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MARIE-HELENE LECUREUX

Comparison with ground state
for solutions of non cooperative systems of Schrodinger

operators on R

ABSTRACT. We study the sign of solutions of a system LU = AU + MU + F', on the whole
space RY, more precisely, we compare the components of U with the ground state solution.
Here L is a diagonal matrix of Schrédinger operators of the form Lu := —Au + qu, F is a
vector of functions in L?(RY), and M is a matrix, not necessarily cooperative. When M is a
constant matrix, we prove the existence of a real A playing the role of principal eigenvalue:
if |\ — A| is sufficiently small, U exists and the sign of each entry is fixed. The sign of each
entry changes as A grows and get over A. We study the case of a variable M for a 2 x 2

system.

1 Introduction

In this paper we study systems defined on the whole space RY and acting on (L*(RY))™:

Lu; == (=A +q(x))u; = Au; + Zmijuj +fi,1<i<n (1)
j=1
which we write:
LU =\U 4+ MU + F, (2)
U1 fi L 0
with U = : , F = : , L= , and M is a n X n matrix with
Up, In 0 L

coefficients m;.

The potential ¢(x) is assumed to be a continuous function ¢: RY — R such that

infg>0 and g(z) - o0 as |z| — oc. (3)
R
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The potential is a “relatively small” perturbation of a radially symmetric potential which
is assumed to be monotone increasing (in the radial variable) and growing somewhat faster

than |z|? as |z| — oo.

For a unique equation
(=A +q(z))u= M+ f on RY,

where ¢ is a perturbation of a radially symmetric function, under the hypothesis f > 0,
B. ALzIARY, J. FLECKINGER, and P. TAKAC consider the eigenvalue \*, associated to a
function ¢* > 0. They show that for |A — A\*| sufficiently small, if A < A* then u > C'p* > 0
(fundamental positivity), and if A > A*, and f comparable to ¢*, then u < —Cp* < 0

(fundamental negativity).

First we are concerned with the anti-maximum principle for the system when M is a con-
stant matrix. In the case of cooperative systems, there are several results related to the
maximum principle. B. ALZIARY L. CARDOULIS, and J. FLECKINGER, obtained a maxi-
mum principle for cooperative systems, then B. ALZIARY, J. FLECKINGER, and P. TAKAC,
proved a result of fundamental positivity. For the anti-maximum principle N. BESBAS |10,
Theorem 4.3.2, p. 40] gave a theorem on the fundamental negativity for a special cooperative
problem involving a radial potential ¢. In the present work, we study general systems (in
particular non cooperative systems are allowed) and we obtain a comparison with the ground
state, for the spectral parameter A\ close to the ground state energy level. In this part, we
extend to a n X n system some results of fundamental positivity or negativity established by
B. ALZIARY,J. FLECKINGER and MH. LECUREUX [3] for 2 x 2 systems.

In the second part, we tackle the case of a variable matrix M. Our result concerns 2 x 2

systems with M restricted to very specific forms.
Organization:

The paper is organized as follows. In Section 2, we introduce some notation. In Section 3
we recall some known results, in Section 4 we state our main results. Finally, in Section 5,

we prove them.

2 Notations and hypotheses

2.1 Fundamental positivity, fundamental negativity, notation

It is established that the Schrodinger operator: L, AT q(z)e defined on L*(RY)

with a positive continuous potential tending to +oo as |z| — oo has a compact inverse

and therefore a discrete spectrum. This holds since the variational space V; is compactly
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embedded in L*(RY) (see D. E. EDMUNDS AND W. D. EVANS, [14], J. FLECKINGER,]|10])

where v (RY) & {u € I2(RY) /RN \Vu|?dz + /RN q(z)|ul* < OO}' )

The smallest eigenvalue is simple and is given by:

{ Jan [VulPdz + [on q(x |u]2dx}

A (q) = inf
(4) Jan [ul?dz

ueVy(RY)

()

Eigenfunctions associated to A\*(¢) do not change sign and \*(q) is referred to as the “prin-
cipal eigenvalue”. Denote by ¢* (or ¢*(¢q)) the associated eigenfunction which is positive
and normalized by ||¢*||7, @~y = L. The function ¢* is C'(RY), and exponentially decreasing

*

near infinity. Usually, ¢* is called the “ground state” or “principal eigenfunction”.

