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Iterative functional equations

ABSTRACT. Functional equations for iterates are solved or approximated by means of
associated difference equations. Some examples and three Open Problems are pointed out.
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1 Introduction

Let y be a strictly monotonous continuous function R 7→ I ⊂ R and y[−1] its inverse I 7→ R,
then the functions

f [n](x) = y
(
n+ y[−1](x)

)
(1.1)

with integer n are the n-th iterates of the strictly increasing function f = f [1] : I 7→
I. Classical books concerning iterates are Aczél [1] and Kuczma [4], and recent surveys
are Baron and Jarczyk [3], and Targonski [8]. Let us mention that the functions (1.1)
are solutions of the well known translation equation, which also can be considered in the
multidimensional case, cf. [2].

The connection (1.1) between y and the iterates of f enables us to solve the functional
equation

f [k] = F
(
x, f, . . . , f [k−1]

)
(1.2)

with k ∈ N and F : Ik 7→ I by means of the associated difference equation

y(t+ k) = F (y(t), y(t+ 1), . . . , y(t+ k − 1)) (1.3)

with the same F . Namely, any strictly monotonous continuous solution y : R 7→ I of (1.3)
yields a strictly increasing solution f : I 7→ I by means of (1.1).
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In the case that F is a homogeneous function of degree 1, equation (1.2) has the so called
characteristic solutions f = rx, so far as r is a real solution of the characteristic equation

rk = F (1, r, . . . , rk−1) ,

cf. Matkowski and Zhang [5] for linear homogeneous F .

In the following we mostly deal with the case k = 2. In the next section we give some
examples for the method in the Introduction, and in the last two sections we deal with
further methods for solving (1.2), at least approximatively. Three Open Problems are offered
to the reader.

2 Linear associated equations

As a special case of (1.2) we consider the functional equation with constant coefficients

f [2] = af + bx , (2.1)

which was studied in detail by Matkowski and Zhang [5], see also the references therein. The
associated difference equation (1.3) reads

y(t+ 2) = ay(t+ 1) + by(t) (2.2)

and has the general solution

y(t) =

cpt + dqt for p 6= q ,

(ct+ d)pt for p = q ,
(2.3)

where c and d are arbitrary 1-periodic functions, and p, q the solutions of the corresponding
characteristic equation

r2 = ar + b . (2.4)

In the following we restrict ourselves to the case that p, q are positive, and c, d some real
constants.

The case of arbitrary real p, q different from zero can be reduced to the foregoing one by
determining the function g = f [2] out of the equation

g[2] + (2b− a2)g + b2x = 0

with the squares of p, q as zeros of its characteristic equation. Afterwards, f is to determine
as fractional iterate f = g[1/2], cf. [4, Theorems 15.7 and 15.9]. However, not all fractional
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iterates are solutions of (2.1), especially, in the case pq < 0 there exist at most the charac-
teristic solutions of (2.1), disregarding exceptional cases, cf. [5, Theorem 6]. Let us mention
that, if f is a solution of (2.1), then g = −f(−x) is also a solution of it (what is trivial for
odd f).

Applying formula (2.3) in the case p 6= q, we find that the iterates (1.1) of the solutions f of
(2.1) can be written as

f [n](x) = cpn+y[−1](x) + dqn+y[−1](x) . (2.5)

We introduce a real constant s 6= 1 such that

q = ps , (2.6)

and moreover the function

u(x) = cpy
[−1](x) .

Hence, (2.5) can be written as

f [n](x) = pnu+ Apsnus

with A = dc−s. Since f [0](x) = x, we have to determine u by inversion of

x = u+ Aus , (2.7)

and the foregoing functions turn into

f [n](x) = psnx+ (pn − psn)u . (2.8)

Since u must be strictly monotonous in x, we have to choose A > 0 for s > 0, and A < 0 for
s < 0, whereas A remains arbitrary for s = 0.

Let us consider three examples for solutions of equation (2.1).

Example 2.1 In the case s = −1 we find from (2.7)

u =
1

2

(
x+
√
x2 − 4A

)
,

where also the negative sign of the root would be possible, and (2.8) with k = 1 yields the
solutions

f(x) =
1

2

(
p+

1

p

)
x+

1

2

(
p− 1

p

)√
x2 − 4A . (2.9)
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Example 2.2 In the case s = 2 we find from (2.7)

u = −B +
√
B2 + 2Bx

with B = 1/(2A) and x ≥ 0, and therefore the solutions

f(x) = p2x+ (p− p2)
(√

B2 + 2Bx−B
)

(2.10)

with B = 1/(2A) and x ≥ 0.

Example 2.3 In the case s = 3 we get analogously by means of Cardano’s formula the
solutions

f(x) = p3x+
3

2
C(p− p3)

(
3

√√
x2 + C3 + x− 3

√√
x2 + C3 − x

)
(2.11)

with C3 = 4/(27A).

Further examples are possible, e.g. in the cases s = −2, 0 or 3
2
.

3 Approximate solutions

In order to find an approximate solution of (1.2) with continuous F , we consider (1.3) for
integer t = n and write this equation as

yn+k(z) = F (yn(z), yn+1(z), . . . , yn+k−1(z)) , (3.1)

where z is a certain parameter. Let the solution yn(z) be continuous and strongly in-
creasing in z, so that x = yn(z) can be inverted by z = y

[−1]
n (x), and put fn(x) =

yn+1

(
y

[−1]
n (x)

)
. Replacing z in (3.1) by y

[−1]
n (x) and considering that yn+2

(
y

[−1]
n (x)

)
=

fn+1(fn(x)), yn+3

(
y

[−1]
n (x)

)
= fn+2(fn+1(fn(x))) etc., we see that the resulting equation

converges to (1.3) in case that fn converges to f .

