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ABSTRACT. We present in this paper results for the sign of the weak solutions of some el-
liptic systems defined in RN involving Schrödinger operators with indefinite weight functions
and with potentials which tend to infinity at infinity.
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1 Introduction

1.1 The problem settings

We study the elliptic system:

(−∆ + qi)ui = µimiui + gi(x, u1, . . . , un) in RN , i = 1, . . . , n, (1.1)

for i = 1, . . . , n. We consider the following hypothesis for each i = 1, . . . , n :

(H1
q) qi ∈ L2

loc(RN) ∩ Lploc(RN), p > N
2
, such that lim|x|→∞ qi(x) =∞ and qi ≥ cst > 0.

We will later specify the form and the hypotheses on each weight mi and on each function
gi and we denote by µi real parameters for i = 1, . . . , n. The variational space is denoted by
Vq1(RN)× · · · × Vqn(RN), where for each i = 1, . . . , n, Vqi(RN) is the completion of D(RN),
the set of C∞ functions with compact supports, with respect to the norm

‖u‖2
qi

=

∫
RN

[|∇u|2 + qiu
2]. (1.2)

We recall that the embedding of each Vqi(RN) into L2(RN) is compact.

The aim of this paper is to study the sign of the solutions of (1.1). This extends earlier
results already obtained for the Laplacian operator in a bounded domain (see [16, 18]), for
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equations or systems involving Schrödinger operators −∆ + qi in RN with positive weights
(see [9–11]).

Our paper is organized as follows: In section 1.2 we recall some results for the scalar case,
for the existence of principal eigenvalues in the case of indefinite weights. We also recall
extensions of the maximum and antimaximum principles called ground state positivity and
negativity (see [3, 4]). We study systems of the form (1.1) in Section 2. In Section 2.1 we give
results for the maximum principle in the case of cooperative systems (2.1) by considering the
positive principal eigenvalue and the negative principal eigenvalue of each operator −∆ + qi

associated with the indefinite weightmi. Note that our results are more restrictive than those
usually obtained when the weights mi are positive (see [11, 16, 18]). In Section 2.2, first we
give a result concerning the existence (and also Courant-Fischer formula) of a global positive
eigenvalue Λ1,M for the cooperative system (2.8). Note that we can compare Λ1,M to each
principal eigenvalue of −∆ + qi associated with mi. Then we obtain a maximum principal
result for (2.8). Finally, in Section 2.3, for the two-by-two system (2.17), we present some
results for the sign of the solutions. We decouple the system (2.17) in order to apply the
results of the ground state positivity or negativity for each equation. Note that even if
our conditions are restrictive, there are few results for the antimaximum principle for such
systems (see [2]). Besides note that, to our knowledge, even the antimaximum principle,
for the operator −∆ + q associated with an indefinite weight function m defined in the
whole space, is not achieved yet (whereas it is well known for the Laplacian operator −∆

on a bounded domain in the case of an indefinite weight function, see [20], and for the
Schrödinger operator −∆ + q in RN but without any weight, see [3, 4]). In Appendix A, we
give a brief recall of the proof of the antimaximum principle for the scalar case in the case
of a positive and bounded weight m.

1.2 Review of results for the scalar case

1.2.1 The Schrödinger operator

We begin this section studying the Schrödinger operator −∆ + q associated with the weight
m. We will assume throughout the paper that q is a potential which satisfies (H1

q). The
weight m will assume one of the following hypotheses:

(H1
m) There exist two positive reals α and β such that 0 < α ≤ m ≤ β in RN .

(H∗1m) 0 < m ≤ cst in RN .

(H2
m) m ∈ LN/2(RN) ∩ L∞loc(RN) (N ≥ 3), m ≥ 0, meas{x ∈ RN ,m(x) > 0} 6= 0.
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(H′1m) m ∈ L∞(RN), m is positive in an open subset Ω+
m = {x ∈ RN ,m(x) > 0} with non

zero measure and m is negative in an open subset Ω−m = {x ∈ RN ,m(x) < 0} with non
zero measure.

(H′2m) m ∈ LN/2(RN) ∩ L∞loc(RN) (N ≥ 3), meas(Ω+
m) > 0, meas(Ω−m) > 0.

For a positive weight m, we have:

Theorem 1.1 (cf. [12, Theorems 2.1,2.2]) Assume that q satisfies (H1
q) and m satisfies

(H1
m) or (H∗1m ) or (H2

m). Then there exists a unique principal eigenvalue λ1,q,m which is
simple and associated with a positive eigenfunction φ1,q,m and:

(−∆ + q)φ1,q,m = λ1,q,m m φ1,q,m in RN ; λ1,q,m > 0; φ1,q,m > 0. (1.3)

λ1,q,m = inf{
∫
RN [|∇φ|2 + qφ2]∫

RN mφ2
, φ ∈ Vq(RN) s. t.

∫
RN

mφ2 > 0}. (1.4)

For a weight m which changes sign in RN , we have:

Theorem 1.2 (cf. [12, Theorem 3.1]) Assume that q satisfies (H1
q) and m satisfies (H′1m)

or (H′2m). Then the operator −∆ + q associated with the weight m has a unique positive
principal eigenvalue λ1,q,m associated with a positive eigenfunction φ1,q,m and (λ1,q,m, φ1,q,m)

satisfy (1.3) and (1.4). Moreover the operator −∆ + q associated with the weight m has a
unique negative principal eigenvalue λ̃1,q,m associated with a positive eigenfunction φ̃1,q,m and
(λ̃1,q,m, φ̃1,q,m) satisfy

(−∆ + q)φ̃1,q,m = λ̃1,q,m m φ̃1,q,m in RN ; λ̃1,q,m < 0; φ̃1,q,m > 0. (1.5)

λ̃1,q,m = sup{
∫
RN [|∇φ|2 + qφ2]∫

RN mφ2
, φ ∈ Vq(RN) s. t.

∫
RN

mφ2 < 0}. (1.6)

We have: λ̃1,q,m = −λ1,q,−m.

1.2.2 Maximum principle for the scalar case

We consider the following equation in a variational sense

(−∆ + q)u = µmu+ f in RN (1.7)

where µ is a real parameter and f ∈ L2(RN). First we recall the classical weak maximum
principle for (1.7) in the case of a positive weight m.

Theorem 1.3 (cf. [12, Theorem 2.3]) Assume that q satisfies (H1
q), m satisfies (H1

m) or
(H∗1m ) or (H2

m), f ≥ 0 and u is a solution of the equation (1.7). If µ < λ1,q,m, then u ≥ 0.
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Now we consider the equation (1.7) in the case of an indefinite weight m.