As in the paper of B. ALzIARY and P. TAKAC [8], we consider the operator L, o

—A +g(z)e on a subspace X of L2(RY) defined, by

X € {ue LA(RV): u/p* € L*(RN)}. (6)

The space X equipped with the norm
def .
lull x = esssup (ful/¢*)
RN
is a Banach space.

Notation: We note u = 0 and we say that © € X is fundamentally positive if there exists
a real number ¢ > 0 such that u > cp*.
Similarly we write u 20 and we say that v € X is fundamentally negative if there exists a

real number ¢ > 0 such that v < —cyp*.

2.2 Hypotheses on potential

Now we give the precise assumptions on the potential ¢, which guarantee the compactness of
the resolvant (A — L)~1. For a single equation, ALZIARY, FLECKINGER, and TAKAC obtain
this compactness and so the fundamental positivity and negativity for different classes of
potentials [6], [9]. We choose here hypotheses used in [9], but there is no problem for

obtaining the same results with the class of potential used in [6].

More precisely, we introduce a class of growth for potentials:
Co :={Q € C(R4,(0,00)) /Try >0, Q' > 0a.e. on [ry, o0 / Q(r)™V2dr < 00}, (7)

We assume that the potential ¢ satisfies Hypothesis (H,):
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Hypothesis (H,) The potential q is positive continuous and tends to +00 as |z| — oc.
Moreover, there exist two functions Q1 and Q2 in Cqo and two positive constants Cy, 19 €
(0,00), such that

Qi(lz]) < q(x) < Qu(|z]) < CoQu(Ja])  for allz € RY, (8)
/ (Qa(s) — Ql(s))/ exp ( - / [Q1()Y2 + Qo(1)V] dt> drds < oo. 9)

In their paper, ALZIARY, and TAKAC ([9] Corollary 3.3) show that the ground states ¢*(q),
©*(Q1) and ¢*(Q2) are comparable: there exist some constants 0 < ; < 72 < oo such that
e (q) < ©"(Q) < 12”(q) with j =1,2. We have X; = X1 = Xqo.

Remark 2.1 The set X does not change if we change ¢ into ¢ — ¢ where ¢ is a bounded
function such that ¢ — ¢ > 0.

2.3 Hypotheses on matrix M and vector F

2.3.1 Case of constant matrix M
o Hypothesis on M
In this case, we suppose the whole spectrum of M real. More precisely:
Hypothesis (H);):  The whole spectrum of Matriz M is in R. We denote the p real
eigenvalues (p;)1<i<p of matriz M, by
1> o = 2 [y
We assume that the largest eigenvalue py of M s algebraically and geometrically simple.

Remark 2.2 We choose to write eigenvalues p; in decreasing order. The Jordan’s canonical
form allows us to write M = PTP~! with :

J1 0
J2

JIp
where P is a change-of-basis matrix.

Every Jordan’s block J; is a square k; X k; matrix, in the form :

pi 10

i
By Hypothesis (Hyy), the first block is 1 x 1 : J; = (7).



Non cooperative Systems of . .. 55

Notation: Let G be the eigenspace associated with py (dim G = 1) and H the hyperplan
spanned by other column vectors of Matrix P. By hypothesis (H),), we have R" = G @ H.
It is important to notice that, in matrix P, we can choose for the first column, every non

null vector of G.

o Hypothesis on F
We recall that in the whole space, the anti-maximum principle could be violated for the
equation

—Au+g(z)u = Au+ f

if the function f is in L*(RY)\ X (cf. [5, Example 4.1, pp. 377-379]). So the fundamental
negativity does not hold for 0 < f # 0. For results on systems presented in this article, of
course we need to consider vector F' with all the components f; in X.

We can decompose F(z) into F(z) = Fg(z) + Fy(x) with Fg(z) € G and Fy(x) € H.

Hypothesis (Hp): All components f; of vector F' are in X and let us decompose F(x) =
Fo(z) + Fy(x) where Fg(x) € G and Fy(x) € H. We assume there exists ¥V € G such that
F(z) = fi(z)V + Fy(z) with fi >0 (a.c.), and Fg = fi¥ # 0.

