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ABSTRACT. The well-known Delange formula expressed the usual sum-of-digits function
to a basis q ≥ 2 by means of a continuous, nowhere differentiable function. The aim of this
paper is to clarify the actually reason for this phenomenon. For this we show that specific
Knopp functions satisfy functional equations which allow to calculate, for any positive integer
n, the number of times of digits in the q-ary representation of n which are equal to a fixed
m ∈ {1, . . . , q − 1}. By linear combination for arbitrary Knopp functions we get functional
equations contained certain digital sums. These functional equations imply sum formulas for
certain digital sums. Simple examples are the formula of Delange for the usual sum-of-digits
function and a formula for the number of zeros
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1 Introduction

Throughout in this paper let q be a fixed integer with q ≥ 2. For an integer k ∈ N we
introduce the q-ary representation

k =
∞∑
j=0

ajq
j (1.1)

with aj ∈ {0, 1, . . . , q − 1} and aj = 0 for j > logq k. It is known that the sum

S(n) =
n−1∑
k=1

s(k), (1.2)

where s(k) = a0 + a1 + . . ., can be represented by the Delange formula [3]
1

n
S(n) =

q − 1

2
logq n+ F

(
logq n

)
(1.3)

where F (u) is a continuous, nowhere differentiable function with the period 1, cf. [9] for
q = 2. In the case q = 2 this function can be expressed by

F (u) = −u
2
− 1

2u+1
T (2u) (u ≤ 0)
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where T is Takagi’s function, cf. [6]. Takagi’s function T is defined by

T (x) =
∞∑
n=0

∆ (2nx)

2n
(0 ≤ x ≤ 1) (1.4)

where ∆(x) = dist(x,Z), and it was introduced in 1903 by T. Takagi [8] as an example of a
continuous, nowhere differentiable function.

In this paper we investigate so-called Knopp functions ([7])

G(x) =
∞∑
ν=0

g (qνx)

qν
(x ∈ R) (1.5)

where the function g(x) is continuous, 1-periodic with g(0) = g(1) = 0 and linear in the
intervals [k

q
, k+1

q
], (k ∈ Z). First we consider q−1 specific functions gm(x) (m ∈ {1, . . . , q−1})

which form a basis for all such g(x), i.e.

g(x) =

q−1∑
m=1

λmgm(x) (x ∈ R) (1.6)

with suitable coefficients λm. By means of certain functional equations for the corresponding
Knopp functions

Gm(x) =
∞∑
ν=0

gm (qνx)

qν
(x ∈ R) (1.7)

we are able to express the number sm(k) of exactly those digits of the integer k in the q-ary
representation which equal m. We show that

1

n

n−1∑
k=1

sm(k) =
1

q
logq n+ Fm

(
logq n

)
(1.8)

where Fm(u) is a continuous nowhere differentiable function with period 1 which is connected
with Gm by

Fm(u) = −u
q
− 1

qu+1
Gm(qu) (u ≤ 0).

The coefficients of the Fourier expansion of Fm can be expressed by means of the Hurwitz
zeta function ζ(s, a) which for Re s > 1 is defined by

ζ(s, a) =
∞∑
n=0

1

(n+ a)s
(1.9)

where a is a fixed real number, 0 < a ≤ 1. When a = 1 this reduces to the Riemann zeta
function, ζ(s) = ζ(s, 1), cf. [1], p. 249.
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Next for arbitrary numbers λ1, . . . , λp−1 we consider the Knopp function G from (1.5) with
g from (1.6) and the function

s(k) =

q−1∑
m=1

λmsm(k) (k ∈ N0). (1.10)

For the sum (1.2) with s(k) from (1.10) we show that it holds the formula

1

n
S(n) =

1

q
S(q) logq n+ F (logq n) (1.11)

where F is a 1-periodic continuous nowhere differentiable function. Moreover, we can express
the Fourier coefficients of F by means of the zeta function ζ(s, a). The connection between
F in (1.11) and G from (1.5) with g from (1.6) is given by

F (u) = −1

q
S(q)u− 1

qu+1
G(qu) (u ≤ 0). (1.12)

As application we get formulas for several digital sums. In particular, for λm = m (m =

1, . . . , q−1) we get the formula (1.3) of Delange for the sum-of-digits function and for λm = 1

a formula for the number of all digits which are different from zero. Finally, we also give a
formula for the number of zeros.