Theorem 1.4 (cf. [12, Theorem 3.2] Assume that q satisfies (H1
q), m satisfies (H′1m) or

(H′2m), µ ∈ R, f ∈ L2(RN), f ≥ 0 and u is a solution of the equation (1.7). If λ̃1,q,m < µ <

λ1,q,m, then u ≥ 0.

1.2.3 Ground state positivity or negativity for the scalar case

We recall here a result of ground state positivity or negativity for the Schrödinger operator
−∆ + q associated with a strictly positive and bounded weight m in RN (see [1]). We will
add in this section the following hypothesis upon the potentiel q.

(H2
q)



(i) q is radially symmetric.
(ii) There exists a constant c1 > 0 and a positive real R0 such that

c1Q(r) ≤ q(r) for R0 ≤ r with Q an auxiliary function which satisfies
Q is positive and locally absolutely continuous , Q′(r) ≥ 0,∫ +∞
R0

Q(r)−βdr < +∞ with 0 < β < 1
2
.

Definition 1.1 i) A function u ∈ L2(RN) satisfies the ground state positivity if there
exists a constant c > 0 such that u ≥ cφ1q,m almost everywhere in RN .

ii) A function u ∈ L2(RN) satisfies the ground state negativity if there exists a constant c > 0

such that u ≤ −cφ1q,m almost everywhere in RN .

These notions are similar to the maximum and antimaximum principles in a bounded do-
main Ω ⊂ RN , N ≥ 1, which have been established by [13], [22], [23] (for a function
f ∈ Lp(Ω), p > N). But for the Schrödinger operator defined in the whole space, the
hypothesis f ∈ Lp(Ω), p > N, is no longer sufficient and we need to take a smaller space for
f, namely, a stronger ordered Banach space introduced in [4]

Xq,m = {u ∈ L2(RN),
u

φ1,q,m

∈ L∞(RN)}

endowed with the ordered norm ‖u‖Xq,m = inf{C ∈ R, |u| ≤ Cφ1,q,m a. e. in RN}. We
denote by SN−1 the unit sphere in RN centered at the origin and by σ the surface measure
on SN−1. For any s > 0, we introduce the Banach space Xs,2

q,m of all functions f ∈ L2
loc(RN)

having the following properties:

[(−∆S)s/2f ](r, .) ∈ L2(SN−1) for all r > 0,

where ∆S denotes the Laplace-Beltrami operator on the sphere SN−1, and there is a constant
C ≥ 0 such that

1

σ(SN−1)
(

∫
SN−1

|f(r, x′)|2dσ(x′) +

∫
SN−1

|[(−∆S)s/2f ](r, x′)|2dσ(x′)) ≤ [Cφ1,q,m(r)]2
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for almost every r > 0. The smallest such constant C defined the norm ‖f‖Xs,2
q,m

in Xs,2
q,m.

Notice that, for f(x) = f(|x|), we have f ∈ Xs,2
q,m if and only if f ∈ Xq,m together with

the norms ‖f‖Xs,2
q,m

= ‖f‖Xq,m . We recall from [1] the following result (which extends, for a
Schrödinger equation with weight, former results in [4]):

Theorem 1.5 (see [1] Theorem 2.1) Assume that the potential q is radially symmetric
and satisfies (H1

q), (H2
q) and the weight m satisfies (H1

m). Assume that u ∈ D(−∆ + q) is
one solution of (1.7), µ ∈ R, f ≥ 0 a.e. in RN with f > 0 in some set of positive Lebesgue
measure.

(i) For every µ ∈ (−∞, λ1,q,m), there exists a constant C(f, µ) > 0 such that:
u ≥ C(f, µ)φ1,q,m in RN . Moreover, if the weight m is radially symmetric and if f ∈
Xs,2
q,m, then there exists a positive number δ(f) (depending upon f) such that, for every

µ ∈ (λ1,q,m− δ(f), λ1,q,m), C(f, µ) =
∫
RN fφ1,q,m
λ1,q,m−µ + Γ(µ, f) with limµ→λ1,q,m Γ(µ, f) = Γ <

+∞. And furthermore, if f ∈ Xq,m, then there exists a constant C ′(µ, f,m) > 0 such
that:

C(f, µ)φ1,q,m ≤ u ≤ C ′(µ, f,m)

λ1,q,m − µ
φ1,q,m in RN .

(ii) Assume that the weight m is radially symmetric and that f ∈ Xs,2
q,m. Then there exists

a positive number δ′(f) (depending upon f) such that, for every µ ∈ (λ1,q,m, λ1,q,m +

δ′(f)), u ≤ −C ′′(f, µ)φ1,q,m in RN with C ′′(f, µ) =
∫
RN fφ1,q,m
µ−λ1,q,m − Γ′(µ, f) and with

limµ→λ1,q,m Γ′(µ, f) = Γ′ < +∞.

For the proof, see Appendix A.

As for the case of a positive weight, we can obtain a result on ground state positivity but not
on ground state negativity (because our proof for the antimaximum principle in Theorem
1.5 (ii) needs to consider a weight m such that ‖u‖m =

√∫
RN mu2 defines a norm in L2(RN)

equivalent to the usual norm).

Theorem 1.6 Assume that the potential q is radially symmetric and satisfies (H1
q), (H2

q)
and the weight m satisfies (H′1m) or (H′2m). Furthermore if m satisfies (H′2m), assume also
that m+ ∈ L∞(RN) and that |m(x)| ≤ cstQ(|x|)1/2−β for all x ∈ RN (with Q the auxiliary
function associated with q which satisfies (H2

q)). Assume that u ∈ D(−∆+q) is one solution
of (1.7), µ ∈ R, f ≥ 0 a.e. in RN with f > 0 in some set of positive Lebesgue measure.
Then for every µ such that λ̃1,q,m < µ < λ1,q,m, there exists a constant C(f, µ) > 0 such that:
u ≥ C(f, µ)φ1,q,m in RN .

Proof: Assume that λ̃1,q,m < µ < λ1,q,m and (−∆ + q)u = µmu + f in RN . Note that
u ≥ 0 by the maximum principle (Theorem 1.4). Let α > 0 be a positive real such that
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α+(µ−λ1,q,m)m > 0 in RN (which is possible for α sufficiently large since eitherm is bounded
(case (H′1m)) or m+ ∈ L∞(RN) (case (H′2m)). Therefore u satisfies (−∆ + q − λ1,q,mm)u =

−αu + g in RN with g = (α + (µ − λ1,q,m)m)u + f ≥ 0 in RN . Moreover 0 is the principal
eigenvalue of the operator −∆ + q − λ1,q,mm in RN . Thus, since −α < 0 we can apply the
Theorem 2.1 in [4] to obtain that u ≥ Cφ1,q,m with C a positive constant which only depends
of µ and f.