Vector VU is in G so we have : MV = p;W. Its components ¢; are constant real numbers. In

Matrix P = (p;;) we choose ¥ for the first column. So ; = p;;.

2.3.2 Case of variable M

In this case, M is a 2 X 2 matrix. We note M = ( alz) bz) )

c(x) d(z)
Assumptions on Matrix M allow us to diagonalise this matrix with the help of a change-of-
basis matrix with real and constant coefficients. These very particular forms of matrix are
studied by COSNER and SCHAEFER |[13]. If a # d, we need b and ¢ proportional to a — d ; if
a = d, b is proportional to ¢ and have the same sign. In the first case, where a # d, we need

to have a constant sign for a — d. In the second case, we suppose a = d.
Hypothesis (Hy1) (case a £d,a > d):  We assume:
o Functions a and d are continuous, in L®(RY), and a > d > 0 with a # d.
o There exist two real numbers b and € such that b = /l;(a —d) and ¢ = ¢(a — d), and

D=1+4b¢>0.

Note that with hypotheses a(z) > 0 and d(z) > 0 we do not loose generality: we can add a

positive number to each side to obtain these hypotheses.
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In this case, we always use Hypothesis (Hp), but we can write it differently.

Hypothesis (Hpy1) (case a #d,a > d):  We assume f1, fo € X,

~

~ 2 ~
fi=H+———f2>0 and f1 #0.

b
1+VD
Hypothesis (Hyp2) (case a =d):  We assume:

o The equality a = d and this function is in L>°(RY). Moreover Vo € RN, a(z) > 0.

o There exist two positive real numbers b and € such that b = ebr and ¢ = ecr, where € is

+1 and r € L=®(RY) is a bounded, positive and continuous function.

Hypothesis (Hp) can now be written:

Hypothesis (Hpy) (case a =d):  We assume f1, fo € X,
Vefi + eV, > 0 and Vet + eVof, 2 0.

Remark 2.3 Under Hypotheses (Hy,1) or (Hpzp2), M has two real eigenvalues. We denote

them by v (z) > v~ (x). The two functions v* and v~ are in L>®(RY).

3 Known Results

We recall here some results of fundamental positivity and fundamental negativity.

Our proof uses some results in Alziary, Takaé¢, (|8]) then Alziary, Fleckinger, Takaé,(|5]) and
Alziary, Taka¢, (|9]) for fundamental positivity, in Besbas, ([10]) for fundamental negativity.

For ¢ with superquadratical growth and for f/p*(q) € L, they study
(—A+qu=Iu+f (10)

and they show that there exist positive numbers ¢ and ¢ (depending on ¢, f and \) such
that:
A< AN(q) = u = 0, (fundamental positivity)

AN(q) <A< XN(g)+d = u <0, (fundamental negativity).
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Fundamental Positivity

Theorem 3.1 ([3, Theorem 2.1, p. 284])(|9, Theorem 3.1, p. 41])
Assume (H,) is satisfied and f € L*(RYN), f > 0 a.e. on RN, f #£ 0. For A\ < \*(q) there

exists a unique solution u to Equation (10) which is positive; and there exists a constant
¢ > 0 such that
u>cp*(q) >0 (fundamental positivity). (11)

Moreover, if also f < Cp*(q), with some constant C' > 0, then we have

u < dp*(q) everywhere, with ¢ =

M(q) =N

Corollary 3.2 (|9]): The constant ¢ defined in (11) tends to oo as X\ — \*(q) .

This result plays an important role in the proof of our main Theorems:

Corollary 3.3 Assume f € X (not necessarily f > 0), for A < X\*(q), u exists and we

have

< Ml )

— * q .
Indeed if we denote by K|x the restriction of K = (L, — AI)~* to the Banach space X, the

1
operator K|x is linear and bounded in X with norm < g =X (9], p- 41).
q J—

Fundamental Negativity

It has been shown first in [!] for a radial potential and then in [9].

Theorem 3.4 (|9, Theorem 3.4, p. 42|) Assume (H,) is satisfied; let f € X be such
that f > 0 a.e. on RN, f # 0. Then there exists (f) > 0 and ¢ > 0 such that for all
A€ (M(q); A(q) +9),

u< —cp*(q) (fundamental negativity). (14)
Remark 3.5 The same holds if we assume only [, f¢*(q) dz > 0.
Corollary 3.6 ([10]): The constant ¢ defined in (14) tends to oo as A — A\*(q) .

