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1 Introduction

We study an equivalence in Lp (1 ≤ p < ∞) of two ordinary impulse differential equations
with a possibly unbounded linear part. This means that to every bounded solution of the
first equation there corresponds a bounded solution of the second equation such that their
difference is in Lp and vice versa. In Theorem 1 we prove the Lp-equivalence making use
of the Schauder-Tychonoff’s fixed point principle. Further we give an example with an
important application in physics. We consider two partial impulse differential equations
with elliptic linear parts and reduce them to two ordinary impulse differential equations.
These equations satisfy the conditions of Theorem 1 and are therefore Lp-equivalent. In this
case, we establish “Lp-dependence” between the solutions of two partial equations.

2 Statement of the problem

Let X be a Banach space with norm ‖.‖ and identity I. By D(T ) ⊂ X we will denote the
domain of the operator T : D(T ) → X. We consider the following two impulse differential
equations

dui
dt

= Ai(t)ui + fi(t, ui) for t 6= tn (1)
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ui(t
+
n ) = Qi

n(ui(tn)) + hin(ui(tn)) for n = 1, 2, ..., (2)

where Ai(t) : D(Ai(t)) → X (t ∈ R+) and Qi
n : D(Qi

n) → D(Ai(tn)) (i = 1, 2) are linear
(possibly unbounded) operators. The sets D(Ai(t)) and D(Qi

n) (i = 1, 2; t ≥ 0, n = 1, 2, ...)

are dense in X. The functions fi(., .) : R+ × X → X and hin : X → X(n = 1, 2, ...) are
continuous. The points of jump tn satisfy the following conditions 0 = to < t1 < ... < tn <

..., lim
n→∞

tn =∞. We set Qi
0 = I, hi0(u) = 0 (i = 1, 2, u ∈ X).

Furthermore, we assume that all considered functions are left continuous.

Let Ui(t, s) (i = 1, 2; 0 ≤ s ≤ t) be Cauchy operators of the linear ordinary equations

dui
dt

= Ai(t)ui (i = 1, 2). (3)

It is easy to prove that the functions ui(t) = Vi(t, s)ξi

for ξi ∈ D(Ai(s)) (i = 1, 2) with

Vi(t, s) = Ui(t, tn)Qi
nUi(tn, tn−1)Qi

n−1...Q
i
kUi(tk, s) (4)

(0 ≤ s ≤ tk ≤ tn < t) satisfy the linear impulse Cauchy problems

dui
dt

= Ai(t)ui for t 6= tn (5)

ui(t
+
n ) = Qi

n(ui(tn)) for n = 1, 2, ... (6)

ui(s) = ξi (i = 1, 2). (7)

Let us note that the operators Vi(t, s) (i = 1, 2) are bounded if one of the following conditions
holds

1. Qi
nUi(tn, tn−1) are bounded operators (i = 1, 2; n = 1, 2, ...).

2. Ui(tn+1, tn)Qi
n are bounded operators (i = 1, 2; n = 1, 2, ...).

Definition 1 The solutions of integral equations

ui(t) = Vi(t, s)ξi +

t∫
s

Vi(t, τ)fi(τ, ui(τ))dτ +
∑
s<tn<t

Vi(t, t
+
n )hin(ui(tn)) (8)

for 0 ≤ s ≤ t, ξi ∈ D(Ai(s)), ui(s) = ξi are called solutions of the impulse equations (1),
(2) (i = 1, 2).

