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Numerical quenching for a semilinear parabolic
equation with Dirichlet-Neumann boundary conditions
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ABSTRACT. This paper concerns the study of the numerical approximation for a semilinear
parabolic equation with Dirichlet-Neumann boundary conditions and a potential. Under
some conditions, we show that the solution of a semidiscrete form of the above problem
quenches in a finite time and estimate its semidiscrete quenching time. We also establish
the convergence of the semidiscrete quenching time, and finally, we give some numerical
experiments to illustrate our analysis.
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1 Introduction

Consider the following initial-boundary value problem

ut(x, t)− uxx(x, t) = −b(x)f(u(x, t)), x ∈ (0, 1), t ∈ (0, T ), (1)

ux(0, t) = 0, u(1, t) = 1, t ∈ (0, T ), (2)

u(x, 0) = u0(x) > 0, x ∈ [0, 1], (3)

where f : (0,∞) −→ (0,∞) is a C1 convex, nonincreasing function,
∫ α

0
ds
f(s)

< ∞ for any
positive real α, lims→0+ f(s) = ∞, b ∈ C1([0, 1]), b(x) > 0, x ∈ (0, 1), b′(0) = 0, b′(1) = 0.
The initial datum u0 ∈ C2([0, 1]), u0(x) > 0, x ∈ [0, 1],

u′′0(x)− b(x)f(u0(x)) < 0, x ∈ (0, 1), (4)

u′0(x) > 0, x ∈ (0, 1), (5)
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u′0(0) = 0, u0(1) = 1. (6)

Here, (0, T ) is the maximal time interval of existence of the solution u. The time T may
be finite or infinite. When T is infinite, then we say that the solution u of (1)–(3) exists
globally. When T is finite, then the solution u of (1)–(3) develops a singularity in a finite
time, namely,

lim
t→T

umin(t) = 0,

where umin(t) = min0≤x≤1 u(x, t). In this last case, we say that the solution u of (1)–(3)
quenches in a finite time, and the time T is called the quenching time of the solution u. By
virtue of the definition of the time T , we have

u(x, t) > 0, (x, t) ∈ [0, 1]× [0, T ).

The theoretical study of solutions for semilinear parabolic equations which quench in a finite
time, has been the subject of investigations of many authors (see, [2], [4], [7], [8], [10],
[18], [21], [22], [29], and the references cited therein). In [7], Boni has proved the local
in time existence and uniqueness of a classical solution under the hypotheses given in the
introduction. The condition (4) allows the solution u to decrease with respect to the second
variable, and the assumption (5) permits the solution to increase in space. Hence, the
assumption (5) forces the solution u to attain its minimum at the first node. In the previous
studies, with the help of the conditions (4) and (5), it is proved that the solution u of (1)–(3)
quenches in a finite time at the first node. In addition, the quenching time is estimated (see,
[10]). Let us notice that theoretically, it is not possible to determine the exact value of the
quenching time.

In this paper, we are interested in the numerical study of the phenomenon of quenching. More
precisely, we want to propose an algorithm which allows us to compute a good approximation
of the real quenching time. We start by the construction of a semidiscrete scheme as follows.
Let I be a positive integer, and define the grid xi = ih, 0 ≤ i ≤ I, where h = 1/I. Let
Uh(t) = (U0(t), · · · , UI(t))T , and approximate the solution u of (1)-(3) by the solution Uh(t)
of the following semidiscrete equations

dUi(t)

dt
= δ2Ui(t)− βif(Ui(t)), 0 ≤ i ≤ I − 1, t ∈ (0, T hq ), (7)

UI(t) = 1, t ∈ (0, T hq ), (8)

Ui(0) = ϕi, 0 ≤ i ≤ I, (9)

where ϕh > 0, and

δ2U0(t) =
2U1(t)− 2U0(t)

h2
, (10)
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δ2Ui(t) =
Ui+1(t)− 2Ui(t) + Ui−1(t)

h2
, 1 ≤ i ≤ I − 1,

βi and ϕi are approximations of b(xi) and u0(xi), respectively. One may also choose βi = b(xi)

and ϕi = u0(xi), but sometimes, we are obliged to take approximations, especially when one
does not know the exact value of either the potential or the initial datum. On the other
hand, there is another motivation which has incited our choice. This motivation is that,
we want to know the behavior of the quenching time when one perturbs slightly either the
potential or the initial datum. This is very important in certain situations when for instance
the exact values do not possess certain properties, which is not the case of the approximated
values. One may list some remarks on the motivation of our study. Firstly, let us notice that
the semidiscrete solution Uh of (7)–(9) is the solution of a differential system. Secondly, due
to the fact that βi and ϕi are approximations of b(xi) and u0(xi), respectively, the scheme
presented in (7)–(9) is not a standard scheme. Although this scheme is not standard, we
shall see later that it allows us to obtain good approximations of the continuous quenching
time. In addition, we shall observe that the solution of a semilinear parabolic equation and
that of a differential system quench in finite times which are practically the same.

