMv2), recall that functions b = ε̂br and c = εĉr have the same
sign, given by ε = ±1.

Theorem 4.4 (case a ≡ d) We assume Hypotheses (Hq), (HMv2) and (HFv2):√
b̂f1 + ε

√
ĉf2 ≥ 0 a.e.,

√
b̂f1 + ε

√
ĉf2 6≡ 0.

Let Λ = λ∗(q+). Then there exist two real numbers δ > 0 and δ′ > 0, depending on q, M ,
F , such that

• If Λ− δ < λ < Λ, then System (15) admits a unique solution U = (ui). Moreover,

u1
∗
� 0 and εu2

∗
� 0.

• If Λ < λ < Λ + δ′, then System (15) admits a unique solution U = (ui). Moreover,

u1
∗
≺ 0 and εu2

∗
≺ 0.
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5 Proofs

5.1 Proof of Theorem 4.1

1/ First case: λ < Λ = λ∗(q)− µ1

First step: change of basis

We use the Jordan’s block matrix T =


J1 0

J2 0

0
. . .

Jp

 associated with matrix M in

System (2):
LU := λU +MU + F.

There is a matrix P such that T = P−1MP . More precisely, by Hypothesis (HM) and
Hypothesis (HF ) we can choose for the first column of change-of-basis matrix P : Ψ ∈ G
such that F = f̃1Ψ + FH with f̃1 ≥ 0 and FH(x) ∈ H.
Now let us introduce the following notation:

U = PŨ ⇔ Ũ =

 ũ1
...
ũn

 = P−1U and F = PF̃ ⇔ F̃ =

 f̃1
...
f̃n

 = P−1F.

All potentials are equal, so System (2) becomes

LŨ = λŨ + TŨ + F̃ . (16)

By Hypothesis (HM) the first equation in System (16) is

Lũ1 = λũ1 + µ1ũ1 + f̃1, (17)

where, by Hypothesis (HF ), f̃1 ≥ 0 and f̃1 6≡ 0.

Look at the Jordan’s block Ji with 2 ≤ i ≤ p. The matrix Ji is ki× ki. Set si =
i−1∑
m=1

km with

k1 = 1.
From line si + 1 to line si + ki − 1, we obtain ki − 1 equations:

Lũj = λũj + µiũj + ũj+1 + f̃j if si + 1 ≤ j < si + ki − 1, (18)

and the last one:

Lũj = λũj + µiũj + f̃j for j = si + ki = si+1. (19)
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Second step: study of the triangular system (16)

In the first line
Using Theorem 3.1, we obtain that Lũ1 = λũ1+µ1ũ1+f̃1 has a solution, u1

∗
� 0 (fundamental

positivity), and since f̃1 ≥ 0 a.e. on RN ,

c(λ)ϕ∗ ≤ ũ1.

If λ→ Λ, by Corollary (3.2) c(λ)→ +∞.

In other lines we look at every Jordan’s block.
In ith block, with 2 ≤ i ≤ p, from line si + 1 to line si+1.
• Line si+1: In Equation (19) Lũsi+1

= λũsi+1
+ µiũsi+1

+ f̃si+1
by Corollary 3.3 the solution

ũsi+1
exists and satisfies the inequality

|ũsi+1
| ≤

‖f̃si+1
‖X

λ∗(q)− µi − λ
ϕ∗. (20)

By (HM), λ < λ∗(q)− µ1 < λ∗(q)− µi. So |ũsi+1
| ≤
‖f̃si+1

‖X
µ1 − µi

ϕ∗.

Hence, for i > 1, the function ũsi+1
is in X, and ‖ũsi+1

‖X ≤ csi+1
where the constant csi+1

depends only on F and M .
• From line si + 1 to line si+1 − 1

For j = si+1 − 1, we have Lũj = λũj + µiũj + ũsi+1
+ f̃j.

Set g̃j = ũsi+1
+ f̃si+1

. This function g̃j is in X, and ‖g̃j‖X ≤ lj where the constant lj depends
only on F and M .
Therefore, by Corollary 3.3 we obtain the existence of ũj and

|ũj| ≤
‖g̃j‖X

λ∗(q)− µi − λ
ϕ∗ ≤ lj

µ1 − µi

ϕ∗.

So, for j = si+1 − 1, ũj ∈ X, and ‖ũj‖X ≤ cj where cj depends only on F and M.