By Lp(X), 1 ≤ p < ∞ we denote the space of all functions

u : R+ → X for which
∞∫
0

‖u(t)‖pdt < ∞, with the norm ‖u‖p = (
∞∫
0

‖u(t)‖pdt)
1
p

. Set

Br = {u ∈ X : ‖u‖ ≤ r}.
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Definition 2 The equation (1), (2) for i = 2 is called Lp-equivalent to the equation (1),
(2) for i = 1 in the ball Br, if there exists ρ > 0 such that for any solution u1(t) of (1),
(2) (i = 1) lying in the ball Br there exists a solution u2(t) of (1), (2) (i = 2) lying in the
ball Br+ρ and satisfying the relation u2(t) − u1(t) ∈ Lp(X). If equation (1), (2) (i = 2) is
Lp-equivalent to equation (1), (2) (i = 1) in the ball Br and vice versa, we shall say that
equations (1), (2) (i = 1) and (1), (2) (i = 2) are Lp-equivalent in the ball Br.

The paper aims at finding sufficiently conditions for the existence of Lp-equivalence between
the impulse equations (1), (2) (i = 1, 2).

3 Main results

3.1 Lp-equivalent impulse equations

Let us set
v(t) = u2(t)− u1(t),

where ui(t) (i = 1, 2) being defined by (8).

Then the function v(t) is a solution of the integral equation

v(t) = T (u1, v)(t),

where
T (u1, v)(t) = V2(t, 0)(u1(0) + v(0))− V1(t, 0)u1(0)+

+
t∫

0

{V2(t, τ)f2(τ, u1(τ) + v(τ))− V1(t, τ)f1(τ, u1(τ))}dτ+

+
∑

0<tn<t

{V2(t, t+n )h2
n(u1(tn) + v(tn))− V1(t, t+n )h1

n(u1(tn))}

(9)

We shall prove that for each solution u1(t) of equation (1), (2) (i = 1) lying in the ball Br

the operator T (u1, v) has a fixed point v(t) such that u1(t) + v(t) ∈ Br+ρ for some ρ > 0 and
which is in Lp(X).

Let S(R+, X) be linear set of all functions which are continuous for t 6= tn (n = 1, 2, ...),
have in a both left and right limits at points tn and are left continuous. The set S(R+, X)

is a locally convex space w.r.t. the metric

ρ(u, v) = sup
0<T<∞

(1 + T )−1
max

0≤t≤T
‖u(t)− v(t)‖

1 + max
0≤t≤T

‖u(t)− v(t)‖
.

The convergence w.r.t this metric coincides with the uniform convergence on each bounded
interval. For this space an analog of Arzella-Ascoli’s theorem is valid.
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Lemma 1 [1] The set M ⊂ S(R+, X)is relatively compact if and only if the intersections
M(t) = {m(t) : m ∈ M} are relatively compact for t ∈ R+ and M is equicontinuous on
each interval (tn, tn+1] (n = 0, 1, 2, ...).

Proof: We apply Arzella-Ascoli theorem to each interval (tn, tn+1](n = 0, 1, 2, ...) and con-
stitute a diagonal line sequence, which is converging on each of them.

Lemma 2 [1] Let the continuous compact operator T transform the set

C(ρ) = {v ∈ S(R+, X) : v(t) ∈ Bρ, t ∈ R+}

onto itself. Then T has a fixed point in C(ρ).

3.2 Conditions for Lp-equivalence

Theorem 1 Let the following conditions be fulfilled.

1. There exist positive functions Ki(t, s) (i = 1, 2) such that

‖Vi(t, s)ξ‖ ≤ Ki(t, s)‖ξ‖ (0 ≤ s ≤ t, ξ ∈ D(Ai(s))),

where the functions Ki(t, 0) (i = 1, 2) satisfy the following condition:

There exist constants r, ρ > 0 such that

K1(t, 0)‖ξ‖+K2(t, 0)‖η‖ ≤ χr,ρ(t) (t ∈ R+, η ∈ Br+ρ, ξ ∈ Br),

where χr,ρ(t) ∈ Lp(R+).

2. The functions fi(t, u) and Ki(t, s) (i = 1, 2) satisfy the conditions :

2.1 sup
‖u‖≤r

t∫
0

K1(t, τ)‖f1(τ, u)‖dτ+ sup
‖w‖≤r+ρ

t∫
0

K2(t, τ)‖f2(τ, w)‖dτ ≤ ψr,ρ(t), where ψr,ρ(t)

is continuous and ψr,ρ(t) ∈ Lp(R+).