Here, (0, T hq ) is the maximal time interval on which Uhmin(t) > 0, where Uhmin(t) =

min0≤i≤I Ui(t). When T hq is finite, then we say that the solution Uh(t) of (7)–(9) quenches
in a finite time, and the time T hq is called the semidiscrete quenching time of the solution
Uh(t).

In this paper, under some assumptions, we show that the semidiscrete solution quenches in a
finite time and estimate its semidiscrete quenching time. We also prove that the semidiscrete
quenching time converges to the real one when the mesh size tends to zero. Recently, a similar
study has been undertaken by Nabongo and Boni in [25] where they have considered the
problem (1)–(3) for the case b(x) = 1 and f(u) = u−p with p > 0. It is worth noting that
the potential and the nonlinearity of the current paper take into account those of Nabongo
and Boni in [25]. One may also consult the papers of Nabongo and Boni in [26], [28] where
semidiscrete and discrete schemes have been utilized to study the phenomenon of quenching
for other parabolic problems. Let us notice that in these papers, the potential is equal one,
and thus, the authors have not studied the effect of a perturbation of the potential on the
semidiscrete quenching time. One of our source of motivation to undertake our study on
numerical quenching comes from the study on numerical blow-up (we say that a solution
blows up in a finite time if it reaches the value infinity in a finite time) where the authors,
for the treatment, have used semidiscrete and discrete schemes (see [1] and [24]). Our paper
is organized as follows. In the next section, we give some results about the semidiscrete
maximum principle and reveal certain properties of the semidiscrete solution. In the third
section, under some conditions, we show that the semidiscrete solution quenches in a finite
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time and estimate its semidiscrete quenching time. In the fourth section, we also prove the
convergence of the semidiscrete quenching time. Finally, in the last section, we give some
numerical results to illustrate our analysis.

2 The semidiscrete scheme

In this section, we prove some results about the semidiscrete maximum principle and reveal
certain properties concerning the operator δ2 and the semidiscrete solution.

The following lemma is a semidiscrete form of the maximum principle.

Lemma 2.1 Let αh ∈ C0([0, T ),RI+1) and let Vh ∈ C0([0, T ),RI+1) be such that

dVi(t)

dt
− δ2Vi(t) + αi(t)Vi(t) ≥ 0, 0 ≤ i ≤ I − 1, t ∈ (0, T ), (11)

VI(t) ≥ 0, t ∈ (0, T ), (12)

Vi(0) ≥ 0, 0 ≤ i ≤ I. (13)

Then, the following estimates hold

Vi(t) ≥ 0, 0 ≤ i ≤ I, t ∈ (0, T ).

Proof: Let T0 be any quantity satisfying T0 < T , and introduce the vector Zh(t) = eλtVh(t),
where λ is such that αi(t)− λ > 0 for t ∈ [0, T0], 0 ≤ i ≤ I. Let

m = min
t∈[0,T0]

Zhmin(t).

Since the vector Zi(t) is continuous on the compact [0, T0], then there exist i0 ∈ {0, 1, · · · , I}
and t0 ∈ [0, T0] such that m = Zi0(t0).

If i0 = I, then according to (12), we have m ≥ 0.

If i0 ∈ {0, · · · , I − 1}, then we observe that

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0, (14)

δ2Zi0(t0) =
2Z1(t0)− 2Z0(t0)

h2
≥ if i0 = 0, (15)

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
≥ 0 if 1 ≤ i0 ≤ I − 1. (16)
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Due to (11), a straightforward computation reveals that

dZi0(t0)

dt
− δ2Zi0(t0) + (αi0(t0)− λ)Zi0(t0) ≥ 0. (17)

It follows from (14)–(16) that (αi0(t0)−λ)Zi0(t0) ≥ 0, which implies that Zi0(t0) ≥ 0 because
αi0(t0)− λ > 0. We deduce that Vh(t) ≥ 0 for t ∈ [0, T0], and the proof is complete. �

The lemma below shows a property of the semidiscrete solution.

Lemma 2.2 Let Uh be the solution of (7)–(9). Assume that the initial datum satisfies
ϕi < 1, 0 ≤ i ≤ I − 1. Then, we have

Ui(t) < 1, 0 ≤ i ≤ I − 1, t ∈ (0, T hq ).