Step by step, we can use the same argument from line si+1 − 1 to line si + 1. Therefore we
obtain, in each block, for each integer j with si + 1 ≤ j ≤ si+1 − 1, the existence of the
solution ũj which is in X. Moreover, ‖ũj‖X ≤ cj where the real cj depends only on F and
M.

To sum up, we have, for 2 ≤ j ≤ n,

|ũj| ≤ cjϕ
∗, (21)
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where the real cj depends only on F and M ,
and for j = 1,

c(λ)ϕ∗ ≤ ũ1, (22)

where c(λ) depends on F , M , λ and c(λ)↗ +∞ when λ↗ Λ.

Third step: consequence for the initial system (2)

U = PŨ implies for each component 1 ≤ i ≤ n:

ui = pi1ũ1 +
n∑

j=2

pijũj.

As λ → Λ, we have ũ1 ≥ c(λ)ϕ∗(q), where c(λ) tends to infinity; and by (21),
n∑

j=2

pijũj is

bounded by a constant times ϕ∗.

Therefore there exists δi > 0 such that for λ ∈ (Λ− δi; Λ) the function

ui = pi1ũ1 +
n∑

j=2

pijũj

has the same sign than pi1. More precisely, if pi1 > 0, ui
∗
� 0, and if pi1 < 0 ui

∗
≺ 0.

But the first eigenvector Ψ is the first column of the change-of-basis matrix P : ψi = pi1 We
obtain, in the case Λ− δ ≤ λ < Λ, where δ = mini δi,

ψiui
∗
� 0 (fundamentally positive)

2/ Second case λ > Λ = λ∗ − µ1 and |λ− Λ| small:
there is δ0 > 0 with Λ < λ < Λ + δ0 < λ∗ − µ2 ≤ . . . ≤ λ∗ − µn.

First step

We transform System (2) into System (16) exactly as above.

Second step: study of the triangular system (16)

In the first line (17) Lũ1 = λũ1 + µ1ũ1 + f̃1,
we can apply the fundamental negativity results (Theorem 3.4): there is δ1(F ) > 0 such that
if Λ < λ < Λ + δ1 < Λ + δ0, then ũ1 ≤ −c(λ)ϕ∗(q), and by Corollary 3.6: c(λ) grows to +∞
when λ→ Λ.
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In the other equations, Lũi = λũi +µkũi + f̃i we have λ < λ∗−µi. Hence by fundamental

positivity and corollary 3.2, as in the case λ < Λ, we have by (21),
n∑

j=2

pijũj bounded by a

constant times ϕ∗.

Third step: consequence for the initial system (2)

In ui = pi1ũ1 +
n∑

j=2

pijũj, we have
n∑

j=2

pijũj bounded by a constant times ϕ∗ and ũ1 <

−c(λ)ϕ∗(q) tending to −∞ when λ tends to Λ.
So there is δ′ > 0 such that : if Λ < λ < Λ + δ′ we obtain pj1uj = ψjuj fundamentally
negative: ψjuj

∗
≺ 0.

5.2 Proof of Theorems 4.3 and 4.4

Here we study System (15):(
−∆ + q(x) 0

0 −∆ + q(x)

)(
u1

u2

)
= λ

(
u1

u2

)
+

(
a(x) b(x)

c(x) d(x)

)(
u1

u2

)
+

(
f1

f2

)
.

1/ Proof of Theorem 4.3

First step : study of eigenvalues
By Hypothesis (HMv1), there exist two real numbers b̂, ĉ such that b = b̂(a − d) and c =

ĉ(a − d). Since a ≥ d, the two functions b and c never change sign. Moreover D̂ = 1 + 4b̂ ĉ

is positive.

By calculation we obtain two eigenvalues : ν+(x) =
1

2

(
a(x) + d(x) + (a(x)− d(x))

√
D̂
)
,

and ν−(x) =
1

2

(
a(x) + d(x)− (a(x)− d(x))

√
D̂
)
.

Since a ≥ d, a 6≡ d and D̂ > 0, we have ν+ ≥ ν−, ν+ 6≡ ν−. By (HMv1), the two
functions a and d are continuous and bounded, so ν+ and ν− are continuous and bounded.
Set ν+max = supx ν

+(x).
By Remark 2.1, the set X is the same for the two potentials q+ = q + ν+max − ν+ and
q− = q + ν+max − ν−. We have q− ≥ q+ > 0, with q− 6≡ q+.

