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On the improper derivatives of Takagi’s continuous
nowhere differentiable function

ABSTRACT. This note is a completion of [5] where it was investigated among other things
the improper derivatives of Takagi’s continuous nowhere differentiable function T . We de-
termine all points x for which T has the one-sided improper derivatives T ′+(x) = ∞ and
T ′−(x) =∞.
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1 Introduction

In 1903, T. Takagi [6] discovered an example of a continuous, nowhere differentiable function
that was simpler than a well-known example of K. Weierstrass. Takagi’s function T is defined
by

T (x) =
∞∑
n=0

∆ (2nx)

2n
(x ∈ R) (1.1)

where ∆(y) = dist (y,Z) is a periodic function with period 1. The Takagi function was
rediscovered independently by others, e.g. Knopp in 1918, Van der Waerden in 1930 and
Hildebrandt in 1933, cf. [3].

It is known that T does not have a finite one-sided derivative anywhere. But at each dyadic
rational point x = m

2n
there exist the right-hand improper derivative

T ′+(x) = lim
h→+0

T (x+ h)− T (x)

h
= +∞

and left-hand improper derivative

T ′−(x) = lim
h→−0

T (x+ h)− T (x)

h
= −∞,

cf. [5]. Begle and Ayres [2] have investigated non-dyadic points x 6= m
2n

for which the
Takagi function (with the notation Hildebrandt function) does have an improper derivative
T ′(x) = +∞ or T ′(x) = −∞. For given x let In and On represent the number of 1′s and 0′s
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among the first n terms in the dyadic expansion of x, and Dn = On− In. The claim of Begle
and Ayres reads: If limDn = +∞ then T ′(x) = +∞ and if limDn = −∞ then T ′(x) = −∞.
But this cannot be true since in [5] is a counterexample, cf. Example 7.2.

The purpose of this paper is to determine all non-dyadic points x 6= m
2n

for which the
improper derivatives do exist. We consider the right-hand and left-hand improper derivatives
separately. In view of the symmetry T (1 − x) = T (x) it holds T ′+(x) = ±∞ if and only if
T ′−(1−x) = ∓∞. Therefore we only investigate the case +∞. The main results of this note
is that for non-dyadic x with the representation

x =
∞∑
n=1

1

2an
(1.2)

where 1 ≤ a1 < a2 < . . . are integers, we have:

(i) T ′+(x) =∞ ⇐⇒ Dn →∞ (n→∞)

and

(ii) T ′−(x) =∞ ⇐⇒ 2Dan dn
2dn
→∞ (n→∞)

where dn = an+1 − an, (Proposition 3.1, Proposition 4.5 and Remark 4.6).
Since dn2−dn is bounded and Dn →∞ implies Dan →∞, from (i) and (ii) it follows

(iii) T ′(x) =∞ ⇐⇒ 2Dan dn
2dn
→∞ (n→∞).

Remark 1.1 It is remarkable that if T ′−(x) =∞ then also T ′+(x) =∞ but not conversely.
In Example 7.2 from [5] it was considered a point (1.2) where an+1 ≥ 4an. Here T ′+(x) =∞
since Dn → ∞, but in [5] it was shown that T ′−(x) = ∞ does not be valid. Hence, the
condition in (ii) cannot be satisfied.

Remark 1.2 The condition in (iii) is satisfied if and only if Dan → ∞ and if e.g. dn is
bounded, but the condition also may be satisfied if dn →∞.

Example 1.3 Take the point (1.2) with an = 1 + 2 + . . . + n = n(n+1)
2

. Then dn = n + 1,
Dan = an − 2n = n(n−3)

2
and

2Dan
dn
2dn

= 2n(n−3)/2
n+ 1

2n+1
= 2(n2−5n−2)/2(n+ 1)→∞

as n→∞. So by (iii) we have T ′(x) =∞.