Proof: Let t0 ∈ (0, T hq ) be the first time t ∈ (0, T hq ) such that Ui(t) < 1 for 0 ≤ i ≤ I − 1,
t ∈ (0, t0), but Uj(t0) = 1 for a certain j ∈ {0, · · · , I − 1}. We have

dUj(t0)

dt
= lim

k→0

Uj(t0)− Uj(t0 − k)

k
≥ 0, (18)

δ2Uj(t0) =
2U1(t0)− 2U0(t0)

h2
≤ if j = 0, (19)

δ2Uj(t0) =
Uj+1(t0)− 2Uj(t0) + Uj−1(t0)

h2
≤ 0 if 1 ≤ j ≤ I − 1, (20)

which implies that

dUj(t0)

dt
− δ2Uj(t0) + βjf(Uj(t0)) > 0.

But, this contradicts (7) and the proof is complete. �

Another version of the maximum principle for semidiscrete equations is the following com-
parison lemma.

Lemma 2.3 Let f ∈ C0(R× R,R). If Vh, Wh ∈ C1([0, T ),RI+1) are such that

dVi(t)

dt
− δ2Vi(t) + g(Vi(t), t) <

dWi(t)

dt
− δ2Wi(t) + g(Wi(t), t), (21)

0 ≤ i ≤ I − 1, t ∈ (0, T ),

VI(t) < WI(t), t ∈ (0, T ), (22)

Vi(0) < Wi(0), 0 ≤ i ≤ I, t ∈ (0, T ), (23)

then Vi(t) < Wi(t), 0 ≤ i ≤ I, t ∈ (0, T ).
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Proof: Let Zh(t) = Wh(t) − Vh(t) and let t0 be the first t ∈ (0, T ) such that Zi(t) > 0 for
t ∈ [0, t0), 0 ≤ i ≤ I, but Zi0(t0) = 0 for a certain i0 ∈ {0, · · · , I}. If i0 = I, then we have a
contradiction because of (22).

If i0 ∈ {0, · · · , I − 1}, then we obtain

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0,

δ2Zi0(t0) =
2Z1(t0)− 2Z0(t0)

h2
≥ if i0 = 0, (24)

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
≥ 0 if 1 ≤ i0 ≤ I − 1,

which implies that

dZi0(t0)

dt
− δ2Zi0(t0) + g(Wi0(t0), t0)− g(Vi0(t0), t0) ≤ 0.

But, this inequality contradicts (21), which ends the proof. �

The following results show some properties of the semidiscrete solution.

Lemma 2.4 Let Uh be the solution of (7)–(9) such that the initial datum satisfies

ϕi+1 > ϕi, 0 ≤ i ≤ I − 1. (25)

Then, we have for t ∈ (0, T hq ),

Ui+1(t) > Ui(t), 0 ≤ i ≤ I − 1. (26)

Proof: Invoking Lemma 2.2, we know that

Ui(t) < 1, 0 ≤ i ≤ I − 1, t ∈ (0, T hq ).

Let t1 be the first t ∈ (0, T hq ) such that Ui+1(t) > Ui(t) for t ∈ (0, t1), 0 ≤ i ≤ I − 1, but

Uk+1(t1) = Uk(t1) for a certain k ∈ {0, · · · , I − 1}. (27)

Without loss of generally, we may suppose that k is the smallest integer which verifies (27).

If k = I − 1, then UI−1(t1) = UI(t1) = 1, which contradicts the fact that UI−1(t1) < 1.

If k = 1, · · · , I − 2, then we observe that

d(Uk+1 − Uk)(t1)
dt

= lim
σ→0

(Uk+1 − Uk)(t1)− (Uk+1 − Uk)(t1 − σ)

σ
≤ 0,
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and

δ2(Uk+1 − Uk)(t1) =
(Uk+2 − Uk+1)(t1)− 2(Uk+1 − Uk)(t1) + (Uk − Uk−1)(t1)

h2
> 0,

which implies that

d(Uk+1 − Uk)(t1)
dt

− δ2(Uk+1 − Uk)(t1) + βk+1f(Uk+1(t1))− βkf(Uk(t1)) < 0.

But, this contradicts (7).

If k = 0, then we get

δ2(Uk+1 − Uk)(t1) =
(Uk+2 − Uk+1)(t1)− 3(Uk+1 − Uk)(t1)

h2
< 0.

Thanks to the above inequality, it is easy to see that

d(Uk+1 − Uk)(t1)
dt

− δ2(Uk+1 − Uk)(t1) + βk+1f(Uk+1(t1))− βkf(Uk(t1)) < 0,

which contradicts (7). This ends the proof. �

Remark 2.1 The above lemma says that, if the initial datum of the semidiscrete solution
is increasing in space, then the semidiscrete solution also satisfies this property. This result
will be used later to show that the semidiscrete solution attains its minimum at the first
node.

To end this section, let us give some properties of the operator δ2.