The principal eigenvalue of Lq−
def
= −∆ + q−(x)• is

λ∗(q−) = inf
u∈Vq− (RN )

{ ∫
RN |∇u|2dx+

∫
RN q

−(x)|u|2dx∫
RN |u|2dx

}
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and we know that

λ∗(q−) =

∫
RN

|∇ϕ∗(q−)|2dx+

∫
RN

q−|ϕ∗(q−)|2dx,

where ϕ∗(q−) is the ground state of −∆ + q−(x)• , which is positive and normalized by
‖ϕ∗(q−)‖2L2(RN ) = 1.
By ν−(x) ≤ ν+(x), ν− 6≡ ν+, and by continuity we have∫

RN

(
ν+max − ν−(x)

)
|ϕ∗(q−(x))|2dx >

∫
RN

(
ν+max − ν+(x)

)
|ϕ∗(q−(x))|2dx,

so ∫
RN

q−(x)|ϕ∗(q−)|2dx >
∫
RN

q+(x)|ϕ∗(q−)|2dx.

Therefore
λ∗(q−) >

∫
RN

|∇ϕ∗(q−)|2dx+

∫
RN

q+(x)|ϕ∗(q−)|2dx.

We obtain ϕ∗(q−) ∈ Vq+ and

λ∗(q−) > inf
u∈Vq+ (RN )

{ ∫
RN |∇u|2dx+

∫
RN q

+(x)|u|2dx∫
RN |u|2dx

}
= λ∗(q+).

Second step: diagonalization of the system (15)

We choose the eigenvectors v+ =

 1 +
√
D̂

2
ĉ

 associated with ν+ and v− =

 −b̂
1 +

√
D̂

2


associated with ν−.

Let P the matrix with columns vectors v+ and v−. The inverse matrix is

P−1 =
1√
D̂


1

2b̂

1 +
√
D̂

− 2ĉ

1 +
√
D̂

1

 .

As before, we note: Ũ =

(
ũ1

ũ2

)
= P−1

(
u1

u2

)
and

(
f̃1

f̃2

)
= P−1

(
f1

f2

)
.

The components of P and P−1 are constants. So, if f1, f2 ∈ X, then f̃1 and f̃2 are also in X.

By this change of basis, System (15)

LU = λ

(
u1

u2

)
+

(
a(x) b(x)

c(x) d(x)

)(
u1

u2

)
+

(
f1

f2

)
,
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is written in two equations:

−∆ũ1 + qũ1 = λũ1 + ν+ũ1 + f̃1,

−∆ũ2 + qũ2 = λũ2 + ν−ũ2 + f̃2

where f̃1 ≥ 0, f̃1 6≡ 0 by Hypothesis (HFv1.)

Set q+ = q + ν+max − ν+, and q− = q + ν+max − ν−, we derive

−∆ũ1 + q+ũ1 =
(
λ+ ν+max

)
ũ1 + f̃1, (23)

−∆ũ2 + q−ũ2 =
(
λ+ ν+max

)
ũ2 + f̃2. (24)

If λ < λ∗(q−) − ν+max, Equation (24) satisfies the Theorem of Fundamental Positivity, and
by Corollary 3.3 we have

|ũ2| ≤
(
λ∗(q−)− ν+max − λ

)−1
Cf̃2

ϕ∗

• If λ < λ∗(q+)− ν+max < λ∗(q−)− ν+max,

we obtain

|ũ2| ≤
(
λ∗(q−)− λ− ν+max

)−1
Cf̃2

ϕ∗ ≤
Cf̃2

λ∗(q−)− λ∗(q+)
ϕ∗.

Equation (23) satisfies the fundamental positivity result, so we have

ũ1 ≥ C(λ, f̃1)ϕ
∗

and C(λ, f̃1) tends to infinity, when λ tends to λ∗(q+)− ν+max. Consequently ũ2 is bounded,
and ũ1 tends to infinity.
Now we can derive U from U = PŨ ; we have:

u1 =
1 +

√
D̂

2
ũ1 − b̂ũ2, (25)

u2 = ĉũ1 +
1 +

√
D̂

2
ũ2. (26)

So there exists a real number δ > 0, depending on F and M , such that for all
λ∗(q+)− ν+max − δ < λ < λ∗(q+)− ν+max,

u1
∗
� 0 and ĉu2

∗
� 0.
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• If λ∗(q+)− ν+max < λ < λ∗(q−)− ν+max