2 Functional equations for specific Knopp functions

Throughout in this paper let q be a fixed integer with q ≥ 2. In this paper for m ∈
{1, . . . , q − 1} we need the function Gm defined by (1.7) where the generated function gm is
given by

gm(x) =


x for 0 ≤ x ≤ m

q
,

m− (q − 1)x for m
q
≤ x ≤ m+1

q
,

x− 1 for m+1
q
≤ x ≤ 1 ,

(2.1)

and by gm(x+ 1) = gm(x) for x ∈ R. This function can also be written as

gm(x) = x−
[qx
m

]
(qx−m) +

[
qx

m+ 1

]
(qx−m− 1) (0 ≤ x ≤ 1). (2.2)

In particular, for k ∈ {0, 1, . . . , q} we have

gm

(
k

q

)
=


k
q

for 1 ≤ k ≤ m ,

k−q
q

for m < k ≤ q − 1 .
(2.3)
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Obviously, the function Gm from (1.7) is continuous with Gm(0) = 0 and it holds Gm(x+1) =

Gm(x) for x ∈ R. The function Gm satisfies the functional equation

Gm

(
x

q

)
= gm

(
x

q

)
+

1

q
Gm(x) (x ∈ R). (2.4)

The function sm(k) which counts the digits m in (1.1) is given for k ∈ {0, 1, . . . , q − 1} by

sm(k) =

 1 for k = m ,

0 for k 6= m
(2.5)

and for arbitrary k ∈ N0 and r ∈ {0, 1, . . . , q − 1} by

sm(qk + r) = sm(k) + sm(r). (2.6)

Proposition 2.1 For m ∈ {1, . . . , q − 1} the function Gm from (1.7) satisfies the func-
tional equations

Gm

(
k + x

q`

)
= Gm

(
k

q`

)
+
`− qsm(k)

q`
x+

1

q`
Gm(x) (2.7)

where ` ∈ N, k = 0, 1, . . . , q` − 1, x ∈ [0, 1]. Moreover, for n = 0, 1, . . . , q` we have

Gm

(
n

q`

)
=
n`

q`
− 1

q`−1

n−1∑
k=0

sm(k). (2.8)

Proof: Since gm(r) = 0 for r ∈ N0 we get from (1.7) that

Gm

(
k

q`

)
=

n−1∑
ν=0

gm(qν k
q`

)

qν

and this implies

Gm

(
k + x

q`

)
−Gm

(
k

q`

)
=

`−1∑
ν=0

gm(qν k+x
q`

)− gm(qν k
q`

)

qν
+
∞∑
ν=`

gm(qν k+x
q`

)

qν
.

For ν ≥ ` we find with µ = ν− ` ≥ 0 that gm(qν k+x
q`

) = gm(qµk+ qµx) = gm(qµx) so that the
last sum in the last equation is equal to 1

q`
Gm(x). For ν = 0, . . . , `− 1 there is no integer in

the open interval (qν k
q`
, qν k+1

q`
), and hence the both numbers qν k+x

q`
and qν k

q`
belong to the

same interval of the form [r + s
q
, r + s+1

q
] with r ∈ N0 and s ∈ {0, 1, . . . , q − 1}. Since gm is

linear in each of these intervals we find that

gm(qν k+x
q`

)− gm(qν k
q`

)

qν
= εν

x

q`
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where εν = −(q − 1) when qν k
q`
∈ [r + m

q
, r + m+1

q
] and where εν = +1 elsewhere in view of

(2.1). If k has the representation (1.1) then we write shortly k
q`

= a`, a`−1 . . . a0 with a` = 0

since k < q` and then qν k
q`

= a` . . . a`−ν , a`−ν−1 . . . a0 for 0 ≤ ν ≤ `− 1. Hence εν = −(q− 1)

when a`−ν−1 = m which happens for sm(k) elements, and εν = +1 when a`−ν−1 6= m which
happens for `− sm(k) elements. This implies

`−1∑
ν=0

εν = −(q − 1)sm(k) + `− sm(k) = `− qsm(k)

and hence (2.7) is proved. Equation (2.8) follows from (2.7) with x = 1 and summation over
k in view of Gm(1) = 0. �

3 The number of occurrences of a single digit

The equation (2.8) can be considered as sum formula for

Sm(n) =
n−1∑
k=1

sm(k) (3.1)

which is equal to the number of digits m in the q-ary representations of the integers 1, 2, . . . ,

n− 1. For this sum we have according to (2.8)

Sm(n) =
n`

q
− q`−1Gm

(
n

q`

)
(3.2)

where n ≤ q` and Gm is given by (1.7). In particular, for n = q` we find from (3.2) in view
of Gm(1) = 0 that the special sum Sm(q`) = `q`−1 is independent of m.

