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MANFRED KRUPPEL

On the improper derivatives of Takagi’s continuous
nowhere differentiable function

ABSTRACT. This note is a completion of [5] where it was investigated among other things
the improper derivatives of Takagi’s continuous nowhere differentiable function 7. We de-

termine all points x for which 7" has the one-sided improper derivatives 7" () = oo and
T () = 0.
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1 Introduction

In 1903, T. Takagi [0] discovered an example of a continuous, nowhere differentiable function

that was simpler than a well-known example of K. Weierstrass. Takagi’s function 7" is defined
by

T()=Y A2%) e (1.1)

n=0

where A(y) = dist (y,Z) is a periodic function with period 1. The Takagi function was
rediscovered independently by others, e.g. Knopp in 1918, Van der Waerden in 1930 and
Hildebrandt in 1933, cf. [3].

It is known that T" does not have a finite one-sided derivative anywhere. But at each dyadic
rational point x = 7 there exist the right-hand improper derivative
T(x+h)—T(z)

Ti(w) = hl—igrlo h - el

and left-hand improper derivative

T(x+h)—T(x)

/ 7 —
(@) = mm h -
cf. [5]. Begle and Ayres [2] have investigated non-dyadic points = # 3% for which the

Takagi function (with the notation Hildebrandt function) does have an improper derivative

T'(z) = 400 or T'(x) = —oo. For given zx let [, and O, represent the number of 1’s and 0's
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among the first n terms in the dyadic expansion of z, and D,, = O,, — I,,. The claim of Begle
and Ayres reads: If lim D,, = 400 then 7"(x) = 400 and if lim D,, = —oo then 7"(z) = —oc.

But this cannot be true since in |5] is a counterexample, cf. Example 7.2.

The purpose of this paper is to determine all non-dyadic points x # % for which the
improper derivatives do exist. We consider the right-hand and left-hand improper derivatives
separately. In view of the symmetry T'(1 — x) = T'(x) it holds T" (z) = oo if and only if
T’ (1 —x) = Foo. Therefore we only investigate the case +o0o. The main results of this note

is that for non-dyadic x with the representation

xZZQL (1.2)

where 1 < ay < as < ... are integers, we have:

(i) Th(x)=00 <= D,—00 (n—00)
and

(i) T'(z)=00 <= 2Pmd 00 (n— 00)

where d,, = a, 41 — a,, (Proposition 3.1, Proposition 4.5 and Remark 4.6).
Since d,,27% is bounded and D,, — oo implies D,, — oo, from (i) and (ii) it follows

(i) T'(z) =00 <= 2Pt 500 (n— ).

Remark 1.1 It is remarkable that if 7" (x) = oo then also 17 (x) = oo but not conversely.
In Example 7.2 from |5] it was considered a point (1.2) where a1 > 4a,. Here T" (z) = oo
since D,, — oo, but in [5] it was shown that 7" (x) = oo does not be valid. Hence, the

condition in (ii) cannot be satisfied.

Remark 1.2 The condition in (iii) is satisfied if and only if D,, — oo and if e.g. d, is
bounded, but the condition also may be satisfied if d,, — oc.

Example 1.3 Take the point (1.2) with a, =14+2+...+n = w Then d, = n+1,
n(n—3)

5 and

D, =a,—2n=

2Dunﬁ — 2”(”—3)/277/ + 1 — 2(n2—5n—2)/2

2dn 2n+1 (n + 1) — 00

as n — 00. So by (iii) we have T"(z) = oo.

Remark 1.4 Let us mention that in (iii) the term D, cannot be replaced by D,. This

shows the Example 1.3 since in view of d,, = @ +1= % we have for k = a,,
n24+n+2
2Dkﬁ — gn(n—3)/2 +2 + _ n’+n+2 50
odp 2(n?+n+2)/2 92n+2

though 7"(x) = oc.
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2 Relations for Takagi’s function

In order to determine the improper derivatives we need some relations for the Takagi function.

It is known that T satisfies for 0 < x < 1 the following system of functional equations

T r 1 14+ 1—2z 1
T(E) = S+ 3T, T( . ) = ——+5T(@), (2.1)
cf. e.g. |4, |[5]. Moreover, for € N, k =0,1,...,2° — 1 and = € [0,1], the Takagi function
T satisfies the equations
k+ K\ 0—2s(k) 1

and

T(k_x) :T(£> p2k=D =6 g (2.3)

2¢ 2¢ 2¢
where s(k) denotes the binary sum-of-digit function which is the number of ones in the

binary representation of k, cf. |5, Proposition 2.1].