2 Results for systems

2.1 Results for linear systems

In this section, we consider (1.1) in the form:

(−∆ + qi)ui = µimiui +
n∑

j=1;j 6=i

aijuj + fi in RN , i = 1, . . . , n (2.1)

where each of the potentials qi satisfy (H1
q) and each of the weights mi satisfy one of the

hypotheses among (H1
m), (H∗1m ), (H′1m), (H2

m), (H′2m). We consider the hypotheses:

(H3) For all i, j = 1, · · · , n, aij ∈ L∞(RN) and aij ≥ 0 if i 6= j.

(H4) For all i = 1, · · · , n, fi ∈ L2(RN).

(H5) For all i, j = 1, · · · , n, i 6= j, there exists a positive constant Kij such that aij ≤
Kij

√
|mimj|.

Note that if each of the weights mi satisfy (H1
m), then (H5) is automatically satisfied. Note

also that in the particular case where mi = 1 for each i, we can take Kij = ‖aij‖L∞(RN ). We
denote by

λi := λ1,qi,mi
and φi := φ1,qi,mi

(2.2)

the eigenpair for the operator −∆ + qi associated with the weight mi in RN . We denote by
L = (lij) and P = (pij) the n× n-matrices given as follows

lii := λi − µi and lij = −Kij (i 6= j) (2.3)

pii := 1− |µi|Ci‖mi‖ and pij = −Kij

√
CiCj‖mi‖‖mj‖ (i 6= j) (2.4)

where ‖mi‖ denotes either ‖mi‖L∞(RN ) if mi satisfies (H′1m) or ‖mi‖LN/2(RN ) if mi satisfies
(H′2m) and where Ci = max(1, 1

inf qi
)C̃0 with either C̃0 = 1 if mi satisfies (H′1m) or C̃0 is the
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square of the Sobolev constant for the embedding of H1(RN) into L2∗(RN) if mi satisfies
(H′2m). Note that (see (1.2))∫

RN

miu
2
i ≤ Ci‖mi‖ ‖ui‖2

qi
for all ui ∈ Vqi(RN). (2.5)

For positive weights mi, we recall the maximum principle (see [11, Theorem 2.1] in the case
of weights mi which satisfy (H1

m)).

Theorem 2.1 Assume that each of the potentials qi satisfy (H1
q) and each of the weights

mi satisfy (H∗1m ) or (H2
m). Assume also that (H3)-(H5) are satisfied and that the matrix

L, defined by (2.3), is a non singular M-matrix.

(i) Then the cooperative system (2.1) satisfies the maximum principle (i. e. for any f =

(f1, · · · , fn) ≥ 0, then ui ≥ 0 for all i, with u = (u1, · · · , un) solution of (2.1)).

(ii) Assume here that each of the weights mi satisfy (H∗1m ). Then the cooperative system
(2.1) satisfies the ground state positivity (i. e. for any f = (f1, · · · , fn) ≥ 0, fi 6= 0

then there exists a positive constant C such that ui ≥ Cφi for all i, with φi defined by
(2.2)).

Proof:
(i) Assume that for all i = 1, · · · , n, fi ≥ 0. Let u = (u1, · · · , un) be a solution of the

system (2.1) and define u−i = max(0,−ui).Multiplying by u−i and integrating over RN ,

using (H5) we get:

0 ≤ ‖u−i ‖2
qi
≤ µi

∫
RN

mi(u
−
i )2 +

n∑
j=1;j 6=i

Kij

(∫
RN

mi(u
−
i )2

)1/2(∫
RN

mj(u
−
j )2

)1/2

.

(2.6)
Let X the vector be defined by tX = (x1, · · · , xn) with xi =

(∫
RN mi(u

−
i )2
)1/2

. From
the characterization of λi and from (2.6), we have:

(λi − µi)
∫
RN

mi(u
−
i )2 −

n∑
j=1;j 6=i

Kij

(∫
RN

mi(u
−
i )2

)1/2(∫
RN

mj(u
−
j )2

)1/2

≤ 0. (2.7)

We denote by (LX)i = (λi − µi)xi −
∑n

j=1;j 6=iKijxj. From (2.7) note that (LX)i ≤ 0

for each i and so LX ≤ 0. Since L is a non singular M-matrix (see [6]), we can deduce
that X ≤ 0 and thus X = 0, i. e. xi = 0 for each i. So from (2.6) we get for each i :

‖u−i ‖qi = 0 i. e. ui ≥ 0.

(ii) We combine the maximum principle for the system (2.1) with the ground sate pos-
itivity for an equation. Indeed, from (i) we know that ui ≥ 0 for all i and so
gi :=

∑n
j=1;j 6=i aijuj + fi ≥ 0, gi > 0 in a set of non zero measure. Therefore, since

µi < λi, we get that there exists a positive constant Ci such that ui ≥ Ciφi.
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Proceeding as for Theorem 2.1, we obtain the following maximum principle for indefinite
weights.

Theorem 2.2 Assume that each of the potentials qi satisfy (H1
q) and each of the weights

mi satisfy (H′1m) or (H′2m). Assume also that (H3)-(H5) are satisfied.

(i) If the matrix P , defined by (2.4), is a non singular M-matrix, then the cooperative
system (2.1) satisfies the maximum principle.

(ii) Assume also that, in the case of each of the weights mi satisfy (H′2m), m+
i ∈ L∞(RN)

and |mi(x)| ≤ cstQi(|x|)1/2−β for x ∈ RN (with Qi the auxiliary function associated
with the potential qi which satisfies (H2

q)). If the matrix P is a non singular M-matrix,
then the cooperative system (2.1) satisfies the ground state positivity.

Note that, as for one equation, the condition “P is a non singular M-matrix” is a stronger
hypothesis than the condition “L is a non singular M-matrix.” Indeed, note that the hy-
pothesis 1 − |µi|Ci‖mi‖ > 0 is stronger than the hypothesis λ̃1,qi,mi

< µi < λ1,qi,mi
(see

(1.3)-(1.6),(2.5)).

For positive weights, we now recall the following result for the existence of solutions for the
system (2.1) (see [11, Theorem 2.2 and Theorem 2.3] in the case of weights mi which satisfy
(H1

m)).

Theorem 2.3 Assume that each of the potentials qi satisfy (H1
q) and each of the weights

mi satisfy (H∗1m ) or (H2
m). Assume also that (H3)-(H5) are satisfied. If the matrix L is

a non singular M-matrix, then the system (2.1) has a unique solution u = (u1, · · · , un) ∈
Vq1(RN)× · · · × Vqn(RN).

For indefinite weights mi, existence and uniqueness of a solution is stated as follows and is
an application of the Lax-Milgram Theorem (see [11]).