Lemma 2.5 Let Vh and Uh ∈ RI+1. If δ+(U0)δ
+(V0) ≥ 0 and

δ+(Ui)δ
+(Vi) ≥ 0, δ−(Ui)δ

−(Vi) ≥ 0, 1 ≤ i ≤ I − 1, (28)

then

δ2(UiVi) ≥ Uiδ
2Vi + Viδ

2Ui, 0 ≤ i ≤ I − 1,

where δ+(Ui) = Ui+1−Ui
h

and δ−(Ui) = Ui−1−Ui
h

.

Proof: A straightforward computation reveals that

δ2(U0V0) = 2δ+(U0)δ
+(V0) + U0δ

2V0 + V0δ
2U0,

δ2(UiVi) = δ+(Ui)δ
+(Vi) + δ−(Ui)δ

−(Vi) + Uiδ
2Vi + Viδ

2Ui, 1 ≤ i ≤ I − 1.

Taking into account the assumptions of the lemma, we obtain the desired result. �
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Lemma 2.6 Let Uh ∈ RI+1 be such that Uh > 0. Then, the following estimates hold

δ2f(Ui) ≥ f ′(Ui)δ
2Ui, 0 ≤ i ≤ I − 1.

Proof: Applying Taylor’s expansion, we get

δ2f(U0) = f ′(U0)δ
2U0 + f ′′(θ0)

(U1 − U0)
2

h2
,

δ2f(Ui) = f ′(Ui)δ
2Ui + f ′′(θi)

(Ui+1 − Ui)2

2h2
+ f ′′(ηi)

(Ui−1 − Ui)2

2h2
,

1 ≤ i ≤ I − 1,

where θi is an intermediate value between Ui and Ui+1, and ηi the one between Ui−1 and Ui.
Use the fact that Uh > 0 to complete the rest of the proof. �

3 Quenching in the semidiscrete problem

In this section, under some assumptions, we show that the solution Uh of (7)–(9) quenches
in a finite time and estimate its semidiscrete quenching time.

Our result is the following.

Theorem 3.1 Let Uh be the solution of (7)–(9), and assume that there exists a constant
A ∈ (0, 1] such that the initial datum satisfies

δ2ϕi − βif(ϕi) ≤ −A sin(ihπ)f(ϕi), 1 ≤ i ≤ I − 1, (29)

1− 2π2

A

∫ ϕhmin

0

dσ

f(σ)
> 0. (30)

Under the assumptions of Lemma 2.4, the solution Uh quenches in a finite time T hq , and the
following estimation holds

T hq ≤ −
1

π2
ln

(
1− 2π2

A

∫ ϕhmin

0

dσ

f(σ)

)
.

Proof: Since (0, T hq ) is the maximal time interval of existence of the solution Uh our aim
is to show that T hq is finite and satisfies the above inequality. Introduce the vector Jh(t)
defined as follows

Ji(t) =
dUi(t)

dt
+ Ci(t)f(Ui(t)), 0 ≤ i ≤ I, t ∈ [0, T hq ),
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where Ci(t) = Ae−λht cos(ihπ
2
), 0 ≤ i ≤ I, with λh =

2−2 cos(ihπ
2
)

h2 . A straightforward compu-
tation reveals that

dJi(t)

dt
− δ2Ji(t) =

d

dt

(
dUi(t)

dt
− δ2Ui(t)

)
+ Ci(t)f

′(Ui(t))
dUi(t)

dt

−δ2(Ci(t)f(Ui(t))) +
dCi(t)

dt
f(Ui(t)), 0 ≤ i ≤ I − 1, t ∈ (0, T hq ).

We observe that

dCi(t)

dt
− δ2Ci(t) = 0, Ci+1(t) < Ci(t), 0 ≤ i ≤ I − 1,

and due to Lemma 2.4, we find that δ+(f(U0))δ
+(C0) ≥ 0, and δ+(f(Ui))δ

+(Ci) ≥ 0,
δ−(f(Ui))δ

−(Ci) ≥ 0, 0 ≤ i ≤ I − 1. It follows from Lemmas 2.5 and 2.6 that

δ2(Ci(t)f(Ui(t))) ≥ Ci(t)f
′(Ui(t))δ

2Ui(t) + f(Ui(t))δ
2Ci(t), 0 ≤ i ≤ I − 1.

Using the above estimates, we discover that

dJi(t)

dt
− δ2Ji(t) ≤

d

dt

(
dUi(t)

dt
− δ2Ui(t)

)
+ Ci(t)f

′(Ui(t))

(
dUi(t)

dt
− δ2Ui(t)

)

+f(Ui(t))

(
dCi(t)

dt
− δ2Ci(t)

)
, 0 ≤ i ≤ I − 1, t ∈ (0, T hq ).

With the help of (7), we derive the following estimates

dJi(t)

dt
− δ2Ji(t) ≤ −βi(t)f ′(Ui(t))

dUi(t)

dt
− βi(t)Ci(t)f ′(Ui(t))f(Ui(t)), 0 ≤ i ≤ I − 1.