In order to obtain a representation of Sm(k) (m ∈ {1, . . . , q − 1}) which does not contain `
we introduce the function

fm(x) = −1

q

{
1

x
Gm(x) + logq x

}
(0 < x ≤ 1). (3.3)

For 0 < x ≤ 1 equation (2.4) simplifies to

Gm

(
x

q

)
=
x

q
+

1

q
Gm(x),

and therefore the function fm has the property

fm

(
x

q

)
= fm(x) (0 < x ≤ 1).

Hence, we can extend the function fm(x) for all x > 0 by

fm(qx) = fm(x) (x > 0). (3.4)
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Theorem 3.1 For the number of digits equal to m (m ∈ {1, . . . , q − 1}) in the q-ary
representation of the integers 1, 2, . . . , n− 1 we have

1

n
Sm(n) =

1

q
logq n+ fm(n) (3.5)

where fm is given by (3.3) and (3.4).

Proof: From (3.2) we get

1

n
Sm(n) =

1

q

{
`− q`

n
Gm

(
n

q`

)}
.

By means of (3.3) the term in brackets can be written as

`− q`

n
Gm

(
n

q`

)
= logq n−

q`

n
Gm

(
n

q`

)
− logq

n

q`
= logq n+ qfm

(
n

q`

)
.

In view of the property (3.4) we have

fm

(
n

q`

)
= fm(n)

so that the representation (3.5) follows. �

4 Periodic functions and Fourier expansions

According to (3.4) the function

Fm(u) = fm(qu) (u ∈ R) (4.1)

is periodic with period 1 so that in view of (3.3) Theorem 3.1 implies the

Corollary 4.1 Let m be a fixed integer with 1 ≤ m ≤ q − 1. Then for the sum (3.1) we
have

1

n
Sm(n) =

1

q
logq n+ Fm(logq n) (4.2)

where Fm is a continuous function of period 1 which is given by

Fm(u) = −u
q
− 1

qu+1
Gm(qu) (u ≤ 0) (4.3)

with Gm from (1.7).

In order to determine the Fourier expansion of the periodic function Fm(u) we need the zeta
function ζ(s, a) defined by (1.9) for Re s > 1 and 0 < a ≤ 1. The only singularity of ζ(s, a)

is at the point s = 1, cf. [10], p. 265.
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Lemma 4.2 Let be m ∈ {1, . . . , q − 1} and 0 < α ≤ m
q
. Then for the periodic function

gm from (2.1) we have for Re s > −1, s 6= 0, 1∫ ∞
α

gm(x)

xs+2
dx =

1

sαs
+ q

ζ(s, m+1
q

)− ζ(s, m
q

)

s(s+ 1)
. (4.4)

Moreover, for the excluded values s = 0 and s = 1 we have∫ ∞
α

gm(x)

x2
dx = 1− logα + q log

Γ(m+1
q

)

Γ(m
q

)
(4.5)

and ∫ ∞
α

gm(x)

x3
dx =

1

α
+
q

2

{
Γ′(m

q
)

Γ(m
q

)
−

Γ′(m+1
q

)

Γ(m+1
q

)

}
. (4.6)

Proof: The integral (4.4), denoted by Im(s), converges absolutely for Re s > −1. In view
of (2.2) we have

Im(s) =

∫ ∞
α

x− [x]

xs+2
dx− Jm(s) + Jm+1(s)

where
Jm(s) =

∫ ∞
α

1

xs+2

[
(x− [x])q

m

]
((x− [x])q −m) dx.