Theorem 2.4 Assume that each of the potentials qi satisfy (H1
q) and each of the weights

mi satisfy (H′1m) or (H′2m). Assume also that (H3)-(H5) are satisfied. If the matrix P is
a non singular M-matrix, then the system (2.1) has a unique solution u = (u1, · · · , un) ∈
Vq1(RN)× · · · × Vqn(RN).

2.2 Existence of a global principal eigenvalue for a system

In this section, we consider the eigenvalue problem for the following system

(−∆ + qi)ui = λ

(
miui +

n∑
j=1;j 6=i

mijuj

)
in RN , i = 1, · · · , n, (2.8)
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where each of the potentials qi satisfy (H1
q) and each of the weights mi satisfy one of the

hypotheses among (H1
m), (H∗1m ), (H′1m). We denote by M is the n × n-matrix given by

M = (mij) with mii := mi. We will consider the following hypotheses:

(H8) For all i 6= j, mij ∈ L∞(RN) and mij > 0.

(H9) M is a symmetric matrix.

(H10) Ω := ∩ni=1Ω+
i is an open subset of RN with non zero measure and with

Ω+
i := {x ∈ RN ,mi(x) > 0}.

We add another hypothesis upon the potentials qi which assures that any weak solution
ui ∈ Vqi(RN) of the equation (−∆ + qi)ui = fi in RN , with fi ∈ L2(RN), belongs to the
strong domain D(−∆ + qi) ⊂ L2(RN). It is the following hypothesis. For all i = 1, · · · , n,

(H3
q) For all x ∈ RN and all h ∈ RN , h 6= 0, | qi(x+h)−qi(x)

h
| ≤ cst

√
qi(x).

Note that for example, the potential q(x) = 1 + |x| satisfies (H3
q).

Lemma 2.1 Assume that the potential q satisfy (H1
q) and (H3

q). Let u be a weak solution
of (−∆ + q)u = f in RN with f ∈ L2(RN). Then u ∈ H2(RN), qu ∈ L2(RN) and therefore
u ∈ D(−∆ + q).

The proof of Lemma 2.1 is based on the methods of translations (see Appendix B). For strictly
positive and bounded weights mi, proceeding as for one equation (see [12, Theorem 2.1]), we
can prove the existence of a positive eigenvalue associated with a positive eigenfunction for
(2.8). Therefore, we extend here to Schrödinger operators defined in the whole space, some
results of [21] and [8] for elliptic operators defined in a bounded domain.

Theorem 2.5 Assume that each of the potentials qi satisfy (H1
q) and each of the weights

mi satisfy (H∗1m ). Assume also that (H8) is satisfied. Then there exists a unique principal
eigenvalue Λ1,M > 0 associated with a positive eigenfunction Φ1,M = (φ1,M , · · · , φn,M) ∈
V := Vq1(RN)×· · ·×Vqn(RN) for the system (2.8). Moreover if (H9) and (H3

q) are satisfied
then

Λ1,M = inf

{ ∑n
i=1 ‖ui‖2

qi∑n
i=1

∫
RN miu2

i +
∑n

i,j;i 6=j
∫
RN mijuiuj

, u = (u1, · · · , un) ∈ V

such that
n∑
i=1

∫
RN

miu
2
i +

n∑
i,j;i 6=j

∫
RN

mijuiuj > 0

}
. (2.9)
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Note that the condition
∑n

i=1

∫
RN miu

2
i +

∑n
i,j;i 6=j

∫
RN mijuiuj > 0 is automatically satisfied

if M is a definite positive matrix (i. e. for all X 6= 0, tXMX > 0).

Proof: We denote by M the operator of multiplication by the matrix M in (L2(RN))n and
we consider the operator

L−1M : ((L2(RN))n, ‖.‖(L2(RN ))n)→ ((L2(RN))n, ‖.‖(L2(RN ))n).

The operator L−1M is compact and strongly positive in the sense of quasi-interior points in
(L2(RN))n, in the sense of Daners and Koch-Medina [15]. This implies that L−1M is irre-
ducible and we apply the version of the Krein-Rutman Theorem given in [15, Theorem 12.3]
to deduce that r(L−1M), the spectral radius of L−1M, is a strictly positive and simple eigen-
value associated with an eigenfunction Φ1,M = (φ1,M , · · · , φn,M) which is a quasi-interior
point of (L2(RN))n, that is φi,M > 0 in RN for all i. Of course Λ1,M = 1

r(L−1M)
> 0 and

r(L−1M) is the only one eigenvalue of L−1M associated with a positive eigenfunction.

We recall that V := Vq1(RN) × · · · × Vqn(RN) and the inner product in V is defined by
< u, v >V =

∑n
i=1 < ui, vi >qi for all u = (u1, · · · , un) ∈ V and v = (v1, · · · , vn) ∈ V. We set

the bilinear form

β(u, v) =
n∑
i=1

∫
RN

miuivi +
n∑

i,j=1;i 6=j

∫
RN

mijujvi for all u ∈ V and v ∈ V.

From hypotheses (H8) and (H9), β is a bilinear, symmetric and continous form. From the
Riesz Theorem, we get the existence of a continuous operator T : V → V, T = (T1, · · · , Tn),

such that β(u, v) =< Tu, v >V for all u ∈ V and v ∈ V (see [17] for the Lax-Milgram
Theorem). We can easily prove that the operator T is compact.

Moreover, since the matrix M is assumed to be symmetric, the operator T is selfadjoint. So
the largest eigenvalue of T is given by:

µ1,M = sup
u∈V,u 6=0

< Tu, u >V

< u, u >V

= sup
u∈V,u 6=0

∑n
i=1

∫
RN miu

2
i +

∑n
i,j=1;i 6=j

∫
RN mijujui∑n

i=1

∫
RN [|∇ui|2 + qiu2

i ]
.

Choosing u = (u1, · · · , un) ∈ V such that supp ui ⊂ {x ∈ RN ,mi(x) > 0} for one i and
uj = 0 if j 6= i, we get that µ1,M > 0.

Now, we prove that Λ1,M = 1
µ1,M

. We have L−1MΦ1,M = r(L−1M)Φ1,M or equivalently
LΦ1,M = Λ1,MMΦ1,M . Therefore for all i = 1, · · · , n :

(−∆ + qi)φi,M = Λ1,M(miφi,M +
∑

j=1;j 6=i

mijφj,M) in RN .