Taking into account the expression of Ji(t), we arrive at

dJi(t)

dt
− δ2Ji(t) ≤ −βi(t)f ′(Ui(t))Ji(t), 0 ≤ i ≤ I − 1.

Obviously, we note that

JI(t) =
dUI(t)

dt
+ CI(t)f(UI(t)) = 0,

and due to inequalities (29), we get Jh(0) ≤ 0. It follows from Lemma 2.1 that Jh(t) ≤ 0 for
t ∈ [0, Th). This estimate may be rewritten in the following manner

dUi(t)

dt
≤ −Ae−λht cos

(
iπh

2

)
f(Ui(t)), 0 ≤ i ≤ I, t ∈ (0, T hq ). (31)
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At the first node, we have

dU0(t)

dt
≤ −Ae−λhtf(U0(t)), t ∈ (0, T hq ). (32)

Apply Taylor’s expansion to obtain

cos

(
πh

2

)
= 1− π2h2

4
+
π3h3

48
sin

(
πh

2
θ

)
,

where θ ∈ [0, 1]. This implies that λh ≤ π2

2
. Therefore using (32), we discover that

dU0(t)

dt
≤ −Ae−

π2

2
tf(U0(t)), t ∈ (0, T hq ).

After a little transformation, this inequality becomes

dU0

f(U0)
≤ −Ae−

π2

2
tdt, t ∈ (0, T hq ). (33)

Integrate the above estimate over (0, T hq ) to arrive at

T hq ≤ −
2

π2
ln

(
1− π2

2A

∫ U0(0)

0

dσ

f(σ)

)
. (34)

We know from Lemma 2.4 that U0(t) = Uhmin(t) for t ∈ (0, T hq ), which implies that U0(0) =

Uhmin(0) = ϕhmin. Taking into account the above inequalities and (34), it is not difficult to
check that

T hq ≤ −
2

π2
ln

(
1− π2

2A

∫ ϕhmin

0

dσ

f(σ)

)
. (35)

Use the fact that the quantity on the right hand side of the above inequality is finite to
complete the rest of the proof. �

Remark 3.1 Let t0 ∈ (0, T hq ). Integrate the estimate (33) over (t0, T
h
q ) and use the fact

that Uhmin(t0) = U0(t0) to obtain

T hq − t0 ≤ −
2

π2
ln

(
1− π2

2A
e
π2

2
t0

∫ Uhmin(t0)

0

dσ

f(σ)

)
. (36)

The theorem below gives a lower bound of the semidiscrete quenching time.

Theorem 3.2 Let Uh be the solution of (7)–(9). Assume that Uh quenches at the time
T hq . Then, we have the following estimate

T hq ≥
1

‖βh‖∞

∫ ϕhmin

0

ds

f(s)
.
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Proof: Let α(t) be the solution of the following differential equation

α′(t) = −‖βh‖∞f(α(t)), t > 0, α(0) = ϕhmin,

and let Wh(t) be the vector such that Wi(t) = α(t), 0 ≤ i ≤ I. After a little transformation,
it not hard to see that α(t) quenches in a finite time at the time Th = 1

‖βh‖∞

∫ ϕhmin
0

ds
f(s)

.
Setting Zh(t) = Wh(t)− Uh(t), a straightforward computation reveals that

dZi(t)

dt
− δ2Zi(t) + βif

′(ξi(t))Zi(t) ≤ 0, 0 ≤ i ≤ I − 1, t ∈ (0, T ∗h ),

ZI(t) ≤ 0, t ∈ (0, T ∗h ),

Zi(0) ≤ 0, 0 ≤ i ≤ I,

where T ∗h = min{Th, T hq }, and ξi(t) is an intermediate value between Ui(t) and Wi(t). Invok-
ing Lemma 2.1, we derive the following estimate Wh(t) ≤ Uh(t) for t ∈ (0, T ∗h ). Making use
of the expression of Wh, we discover that

Uhmin(t) ≥ α(t) for t ∈ (0, T ∗h ).

This implies that if t < 1
‖βh‖∞

∫ ϕhmin
0

ds
f(s)

, then Uhmin(t) > 0. Therefore T hq ≥ 1
‖βh‖∞

∫ ϕhmin
0

ds
f(s)

,
and the proof is complete. �

4 Convergence of the semidiscrete quenching time

In this section, under some assumptions, we prove that the semidiscrete quenching time
converges to the real one when the mesh size goes to zero.

Firstly, we show that, in the interval [0, T − τ ] with τ ∈ (0, T ) where the continuous solution
u obeys umin(t) > 0, the semidiscrete solution Uh approximates u when the mesh parameter
h goes to zero. This result is stated in the following theorem.