For Re s > 0 the first integral can be computed by∫ ∞
α

dx

xs+1
=

1

sαs

and ∫ ∞
α

[x]

xs+2
dx =

∫ ∞
1

[x]

xs+2
dx =

1

s+ 1
ζ(s+ 1),

cf. [3] (see also [1], p. 246). Moreover, for Re s > 1 we have

Jm(s) =
∞∑
n=0

q

∫ n+1

n+m/q

dx

xs+1
−
∞∑
n=0

(nq +m)

∫ n+1

n+m/q

dx

xs+2

=
q

s

∞∑
n=0

(
1

(n+ m
q

)s
− 1

(n+ 1)s

)
− 1

s+ 1

∞∑
n=0

(
nq +m

(n+ m
q

)s+1
− nq +m

(n+ 1)s+1

)

=
1

s+ 1

∞∑
n=0

nq +m

(n+ 1)s+1
+
qζ(s, m

q
)

s(s+ 1)
− q

s
ζ(s)

so that

Jm+1(s)− Jm(s) =
1

s+ 1
ζ(s+ 1) + q

ζ(s, m+1
q

)− ζ(s, m
q

)

s(s+ 1)
.

Hence,

Im(s) =
1

sαs
+ q

ζ(s, m+1
q

)− ζ(s, m
q

)

s(s+ 1)
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which proves (4.4) for Re s > 1. Since ζ(s, a) is analytic for s 6= 1 it follows that (4.4) is
valid for Re s > −1 excluded s = 0 and s = 1. In order to determine Im(0) we let s tend to
zero and by means of the rule of de l’ Hospital we get

Im(0) = lim
s→0

Im(s)

= log 1
α

+ qζ ′(0, m+1
q

)− qζ ′(0, m
q

)− qζ(0, m+1
q

) + qζ(0, m
q

)

= − logα + 1 + q log Γ(m+1
q

)− q log Γ(m
q

),

since ζ(0, a) = 1
2
− a and ζ ′(0, a) = log Γ(a) − 1

2
log (2π) (cf. [10], p. 271), and so we get

(4.5). Finally, in view of

lim
s→1

(
ζ(s, a)− 1

s− 1

)
= −Γ′(a)

Γ(a)

(cf. [10], p. 271), we obtain

lim
s→1

(ζ(s, a)− ζ(s, b)) =
Γ′(b)

Γ(b)
− Γ′(a)

Γ(a)

and therefore (4.6). �

Proposition 4.3 The continuous 1-periodic function Fm(u) has the Fourier expansion

Fm(u) =
∑
k∈Z

cmke
2kπiu (4.7)

with

cm0 = logq

(
Γ(m

q
)

Γ(m+1
q

)

)
− 1

2q
− 1

q log q
, (4.8)

cmk =
ζ(sk,

m
q

)− ζ(sk,
m+1
q

)

sk(sk + 1) log q
, sk =

2πik

log q
, k 6= 0. (4.9)

Proof: In view of the periodicity of Fm(u) we have from (4.3)

Fm(u) =
1

q
(1− u)− 1

qu
Gm(qu−1) (0 ≤ u ≤ 1).

As in [3], p. 44, for the Fourier coefficients

cmk =

∫ 1

0

Fm(u)e−2kπiudu

we put cmk = amk + bmk with

amk =
1

q

∫ 1

0

(1− u)e−2kπiudu,
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i.e. am0 = 1
2q

and amk = 1
2qkπi

for k 6= 0, and

bmk = −
∫ 1

0

1

qu
Gm(qu−1)e−2kπiudu = −

∞∑
ν=0

∫ 1

0

1

qu+ν
gm(qu+ν−1)e−2kπiudu.

As in [3] we get by means of the substitution u = 1− ν + logq x that∫ 1

0

1

qu+ν
gm(qu+ν−1)e−2kπiudu =

1

q log q

∫ qν

qν−1

1

x2
gm(x)e−2πik logq xdx

and hence
bmk = − 1

q log q

∫ ∞
1/q

gm(x)

x2+2kπi/ log q
dx.

By Lemma 4.2 with α = 1
q
we get the assertion. �

5 General Knopp functions

Now we consider the general Knopp function

G(x) =
∞∑
ν=0

g(qνx)

qν
(x ∈ R). (5.1)

where the function g is continuous, 1-periodic with g(0) = 0, and linear in each interval
[k
q
, k+1

q
], (k ∈ Z). Since the functions gm from (2.1) form a basis for these functions, every g

can be written as linear combination

g(x) =

q−1∑
m=1

λmgm(x) (x ∈ R) (5.2)

with certain coefficients λm (m ∈ {1, . . . , q − 1}). From (2.1) we get

g

(
k

q

)
=

(
k

q
− 1

) k−1∑
m=1

λm +
k

q

q−1∑
m=k

λm (5.3)

and it easy to see that

λm = g

(
1

q

)
+ g

(
m

q

)
− g

(
m+ 1

q

)
. (5.4)

According to (5.2) the Knopp function G from (5.1) can be written as

G(x) =

q−1∑
m=1

λmGm(x) (x ∈ R) (5.5)

with Gm from (1.7).
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Now for k ∈ N0 we consider the function

s(k) =

q−1∑
m=1

λmsm(k) (5.6)

with sm(k) from (2.5) and (2.6). By (2.5) we have s(0) = 0 and s(m) = λm for m =

1, . . . , q − 1, and (2.6) implies

s(kq + r) = s(k) + s(r) (5.7)

for k ∈ N0 and r ∈ {0, 1, . . . , q − 1}.