2.2
t∫

0

V2(t, τ)f2(τ, u1(τ) + v(τ))dτ ∈ K(t)

(v ∈ Bρ, u1 ∈ Br, u1 − fixed), where for any fixed t ∈ R+ K(t) is a compact
subset of X.

3. The functions hin(u) and Ki(t, s) (i = 1, 2) satisfy the conditions

3.1 sup
‖u‖≤r

∑
0<tn<t

K1(t, t+n )‖h1
n(u)‖ + sup

‖w‖≤r+ρ

∑
0<tn<t

K2(t, t+n )‖h2
n(w)‖ ≤ ϕr,ρ(t), where

ϕr,ρ(t) ∈ Lp(R+).
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3.2
∑

0<tn<t

V2(t, t+n )h2
n(u1(tn) + v(tn)) ∈ Kn

(v ∈ Bρ, u1 ∈ Br, u1 − fixed), where for any fixed n = 1, 2, ..., Kn is a compact
subset of X.

4. The function f2(t, w) satisfies the condition

sup
‖w‖≤r+ρ

K2(t, τ)‖f2(τ, w)‖ ≤ Φr,ρ(t, τ),

where
t∫

0

Φr,ρ(t, τ)dτ <∞ for any fixed t ∈ R+.

5. The inequality
χr,ρ(t) + ψr,ρ(t) + ϕr,ρ(t) ≤ ρ

holds for each t ∈ R+.

Then the equation (1), (2) for i = 2 is Lp-equivalent to the equation (1), (2) for i = 1

in the ball Br.

Proof: We shall show that for any function u1(t) ∈ Br (t ∈ R+) the operator T (u1, v)

defined by equality (9) maps the set

C(ρ) = {v ∈ S(R+, X) : v(t) ∈ Bρ, t ∈ R+}

into itself.

Let u1(t) ∈ Br (t ∈ R+) and let v ∈ C(ρ). Then, making use of (9), we obtain the estimate

‖T (u1, v)(t)‖ ≤ ‖V2(t, 0)(u1(0) + v(0))‖+ ‖V1(t, 0)u1(0)‖+

+
t∫

0

‖V2(t, τ)f2(τ, u1(τ) + v(τ))‖dτ +
t∫

0

‖V1(t, τ)f1(τ, u1(τ))‖dτ+

+
∑

0<tn<t

‖V2(t, t+n )h2
n(u1(tn) + v(tn))‖+

∑
0<tn<t

‖V1(t, t+n )h1
n(u1(tn))‖

≤ K2(t, 0)‖u1(0) + v(0)‖+K1(t, 0)‖u1(0)‖+

+ sup
‖w‖≤r+ρ

t∫
0

K2(t, τ)‖f2(τ, w)‖dτ + sup
‖u‖≤r

t∫
0

K1(t, τ)‖f1(τ, u)‖dτ+

+ sup
‖w‖≤r+ρ

∑
0<tn<t

K2(t, t+n )‖h2
n(w)‖+ sup

‖u‖≤r

∑
0<tn<t

K1(t, t+n )‖h1
n(u)‖

≤ χr,ρ(t) + ψr,ρ(t) + ϕr,ρ(t) ≤ ρ

for each t ∈ R+.

Let M = {m(t) = T (u1, v)(t) : ‖v‖ ≤ ρ, t ∈ R+}.