Theorem 4.1 Assume that (1)–(3) has a solution u ∈ C4,1([0, 1]× [0, T − τ ]) such that
mint∈[0,T ] umin(t) = ρ > 0 with τ ∈ (0, T ). Suppose that the potential and the initial datum
of the problem (7)–(9) satisfy

‖βh − bh‖∞ = o(1) as h→ 0, (37)

‖ϕh − uh(0)‖∞ = o(1) as h→ 0, (38)

respectively, where uh(t) = (u(x0, t), · · · , u(xI , t))
T . Then, for h sufficiently small, the prob-

lem (7)–(9) has a unique solution Uh ∈ C1([0, T hq ),RI+1) such that

max
0≤t≤T−τ

‖Uh(t)− uh(t)‖∞ = O(‖ϕh − uh(0)‖∞ + ‖βh − bh‖∞ + h2) as h→ 0.
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Proof: The problem (7)–(9) has for each h, a unique solution Uh ∈ C1([0, T hq ),RI+1). Let
t(h) the greatest value of t > 0 such that

‖Uh(t)− uh(t)‖∞ <
ρ

2
for t ∈ (0, t(h)). (39)

The relation (38) implies that t(h) > 0 for h sufficiently small. Let t∗(h) = min{t(h), T − τ}.
An application of the triangle inequality gives

Uhmin(t) ≥ umin(t)− ‖Uh(t)− uh(t)‖∞ for t ∈ (0, t∗(h)),

which implies that

Uhmin(t) ≥ ρ− ρ

2
=
ρ

2
for t ∈ (0, t∗(h)). (40)

Apply Taylor’s expansion to obtain

δ2u(xi, t) = uxx(xi, t) +
h2

12
uxxxx(x̃i, t), 0 ≤ i ≤ I − 1.

Exploiting the above equalities, we arrive at

du(xi, t)

dt
= δ2u(xi, t)− b(xi)f(u(xi, t))−

h2

12
uxxxx(x̃i, t), 0 ≤ i ≤ I − 1.

Introduce the error of discretization

eh(t) = Uh(t)− uh(t), t ∈ [0, t∗(h)).

Invoking the mean value theorem, we find that

dei(t)

dt
− δ2ei(t) = −βif ′(θi(t))ei(t)− (βi − b(xi))f(u(xi, t))

+
h2

12
uxxxx(x̃i, t), 1 ≤ i ≤ I − 1, t ∈ (0, t∗(h)), (41)

where θi(t) is an intermediate value between Ui(t) and u(xi, t). Let M > 0 be such that

‖uxxxx(·, t)‖∞
12

≤M for t ∈ [0, t∗(h)), −‖βh‖∞f ′(ρ2) ≤M, f(
ρ

2
) ≤M.

Making use of the above inequalities, it is not hard to see that

dei(t)

dt
− δ2ei(t) ≤M |ei(t)|+Mh2 +M‖βh − bh‖∞,

0 ≤ i ≤ I − 1, t ∈ (0, t∗(h)).
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Introduce the vector zh such that

zi(t) = e(M+1)t(‖ϕh − uh(0)‖∞ + ‖βh − bh‖∞ +Mh2), 0 ≤ i ≤ I, t ∈ [0, T ].

A straightforward computation yields

dzi(t)

dt
− δ2zi(t) > M |zi(t)|+Mh2 +M‖βh − bh‖∞,

0 ≤ i ≤ I − 1, t ∈ (0, t∗(h)),

zI(t) > eI(t), t ∈ (0, t∗(h)),

zi(0) > ei(0), 0 ≤ i ≤ I.

It follows from Lemma 2.3 that

zi(t) > ei(t), t ∈ (0, t∗(h)), 0 ≤ i ≤ I.

In the same way, we also prove that

zi(t) > −ei(t), t ∈ (0, t∗(h)), 0 ≤ i ≤ I,

which implies that

‖Uh(t)− uh(t)‖∞ ≤ e(M+1)t(‖ϕh − uh(0)‖∞ + ‖βh − bh‖∞ +Mh2), t ∈ (0, t∗(h)).

Let us show that t∗(h) = T − τ . Suppose that T − τ > t(h). From (39), we obtain

ρ

2
= ‖Uh(t(h))− uh(t(h))‖∞ ≤ e(M+1)T (‖ϕh − uh(0)‖∞ + ‖βh − bh‖∞ +Mh2).

Since the term on the right hand side of the above inequality goes to zero as h tends to zero,
we deduce that ρ

2
≤ 0, which is impossible. Consequently t∗(h) = T − τ, and the proof is

complete. �

Now, we are in a position to prove the main result of this section.