Thus for all v = (v1, · · · , vn) ∈ V, we have:
n∑
i=1

∫
RN

[∇φi,M .∇vi + qiφi,Mvi] = Λ1,M

n∑
i=1

(∫
RN

miφi,Mvi +
n∑

j=1;j 6=i

∫
Rn

mijφj,Mvi

)
.
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For vi = φi,M , we get:

1

Λ1,M

=

∑n
i=1

∫
RN miφ

2
i,M +

∑n
i,j=1;i 6=j

∫
RN mijφj,Mφi,M∑n

i=1

∫
RN [|∇φi,M |2 + qiφ2

i,M ]
≤ µ1,M . (2.10)

Moreover, since µ1,M is an eigenvalue of the operator T defined above, let ψ = (ψ1, · · · , ψn)

be an eigenfunction associated with µ1,M . Since Tψ = µ1,Mψ, we have for all v ∈ V :

µ1,M < ψ, v >V =< Tψ, v >V = β(ψ, v) and so

µ1,M

n∑
i=1

∫
RN

[∇ψi.∇vi + qiψivi] =
n∑
i=1

∫
RN

miψivi +
n∑

i,j=1;j 6=i

∫
Rn

mijψjvi.

For v = (0, · · · , 0, vi, 0, · · · , 0) ∈ V, we get:∫
RN

[∇ψi.∇vi + qiψivi] =
1

µ1,M

(∫
RN

miψivi +
n∑

j=1;j 6=i

∫
Rn

mijψjvi

)
.

Therefore, using Lemma 2.1, we have Lψ = 1
µ1,M

Mψ or equivalently L−1Mψ = µ1,Mψ. Thus
µ1,M is an eigenvalue of the operator L−1M and

0 < µ1,M ≤ r(L−1M) =
1

Λ1,M

. (2.11)

From (2.10) and (2.11), we deduce that µ1,M = 1
Λ1,M

and Λ1,M satisfies (2.9).

Now, for indefinite bounded weights mi, proceeding as for one equation (see [12, Theo-
rem 3.1]), we prove the existence and the uniqueness of a principal positive eigenvalue for
(2.8). This is the following result.

Theorem 2.6 Assume that each of the potentials qi satisfy (H1
q) and (H3

q) and each of
the weights mi satisfy (H′1m). Assume also that (H8)-(H10) are satisfied. Then there exists
a unique principal eigenvalue Λ1,M > 0 associated with a positive eigenfunction Φ1,M =

(φ1,M , · · · , φn,M) ∈ V := Vq1(RN)× · · · × Vqn(RN), φi,M > 0 and Λ1,M satisfies (2.9).

Proof: We follow a method developed in [19] (for one equation in a bounded domain). Let
Ω+
i = {x ∈ RN ,mi(x) > 0}, meas (Ω+

i ) > 0, Ω−i = {x ∈ RN ,mi(x) < 0}, meas (Ω−i ) > 0,

and Ω0
i = {x ∈ RN ,mi(x) = 0}. Let (u1, · · · , un) be a solution of (2.8). We have for all i :

(−∆ + qi)ui + λm−i ui = λ(m+
i ui +

n∑
j=1;j 6=i

mijuj) in RN . (2.12)

For given λ > 0, we rewrite (2.12) as an eigenvalue problem with parameter σ(λ). For all i,

(−∆ + qi)ui + λ(m−i + 1i)ui = σ(λ)

(
(m+

i + 1i)ui +
n∑

j=1;j 6=i

mijuj

)
in RN (2.13)
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where 1i denotes the characteristic function of Ω0
i ∪Ω−i . We denote by Qi := qi +λ(m−i + 1i)

and ρi := m+
i + 1i. Then (2.13) is equivalent to

(−∆ +Qi)ui = σ(λ)(ρiui +
n∑

j=1;j 6=i

mijuj) in RN . (2.14)

Note that the weight ρi > 0 in RN , ρi ∈ L∞(RN) since mi ∈ L∞(RN) and Qi satisfies (H1
q)

since λ > 0. From Theorem 2.5, we deduce that the system (2.14) has a unique principal
eigenvalue σ(λ) associated with a principal eigenfunction Φλ = (φ1,λ, · · · , φn,λ), φi,λ > 0.

Moreover, since D(−∆ +Qi) = D(−∆) ∩D(Qi), from (2.9), we get:

σ(λ) = inf

{∑n
i=1

∫
RN [|∇ψi|2 + qiψ

2
i ] + λ

∑n
i=1

∫
RN (m−i + 1i)ψ

2
i∑n

i=1

∫
RN (m+

i + 1i)ψ2
i +

∑n
i,j=1;i 6=j

∫
RN mijψiψj

, ψ = (ψ1, · · · , ψn) ∈ V

such that
n∑
i=1

∫
RN

(m+
i + 1i)ψ

2
i +

n∑
i,j=1;i 6=j

∫
RN

mijψiψj > 0

}
. (2.15)

Therefore, σ(λ) < Λ+
1,Q,N the principal eigenvalue of the operator LQ associated with the

matrix N = (nij) where LQ = diag (−∆ + Qi), nii = ρi and nij = mij in Ω = ∩ni=1Ω+
i with

Dirichlet boundary condition. Note that σ : λ 7→ σ(λ) is increasing and continuous and that
σ(0) > 0. Therefore for all λ > 0, we have 0 < σ(0) < σ(λ) < Λ+

1,Q,N and Λ+
1,Q,N is in fact

independant of λ. Thus we deduce that there exists 0 < λ̃ < Λ+
1,Q,N such that σ(λ̃) = λ̃.

Proceeding as in [19], we can show that λ̃ is unique.
Now, we verify that λ̃ satisfies (2.9). Let us denote by

Λ1,M = inf

{ ∑n
i=1

∫
RN [|∇ψi|2 + qiψ

2
i ]∑n

i=1

∫
RN miψ2

i +
∑n

i,j=1;i 6=j
∫
RN mijψiψj

, ψ = (ψ1, · · · , ψn) ∈ V

such that
n∑
i=1

∫
RN

miψ
2
i +

n∑
i,j=1;i 6=j

∫
RN

mijψiψj > 0

}
.

Since

λ̃ =

∑n
i=1

∫
RN [|∇φi,λ̃|2 + qiφ

2
i,λ̃

] + λ̃
∑n

i=1

∫
RN (m−i + 1i)φ

2
i,λ̃∑n

i=1

∫
RN (m+

i + 1i)φ2
i,λ̃

+
∑n

i,j=1;i 6=j
∫
RN mijφi,λ̃φj,λ̃

,

we have λ̃ ≥ Λ1,M .

Moreover let ψ = (ψ1, · · · , ψn) ∈ V be such that
∑n

i=1

∫
RN miψ

2
i +
∑n

i,j=1;i 6=j
∫
RN mijψiψj > 0.

From (2.15), since λ̃ = σ(λ̃), we get λ̃ ≤
∑n

i=1

∫
RN [|∇ψi|2+qiψ

2
i ]∑n

i=1

∫
RN miψ2

i +
∑n

i,j=1;i 6=j

∫
RN mijψiψj

. Thus λ̃ ≤ Λ1,M .