Remark 1.4 Let us mention that in (iii) the term Dan cannot be replaced by Dn. This
shows the Example 1.3 since in view of dan = n(n+1)

2
+ 1 = n2+n+2

2
we have for k = an

2Dk
dk
2dk

= 2n(n−3)/2
n2+n+2

2

2(n2+n+2)/2
=
n2 + n+ 2

22n+2
→ 0

though T ′(x) =∞.
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2 Relations for Takagi’s function

In order to determine the improper derivatives we need some relations for the Takagi function.
It is known that T satisfies for 0 ≤ x ≤ 1 the following system of functional equations

T
(x

2

)
=
x

2
+

1

2
T (x), T

(
1 + x

2

)
=

1− x
2

+
1

2
T (x), (2.1)

cf. e.g. [4], [5]. Moreover, for ` ∈ N, k = 0, 1, . . . , 2` − 1 and x ∈ [0, 1], the Takagi function
T satisfies the equations

T

(
k + x

2`

)
= T

(
k

2`

)
+
`− 2s(k)

2`
x+

1

2`
T (x) (2.2)

and
T

(
k − x

2`

)
= T

(
k

2`

)
+

2s(k − 1)− `
2`

x+
1

2`
T (x) (2.3)

where s(k) denotes the binary sum-of-digit function which is the number of ones in the
binary representation of k, cf. [5, Proposition 2.1].

Note that for given x with the dyadic expansion

x = 0, ξ1, ξ2 . . . (2.4)

we have for the difference Dn = On − In of the number of 0′s and 1′ in the first n terms of
(2.4)

Dn =
n∑
ν=1

(−1)ξν .

Besides of (2.4) we consider y = 0, η1η2 . . . with ηn ∈ {0, 1}. It is known that if x and y are
different points in [0, 1] with ξν = ην for ν ≤ n ∈ N then

T (x)− T (y)

x− y
= Dn +

T (xn)− T (yn)

xn − yn
, (2.5)

where xn = 0, ξn+1ξn+2 . . . and yn = 0, ηn+1ηn+2 . . ., cf. [5, Formula (5.3)]. Let us mention
that the index in Formula (5.3) is not correct.

The following estimate is already known for 0 < x ≤ 1
2
from [5, Lemma 3.1].

Lemma 2.1 For 0 < x ≤ 1 the Takagi function T satisfies the estimate

log2

1

x
≤ 1

x
T (x) ≤ log2

1

x
+ c (2.6)

with a positive constant c < 2
3
.

Proof: Since (2.6) is true for 0 < x ≤ 1
2
we can assume that 1

2
< x ≤ 1. By the first

relation in (2.1) we have T (x) = 2T (x
2
) − x and hence 1

x
T (x) = 2

x
T (x

2
) − 1. In view of

log2
2
x

= 1 + log2
1
x
and x

2
≤ 1

2
it follows that (2.6) is also true for 1

2
< x ≤ 1. Thus, the

lemma is proved. �
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3 Right-hand improper derivatives

First we investigate the existence of the right-hand improper derivative.

Proposition 3.1 The Takagi function T has at the non-dyadic point x the right-hand
improper derivative T ′+(x) =∞ if and only if Dn →∞ as n→∞.

Proof: Since x is a non-dyadic point the expansion (2.4) contains infinitely ones and zeros.
Let y have the dyadic representation y = η0, η1η2 . . . where ην = ξν for ν ≤ n and ηn+1 = 1,
ξn+1 = 0 so that x < y < x+ 21−n. We investigate the term

T (y)− T (x)

y − x

as n→∞.

1. Assume T ′+(x) = ∞. If we choose ην = 1 − ξν for ν > n + 1, then yn = 1 − xn and by
(2.5) we have

T (y)− T (x)

y − x
= Dn. (3.1)

Since x < y ≤ x+ 1
2n

it follows that T ′+(x) =∞ implies Dn →∞.

2. Suppose Dn →∞. By (2.5) we have

T (y)− T (x)

y − x
= Dn +

T (yn)− T (xn)

yn − xn

where xn = 0, 0ξn+2 . . . and yn = 0, 1ηn+2 . . . so that 0 < xn < 1
2
and 1

2
≤ yn ≤ 1. We

consider two cases:

2.1 In case 7
8
< yn ≤ 1 we have yn − xn > 1

8
and

T (yn)− T (xn)

yn − xn
>
−2

3
1
8

= −16

3
.