Remark 3.7 Besbas (|10]) uses a slightly different space X? C X ; it coincides with X

for radially symmetric functions.

Remark 3.8 Fundamental negativity improves the antimaximum principle introduced in
Clément-Pelletier ([12]).
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4 Main Results

4.1 System n xn

This result concerns System (2) where M is a constant matrix:

(—A+g@) 0 u
(2) LU := - : =AU+ MU + F,
0 (—A+q(z)) Un
Recall that, by hypothesis (H,), (Hy) and (Hp), M has only real eigenvalues; its largest

eigenvalue p is simple and there exists U eigenvector of M associated with puq, such that
F(z) = fi(z)V 4 Fy(z) with f; > 0 (a.e.) Denote (t;) the components of W.

Theorem 4.1 We assume Hypotheses (H,), (Hy) and (Hp).
Let A := X*(q) — 1. Then there exist two real numbers § > 0 and &' > 0, depending on q,
M, F, such that

o If X € (A—0;A) then System (2) admits a unique solution U = (u;). Moreover, for
each integer i € [1,n], u; € X and Y;u; = 0.

o [f X e (A;A+ ) then System (2) admits a unique solution U = (u;). Moreover, for
each integer i € [1,n] u; € X and Y, <0.

Remark 4.2 If M is irreducible and cooperative, we know that there exists ¥ with all
components strictly positive. We obtain the fundamental positivity below A and the funda-

mental negativity above A.

4.2 Variable Matrix M

Here M is a variable 2 X 2 matrix M = ( a((:v) bix; > .

The system is:

~A+g(x) 0 u [ w a(z) bx) | [ w h
(() —A+q(x)>(u2>_/\<w>+<c($) d({E))(UQ)—’—(fQ)'
(15)

As we will see in the proof, the two real eigenvalues of M are v*(z) > v~ (x), and the
=sup {vr*(z), x € R}.

By Remark 2.1, we know that X is the same set for ¢, for ¢* = ¢ — v + vt and for

functions v and v~ are continuous, bounded. Let v}

g =q—v +vl, . Wedenote \*(¢") the principal eigenvalue of —A + ¢™ and A\*(¢™) the

principal eigenvalue of —A + ¢~.
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1. First case

Under Hypothesis 2.3.2 (Hy1), let us set b, ¢ the two real numbers such that b = Z(a —d)
and ¢ = ¢(a — d).

Theorem 4.3 (case a # d) We assume Hypotheses (H,), (Hppn) and (Hpy):

/\ /\

fo=>0 fi+
1+\/_2 v 1+\/_

Let A = X\*(¢") — v} Then there exist two real numbers & > 0 and 0" > 0, depending on

mazx*

q, M, F, such that

fir+ —=L#0

o [fA—0 < X<A, then System (15) admits a unique solution U = (u;). Moreover,

* *
up = 0 and cuy >~ 0.

o I[fA<AN<A+, then System (15) admits a unique solution U = (u;). Moreover,
Uy <0 and Clo Z0.
Under Hypothesis 2.3.2 (Hpy2), recall that functions b = ebr and ¢ = e¢r have the same
sign, given by € = +1.
Theorem 4.4 (case a = d) We assume Hypotheses (H,), (Hpp2) and (Hpy):

\/Efl +eVefs >0 ae., \/ifl + eVef, # 0.

Let A = X*(qT). Then there exist two real numbers § > 0 and &' > 0, depending on q, M,
F', such that

o [fA—0 < A<A, then System (15) admits a unique solution U = (u;). Moreover,

* *
uy; = 0 and euqy = 0.

o I[fA< A< A+, then System (15) admits a unique solution U = (u;). Moreover,

* *
u; < 0 and eug < 0.
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5 Proofs

5.1 Proof of Theorem 4.1

1/ First case: A <A = X(q) — 1
First step: change of basis

Jol 0
We use the Jordan’s block matrix 1" = 2 : associated with matrix M in

Jp
System (2):
LU := AU+ MU + F.

There is a matrix P such that 7" = P~'MP. More precisely, by Hypothesis (Hj;) and
Hypothesis (Hr) we can choose for the first column of change-of-basis matrix P : ¥ € G
such that F' = fl\lf + Fy with ﬁ >0and Fy(r) € H.