Note that for all i = 1, · · · , n, Λ1,M < λi.

Indeed, from (1.4) and (2.9), we have Λ1,M ≤ λi. Suppose that Λ1,M = λi. Then

(−∆ + qi)(φi,M − φi) = λimi(φi,M − φi) + λi

n∑
j=1;j 6=i

mijφj,M in RN ,
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where φi (resp. φi,M) is defined by (2.2) (resp. Theorem 2.6). Multiplying by φi and in-
tegrating over RN , we obtain (since λi > 0),

∫
RN

∑n
j=1;j 6=imijφj,Mφi = 0. Since mij > 0,

φi,M > 0 and φi > 0 we get a contradiction.

Now, we consider the following system

(−∆ + qi)ui = λ

(
miui +

n∑
j=1;j 6=i

mijuj

)
+ fi in RN , i = 1, · · · , n. (2.16)

We give a maximum principle result.

Theorem 2.7 Assume that each of the potentials qi satisfy (H1
q) and (H3

q) and each
of the weights mi satisfy (H∗1m ) or (H′1m). Assume also that (H8)-(H9) are satisfied. Fur-
thermore if the weights mi satisfy (H′1m), assume also that (H10) is satisfied.Assume that
fi ∈ L2(RN) for all i. If 0 ≤ λ < Λ1,M , then the system (2.16) satisfies the maximum
principle: if f = (f1, · · · , fn) ≥ 0, then ui ≥ 0 for all i with u = (u1, · · · , un) solution of
(2.16).

Note that we have the same condition 0 ≤ λ < Λ1,M as in [21, Proposition 2.2].

Proof: Multiplying (2.16) by u−i , integrating over RN , since λ ≥ 0 and fi ≥ 0, we have:

0 ≤
n∑
i=1

‖u−i ‖2
qi
≤ λ(

n∑
i=1

∫
RN

mi(u
−
i )2 +

n∑
i,j=1;i 6=j

∫
RN

miju
−
i u
−
j ) := λC(u−) = λC(u−1 , · · · , u−n ).

If C(u−) > 0, then Λ1,M ≤
∑n

i=1 ‖u
−
i ‖

2
qi

C(u−)
≤ λ and we get a contradiction with the hypothesis

λ < Λ1,M . Thus C(u−) = 0. Then
∑n

i=1 ‖u
−
i ‖2

qi
= 0 and therefore ui ≥ 0 for all i.

We can state a result for the existence of solutions for the system (2.16) as follows.

Theorem 2.8 Assume that each of the potentials qi satisfy (H1
q) and (H3

q) and each
of the weights mi satisfy (H∗1m ) or (H′1m). Assume also that (H8)-(H9) are satisfied. Fur-
thermore if the weights mi satisfy (H′1m), assume also that (H10) is satisfied. Assume that
fi ∈ L2(RN) for all i. If 0 ≤ λ < Λ1,M , then the system (2.16) has a unique solution
u = (u1, · · · , un) ∈ V.

Proof: We introduce a bilinear continuous form l and we apply the Lax-Milgram Theorem.
Let l : (Vq1(RN)× · · · × Vqn(RN))2 → R be defined by

l(u, v) =
n∑
i=1

∫
RN

[∇ui.∇vi + qiuivi − λmiuivi − λ
n∑

j=1;j 6=i

mijujvi].

First note that from (2.9) we have: Λ1,MC(u) ≤
∑n

i=1 ‖ui‖2
qi

for all u = (u1, · · · , un) ∈ V .
Therefore, since λ ≥ 0, we get: l(u, u) ≥ Λ1,M−λ

Λ1,M

∑n
i=1 ‖ui‖2

qi
and so l is coercive. By the

Lax-Milgram Theorem, we get the existence and the uniqueness of a weak solution for the
system (2.16).
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2.3 Study of the signs of the solutions for a 2× 2 system

We consider in this section the following system (for N ≥ 2):{
(−∆ + q)u = λu+ au+ bv + f in RN

(−∆ + q)v = λv + cu+ dv + g in RN .
(2.17)

The real λ is a real parameter and the potential q is radially symmetric and satisfies (H1
q) and

(H2
q). The aim of this section is to present some results concerning positivity or negativity

of the solutions of the system (2.17). We can find results for the antimaximum principle for
a system of two equations with constant coefficients in [2]; the ideas, there, are to decouple
the system, and then to apply the results of the antimaximum principle for each equation.
We will follow this method in this section.

We denote by M(x) =

(
a(x) b(x)

c(x) d(x)

)
the coupling matrix of the coefficients of the system

(2.17). Following [14], we introduce S an invertible 2 × 2 matrix of constants such that S
diagonalises M(x) for all x. In [14], it is proved that such a choice is possible only if either
(case I) b(x) and c(x) are both multiples of a(x)− d(x) or (case II) a(x) = d(x) for all x and
b(x) and c(x) are positive multiples of each other. We define the functions u∗ and v∗ by(

u∗

v∗

)
= S−1

(
u

v

)
,

(
f ∗

g∗

)
= S−1

(
f

g

)
, (2.18)

and since S is a constant matrix, we obtain from (2.17)(
−∆ + q 0

0 −∆ + q

)(
u∗

v∗

)
= λ

(
u∗

v∗

)
+ S−1M(x)S

(
u∗

v∗

)
+

(
f ∗

g∗

)
. (2.19)

We suppose that the coefficients a, b, c, d of the system satisfy the following hypothesis:

(H11)


(i) a, b, c, d ∈ L∞(RN).

(ii) either b and c are positive multiples of a− d (case I)
or a = d and b and c are positive multiples of each other (case II)

(iii) a, b, c, d are radially symmetric functions.

Note that the hypothesis (H11)(iii) upon the coefficients of the matrixM of the system (2.17)
assures that the weights of each equation (after decoupling (2.17)) are radially symmetric.
Here we consider the case I and we rewrite the matrix M(x) under the following form:

M(x) =

(
a(x) b∗(a(x)− d(x))

c∗(a(x)− d(x)) d(x)

)
(case I) (2.20)

where a 6= d and b∗ and c∗ are constants such that 1 + 4b∗c∗ > 0.

Moreover we assume that the following hypothesis is satisfied:
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(H12) f, g ∈ L2(RN).