2.2 In case 1
2
≤ yn ≤ 7

8
we put yn = 1+t

2
with 0 ≤ t ≤ 1

4
. By (2.1) and T (t) ≥ 2t for 0 ≤ t ≤ 1

4

T (yn) = T

(
1 + t

2

)
=

1− t
2

+
1

2
T (t) ≥ 1 + t

2

and
T (yn)− T (xn)

yn − xn
≥ 1 + t− 2T (xn)

1 + t− 2xn
.

For the derivative of the function

f(t) =
1 + t− 2T (xn)

1 + t− 2xn



On the improper derivatives of Takagi’s . . . 7

we have

f ′(t) =
(1 + t− 2xn)− (1 + t− 2T (xn))

(1 + t− 2xn)2
=

2T (xn)− 2xn
(1 + t− 2xn)2

≥ 0 .

Hence, for 0 ≤ t ≤ 1
4
the function f(t) is increasing and

T (yn)− T (xn)

yn − xn
≥ f(0) =

T (1
2
)− T (xn)
1
2
− xn

.

With h = 1 − 2xn, i.e. xn = 1−h
2
, we find in view of the symmetry of T with respect to 1

2

that
T (1

2
)− T (xn)
1
2
− xn

=
1
2
− T (1+h

2
)

h/2
=

1
2
− 1−h

2
− 1

2
T (h)

h/2
= 1− T (h)

h

where we have used the second equation in (2.1). By Lemma 2.1

T (h)

h
≤ log2

1

h
+ c

with c < 2
3
. Note that h = 1 − 2xn = 0, ξn+2ξn+3 . . . with ξν = 1 − ξν . If ξn+ν = 1

for ν = 2, 3, . . . ,m and ξn+m+1 = 0 then m ≥ 2, h ≥ 1/2m and log2
1
h
≤ m. Note that

m = In+m − In and On+m −On = 1 since ξn+1 = 0. Hence, Dn+m −Dn = 1−m and we get

Dn +
T (yn)− T (xn)

yn − xn
≥ Dn + 1−m− c = Dn+m − c.

Both cases 2.1 and 2.2 together yield

T (y)− T (x)

y − x
≥ inf

k≥n
Dk +O(1)

which implies T ′+(x) =∞ since Dn →∞. �

4 Left-hand improper derivatives

The determining of the conditions for the existence of the left-hand improper derivative
T ′−(x) =∞ is more complicated. We need some lemmas.

Lemma 4.1 Assume that x = k+r
2m

and y = k−h
2m

where k is an odd integer and 0 < r < 1,
0 ≤ h ≤ 1. Then we have

T (x)− T (y)

x− y
= Dm +

2h

r + h
+
T (r)− T (h)

r + h
. (4.1)
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Proof: According to equation (2.2) we have

T (x) = T

(
k + r

2m

)
= T

(
k

2m

)
+
m− 2s(k)

2m
r +

1

2m
T (r)

and by equation (2.3)

T (y) = T

(
k − h

2m

)
= T

(
k

2m

)
+

2s(k − 1)−m
2m

h+
1

2m
T (h).

Since k is an odd integer, we have s(k − 1) = s(k)− 1. It follows

T (x)− T (y) =
m− 2s(k)

2m
(r + h) +

2h

2n
+
T (r)− T (h)

2m

and in view of x− y = (r + h)/2m and Dm = m− 2s(k) it follows (4.1). �

Assume that x is a non-dyadic point with the representation (1.2) so that

x =
kn + rn

2an
, kn = 2an

n∑
ν=1

1

2aν
, rn = 2an

∞∑
ν=n+1

1

2aν
(4.2)

and that
y =

kn − hn
2an

, 0 ≤ hn ≤ 1. (4.3)

Note that rn > 0 since x is a non-dyadic point. Put dn = an+1−an then we have dn ≥ 1 and

rn =
1

2dn

∞∑
ν=n+1

1

2aν−an+1
≤ 2

2dn

and therefore
dn − 1 ≤ log2

1

rn
< dn. (4.4)

Lemma 4.2 If hn > 0 then we put hn = 2trn > 0 and it holds

T (x)− T (y)

x− y
= Dan − dn +

t2t + 2dn
1 + 2t

+O(1) (4.5)

for t ≤ log2
1
rn
.