Proposition 5.1 Every function s(k) with the property (5.7) can be written in the form
(5.6) with

λm = s(m) (m = 1, . . . , q − 1). (5.8)

Proof: Assume that s(k) is a given function satisfying (5.7) then for k ∈ N0 we put

s0(k) = s(k)−
q−1∑
m=1

s(m)sm(k). (5.9)

In view of (2.5) it holds s0(k) = 0 for k = 0, 1, . . . , q − 1. Moreover, according to (5.7) and
(2.6) we have for k ∈ N0 and r ∈ {0, 1, . . . , q − 1}

s0(qk + r) = s0(k) + s0(r).

It follows s0(k) = 0 for all k ∈ N0 so that (5.9) implies the assertion. �

Let

S(n) =
n−1∑
k=1

s(k) (5.10)

with s(k) from (5.6), then (5.3) can be written as

g

(
k

q

)
=
k

q
S(q)− S(k) (k = 0, 1, . . . , q). (5.11)

In particular, g(0) = g(1) = 0 and g(1
q
) = 1

q
S(q).

In view of (5.5), (5.6) and (5.10) we get from Proposition 2.1 the
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Theorem 5.2 For ` ∈ N, k = 0, 1, . . . , q` − 1, x ∈ [0, 1] the Knopp function G from
(5.1) with g from (5.2) satisfies the functional equations

G

(
k + x

q`

)
= G

(
k

q`

)
+
S(q)`− qs(k)

q`
x+

1

q`
G(x). (5.12)

Moreover, for n = 0, 1, . . . , q` we have

G

(
n

q`

)
=
S(q)n`− qS(n)

q`
(5.13)

with S(n) from (5.10).

It is known that in case g(x) 6≡ 0 the Knopp function G from (5.1) is nowhere differentiable,
cf. [2] and [5]. In [5] it was shown even that in the case g(x) 6≡ 0 the function G from
(5.1) does not have anywhere a finite one-sided derivative. We show that this property is a
consequence of (5.12) where we need the following simple lemma, cf. [4].

Lemma 5.3 Let f : [0, 1] 7→ R have a finite right-hand derivative f ′+(x0) at the point
x0 ∈ [0, 1). Let further (u`) and (v`) be sequences in [0, 1] with x0 < u` < v` for all ` ∈ N
and v` → x0 as `→∞. If there exists a p > 0 with u` − x0 ≤ p(v` − u`) for all ` ∈ N then

f(v`)− f(u`)

v` − u`
→ f ′+(x0) (`→∞).

Proposition 5.4 If g(x) 6≡ 0 then the Knopp function G from (5.1) has nowhere a finite
one-sided derivative.

Proof: Assume, at x0 ∈ [0, 1) there exists the finite right-hand derivative G′+(x0). For
` ∈ N and k = 0, 1, . . . , q` − 1 we put xk,` = k/q` and Na,b = {k ∈ N : a ≤ k ≤ b}. If
xk′,` ≤ x0 < xk′+1,` then for every k ∈ Nk′+1,k′+2q−1 we put uk,` = xk,` and vk,` = xk+1,` so
that x0 < uk,` < vk,` and uk,` − x0 ≤ p(vk,` − uk,`) with p = 2q. Applying (5.12) with x = 1

we get

G(vk,`)−G(uk,`)

vk,` − uk,`
− G(vk+1,`)−G(uk+1,`)

vk+1,` − uk+1,`

= {S(q)`− qs(k)} − {S(q)`− qs(k + 1)}

and Lemma 5.3 implies that for k ∈ Nk′+1,k′+2q−1 we have

s(k + 1)− s(k)→ 0 (`→∞).