Note that for given x with the dyadic expansion

:1::0,51,52... (24)

we have for the difference D,, = O,, — I,, of the number of 0’s and 1’ in the first n terms of
(2.4)

n

D,=> (-1)%.

v=1
Besides of (2.4) we consider y = 0,172 ... with n, € {0,1}. It is known that if z and y are
different points in [0, 1] with &, =7, for v <n € N then

T(x)—T T(z,) — T(y,,
(@) =TW) _ |, Tla) = Tl) .
r—=1y Tpn — Yn
where z, = 0,&,411&12 .- and ¥y, = 0,1 1Mna2 - - -, cf. |5, Formula (5.3)]. Let us mention

that the index in Formula (5.3) is not correct.
The following estimate is already known for 0 < z < 3 from [5, Lemma 3.1].

Lemma 2.1 For0 <z <1 the Takagz iunction T S(ItiSﬁ@S the estimate
0gy — —T(x 0gy — + C .6
&2 r = 1082 X

with a positive constant ¢ < %

Proof: Since (2.6) is true for 0 < z < % we can assume that % < x < 1. By the first
relation in (2.1) we have T'(z) = 2T(%) — x and hence 1T(z) = 27(%£) — 1. In view of
log2§ =1+ log, 1 and 2 < % it follows that (2.6) is also true for % < 2 < 1. Thus, the

xT

lemma is proved. O
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3 Right-hand improper derivatives

First we investigate the existence of the right-hand improper derivative.

Proposition 3.1 The Takagi function T has at the non-dyadic point = the right-hand

improper derivative T' (x) = oo if and only if D,, — 00 as n — oo.

Proof: Since z is a non-dyadic point the expansion (2.4) contains infinitely ones and zeros.
Let y have the dyadic representation y = 7y, 7172 ... where n, =&, for v < n and 1,1 = 1,
&ni1 = 0 so that o <y < x + 27", We investigate the term

T(y) — T(x)
y—x

as n — oQ.

1. Assume T' (x) = oo. If we choose 1, = 1 — ¢, for v > n + 1, then y,, = 1 — x,, and by

(2.5) we have

=D,,. (3.1)
Since r <y < x + Qin it follows that 1% (x) = oo implies D,, — oo.
2. Suppose D,, — oo. By (2.5) we have

T(yn) B T(:Cn>
y—x Yn — Tp

where x, = 0,0§,42... and y, = 0,1n,42... so that 0 < x, < 5 and % <y, <1. We
consider two cases:

1

2.1 In case g < Yn < 1 we have y,, —x, > 3 and

T(y) = T(e) _ =3 _ 16

Yn — Tn % 3
2.21ncase%§yn§%weputyn:%withOgtSi. By(?.l)andT(t)ZQtforOStSi
14+¢ 1—¢t 1 141
1) =7 (0) =15 4 5T 2 1

and

T(y,) — T(z,) - 1+t —2T(x,)
For the derivative of the function
1+t—2T(xz,
1) = (&)
1+t— 2z,
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we have
(M4t —22,) — (1 +t—2T(x,)  2T(xzy,) — 2z,

) = (L4 f— 22,0 “Ott—am)y =

Hence, for 0 <t < % the function f(¢) is increasing and

T(yn) = T(xn)

1
Yn — Tn E—l’n

1

With h = 1 — 2x,, i.e. , = 5, we find in view of the symmetry of T with respect to 3

2
that

where we have used the second equation in (2.1). By Lemma 2.1

T(h) <1 1 n
——= <log, - +c¢

no= 0%
with ¢ < 2. Note that h = 1 — 2z, = 0,§, 58 3... With §, = 1 —&. If & = 1
for v =2,3,...,m and &, pmy1 = 0 then m > 2, h > 1/2™ and logQ% < m. Note that
m= I,y — I, and O,,,,, — O,, = 1 since &, = 0. Hence, D, ,,, — D, =1 —m and we get

T(yn) = T(wn)

Yn — Tp

D, +

>D,+1—m—c=D, ., —c

Both cases 2.1 and 2.2 together yield

T(y) =T
TW=T@) < ¢ b, + 0(1)
y—x k>n
which implies T (x) = oo since D,, — oo. O

4 Left-hand improper derivatives

The determining of the conditions for the existence of the left-hand improper derivative

T" (z) = oo is more complicated. We need some lemmas.