Then we define the two following constants ρ1 = 1+
√

1+4b∗c∗

2
, ρ2 = 1−

√
1+4b∗c∗

2
and we choose

S =

(
−b∗ −b∗

ρ1 ρ2

)
. Thus we have u = −b∗(u∗+ v∗) and v = ρ1u

∗+ ρ2v
∗. Now, if we define

the functions
µ1(x) :=

1

ρ1 − ρ2

[ρ1d(x)− ρ2a(x) + 2ρ1ρ2(a(x)− d(x))] (2.21)

µ2(x) :=
1

ρ1 − ρ2

[ρ1a(x)− ρ2d(x)− 2ρ1ρ2(a(x)− d(x))], (2.22)

then we can write the decoupled system (see (2.17)-(2.22)) as{
(−∆ + q)u∗ = λu∗ + µ1u

∗ + 1
b∗(ρ1−ρ2)

[ρ2f + b∗g] in RN

(−∆ + q)v∗ = λv∗ + µ2v
∗ − 1

b∗(ρ1−ρ2)
[ρ1f + b∗g] in RN .

Theorem 2.9 Assume that the potential q satisfies (H1
q)-(H2

q) and that the hypotheses
(H11)-(H12) are satisfied. Assume also that the matrixM has the form (2.20) with b∗c∗ < 0

and 1 + 4b∗c∗ > 0. Let µ1 and µ2 functions be defined as in (2.21) and (2.22). Assume
that µ1 and µ2 are functions such that λ + µ1 ≥ cst > 0 and λ + µ2 ≥ cst > 0. Define
f ∗ = 1

b∗(ρ1−ρ2)
[ρ2f + b∗g] and g∗ = − 1

b∗(ρ1−ρ2)
[ρ1f + b∗g].

1. Assume that λ1,q,λ+µ1 − δ(f ∗) < 1 < λ1,q,λ+µ1 , λ1,q,λ+µ2 − δ(g∗) < 1 < λ1,q,λ+µ2 ,

0 < f ∗ ∈ Xs,2
q,λ+µ1

and 0 < g∗ ∈ Xs,2
q,λ+µ2

, with δ(f ∗), δ(g∗) defined in Theorem 1.5
Then u has the same sign as −b∗ and v > 0.

2. Assume that λ1,q,λ+µ1 < 1 < λ1,q,λ+µ1 + δ′(f ∗), λ1,q,λ+µ2 < 1 < λ1,q,λ+µ2 + δ′(g∗),

0 < f ∗ ∈ Xs,2
q,λ+µ1

and 0 < g∗ ∈ Xs,2
q,λ+µ2

.

Then v < 0 and u has the same sign as b∗.

Note that the above results are just consequences of the diagonalization of the coupling
matrixM and applications of Theorem 1.5. We can also obtain similar results in the case II.
Note that for λ sufficiently large, since each function µi is bounded, we have λ+µi ≥ cst > 0.

Moreover if b∗ > 0 e.g., choosing g > 0 and f such that − b∗g
ρ2

< f < − b∗g
ρ1
, we have f ∗ > 0

and g∗ > 0.

A Appendix: Ground state positivity and negativity

We only give a sketch of the proof in R2. We recall that the space Xq,m is defined by
Xq,m = {u ∈ L2(R2), u

φ1,q,m
∈ L∞(R2)} and the space X1,2

q,m is defined by
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X1,2
q,m = {f : R2 → R, ∂f

∂θ
(r, .) ∈ L2(−π, π) for all r ≥ 0 and there exists a constant

C ≥ 0 such that |f(r, θ)|+
(

1
2π

∫ π
−π |

∂f
∂θ

(r, θ)|2 dθ
)1/2

≤ Cφ1,q,m(r) a.e.}.

Note that the ground state positivity is a simple application of the weak maximum principle
combined with [4, Theorem 2.1]. Note also that if f ∈ Xq,m and f ≥ 0 then there exists a
positive constant C(f) such that 0 ≤ f ≤ C(f)φ1,q,m. Choosing C ′(f,m) = C(f)

m0(λ1,q,m−µ)
with

m0 = inf m > 0, from the weak maximum principle for the scalar case, writing
(−∆ + q)(C ′(f,m)φ1,q,m− u) = µm(C ′(f,m)φ1,q,m− u) + (λ1,q,m− µ)mC ′(f,m)φ1,q,m− f in
R2, we obtain that u ≤ C ′(f,m)φ1,q,m.

The proof of the ground state negativity is based upon ideas of [20] and [4]. We decompose
it in several steps.

Step 1 : We denote by Lq := −∆ + q and by M the operator of multiplication by m.

As in Hess [20] we consider the operator L−1
q M and the same decomposition of L2(R2) =

span(φ1,q,m) ⊕ R(I − λ1,q,mL
−1
q M) where R(I − λ1,q,mL

−1
q M) is the range of the opera-

tor I − λ1,q,mL
−1
q M. But because of the unboundedness of our domain, we cannot study

R(I−λ1,q,mL
−1
q M) as it done in [20] and we adapt to our case an idea developed in [3] which

is the following decomposition of L2(R2) = H1 ⊕H2 ⊕H3 with

H1 =span(φ1,q,m)

H2 ={f ∈ L2(R2) : f(x) ≡ f(|x|) with
∫ ∞

0

m(r)f(r)φ1,q,m(r)r dr = 0};

H3 ={f ∈ L2(R2) :

∫ π

−π
f(r, θ) dθ = 0 for almost all r ≥ 0}.

Note that ‖.‖m defined by (1.2) is a norm equivalent to the usual norm in L2(R2) since m
satisfies (H1

m). It is obvious that L2(R2) = H1⊕H2⊕H3 is an orthogonal decomposition. The
corresponding orthogonal projections P1, P2 and P3, respectively, take the following forms, for
each f ∈ L2(R2): P1f = (f,φ1,q,m)m

(φ1,q,m,φ1,q,m)m
φ1,q,m, P2f = (I − P1)f ∗ with f ∗ = 1

2π

∫ π
−π f(r, θ) dθ,

P3f = f − f ∗.

Step 2 : Let u be a solution of (1.7), we decompose u and L−1
q f = g in L2(R2) under the

following way: u = βµφ1,q,m + u2 + u3 with u2 ∈ H2, u3 ∈ H3 and g = g1 + g2 + g3. It is easy
to check that: g1 = (I − µL−1

q M)βµφ1,q,m, g2 = (I − µL−1
q M)u2 and g3 = (I − µL−1

q M)u3.

The idea then is to show that the sign of u is given by βµ and that u2 and u3 belong to Xq,m.

For that we need the two following Propositions based on Propositions 3.5 and 3.6 in [3].

Proposition A.1 (see [1, Proposition 3.1]) Assume that q is a radially symmetric po-
tential which satisfies (H1

q)-(H2
q) and that m is a radially symmetric weight which satisfies
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(H1
m). Assume that u2, g2 ∈ D(Lq), Lqu2 − λ1,q,mMu2 = Lqg2 ∈ L2(R2) with g2 a radial

symmetric function.