Proof: Because of rn > 0 and 0 < hn ≤ 1, cf. (4.3), we can write hn = 2trn with t ≤ log2
1
rn
.

By Lemma 4.1 with m = an

T (x)− T (y)

x− y
= Dan −

2hn
rn + hn

+
T (rn)− T (hn)

rn + hn
.

Moreover the term 2hn/(rn + hn) is bounded and the last term can be written in the form

T (rn)− T (hn)

rn + hn
=

rn
rn + hn

T (rn)

rn
− hn
rn + hn

T (hn)

hn
.
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By Lemma 2.1 and (4.4) we get

dn − 1 ≤ 1

rn
T (rn) < dn + c

with a constant c < 2
3
, i.e.

1

rn
T (rn) = dn + εn

with |εn| ≤ 1. For hn = 2trn we have

log2

1

hn
= log2

1

rn
− t

and as before
1

hn
T (hn) = dn − t+ δn

with |δn| ≤ 2. So with hn = 2trn we get

T (rn)− T (hn)

rn + hn
=

1

1 + 2t
T (rn)

rn
− 2t

1 + 2t
T (hn)

hn

=
1

1 + 2t
(dn + εn)− 2t

1 + 2t
(dn − t+ δn)

= −dn +
t2t + 2dn

1 + 2t
+

1

1 + et
εn −

2t

1 + 2t
δn

which yields (4.5). �

In view of (4.5) we want to estimate the minimum of the function

fn(t) =
t2t + 2dn

1 + 2t
(t ∈ R). (4.6)

Lemma 4.3 For positive integer d the function f(t) = (t2t + 2d)/(1 + 2t) attains its
minimum exactly at one point t∗ = t∗(d) where t∗(d) < d− 1. It holds

f(t∗) = log2 d+O(1). (4.7)

Proof: 1. Note that f(t)→ 2d as t→ −∞ and f(t)→ +∞ as t→ +∞. Moreover, for the
derivative

f ′(t) =
(2t + t2t log 2)(1 + 2t)− (t2t + 2d)2t log 2

(1 + 2t)2

we have f ′(t) = 0 if and only if

g(t) = 1 + 2t + t log 2− 2d log 2

vanishes. Now g(t) is strictly increasing with g(t) → −∞ as t → −∞ and g(t) → +∞ as
t→ +∞ so that there is exactly one real number t∗ = t∗(d) with g(t∗) = 0.
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In order to show that t∗ < d− 1 we prove the inequality

g(d− 1) = 1 + 2d−1 + (d− 1) log 2− 2d log 2 > 0

which is true for d = 1. Moreover g(d) − g(d − 1) = 2d−1 − log 2 ≥ 1 − log 2 > 0 so that
indeed g(d− 1) > 0 for all d ≥ 1. Consequently, t∗ < d− 1.

2. In order to show (4.7) we put 2t∗ = τ∗d with suitable τ∗ = τ∗(d). Then we have

g(t∗) = 1 + τ∗d+ log2(τ∗d) log 2− 2d log 2 = 0

so that τ∗ is a zero of the function

h(τ, d) = 1 + τd+ log(τd)− 2d log 2.

We show that a < τ∗ < 2 where a = 2 log 2 − 1. Note that 0 < a < 1 and hence h(a, 1) =

1 + a+ log a− 2 log 2 = log a < 0. Moreover

h(a, d+ 1)− h(a, d) = a+ log (d+ 1)− log d− 2 log 2 ≤ a− 2 log 2 = −1

so that h(a, d) < 0 for all d ≥ 1. On the other hand

h(2, d) = 1 + 2d+ log 2 + log d− 4 log 2 ≥ 3− 3 log 2 > 0

and it follows a < τ∗ < 2 since h(τ, d) is strictly increasing with respect to τ .