Now let us introduce the following notation:

Uy S
U=PU & U=|: =P'U and F=PF & F=|: |=P'F
0 fa
All potentials are equal, so System (2) becomes
LU=XNJ+TU+F. (16)
By Hypothesis (Hy) the first equation in System (16) is
Liy = Ay + iy + i, (17)

where, by Hypothesis (Hr), fi>0and f; 0.

i—1

Look at the Jordan’s block J; with 2 < < p. The matrix J; is k; X k;. Set s; = > k,, with
m=1

ki = 1.

From line s; + 1 to line s; + k; — 1, we obtain k; — 1 equations:
Llf[]:)\lfbvj—i‘,llqﬁ;ﬁ‘ﬁ]_g_l—i‘}; 1f81+1§j<81+l€1—1, (18)
and the last one:

Liiy = NG + iy + f; - for j = si+ ki = sian. (19)
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Second step: study of the triangular system (16)

In the first line
Using Theorem 3.1, we obtain that Lu; = Auj+puqu;+ f1 has a solution, u, = 0 (fundamental

positivity), and since f; > 0 a.e. on RY,

c(N) " < .

If X\ — A, by Corollary (3.2) ¢(\) = +o0.

In other lines we look at every Jordan’s block.
In i** block, with 2 < i < p, from line s; + 1 to line s;,;.
e Line s;q: In Equation (19) Lii,,,, = AN, + titls,,, + fs,., by Corollary 3.3 the solution

u,,, exists and satisfies the inequality

Hf5i+1HX *

Q) —pi—A"

s, | < " (20)

HfsiJrl HX "

By (Hu), A < A"(q) — 1 < A*(q) — g So s,y | € ————
Hence, for ¢ > 1, the function u,,, is in X, and ||ﬂsi+11||X ZS Cs,,, Where the constant c,,,
depends only on F' and M.

e From line s; + 1 to line s;,1 — 1

For j = s;11 — 1, we have Lu; = Auj + pu; + s, , + f;

Set g; = Us,,, —l—ﬁm. This function g; is in X, and ||g;||x < [; where the constant [; depends
only on F' and M.

Therefore, by Corollary 3.3 we obtain the existence of u; and

~ 19511 x ; L .
u;| < < ——0".
TN (g) = i — A f1 — i
So, for j = s;41 — 1, u; € X, and ||u;||x < ¢; where ¢; depends only on F' and M.
Step by step, we can use the same argument from line s;;; — 1 to line s; + 1. Therefore we
obtain, in each block, for each integer 5 with s; + 1 < 7 < s;41 — 1, the existence of the

solution w; which is in X. Moreover, ||u;||x < ¢; where the real ¢; depends only on F' and
M.

To sum up, we have, for 2 < j < n,
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where the real ¢; depends only on F' and M,
and for j =1,
c(N)e" < u, (22)

where ¢()\) depends on F, M, X and ¢(\) 400 when A\ 7 A.

Third step: consequence for the initial system (2)

U= PU implies for each component 1 <7 < n:

u; = pity + sz‘j@-
=2
As A — A, we have u; > ¢(A)¢*(q), where ¢()) tends to infinity; and by (21), > p;u; is
=2
bounded by a constant times ¢*.

Therefore there exists d; > 0 such that for A € (A — d;; A) the function
U = Pty + Zpij{[j
=2

has the same sign than p;;. More precisely, if p;; > 0, wu; o 0, andif py <0 <0.
But the first eigenvector W is the first column of the change-of-basis matrix P : i; = p;; We

obtain, in the case A —¢§ < XA < A, where § = min; J;,

(o ~ 0 (fundamentally positive)

2/ Second case A > A = \* — p; and |\ — A| small:
there is 09 > 0 with A < A < A+ 09 < A — g <00 <N — .

First step

We transform System (2) into System (16) exactly as above.

Second step: study of the triangular system (16)

In the first line (17) Luy = Muy + pyug + fl,

we can apply the fundamental negativity results (Theorem 3.4): there is §; (F") > 0 such that
if A <A< A+ <A+, then 3 < —c(N)p*(q), and by Corollary 3.6: ¢(A) grows to +00
when A — A.
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In the other equations, Lu; = Au; + pu; + ﬁ we have A < A\* — ;. Hence by fundamental
positivity and corollary 3.2, as in the case A < A, we have by (21), > p;;u; bounded by a
j=2

constant times ¢*.