Theorem 4.2 Suppose that the solution u of (1)–(3) quenches in a finite time T such
that u ∈ C4,1([0, 1]× [0, T )). Assume that the potential and the initial datum of the problem
(7)–(9) satisfy the conditions (34) and (35), respectively. Under the assumptions of Theo-
rem 3.1, the problem (7)–(9) admits a unique solution Uh which quenches in a finite time
T hq , and the following relation holds

lim
h→0

T hq = T.
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Proof: Let 0 < ε ≤ T/2. There exists a constant R > 0 such that

− 1

π2
ln

(
1− 2π2

A
eπ

2T

∫ x

0

ds

f(s)

)
<
ε

2
for x ∈ [0, R]. (42)

Due to the fact that the solution u quenches in a finite time T , there exists T1 ∈ (T − ε
2
, T )

such that 0 < umin(t) < R
2
for t ∈ [T1, T ). Let T2 = T1+T

2
. Obviously 0 < umin(t) < R

2

for t ∈ [0, T2]. Exploiting Theorem 4.1, we know that the problem (7)–(9) admits a unique
solution Uh which obeys the following estimate ‖Uh(t) − uh(t)‖∞ < R

2
for t ∈ [0, T2], which

implies that ‖Uh(T2)− uh(T2)‖∞ < R
2
. An application of the triangle inequality gives

Uhmin(T2) ≤ ‖Uh(T2)− uh(T2)‖∞ + umin(T2) ≤
R

2
+
R

2
= R.

Taking into account Theorem 3.1, we note that Uh(t) quenches in a finite time T hq . We infer
from Remark 3.1 that

|T hq − T2| ≤ −
1

π2
ln

(
1− 2π2

A
eπ

2T2

∫ Uhmin(T2)

0

ds

f(s)

)
. (43)

Since the function s −→ − ln(1 − s) is an increasing function for positive values of s, it is
not hard to see that the term on the right hand side of the above inequality is bounded from
above by − 1

π2 ln(1− 2π2

A
eπ

2T
∫ Uhmin(T2)

0
ds
f(s)

). We deduce from (42) and (43) that |T hq −T2| ≤ ε
2
,

which implies that

|T hq − T | ≤ |T hq − T2|+ |T2 − T | ≤
ε

2
+
ε

2
= ε.

This completes the proof. �

5 Numerical experiments

In this section, we give some computational experiments to confirm the theory given in the
previous section. We consider the problem (1)–(3) in the case where f(u) = u−p, b(x) =

2 + x2, u0(x) = 1+x2

2
with p > 0. We start by the construction of an adaptive scheme as

follows. Let I be a positive integer and let h = 1/I. Define the grid xi = ih, 0 ≤ i ≤ I,
and approximate the solution u of (1)–(3) by the solution U

(n)
h = (U

(n)
0 , · · · , U (n)

I )T of the
following explicit scheme

U
(n+1)
0 − U (n)

0

∆tn
=

2U
(n)
1 − 2U

(n)
0

h2
− β0(U

(n)
0 )−p,

U
(n+1)
i − U (n)

i

∆tn
=
U

(n)
i+1 − 2U

(n)
i + U

(n)
i−1

h2
− βi(U (n)

i )−p, 1 ≤ i ≤ I − 1,



Numerical quenching for . . . 31

U
(n)
I = 1,

U
(0)
i = ϕi, 0 ≤ i ≤ I,

where ϕi = 1+(ih)2

2
− ε

(sin( iπh
2

)+1)

5
, βi = 1 + (ih)2 − ε sin(iπh) with ε ∈ [0, 1]. In order to

permit the discrete solution to reproduce the properties of the continuous one when the time
t approaches the quenching time T , we need to adapt the size of the time step so that we
take

∆tn = min

{
(1− h2)h2

2
, h2(U

(n)
hmin)p+1

}
.

Let us notice that the restriction on the time step ensures the positivity of the discrete
solution. We also approximate the solution u of (1)–(3) by the solution U (n)

h of the implicit
scheme below

U
(n+1)
0 − U (n)

0

∆tn
=

2U
(n+1)
1 − 2U

(n+1)
0

h2
− β0(U

(n)
0 )−p−1U

(n+1)
0 ,

U
(n+1)
i − U (n)

i

∆tn
=
U

(n+1)
i+1 − 2U

(n+1)
i + U

(n+1)
i−1

h2
− βi(U (n)

i )−p−1U
(n+1)
i , 1 ≤ i ≤ I − 1,

U
(n+1)
I = 1,

U
(0)
i = ϕi, 0 ≤ i ≤ I.

As in the case of the explicit scheme, here, we also choose ∆tn = h2(U
(n)
hmin)p+1. Let us again

remark that for the above implicit scheme, existence and positivity of the discrete solution
are also guaranteed using standard methods (see, for instance [6]).

We need the following definition.