Finally, with t∗ = log2(τ∗d) we get

f(t∗) =
(log2 τ∗ + log2 d)τ∗d+ 2d

1 + τ∗d

= log2 d+
τ∗d(log2 τ∗ − 1)

1 + τ∗d
+

2d

1 + τ∗d

where in view of a < τ∗ < 2 it holds

τ∗d(log2 τ∗ − 1)

1 + τ∗d
∼ log2 τ∗ − 1,

2d

1 + τ∗d
∼ 2

τ∗

as d→∞. This implies (4.7). �

Corollary 4.4 The function (4.6) attains its minimum exactly at one point tn where
tn < dn − 1 and it holds fn(tn) = log2 dn +O(1), i.e.

t2t + 2dn
1 + 2t

≥ log2 dn +O(1).
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Proposition 4.5 The Takagi function has at the non-dyadic point x with the represen-
tation (1.2) the left-side improper derivative T ′−(x) =∞ if and only if

Dan − dn + log2 dn →∞ (4.8)

as n→∞.

Proof: First we assume that x has the expansion (2.4). For given positive integer m let be
y = 0, η1η2 . . . a number with ην = ξν for ν < m, ηm = 0, ξm = 1 so that x− 21−m ≤ y < x.
Again, we investigate the term

T (x)− T (y)

x− y
as m→∞. Note that

x =
k + r

2m
, k = 2m

m∑
ν=1

ξν
2ν
, r = 2m

∞∑
ν=m+1

ξν
2ν

where 0 < r < 1 since x is not dyadic rational. In view of

y ≤
m−1∑
ν=1

ξν
2ν

+
∞∑

ν=m+1

1

2ν
=
k − 1

2m
+

1

2m
=

k

2m
y ≥

m−1∑
ν=1

ξν
2ν

=
k − 1

2m

we have y = (k−h)/2m with 0 ≤ h ≤ 1. Let an ≤ m < an+1 then we get the representations
(4.2) and (4.3) where kn = k/2m−an is an odd integer, rn = r/2m−an , hn = h/2m−an , and
m→∞ if and only if n→∞.
In case hn = 0 we get by Lemma 4.1

T (x)− T (y)

x− y
= Dan +

T (rn)

rn
> Dan . (4.9)

In case hn > 0 we put hn = 2tnrn with tn from Corollary 4.4 which is only possible if 2tn ≤ 1.
But tn < dn − 1 and in view of dn − 1 < log2

1
rn
, cf. (4.4), in fact 2tnrn < 2dn−1rn < 1. By

Lemma 4.2 and Corollary 4.4 we have

T (x)− T (y)

x− y
≥ Dan − dn + log2 dn +O(1) (4.10)

where we have equality if we choose y such that hn = 2tnrn in (4.3). From (4.9) we see that
(4.10) is also valid in case hn = 0 since −dn + log2 dn < 0.

Now it is easy to finish the proof. If (4.8) is satisfied then by (4.10) we obtain T ′−(x) = ∞.
Conversely, if (4.8) fails then there is a strictly increasing sequence {n′} of integers so that
Dan′

− dn′ + log2 dn′ → K < ∞ as n′ → ∞. We use (4.2), (4.3) both with n′ instead of n,
where we put hn′ = 2tn′rn′ . Then by (4.10)

T (x)− T (y)

x− y
= Dn′ − dn′ + log2 dn′ +O(1)
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so that
lim inf
y→x−

T (x)− T (y)

x− y
<∞.

Thus, the proposition is proved. �

Remark 4.6 The condition (4.8) can also be written as

2Dan
dn
2dn
→∞ (4.11)

as in (ii) of the Introduction.

Remark 4.7 Note that Dan = an−2n→∞ is equivalent to Dn →∞. It is enough to show
that Dan →∞ implies Dn →∞. We assume that an ≤ m < an+1 then Om = m−n ≥ an−n,
Im = n so that Dm = Om − Im ≥ an − 2n = Dan → ∞. So (4.11) is satisfied if Dn → ∞
and dn is bounded. It follows that T ′(x) =∞ if Dn →∞ and if the number of consecutive
zeros in the dyadic representation of x is bounded, cf. [5, Proposition 5.3].

Acknowledgement. The author wishes to thank Kiko Kawamura for her hint to the note
[2] of Begle and Ayres.

Supplement. K. Kawamura and P.C. Allaart also have found the conditions for the exis-
tence of the improper derivatives of Takagi’s function, cf. [1].
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