Third step: consequence for the initial system (2)

In w; = paus + ) pijuj, we have > p;;u; bounded by a constant times ¢* and u; <
=2 =2
—c(A)p*(q) tending to —oo when A tends to A.

So there is 6’ > 0 such that : if A < A < A+ ¢ we obtain pjju; = ¢;u; fundamentally
negative: 1;u; <0. O

5.2 Proof of Theorems 4.3 and 4.4

Here we study System (15):

—A+gq(z) 0 up |\ Uy a(r) b(w) Uy fi
(0 —A+q<x>)<w)”<u2)+<cw> d@)(uz)*(ﬁ)-

1/ Proof of Theorem 4.3

First step : study of eigenvalues

By Hypothesis (Hp1), there exist two real numbers /l;, ¢ such that b = B(a —d) and ¢ =
¢(a — d). Since a > d, the two functions b and ¢ never change sign. Moreover D=1+4bc
is positive.

1 =
By calculation we obtain two eigenvalues : vt (z) = 5 (a@) +d(x) + (a(z) — d(m))@),

1 =
and v~ (x) = 5 (a(x) +d(z) — (a(z) — d@:))@).

Since a > d, a % d and D > 0, we have vt > v~ vt #Z v=. By (Hp), the two
functions a and d are continuous and bounded, so v and v~ are continuous and bounded.
Set v .. = sup, v (x).

By Remark 2.1, the set X is the same for the two potentials ¢t = ¢ + v;F . — vt and
¢ =q+v),,—v . Wehave ¢- > ¢" >0, with ¢~ Z ¢*.

The principal eigenvalue of L, - LAt q (z)e is

Jan [VulPdz + [on ¢ (@) |ul?dz
f]RN |u|?2dx

AN(¢) = inf

ueV, - (RN)
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and we know that
N(q) = / V(g™ 2de + / ¢l (q )|,
RN RN

where ¢*(¢7) is the ground state of —A + ¢~ (z)e , which is positive and normalized by

o=\ (|2
l¢*(q )HL2(RN) = 1.
By v~ (z) < v't(x), v~ £ v, and by continuity we have

| W= @) @) > [ (e =" @) I (@) P

.
SO

[ @l @ifde> [ at@le P
Therefore

X(q) > / IV )P+ / @l ()P

We obtain ¢*(¢~) € V + and

Jon [VuPPdz + [on ¢ (2)|ul?dz ]| Ao (ot
fRN |ul?dx =X

Second step: diagonalization of the system (15)

1+ VD —b
We choose the eigenvectors v = 9 associated with v+ andv™ = | 1 4 /D
c 5

2

associated with v—.

Let P the matrix with columns vectors v™ and v~. The inverse matrix is
2
pl— L 1+ \/5
VD —2C
1+VD

As before, we note: U= 131 —pi ™ and Jil = p! h .
Ug Uz Ja Jo

The components of P and P! are constants. So, if f, fo € X, then ]?1 and ]?2 are also in X.

1

By this change of basis, System (15)

o uy a(z) b(z) uy fi
ﬁUA(u2>+<c(:c) d(x)><u2>+<f2>7
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is written in two equations:

— Ay + iy = My + v+ i

— At + qily = My + v + o

where ﬁ >0, :fvl # 0 by Hypothesis (Hpy1.)

Set ¢t =q+v},.—vT and ¢ =q+ v, — v, we derive
— A+ ¢t = (A +vh,,) @+ A, (23)
— Ay + 4 0 = (A + Vo) W + fo. (24)

If A < A(q7) — v

max?

Equation (24) satisfies the Theorem of Fundamental Positivity, and
by Corollary 3.3 we have

o] < (V(q7) = Ve = A) Crp

max fa2

o If A< A\ (¢") — vl <N(qg)—vt

max max?
we obtain

Cy, i}

) =N

max

_ . 1 .
iG] < (A(q7) = A= Ve)  Cpp S)\*(

Equation (23) satisfies the fundamental positivity result, so we have

and C'(A, fl) tends to infinity, when A tends to A*(¢*) — vf

max*

Consequently w5 is bounded,
and u; tends to infinity.