(i) If
∫
R2 Lqg2.φ1,q,m = 0 and

∫
R2 u2mφ1,q,m = 0, then u2 is radial and there exists a

constant Γ > 0 (depending exclusively upon the potential q and the weight m) such that
|Lqg2| ≤ cφ1,q,m ⇒ |u2| ≤ Γcφ1,q,m.

(ii) If
∫
R2 m.Lqg2.φ1,q,m = 0 and

∫
R2 u2mφ1,q,m = 0, then u2 is radial and there exists a

constant Γ > 0 (depending exclusively upon the potential q and the weight m) such that
|Lqg2| ≤ cφ1,q,m ⇒ |u2| ≤ Γcφ1,q,m.

Proposition A.2 (see [1, Proposition 3.2]) Assume that q is a radially symmetric po-
tential which satisfies (H1

q)-(H2
q) and that m is a radially symmetric weight which satisfies

(H1
m). Assume that u3, g3 ∈ D(Lq), Lqu3 − λ1,q,mMu3 = Lqg3 ∈ L2(R2) with Lqg3 ∈ H3 and

u3 ∈ H3. If Lqg3 ∈ X1,2
q,m, then there exists a constant Γ > 0 (depending exclusively upon the

potential q and the weight m) such that ‖u3‖X1,2
q,m
≤ Γ‖Lqg3‖X1,2

q,m
.

Step 3 : First note that if f = Lqg = Lqg1+Lqg2+Lqg3 then Lqg1+Lqg2 is obviously radially
symmetric and so Lqg3 = P3f. Note also that if f ∈ Xq,m then Lqg1 ∈ Xq,m, Lqg2 ∈ Xq,m

and Lqg3 ∈ Xq,m. Indeed f ∗ = 1
2π

∫ π
−π f(r, θ) dθ is in Xq,m too and Lqg3 = P3f = f − f ∗ is in

Xq,m. More Lqg1 belongs to Xq,m since m is bounded. Then we get Lqg2 ∈ Xq,m.

Now, we study each component of the decomposition of u.
First, we calculate βµ. Recall that g1 = αφ1,q,m with the constant α = (L−1

q f, φ1,q,m)m =
1

λ1,q,m

∫
R2 fφ1,q,m. Since f is positive, α > 0. Therefore, we get βµ = αλ1,q,m

λ1,q,m−µ .

Then, we prove that u2 ∈ Xq,m. Writing down the Neumann series for the resolvant (I −
µL−1

q M)−1:

u2 =
∑
n

(µ− λ1,q,m)n(M−1Lq − λ1,q,mI)−n(I − λ1,q,mL
−1
q M)−1g2.

Let call g0
2 = (I−µL−1

q M)−1g2 and apply Proposition A.1. Indeed g2 ∈ H2 and Lqg2 satisfies:∫
R2

Lqg2.φ1,q,m =

∫
R2

g2.Lqφ1,q,m = λ1,q,m

∫
R2

m.g2.φ1,q,m = 0.

We obtain g0
2 ∈ H2 and |g0

2| ≤ Γcφ1,q,m.

Then call g1
2 = (M−1Lq − λ1,q,mI)−1g0

2; g1
2 satisfies the following equation:

(I − λ1,q,mL
−1
q M)g1

2 = L−1
q Mg0

2.

We check that ∫
R2

m.L−1
q Mg0

2.φ1,q,m = 0.
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Applying again Proposition A.1, we get that g1
2 ∈ H2 and |g1

2| ≤ Γ‖Mg0
2‖Xq,mφ1,q,m. Using

the same method at each step, we deduce that the following sequence:

gn+1
2 = (M−1Lq − λ1,q,mI)−1gn2

satisfies |gn+1
2 | ≤ Γ‖Mgn2 ‖Xq,mφ1,q,m. Finally, we get that, if |µ− λ1,q,m| is small enough,u2 ∈

Xq,m. To conclude, we prove similarly that u3 ∈ Xq,m.

We finish the proof, saying that there exists some λ0 such that for λ1,q,m < µ < λ0

u =
αλ1,q,m

λ1,q,m − µ
φ1,q,m + u2 + u3 ≤ (

αλ1,q,m

λ1,q,m − µ
+ C)φ1,q,m

where the constant C depends only on λ0. Then the Theorem 1.5 follows immediately.

B Appendix: Proof of Lemma 2.1

We use the methods of translations (see [5], [7, p. 182]). Let u be a weak solution of
(−∆ + q)u = f in RN .

Let h ∈ RN and define
(Dhu)(x) =

u(x+ h)− u(x)

|h|
.

Let v = D−h(Dhu), v ∈ Vq(RN). From
∫
RN [∇u.∇v + quv] =

∫
RN fv, we get:∫

RN

|∇(Dhu)|2 +

∫
RN

Dh(qu).(Dhu) =

∫
RN

fD−h(Dhu).

Since Dh(qu)(x) = q(x+ h)Dhu(x) + u(x)Dhq(x), we get:∫
RN

|∇(Dhu)|2 +

∫
RN

q(x+ h)|Dhu(x)|2 dx+

∫
RN

uDhqDhu =

∫
RN

fD−h(Dhu).

Using q ≥ cst > 0, we deduce that there exists a positive constant C = C(q) (depending
upon q) such that:∫

RN

|∇(Dhu)|2 +

∫
RN

|Dhu|2 ≤ C(q)

∫
RN

|fD−h(Dhu)|+
∫
RN

|uDh(q)||Dhu|.

Recall from [7, Proposition IX.3] that for all w ∈ H1(RN), ‖D−hw‖L2(RN ) ≤ ‖∇w‖L2(RN ).

Thus, since for all h, |Dh(q)| ≤ cst
√
q, we have |uDh(q)| ≤ cst |u|√q and there exists a

positive constant C such that

‖Dhu‖H1(RN ) ≤ C[‖f‖L2(RN ) + ‖u√q‖L2(RN )] <∞.

We conclude as in [7] by for all i and for all h,

‖Dh
∂u

∂xi
‖L2(RN ) ≤ C[‖f‖L2(RN ) + ‖u√q‖L2(RN )].



Systems of Schrödinger Equations in the Whole Space 47

Using [7, Proposition IX.3] we get that ∂u
∂xi
∈ H1(RN). Therefore u ∈ H2(RN) and −∆u ∈

L2(RN).Moreover, we have for all φ ∈ D(RN),
∫
RN (−∆u+qu−f)φ = 0 and −∆u+qu−f ∈

L1
loc(RN). From [7, Lemma IV.2], we get that −∆u+ qu = f a. e. in RN . Thus qu ∈ L2(RN)

and in particular we deduce that u ∈ D(−∆ + q).
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