50 A. Georgieva, S. Kostadinov

We shall show the equicontinuity of the functions of the set M . Let t′ > t′′ and t′, t′′ ∈
(tn, tn+1]. It is easily seen that

‖m(t′)−m(t′′)‖ ≤

≤ ‖V2(t′, 0)u2(0)− V2(t′′, 0)u2(0)‖+ ‖V1(t′, 0)u1(0)− V1(t′′, 0)u1(0)‖+

+ sup
‖w‖≤r+ρ

t′′∫
0

‖V2(t′, τ)f2(τ, w)− V2(t′′, τ)f2(τ, w)‖dτ+

+ sup
‖u‖≤r

t′′∫
0

‖V1(t′, τ)f1(τ, u)− V1(t′′, τ)f1(τ, u)‖dτ+

+ sup
‖w‖≤r+ρ

t′∫
t′′
K2(t′, τ)‖f2(τ, w)‖dτ + sup

‖u‖≤r

t′∫
t′′
K1(t′, τ)‖f1(τ, u)‖dτ+

+ sup
‖w‖≤r+ρ

∑
0<tn<t′′

‖V2(t′, t+n )h2
n(w)− V2(t′′, t+n )h2

n(w)‖+

+ sup
‖u‖≤r

∑
0<tn<t′′

‖V1(t′, t+n )h1
n(u)− V1(t′′, t+n )h1

n(u)‖.

The continuity of functions Vi(t, τ) (i = 1, 2) on (tn, tn+1] and condition 2.1 of Theorem 1
imply the equicontinuity of the set M .

It follows from conditions 2.2, 3.2 and (9) that the sections M(t) = {m(t) : m ∈ M} are
compact for any t ∈ R+. Consequently, Lemma 1 implies the compactness of the set M .

Now, we shall show that the operator T (u1, v) is continuous in S(R+, X).

Let the sequence {vk(t)} ⊂ C(ρ) be convergent in the metric of the space S(R+, X) to
the function v(t) ∈ C(ρ). Then, for t ∈ R+ the sequence f2(t, u1(t) + vk(t)) converges
to f2(t, u1(t) + v(t)). Utilizing condition 4 of Theorem 1, we obtain that the convergent
sequence of functions V2(t, τ)f2(τ, u1(τ) + vk(τ)) is majorized by the integrable function
Φr,ρ(t, τ). Therefore, we may pass to the limit in the formula.

T (u1, vk)(t) = V2(t, 0)(u1(0) + vk(0))− V1(t, 0)u1(0)+

+
t∫

0

{V2(t, τ)f2(τ, u1(τ) + vk(τ))− V1(t, τ)f1(τ, u1(τ))}dτ+

+
∑

0<tn<t

{V2(t, t+n )h2
n(u1(tn) + vk(tn))− V1(t, t+n )h1

n(u1(tn))}

Hence, T (u1, vk)(t) tends to T (u1, v)(t) for t ∈ R+.

From Lemma 2 it follows that for any u1 ∈ Br the operator T (u1, v) has a fixed point v in
C(ρ) i.e., v = T (u1, v).
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We shall show that this fixed point v(t) lies in Lp(X).

‖v(t)‖ ≤ K2(t, 0)‖u1(0) + v(0)‖+K1(t, 0)‖u1(0)‖+

+ sup
‖w‖≤r+ρ

t∫
0

K2(t, τ)‖f2(τ, w)‖dτ + sup
‖u‖≤r

t∫
0

K1(t, τ)‖f1(τ, u)‖dτ+

+ sup
‖w‖≤r+ρ

∑
0<tn<t

K2(t, t+n )‖h2
n(w)‖+ sup

‖u‖≤r

∑
0<tn<t

K1(t, t+n )‖h1
n(u)‖

≤ χr,ρ(t) + ψr,ρ(t) + ϕr,ρ(t)

‖v‖p ≤ (
∞∫
0

|χr,ρ(t) + ψr,ρ(t) + ϕr,ρ(t)|pdt)
1
p

≤ ‖χr,ρ‖p + ‖ψr,ρ‖p + ‖ϕr,ρ‖p

Hence, this fixed point belongs to the space S(R+, X) i.e., equation (1), (2) for i = 2 is
Lp-equivalent to the equation (1), (2) for i = 1 in the ball Br.