Now we can derive U from U = PU ; we have:

1+VD

Uy 5 uy — bu, (25)
_ 1+VD _
Uy = CUy + TUQ. (26)

So there exists a real number § > 0, depending on F' and M, such that for all
N(gT) — vt —0 <A< X(qgh) — v}

max max?

* *
up = 0 and cuy = 0.
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e If N (¢7) — v, <A< XN(q7) — v}

max max

By Theorem 3.4 in Equation (23) there exists §; (depending on F') such that for all A with
MN(gT) < A+vt,, <A (¢7)+ 01, uy exists and uy < 0. We can choose &; < A(q7) — X (¢"),
and assume \N*(¢1) — vt <A< A (¢") — vl + 01 < AN(¢7) — vt

max max max*

In Equation 24, by A < A*(¢~) — v}, we can apply the Fundamental Positivity Result. So

max

Uy exists, and

1
Ul < (Vg = A—vh,,)  Crpt < -
‘ 2| —( (q ) ma:(;) fQSO = )\*(q,)_)\*(qu)_dl(p

We have 1y bounded by a constant times ¢*, and u; < —C/(A, ﬁ)gp*, with C'(A, fl) tending
to infinity when A tends to A*(¢") — v}

max-*

Relations (25) and (26) are always true. So there exists a real 0 < 0 < ¢; such that:
AN (¢7) — vt <A< X (¢")— vt +0 < XN(q7)—vt,., we have uy < 0and uy < 0. O

max max max?

2/ Proof of Theorem 4.4

By Hypothesis (Hyz2), a = d and there exist two real numbers 3, ¢ such that b = ¢br and
¢ = ecr, with e = £1. The function r € L>®(R") is continuous, positive and bounded.

The matrix M(x) has two eigenvalues, v*(z) = a(z) + 357"(1’) and v~ (z) = a(z) —
\/?)\_5 r(z). The function r is positive, bounded and continuous so the function v* — v~ =

2V ber(x) is positive, bounded and continuous. Let ¢+ = g+vt —v* and ¢~ = q+v, —v.

We have, as in the first step of the proof of Theorem 4.3, A(¢7) > A(¢™").
Vo —eVb
- — |-

Eigenvectors associated to v and v~ are vt = ( and v~ = Y
c

€
With these eigenvectors, we obtain

‘ -
(@)

N

||H
DO
S
DO
s

5
5

2

The components of P and P! are constants.

We always denote 1,111 —p ™) and “il = p1 h . Functions f; and
Ug Uz fa fo

f» are in X, and by Hypothesis (Hpys), f1 >0, and f; # 0. We obtain the same equations

as above:
(23) — AG +qTa = (A vkh,,) @+



Non cooperative Systems of . .. 67

(24) = AT +q G = (At Vi) T + o,
where ]71 >0, fl # 0 by Hypothesis (Hpy1)-

The study of the comparison with the ground state is the same as in Theorem 4.3. So uy is
still bounded in X. For uy:
o if \ < X (¢")—vt,,, then uy > C(\ F)e*, where C(\, F) — oo when A — X*(¢") — v} ..,

o if \ > \*(¢") —vt,, and [N — (N (¢") — v} ,.)| small, we have u; < —C(\, F)p*, where

max max

C(\, F) — oo when A — \*(¢7) — v},

But now the change of basis gives:
w = Vi — eV, (27)

Uy = Ve, + Ve (28)

By similar arguments, we obtain

- the existence of § such that: if \*(¢7) —vt,, —d <X < X (¢") — vt < X(¢) — v}
then u ; 0 and euqy ; 0,

- the existence of ¢’ such that: if \*(¢7) — vt . <A< X (¢")—vl  +0 <X(q)—v}
then v, -*< 0 and euqy -*< 0.1

References

ziary, B., and Besbas, N. : Anti-Mazimum principle for a Schridinger Equation
1] Alzi B d Besbas, N. : Anti-Maxi mcipl Schrodi E '
in RN, with a non radial potential. Rostock Math. Kolloq. 59, 5162 (2005)