Definition 5.1 We say that the discrete solution U
(n)
h of the explicit scheme or the

implicit scheme quenches in a finite time if limn→∞ U
(n)
hmin = 0, and the series

∑∞
n=0 ∆tn

converges. The quantity
∑∞

n=0 ∆tn is called the numerical quenching time of the discrete
solution U (n)

h .

In the following tables, in rows, we present the numerical quenching times, the numbers of
iterations, the CPU times and the orders of the approximations corresponding to meshes of
16, 32, 64, 128. We take for the numerical quenching time tn =

∑n−1
j=0 ∆tj which is computed

at the first time when
∆tn = |tn+1 − tn| ≤ 10−16.
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The order (s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.

Numerical experiments for p = 1

First case: ε = 0

Table 1: Numerical quenching times, numbers of iterations, CPU times (seconds) and or-
ders of the approximations obtained with the explicit Euler method

I tn n CPU time s

16 0.0802018 1960 1.3 -
32 0.0800499 7550 5.3 -
64 0.0800131 28956 51 2.04
128 0.0800040 110721 1140 2.01

Table 2: Numerical quenching times, numbers of iterations, CPU times (seconds) and or-
ders of the approximations obtained with the implicit Euler method

I tn n CPU time s

16 0.0808371 1975 2.8 -
32 0.0802084 7564 10.6 -
64 0.0800526 28969 164 2.01
128 0.0800014 110732 4620 1.61

Second case: ε = 1

Table 3: Numerical quenching times, numbers of iterations, CPU times (seconds) and or-
ders of the approximations obtained with the explicit Euler method

I tn n CPU time s

16 0.0176645 1856 1.3 -
32 0.0177477 7167 5.4 -
64 0.0177705 27512 45 1.86
128 0.0177765 105213 1097 1.92
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Table 4: Numerical quenching times, numbers of iterations, CPU times (seconds) and or-
ders of the approximations obtained with the implicit Euler method

I tn n CPU time s

16 0.0178058 1870 1.8 -
32 0.0177826 7179 11.4 -
64 0.0177791 27523 150 2.72
128 0.0177787 105223 3604 3.12

Third case: ε = 1/100

Table 5: Numerical quenching times, numbers of iterations, CPU times (seconds) and or-
ders of the approximations obtained with the explicit Euler method

I tn n CPU time s

16 0.0794108 1960 1.2 -
32 0.0792633 7551 5.4 -
64 0.0792276 28962 81 2.72
128 0.0792188 110749 1380 2.02

Table 6: Numerical quenching times, numbers of iterations, CPU times (seconds) and or-
ders of the approximations obtained with the implicit Euler method

I tn n CPU time s

16 0.0800397 1975 1.8 -
32 0.0794202 7565 11.5 -
64 0.0792667 28974 193 2.01
128 0.0792286 110760 4260 2.01

Remark 5.1 Tables 1 and 2 provide us the results of the numerical quenching time when
ε = 0. We observe that the numerical quenching time in this case is approximately equal to
0.08. It is worth noting that both explicit and implicit schemes give practically the same
results, and we also observe that the variation of the different meshes has no important
effects on the numerical quenching time. It is also important to point out that, when we
look at Tables 5 and 6, we see that the numerical quenching times when ε ∈ (0, 1) is small
enough, are slightly equal to that which corresponds to ε = 0. On the other hand, when one
examines Tables 1, 2, 3 and 4, one sees that an important perturbation on the potential and
the initial datum has a meaningful impact on the numerical quenching time.
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In the following, we also give some plots to illustrate our analysis. In the figures below,
we can see that the discrete solution quenches in a finite time at the first node. Here, all
schemes are highly consistent.
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Figure 1: Evolution of the discrete solution U
(n)
h , I = 16,

ε = 0, f(s) = s2.
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Figure 2: Approximation of u(0, t), I = 16,
ε = 0, f(s) = s2.
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Figure 3: Approximation of umin(t), I = 16,
ε = 0, f(s) = s2.

6 Conclusion

In the present paper, we have considered a semilinear heat equation with a potential subject
to Dirichlet-Neumann boundary conditions. We have constructed a semidiscrete scheme,
and have shown that the solution of the semidiscrete scheme quenches in a finite time, and
its semidiscrete quenching time converges to the continuous one when the mesh size tends
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to zero. We have studied in passing the continuity of the semidiscrete quenching time as a
function of the potential and the initial datum. Our study can take into account some works
where Dirichlet boundary conditions are considered. In fact, one knows that if a solution
u(x, t) is symmetric in (−1, 1)× (0, T ), then ux(0, t) = 0. This can permit to treat a problem
where Dirichlet boundary condition is taken considering the problem developed in this paper.
In the works to come, it will be better to consider the problem described in (1)–(3) using a
full discrete scheme.
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