Theorem 1 is proved.

We shall illustrate Theorem 1 by an example of the qualitative theory of the nonlinear partial
impulse differential equations.

Example In the example we consider two partial impulse differential equations and reduce
them to two ordinary impulse differential equations. For these ordinary impulse differential
equations, the conditions of Theorem 1 are fulfilled. Many notations and results for ordinary
differential equations are taken from capite 5−7 of [4]. The short introduction in the general
theory of nonlinear partial impulse differential equations follows [2].

Let Ω be a bounded domain with smooth boundary ∂Ω in Rn, Q = (0,∞) × Ω and Γ =

(0,∞)× ∂Ω.

We denote

Pn = {(tn, x) : x ∈ Ω}, P =
∞⋃
n=1

Pn,

Λn = {(tn, x) : x ∈ ∂Ω}, Λ =
∞⋃
n=1

Λn.

Consider the impulse nonlinear parabolic initial value problems

∂ui
∂t

= Ãi(t, x,D)ui + f̃i(t, x, ui), (t, x) ∈ Q \ P (10)

Dαui(t, x) = 0, |α| < m, (t, x) ∈ Γ \ Λ (11)

ui(0, x) = vi(x), x ∈ Ω (12)

ui(t
+
n , x) = Q̃i

n(ui(tn, x)) + h̃in(ui(tn, x)), x ∈ Ω, n = 1, 2, ..., (13)
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where
Ãi(t, x,D) =

∑
|α|≤2m

aiα(t, x)Dα,

Q̃i
n : D(Q̃i

n) → D(Ãi(tn, x,D)) (n = 1, 2, ...; i = 1, 2) are linear operators, f̃i(., ., .) : R+ ×
Rn × R→ R and h̃in : R→ R are continuous functions.

Let X = Lp(Ω,R) (1 < p <∞), where

Lp(Ω,R) = {v : Ω→ R;

∫
Ω

|v(x)|pdx <∞}

with norm |v|p = (
∫
Ω

|v(x)|pdx)
1
p .

With the family Ãi(t, x,D), t ∈ R+, (i = 1, 2) of strongly elliptic operators we associate a
family of linear operators Ai(t), t ∈ R+, (n = 1, 2) acting in X by

Ai(t)ui = Ãi(t, x,D)ui, for ui ∈ D.

This is done as follows D = D(Ai(t)) = W 2m,p(Ω)
⋂
Wm,p

0 (Ω), (i = 1, 2; t ∈ R+).

Let vi ∈ X. We set

fi(t, ui)(x) = f̃i(t, x, ui(t, x)), ui ∈ X, t ∈ R+, x ∈ Ω (i = 1, 2),

Qi
n(ui(tn))(x) = Q̃i

n(ui(tn, x)), hin(ui(tn))(x) = h̃in(ui(tn, x)),

where Qi
n : D(Qi

n) → D (D(Qi
n) ⊂ X lie dense in X (i = 1, 2)) are linear operators,

f in : R+ ×X → X and hin : X → X are continuous functions.

We shall prove the Lp-equivalence between the equations (1), (2) (i = 1, 2).

Let Ui(t, s) (i = 1, 2) are the Cauchy operators of the equations

dui
dt

= Ai(t)ui

Sufficient conditions for the validity of the estimates

|Ui(t, s)|p→p ≤ Cie
−ki(t−s) (0 ≤ s ≤ t; Ci, ki > 0 constants, i = 1, 2)

are given in [4].

We shall consider the concrete case when tn = n (n = 1, 2, ...),

f̃1(t, x, u1) = eγ1t
u2
1(t,x)

1+u2
1(t,x)

, f̃2(t, x, u2) = eγ2t sinu2(t, x),

Q̃1
nξ1 = k1n

C1(1+n2)eC1+k1
ξ1, Q̃2

nξ2 = k2n
C2(1+n2)eC2+k2

ξ2,

h̃1
n(u1(tn, x)) = eα1n2−u1(tn,x), h̃2

n(u2(tn, x)) = eα2n 1
1+u2

2(tn,x)
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where −1 < γi + ki < 0 and αi + ki < ln 1
2

(i = 1, 2).