Lemma 4.1 Assume that x = % and y = % where k is an odd integer and 0 < r < 1,
0< h<1. Then we have
T(x) = T(y) oh  T(r) = T(h)

=D,
r—y +r—|—h+ r—+h

(4.1)
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Proof: According to equation (2.2) we have

1) =1 () =1 () + s L

and by equation (2.3)

T(y) =T (ﬂ) —T (2%) G2k =my gy

2m 2m 2m

Since k is an odd integer, we have s(k — 1) = s(k) — 1. It follows

— 2s(k 2h  T(r)—T(h
T(w) = T(y) = T=25W) (4 gy 20 TO) = T(R)
2m 2n 2m
and in view of z —y = (r + h)/2™ and D,,, = m — 2s(k) it follows (4.1). O

Assume that x is a non-dyadic point with the representation (1.2) so that

n o0

k., + r, a 1 an 1
r=t k=2 > 5 =2 > oI (4.2)
v=1 v=n-+1
and that . 3
y = "2: “ 0<h, <1 (4.3)

Note that r, > 0 since z is a non-dyadic point. Put d,, = a,,.1 — a,, then we have d,, > 1 and

 — 1 2
'n = dn Z 4y —an+1 < odn
v=n+1
and therefore .
d, — 1 <log, — < d,. (4.4)
T

n

Lemma 4.2 If h, > 0 then we put h, = 2'r, > 0 and it holds

T(z)-T(y) N 2" + 2d,

p— 5 o) (4.5)

fort <log, %

Proof: Because of r, > 0 and 0 < h,, < 1, cf. (4.3), we can write h,, = 2'r,, with ¢ < log, %

By Lemma 4.1 with m = a,

T(x)—T(y) 2h,, N T(r,) — T(hn)'

an

— D, —
r—Yy Tn + hn Tn + hn
Moreover the term 2h,,/(r, + h,) is bounded and the last term can be written in the form

T() - T(h) e T(w) e T(h)
Pw+hy  Tpth, T Tuth, hy
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By Lemma 2.1 and (4.4) we get

with a constant ¢ < %, ie.

1
—T(r,) =d,+e,
Tn

with |e,| < 1. For h,, = 2'r,, we have

1 1
log, = log, — — 1
r

n n

and as before

1
with |6,| < 2. So with h,, = 2'r,, we get
T(r,) —T(hy,) B 1 T(rp) 2t T(h,)
Tn 4 hy, 142t 7, 1+2t h,
= e — 2 (d—t+ )
- 1+ ot n En 1+ ot n n
14 2d, 1 ot
— 4 _ 5
L T T e s T

which yields (4.5). O

In view of (4.5) we want to estimate the minimum of the function

12+ 2d,

fnlt) = o (t € R). (4.6)

Lemma 4.3 For positive integer d the function f(t) = (¢2¢ + 2d)/(1 + 2') attains its
minimum exactly at one point t, = t.(d) where t,(d) < d—1. It holds

f(te) =logyd+ O(1). (4.7)

Proof: 1. Note that f(t) — 2d as t — —o0 and f(t) — +o00 as t — +o00. Moreover, for the

derivative
T (2! + £2'log 2)(1 + 2) — (12¢ + 2d)2' log 2

f/<t> = (1 + 2t)2

we have f'(t) = 0 if and only if

g(t) =1+2"+tlog2 — 2dlog?2

vanishes. Now ¢(t) is strictly increasing with ¢g(t) — —oc as t — —oo and g(t) — 400 as
t — 400 so that there is exactly one real number ¢, = t.(d) with g(t.) = 0.
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In order to show that t, < d — 1 we prove the inequality
gld—1)=1+2"" 4+ (d—1)log2 — 2dlog2 > 0

which is true for d = 1. Moreover g(d) — g(d — 1) = 2971 —log2 > 1 — log2 > 0 so that
indeed g(d — 1) > 0 for all d > 1. Consequently, ¢, < d — 1.

2. In order to show (4.7) we put 2'* = 7.d with suitable 7, = 7.(d). Then we have
g(t.) = 1+ 7.d + logy(7.d) log 2 — 2dlog2 = 0
so that 7, is a zero of the function
h(7,d) =1+ 7d + log(7d) — 2dlog 2.