We try this method for the example

f [2] = x(1 + f) (3.2)

with x ≥ 0 and the nonlinear associated difference equation

yn+2 = yn(1 + yn+1) (3.3)

from Stević [6], [7].
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Proposition Let yn be the solution of (3.3) subject to the initial conditions y0 = y1 = z,
then the corresponding functions fn = yn+1

(
y

[−1]
n

)
satisfy

f2n < f2n+2 < f2n+3 < f2n+1 (3.4)

for all x > 0 and all integers n ≥ 0.

Proof: Obviously, all yn and all fn are continuous and strictly increasing and hence invert-
ible. From the associated difference equation (3.3) it follows

fn+1(fn) = x(1 + fn) , (3.5)

and this equation implies

fn+1 = (1 + x)f [−1]
n . (3.6)

From f0 = x, f1 = x+x2, f2(f1) = x+x2 +x3 and f3(f2) = x+x2 +x3 +x4 it easily follows
f0 < f1, f0(f1) < f2(f1) and f3(f2) < f1(f2), so that (3.4) is satisfied for n = 0, disregarding
the inequality in the middle. From (3.6) it follows

fn+2 − fn+1 = (1 + x)
(
f

[−1]
n+1 − f [−1]

n

)
,

fn+2 − fn = (1 + x)
(
f

[−1]
n+1 − f

[−1]
n−1

)
,

and since f < g implies f [−1] > g[−1], the inequalities (3.4) follow for all n by induction.

Corollary The functions f2n converge to a function g, and the functions f2n+1 to a
function h with g ≤ h and both

g(h) = x(1 + h) , h(g) = x(1 + g) .

Open Problem 1 Prove that g = h.

By means of DERIVE we find that the solutions of (3.3) with y0 = y1 = z are polynomials
with the first terms

y2n = z + nz2 + n(n− 1)z3 + n(n− 1)2z4 +
n

6
(n− 1)(6n2 − 13n+ 5)z5 ,

y2n+1 = z + nz2 + n2z3 +
n

2
(n− 1)(2n+ 1)z4 +

n

6
(n− 1)(6n2 − n− 4)z5 ,

and that the corresponding functions fn are power series with the first terms

f2n = x+ nx3 − 3

2
n(n+ 1)x4 +

n

2
(4n2 + 11n+ 3)x5 ,

f2n+1 = x+ x2 − nx3 +
n

2
(3n+ 1)x4 − n2(2n+ 1)x5 .

 (3.7)
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Obviously, it is not possible in these formulas to go to the limit n → ∞ term by term.
Nevertheless, since

nx3 − 3

2
n2x4 + 2n3x5 +

5

2
n4x6 + · · · = x2

2

(
1− 1

(1 + nx)2

)
for small nx, we expect the approximations

f2n = x+
x2

2
− x2

2(1 + nx)2
, f2n+1 = x+

x2

2
+

x2

2(1 + nx)2
.

Open Problem 2 Prove that the functions fn with the first terms (3.7) converge to a
solution f of (3.2) with the expansion

f = x+
1

2
x2 − 1

16
x4 +

1

16
x5 − 1

64
x6 + . . . (3.8)

for small x, and the asymptotic expansion

f = xλ + λ− λ2

x
− λ3

2xλ
+

1

xλ+1
+ . . . (3.9)

as x→∞, where λ = 1
2

(√
5 + 1

)
is the positive root of λ2 = λ+ 1.

The terms in (3.8) and (3.9) can be found by inserting suitable power series with indetermi-
nate coefficients into (3.2) and comparing coefficients.

4 A new method

Let the parameter z in (3.1) be the initial value x = y0. We deal with the question, whether
it is possible that a solution yn(x) of (3.1) yields for n = 1 a solution f(x) = y1(x) of (1.2)
in the case k = 2. Obviously, the answer is yes, if

y1(y1(x)) = y2(x) (4.1)

for all x ∈ R. We discuss this answer in two cases.

4.1 Linear associated equations

As first example we consider once more equation (2.1) with the linear associated equation

yn+2 = ayn+1 + byn (4.2)

for t = n. According to y0 = x we can write the solution (2.3) of (4.2) as

yn(x) =

cpn + (x− c)qn for p 6= q ,

(cn+ x)pn for p = q .
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In the case p 6= q it follows

y1(y1(x)) = xq2 + c(p− q)(1 + q) ,

and this is equal to y2(x) for c(p−1) = 0, i.e. for c = 0 resp. p = 1, cf. [5, Theorem 8], where
the solution with p = 1 is excluded.

In the case p = q it follows
y1(y1(x)) = xp2 + cp(1 + p) ,

and this is equal to y2(x) also for c(p− 1) = 0, i.e. for c = 0 resp. p = 1 cf. [5, Theorem 7].
Hence, we have found very few examples for the equation (4.1), i.e. for f(x) = y1(x), but we
can consider a further one.

4.2 Nonlinear associated equation

Let us return to equation (3.2) with the associated equation (3.3). If we look for a solution
of (3.3) being a power series in x = y0, we find by means of DERIVE for the first terms

yn(x) = x+
n

2
x2 +

n

4
(n− 1)x3 +

n

16
(2n2 − 5n+ 2)x4 +

n

96
(6n3 − 26n2 + 27n− 1)x5

+
n

384
(12n4 − 77n3 + 142n2 − 49n− 34)x6 + . . .

(4.3)

which for n = 1 turn into (3.8).

Open Problem 3 Show that f(x) = y1(x) is indeed a solution of (3.2).
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