Then
f1(t, u1) = eγ1t

u2
1(t)

1+u2
1(t)
, f2(t, u2) = eγ2t sinu2(t),

Q1
nξ1 = k1n

C1(1+n2)eC1+k1
ξ1, Q̃2

nξ2 = k2n
C2(1+n2)eC2+k2

ξ2,

h1
n(u1(tn)) = eα1n.2−u1(tn), h2

n(u2(tn)) = eα2n 1
1+u2

2(tn)

Let Vi(t, s) (i = 1, 2; 0 ≤ s ≤ t) are the Cauchy operators of the linear impulse equations

dui
dt

= Ai(t)ui for t 6= tn

ui(t
+
n ) = Qi

n(ui(tn)) for n = 1, 2, ...

Then for 0 < s ≤ k < n < t, ξ ∈ D the following estimates are valid

|V1(t, s)ξ|p = |U1(t, tn)Q1
n...Q

1
kU1(tk, s)ξ|p

≤ C1e
−k1(t−n) k1n

C1(1+n2)eC1+k1
... k1k
C1(1+k2)eC1+k1

C1e
−k1(k−s)|ξ|p

≤ C1

eC1(n−k+1)
kn−k1

ek1(n−k+1)k1ne
−k1(t−s)|ξ|p ≤ k1te

−k1(t−s)|ξ|p.

Similarly
|V2(t, s)ξ|p ≤ k2te

−k2(t−s)|ξ|p.

We set
ki(t, s) = kite

−ki(t−s) (i = 1, 2)

Let r > 0 and
ρ >

2

e− 1
(r + 2(µ(Ω))

1
p ) (14)

We shall show that the conditions of Theorem 1 are fulfilled. For any ξ ∈ Br, η ∈ Br+ρ,
t ∈ R+ we obtain

K1(t, 0)|ξ|p +K2(t, 0)|η|p = k1te
−k1t|ξ|p + k2te

−k2t|η|p ≤

≤ k1te
−k1tr + k2te

−k2t(r + ρ).

Let us set
χr,ρ(t) = k1te

−k1tr + k2te
−k2t(r + ρ).

We shall show that condition 2.1 of Theorem 1 is fulfilled.

sup
|u|p≤r

t∫
0

K1(t, τ)|f1(τ, u)|pdτ + sup
|w|p≤r+ρ

t∫
0

K2(t, τ)|f2(τ, w)|pdτ

= sup
|u|p≤r

t∫
0

k1te
−k1(t−τ)eγ1τ | u2(τ)

1+u2(τ)
|
p
dτ+

+ sup
|w|p≤r+ρ

t∫
0

k2te
−k2(t−τ)eγ2τ | sinw(τ)|pdτ ≤
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≤ k1te
−k1t(µ(Ω))

1
p

t∫
0

e(k1+γ1)τdτ+

+k2te
−k2t(µ(Ω))

1
p

t∫
0

e(k2+γ2)τdτ ≤

≤ k1te
−k1t (µ(Ω))

1
p

−(k1+γ1)
+ k2te

−k2t (µ(Ω))
1
p

−(k2+γ2)

Let us set

ψr,ρ(t) = k1te
−k1t (µ(Ω))

1
p

−(k1 + γ1)
+ k2te

−k2t (µ(Ω))
1
p

−(k2 + γ2)
.