The set Nk′+1,k′+2q−1 contains a section of the form Nd,d+q−2 with d = qk0 ≤ k′ + q. For
k ∈ Nd,d+q−2, i.e. k = qk0 + r with r = 0, 1, . . . , q− 2, we have in view of (5.7) and (5.8) that
s(k) = s(qk0 + r) = s(k0) + s(r) = s(k0) + λr with λ0 = 0 and hence

s(k + 1)− s(k) = λr+1 − λr → 0 (`→∞).

This implies λr = 0 for all r = 1, . . . , q − 1 since λ0 = 0. �
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6 Digital sums

From Corollary 4.1, Proposition 4.3 and Proposition 5.4 we get for the sum S(n) from (5.10)
in view of λm = s(m) for m = 1, . . . , q − 1 and λ1 + . . . + λq−1 = S(q) the main result
concerning digital sums.

Theorem 6.1 For S(n) from (5.10) with s(k) from (5.6) we have the formula

1

n
S(n) =

S(q)

q
logq n+ F (logq n) (6.1)

where F (u) = λ1F1(u) + . . . + λq−1Fq−1(u) is a continuous, nowhere differentiable function
of period 1 which is given by

F (u) = −S(q)u

q
− 1

qu+1
G(qu) (u ≤ 0) (6.2)

with G from (5.1). The Fourier coefficients of F read

ck =

q−1∑
m=1

λmcmk (6.3)

with cmk from (4.8), (4.9).

We want to point out this for two examples.

1. The sum-of-digits function. For the sum of digits in the q-ary expansion of the integer
k we have λm = s(m) = m for m ∈ {1, . . . , q − 1}. Theorem 6.1 for λm = m yields the
well-known formula (1.3) of Delange where F is a continuous nowhere differentiable function
which is given by

F (u) = −q − 1

2
u− 1

qu+1
G(qu) (u ≤ 0) (6.4)

where G is given by (5.1) with g from (5.2). The Fourier coefficients of F (u) are

c0 =
q − 1

2
logq(2π)− q + 1

4
− q − 1

2 log q
,

ck = −q − 1

log q

ζ(sk)

sk(sk + 1)
, sk =

2kπi

log q
, k 6= 0

which follow from (6.3) with λm = m in view of the relations

q−1∏
m=1

(
Γ(m

q
)

Γ(m+1
q

)

)m

=

q−1∏
m=1

Γ

(
m

q

)
=

(2π)
q−1
2

√
q
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and
q−1∑
m=1

m
(
ζ(s, m

q
)− ζ(s, m+1

q
)
)

=
q−1∑
m=1

ζ(s, m
q

)− (q − 1)ζ(s)

= (qs − q)ζ(s).

2. The number of digits different from zero. For the number of digits which are
different from zero in the q-ary representation of the integer k we have (5.6) with λm = 1 for
m ∈ {1, . . . , q − 1} and the function (5.2) for 0 ≤ x ≤ 1 reads

g(x) =

q−1∑
m=1

gm(x) =

 (q − 1)x for 0 ≤ x ≤ 1
q
,

1− x for 1
q
< x ≤ 1 .

(6.5)

Theorem 6.1 for λm = 1 yields:

Corollary 6.2 Let S(n) denote the numbers of digits different from zero in the q-ary
representations of the integers 1, 2, . . . , n− 1. Then it holds

1

n
S(n) =

q − 1

q
logq n+ F (logq n) (6.6)

where F (u) is a continuous nowhere differentiable function of period 1 which is given by

F (u) = −(q − 1)u

q
− 1

qu+1
G(qu) (u ≤ 0) (6.7)

where G is given by (5.1) with g from (5.2). The Fourier expansion of the periodic function
F (u) has the coefficients

c0 = logq Γ

(
1

q

)
− q − 1

2q
− q − 1

q log q
,

ck =
ζ(sk,

1
q
)− ζ(sk)

sk(sk + 1) log q
, sk =

2kπi

log q
, k 6= 0.