By Theorem 3.4 in Equation (23) there exists δ1 (depending on F ) such that for all λ with
λ∗(q+) < λ+ ν+max < λ∗(q+) + δ1, ũ1 exists and ũ1

∗
≺ 0. We can choose δ1 < λ∗(q−)−λ∗(q+),

and assume λ∗(q+)− ν+max < λ < λ∗(q+)− ν+max + δ1 < λ∗(q−)− ν+max.
In Equation 24, by λ < λ∗(q−)− ν+max we can apply the Fundamental Positivity Result. So
ũ2 exists, and

|ũ2| ≤
(
λ∗(q−)− λ− ν+max

)−1
Cf̃2

ϕ∗ ≤
1

λ∗(q−)− λ∗(q+)− δ1
ϕ∗.

We have ũ2 bounded by a constant times ϕ∗, and ũ1 ≤ −C(λ, f̃1)ϕ
∗, with C(λ, f̃1) tending

to infinity when λ tends to λ∗(q+)− ν+max.
Relations (25) and (26) are always true. So there exists a real 0 < δ ≤ δ1 such that:
if λ∗(q+)− ν+max < λ < λ∗(q+)− ν+max + δ < λ∗(q−)− ν+max, we have u1

∗
≺ 0 and ĉu2

∗
≺ 0.

2/ Proof of Theorem 4.4

By Hypothesis (HMv2), a = d and there exist two real numbers b̂, ĉ such that b = ε̂br and
c = εĉr, with ε = ±1. The function r ∈ L∞(RN) is continuous, positive and bounded.
The matrix M(x) has two eigenvalues, ν+(x) = a(x) +

√
b̂ ĉ r(x) and ν−(x) = a(x) −√

b̂ ĉ r(x). The function r is positive, bounded and continuous so the function ν+ − ν− =

2
√
b̂ ĉ r(x) is positive, bounded and continuous. Let q+ = q+ν+max−ν+ and q− = q+ν+max−ν−.

We have, as in the first step of the proof of Theorem 4.3, λ(q−) > λ(q+).

Eigenvectors associated to ν+ and ν− are v+ =

( √
b̂

ε
√
ĉ

)
and v− =

(
−ε
√
b̂√

ĉ

)
.

With these eigenvectors, we obtain

P−1 =


1

2
√
b̂

ε

2
√
ĉ

− ε

2
√
b̂

1

2
√
ĉ

 .

The components of P and P−1 are constants.

We always denote

(
ũ1

ũ2

)
= P−1

(
u1

u2

)
and

(
f̃1

f̃2

)
= P−1

(
f1

f2

)
. Functions f̃1 and

f̃2 are in X, and by Hypothesis (HFv2), f̃1 ≥ 0, and f̃1 6≡ 0. We obtain the same equations
as above:

(23) −∆ũ1 + q+ũ1 =
(
λ+ ν+max

)
ũ1 + f̃1,
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(24) −∆ũ2 + q−ũ2 =
(
λ+ ν+max

)
ũ2 + f̃2,

where f̃1 ≥ 0, f̃1 6≡ 0 by Hypothesis (HFv1).

The study of the comparison with the ground state is the same as in Theorem 4.3. So ũ2 is
still bounded in X. For ũ1:
• if λ < λ∗(q+)− ν+max, then ũ1 ≥ C(λ, F )ϕ∗, where C(λ, F )→∞ when λ→ λ∗(q+)− ν+max,
• if λ > λ∗(q+) − ν+max and |λ− (λ∗(q+)− ν+max)| small, we have ũ1 ≤ −C(λ, F )ϕ∗, where
C(λ, F )→∞ when λ→ λ∗(q+)− ν+max.

But now the change of basis gives:

u1 =
√
b̂ ũ1 − ε

√
b̂ ũ2, (27)

u2 = ε
√
ĉ ũ1 +

√
ĉ ũ2. (28)

By similar arguments, we obtain
- the existence of δ such that: if λ∗(q+) − ν+max − δ < λ < λ∗(q+) − ν+max < λ∗(q−) − ν+max,
then u1

∗
� 0 and εu2

∗
� 0,

- the existence of δ′ such that: if λ∗(q+)− ν+max < λ < λ∗(q+)− ν+max + δ′ < λ∗(q−)− ν+max,
then u1

∗
≺ 0 and εu2

∗
≺ 0. �
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