[2] Alziary, B.; Cardoulis, L., and Fleckinger, J. : Mazimum principle and existence
of solutions for elliptic systems involving Schrodinger operators. Revista de la Real
Academia de Ciencias, Exactas, Fisicas y Naturales, 91(1), 47—52 (1997)

[3] Alziary, B.; Fleckinger, J., and Lécureux, M. H. : Systems of Schrodinger equa-
tions : Positivity and Negativity. Monografias del Seminarion Matemético Garcia de
Galdeano 33, 19—-26 (2006)

[4] Alziary, B.; Fleckinger, J., and Takac¢, P. : An extension of mazimum and anti-
mazximum principles to a Schridinger equation in R?. J. Differential Equations, 156,
122—-152 (1999)

[5] Alziary, B.; Fleckinger, J., and Takaé, P. : Mazimum and anti-mazimum princi-
ples for some systems involving Schrédinger operator. Operator Theory: Advances and
applications, 110, 13—21 (1999)



68

(6]

7]

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M.-H. Lécureux

Alziary, B.; Fleckinger, J., and Takac¢, P. : Positivity and Negativity of Solutions
to a Schridinger Equation in RY . Positivity, 5(4), 359—382 (2001)

Alziary, B.; Fleckinger, J., and Takac¢, P. : Ground-state positivity, negativity, and
compactness in X for a Schrodinger operator in RY. J. Funct. Anal., 245, 213248
(2007). Online: doi: 10.1016/j.jfa.2006.12.007

Alziary, B., and Takac¢, P. : A pointwise lower bound for positive solutions of a
Schridinger equation in RY . J. Differential Equations, 133(2), 280—295 (1997)

Alziary, B., and Takac¢, P. : Compactness for a Schrodinger operator in the ground-
-state space over RY. Electr. J. Differential Equations, Conf. 16, 35-58 (2007). In
Proceedings of the 2006 International Conference on “Partial Differential Equations and

Applications” in honor of Jacqueline Fleckinger, June 30 — July 1, Toulouse 2006

Besbas, N. : Principe d’anti-mazimum pour des équations et des systémes de type
Schrédinger dans RY. Thése de doctorat de I'Université des Sciences Sociales de
Toulouse 1, (2004)

Cardoulis, L. : Problemes elliptiques : applications de la théorie spectrale et étude de
systmes, existences de solutions. Theése de doctorat de I’Université des Sciences Sociales
de Toulouse 1, (1997)

Clément, Ph., and Peletier, L. A. : An anti-mazimum principle for second order
elliptic operators. J. Differential Equations, 34, 218 -229 (1979)

Cosner, C., and Schaefer, P. W. : Sign-definite solutions in some linear elliptic
systems. Roy. Soc. Edinburgh, vol 111. N3-4, p. 347—358 (1989)

Edmunds, D. E., and Evans, W.D. : “Spectral Theory and Differential Operators”.
Oxford University Press, Oxford 1987

Fleckinger, J. : Répartition des valeurs propres d’opérateurs de type Schrodinger.
Comptes Rendus Acad SC. Paris t 292 A, 359 (1981)

Fleckinger, J. : Estimate of the number of eigenvalues for an operator of Schridinger
type. Proc. Royal Soc. Edinburgh 89 A(3-4), 355361 (1981)

M.-H. Lécureux-Tétu : Au dela du principe du mazximum pour des systémes
d’opérateurs elliptiques. Thése de doctorat de 1'Université de Toulouse 1, (2008)

Reed, M., and Simon, B. : Methods of Modern Mathematical Physics, Vol. IV:
Analysis of Operators. Academic Press, Inc., Boston 1978



Non cooperative Systems of . .. 69

[19] Sweers, G. : Strong positivity in C(Q2) for elliptic systems. Math. Z. 209, 251271
(1992)

[20] Takaé, P. : An abstract form of mazimum and anti-mazimum principles of Hopf’s
type. J. Math. Anal. Appl. 201, 339-364 (1996)

received: March 1, 2010

Author:

Marie-Héléne Lécureux

Université de Toulouse;

UT1; CEREMATH

F-31042 Toulouse Cedex, France

CNRS; Institut de Mathématiques UMR 5219
F-31062 Toulouse, France

e-mail: marie-helene.lecureux@toulouse.iufm.fr


mailto:marie-helene.lecureux@toulouse.iufm.fr 