7 The number of zeros

In Corollary 4.1 we have given a formula for the number of a fixed digit m ∈ {1, . . . , q − 1}.
Now, we consider the digit m = 0. In order to determine the number of zeros in the q-ary
expansion first we compute the number of all digits. Let a(k) denote the number of all digits
in the q-ary expansion of k, i.e. a(k) = ` + 1 if q` ≤ k < q`+1. We state a formula for the
sum

A(n) =
n−1∑
k=1

a(k). (7.1)
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Proposition 7.1 For the number of all digits in the q-ary representations of the integers
1, 2, . . . , n− 1 we have

1

n
A(n) = logq n+

1

(q − 1)n
+H(logq n) (7.2)

where H is a continuous function of period 1 which is given by

H(u) = 1− u− 1

q − 1
q1−u (0 ≤ u < 1). (7.3)

Proof: We have a(k) = 1 for k = 1, . . . , q−1, a(k) = 2 for k = q, . . . , q2−1 and so on. Since
for k ≥ 1 the first digit may be 1, . . . , q − 1 and the following digits may be 0, 1, . . . , q − 1

we get for the sum (7.1) the special values A(q) = q − 1, A(q2) = q − 1 + 2q(q − 1),
A(q3) = q − 1 + 2q(q − 1) + 3q2(q − 1) and in general

A(q`) = (q − 1)(1 + 2q + 3q2 + . . .+ `q`−1).

In view of

1 + 2t+ 3t2 + . . .+ `t`−1 =
(`+ 1)t`(t− 1)− (t`+1 − 1)

(t− 1)2
(t 6= 1)

we get

A(q`) = `q` − q` − 1

q − 1
.

It follows for 0 ≤ k ≤ q`+1 − q` that

A(q` + k) = `q` − q` − 1

q − 1
+ (`+ 1)k

i.e.

A(q` + k) = `(q` + k)− q` − 1

q − 1
+ k.

Write n = q` + k = q`(1 + x) with 0 ≤ x < q − 1 we get in view of q`

n
= 1

1+x
, k
n

= 1 − 1
1+x

and ` = logq n+ logq(
q`

n
) = logq n− logq(1 + x)

1

n
A(n) = `− q` − 1

n(q − 1)
+
k

n

= logq n+
1

n(q − 1)
+

{
− logq(1 + x)− 1

(q − 1)(1 + x)
+ 1− 1

1 + x

}
= logq n+

1

n(q − 1)
+

{
1− logq(1 + x)− q

(q − 1)(1 + x)

}
.

This yields the assertion since in view of the periodicity of H we have for n = q`(1 + x)

H(logq n) = H(logq[q
`(1 + x)]) = H(logq(1 + x)) = H(u)

with 1 + x = qu (0 ≤ u < 1). �

The following result is a generalization of Theorem 3.2 in [6].
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Proposition 7.2 Let s0(k) be the number of zeros of k in the q-ary representation of
k. Then it holds

1

n

n−1∑
k=1

s0(k) =
logq n

q
+

1

(q − 1)n
+ F0(logq n) (7.4)

where F0 is a continuous nowhere differentiable function of period 1 which is given by

F0(u) =
1− u
q

+
1

qu
G(qu−1)− q1−u

q − 1
(0 ≤ u < 1) (7.5)

where G is given by (5.1) with the 1-periodic function g given by (6.5). The continuous
periodic function F0(u) has the Fourier expansion

F0(u) =
∑
k∈Z

c0ke
2kπiu (7.6)

with

c00 =
2q − 1

2q
− 1

q log q
− logq Γ

(
1

q

)
,

c0k =
1− ζ(sk) + ζ(sk,

1
q
)

sk(sk + 1) log q
, sk =

2πik

log q
, k 6= 0.

Proof: We have s0(n) = a(n) − s(n) where a(n) counts the number of all digits of n in
the q-ary expansion and s(n) counts the number of all digits different from zero. Hence
Proposition 7.1 and Corollary 6.2 imply the assertion. Formulas (6.6) and (7.2) imply (7.4)
with F0(u) = H(u) − F (u). Since the Fourier coefficients ck of F are known, we have to
compute the Fourier coefficients hk of

H(u) =
∑
k∈Z

hke
2kπiu.

We put hk = ak + bk with

ak =

∫ 1

0

(1− u)e−2kπiudu,

i.e. a0 = 1
2
and ak = 1

2kπi
for k 6= 0, and

bk =
−q
q − 1

∫ 1

0

q−ue−2kπiudu.

Substitution x = qu yields that∫ 1

0

q−ue−2kπiudu =
1

log q

∫ q

1

1

x2
e−2πik logq xdx

and hence
bk = − q

(q − 1) log q

∫ q

1

dx

x2+2kπi/ log q
.
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So bk = −1
log q+2kπi

and by hk = ak + bk we get h0 = 1
2
− 1

log q
and

hk =
1

sk(1 + sk) log q
, sk =

2kπi

log q
, k 6= 0.

This completes the proof. �
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