We shall prove condition 3.1 of Theorem 1.

sup
|u|p≤r

∑
0<n<t

K1(t, t+n )|h1
n(u(tn))|p + sup

|w|p≤r+ρ

∑
0<n<t

K2(t, t+n )|h2
n(w(tn))|p =

= sup
|u|p≤r

∑
0<n<t

k1te
−k1(t−n)eα1n|2−u(tn)|p+

+ sup
|w|p≤r+ρ

∑
0<n<t

k2te
−k2(t−n)eα2n| 1

1+w2(tn)
|
p
≤

≤ k1te
−k1t(µ(Ω))

1
p

∑
0<n<t

e(k1+α1)n+

+k2te
−k2t(µ(Ω))

1
p

∑
0<n<t

e(k2+α2)n ≤

≤ k1te
−k1t(µ(Ω))

1
p eα1+k1

1−eα1+k1
+ k2te

−k2t(µ(Ω))
1
p eα2+k2

1−eα2+k2

Set

ϕr,ρ(t) = k1te
−k1t(µ(Ω))

1
p

eα1+k1

1− eα1+k1
+ k2te

−k2t(µ(Ω))
1
p

eα2+k2

1− eα2+k2
.

It is not hard to check if the functions χr,ρ(t), ψr,ρ(t) and ϕr,ρ(t) lie in the space Lp(R+).

Condition 4 of Theorem 1 is fulfilled with

Φr,ρ(t, τ) = k2te
−k2t(µ(Ω))

1
p e(k2+γ2)τ ∈ L1(R+)

for any fixed t ∈ R+.

We shall show that condition 5 of Theorem 1 holds

χr,ρ(t) + ψr,ρ(t) + ϕr,ρ(t) =

= k1te
−k1t(r − (µ(Ω))

1
p 1
k1+γ1

+ (µ(Ω))
1
p eα1+k1

1−eα1+k1
)+

+k2te
−k2t(r + ρ− (µ(Ω))

1
p 1
k2+γ2

+ (µ(Ω))
1
p eα2+k2

1−eα2+k2
).

From condition (14) we obtain

χr,ρ(t) + ψr,ρ(t) + ϕr,ρ(t) ≤ ρ for each t ∈ R+.

By means of a compactness criterion from [3] we shall prove condition 2.2.



Impulse differential Equations with . . . 55

The set

M(t) = {m(t) =

t∫
0

V2(t, τ)f2(τ, u1(τ) + v(τ))dτ : |v|p ≤ ρ}

is a compact subset of X for any fixed t.

Indeed,

|m(t)(x)| ≤ k2te
−k2t

t∫
0

e(k2+γ2)τ | sin(v(τ)(x) + u1(τ)(x))|dτ

≤
t∫

0

e(k2+γ2)τdτ = 1
k2+γ2

(e(k2+γ2)t − 1), i.e.

(
∫
Ω

|m(t)(x)|pdx)
1
p ≤ 1

k2+γ2
(e(k2+γ2)t − 1)(µ(Ω))

1
p

and hence |m(t)(x)|p ≤ N (N -constant).

We show that
|m(t)(x+ h)−m(t)(x)|p → 0 (h→ 0).

This follows from the relations below

|m(t)(x+ h)−m(t)(x)| ≤

≤
t∫

0

e(k2+γ2)τ | sin(v(τ)(x+ h) + u1(τ)(x+ h))− sin(v(τ)(x) + u1(τ)(x))|dτ

≤
t∫

0

e(k2+γ2)τ |v(τ)(x+ h)− v(τ)(x)|dτ +
t∫

0

e(k2+γ2)τ |u(τ)(x+ h)− u(τ)(x)|dτ

In a similar way, we show the validity of condition 3.2. The conditions of Theorem 1 are
fulfilled and hence the ordinary equations (1), (2) (i = 1, 2) are in Br Lp-equivalent. Hence,
every solution u1(t, x) of (10)-(13) (i = 1) induces a solution u2(t, x) of (10)-(13) (i = 2)

such that the function α1(t) = |u1(t, x)− u2(t, x)| lies in Lp(R+) for any x ∈ Ω .
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