We show that a < 7, < 2 where a = 2log2 — 1. Note that 0 < a < 1 and hence h(a,1) =
1+a+loga—2log2 =1loga < 0. Moreover

h(a,d+ 1) — h(a,d) = a+log(d+ 1) —logd — 2log2 < a —2log2 = —1
so that h(a,d) < 0 for all d > 1. On the other hand
h(2,d) =1+ 2d +1log2 + logd — 4log2 > 3 — 3log2 > 0

and it follows a < 7, < 2 since h(7,d) is strictly increasing with respect to 7.
Finally, with ¢, = log,(7.d) we get

(log, 7w + logy d)1ed + 2d

flt) = 1+ 7.d
Ted(logy 7 — 1) 2d
= log,d
082+ 1+ 7.d 1+ 7.d
where in view of a < 7, < 2 it holds

Ted(logy 7 — 1) 2d 2

~ 1 . — 1’ ~ —

1+ 7.d 0827 1+7.d T
as d — oo. This implies (4.7). O

Corollary 4.4 The function (4.6) attains its minimum ezactly at one point t, where
tn < d, —1 and it holds f,(t,) =logy d, + O(1), i.e.

———" >1logyd, + O(1).



On the improper derivatives of Takagi’s . .. 11

Proposition 4.5 The Takagi function has at the non-dyadic point x with the represen-
tation (1.2) the left-side improper derivative T' (x) = oo if and only if
D,, —d, +logyd, — oo (4.8)

as n — 0.

Proof: First we assume that x has the expansion (2.4). For given positive integer m let be
y = 0,mny ... a number with n, =&, for v <m, n,, =0, &, = 1 so that z — 21" <y < .

Again, we investigate the term

T(x) —T(y)
T —y
as m — 0o. Note that
k+r Ly N
T=—n k=2 Zg—w r=2 Z;
v=1 v=m+1
where 0 < r < 1 since x is not dyadic rational. In view of
<m‘1gy+ 1 k-1 1  k NG k-t
y— v 21/_ 2m 2m_2m y— v 2m
v=1 v=m+1 v=1

we have y = (k—h)/2™ with 0 < h < 1. Let a,, < m < a,41 then we get the representations
(4.2) and (4.3) where k,, = k/2™7% is an odd integer, r, = r/2™ % h, = h/2"" % and
m — oo if and only if n — oco.

In case h, = 0 we get by Lemma 4.1

@) =T _,, ., Tl
r—y " Tn

> D,,. (4.9)

In case h,, > 0 we put h,, = 2!»r, with t,, from Corollary 4.4 which is only possible if 2t» < 1.

But ¢, < d,, — 1 and in view of d,, — 1 < log, %, cf. (4.4), in fact 2!y, < 29~1p < 1. By

Lemma 4.2 and Corollary 4.4 we have
T(x)—-T
@) =TW) 5 p, —d, +logyd, + O() (4.10)

T —y
where we have equality if we choose y such that h, = 2'r, in (4.3). From (4.9) we see that
(4.10) is also valid in case h,, = 0 since —d,, + log, d,, < 0.

Now it is easy to finish the proof. If (4.8) is satisfied then by (4.10) we obtain 7" (x) = oc.
Conversely, if (4.8) fails then there is a strictly increasing sequence {n'} of integers so that
D, , —dy +1logyd,y — K < 00 asn’ — oo. We use (4.2), (4.3) both with n’ instead of n,
where we put h, = 2''r,,. Then by (4.10)

T(x) = T(y)

=Dy — dn’ + 10g2 dn’ + 0(1)
r—y
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so that

T(x)-T
liminfM < 0.
y—z— r—y

Thus, the proposition is proved. 0

Remark 4.6 The condition (4.8) can also be written as
dn

2Dan27n — 00 (4.11)
as in (ii) of the Introduction.
Remark 4.7 Note that D, = a,—2n — oo is equivalent to D,, — oco. It is enough to show
that D, — oo implies D,, — co. We assume that a,, < m < a,4; then O,, = m—n > a,—n,
I, = n so that D,, = O, — I, > a,, — 2n = D,, — oo. So (4.11) is satisfied if D,, — oo
and d,, is bounded. It follows that T"(z) = oo if D,, — oo and if the number of consecutive

zeros in the dyadic representation of = is bounded, cf. |5, Proposition 5.3|.

Acknowledgement. The author wishes to thank Kiko Kawamura for her hint to the note
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Supplement. K. Kawamura and P. C. Allaart also have found the conditions for the exis-

tence of the improper derivatives of Takagi’s function, cf. [1].
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