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ABSTRACT. In the present paper, we define and study a new three-step iterative schemes
with errors. Several strong convergence theorems of this scheme are established for asymp-
totically nonexpansive mappings. Our results extend and improve the recent ones announced

by Osilike and Aniagbosor, Cho et.al, Liu and Kang, Nammanee et al., and many others.
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1 Introduction

Let X be a real Banach space and C' be a nonempty subset of X. A mapping 7" : C — C'is
said to be asymptotically nonexpansive if there exists a sequence {k,} of real numbers with
k, > 1 and lim,,_. k,, = 1 such that

1Tz = Ty < kallz = yll,

for all z,y € C' and all n > 1. The mapping 7' is called uniformly L-Lipschitzian if there

exists a positive constant L such that
[Tz = T"y|| < Lz —yl|,

for all x,y € C' and all n > 1. It is easy to see that if T is asymptotically nonexpansive, then
it is uniformly L-Lipschitzian with the uniform Lipschitz constant L = sup{k, : n > 1}.

In 2002, Xu and Noor [10] introduced and studied a three-step scheme to approximate fixed
points of asymptotically nonexpansive mappings in a Banach space. Glowinski and Le Tallec
[2] used three-step iterative schemes to find the approximate solutions of the elastoviscoplas-
ticity problem, liquid crystal theory, and eigenvalue computation. It has been shown in

[2] that the three-step iterative scheme gives better numerical results than the two-step and



72 W. Nilsrakoo, S. Saejung

one-step approximate iterations. Haubruge, Nguyen and Strodiot [3] studied the convergence
analysis of three-step schemes of Glowinski and Le Tallec [2| and applied these schemes to
obtain new splitting-type algorithms for solving variation inequalities, separable convex pro-
gramming and minimization of a sum of convex functions. They also proved that three-step
iterations lead to highly parallelized algorithms under certain conditions. Thus we conclude
that three-step scheme plays an important and significant part in solving various problems,
which arise in pure and applied sciences. In 2004, Cho, Zhou, and Guo [!], and Liu and
Kang [!] extended the preceding scheme to the three-step iterative scheme with errors and
gave weak and strong convergence theorems for asymptotically nonexpansive mappings in
a Banach space. Recently, Nammanee, Noor and Suantai [5| defined a three-step iterative
scheme with errors which is an extension of schemes in [1] and [/] iterations and gave some
weak and strong convergence theorems for asymptotically nonexpansive mappings in a uni-
formly convex Banach space. The authors of the present paper [6| defined a new three-step
iterative schemes and gave some strong convergence theorems for asymptotically nonexpan-
sive mappings. Inspired by the preceding iteration scheme, we define a new iteration scheme

with errors as follows.

Let C be a nonempty convex subset of a real Banach space X and 7" : C' — C be a mapping.
Algorithm 1 For a given z; € C, compute the sequences {x,}, {y,} and {z,} by the

iterative schemes, for all n > 1,

Zp = ahxy + 0T T, + T,
Yn = UpZp + 0,772, + c,T" 2, + S,0p, (1)
Ln+1 = OpTy + ﬁnTnxn + rYnTnyn + 5nTnZn + tnwn;

where {an}, {Bn}, {7}, {0n}, {an}, {bn}, {cn}, {an}, {0}, {ra}, {sn} and {t,} are appro-
priate sequences in [0, 1] with o, + G, + v+ 0n +tn = an + by +cn+ s, = a, + 0, +r, =1,
and {u,}, {v,} and {w,} are bounded sequences in C. The iterative schemes (1) is called

the three-step mean value iterative scheme with errors.

If B, = 0, then Algorithm 1 reduces to
Algorithm 2 [5] For a given z; € C, compute the sequences {z,}, {y,} and {z,} by the

iterative schemes, for all n > 1,

Zp = ahxy, + 0T T, + Thun,
Yn = AnTp + b, T2, + c,T" 2, + S0, (2)
Tp41 = Opdy + ’VnTnyn + 6nTnzn + tnw’m

whete {an}, (1, {0, {and, {0}, {ea}, {alh, W}, {rad {50} and {t,} ave appropriate
sequences in [0, 1] with a,, + v, + 0+t = an + by + ¢ + 8, = al, + b, + 1, = 1, and {u,},
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{v,} and {w,} are bounded sequences in C'. The iterative schemes (2) is called the modified

Noor iterative scheme with errors.

If 5, =6, =0b, =0, then Algorithm 1 reduces to
Algorithm 3 [1, /| For a given z; € C, compute the sequences {z,}, {y,} and {z,} by the
iterative schemes, for all n > 1,

Zp = A, Ty + b T 2, + 1y,
Yn = ATy + T 20 + $n0p, (3)

Tn4+1 = Aplp + fYnTnyn + tnwna

where {a,}, {7}, {an}, {cn}, {a.}, {b,}, {rv}, {sn} and {t,} are appropriate sequences in
[0,1] with a, + 74+t = ap + ¢y + s, = a, + b, +r, =1, and {u,}, {v,} and {w,} are
bounded sequences in C. The iterative schemes (3) is called the Noor iterative scheme with

Eerrors.

2 Auxiliary Lemmas

For convenience, we use the notations lim,, = lim,,_,, liminf,, = liminf,,_, ., and lim sup,, =

limsup,,_, ... In the sequel, we shall need the following lemmas.

Lemma 1 ([7], Lemma 1) Let {a,},{b,} and {\,} be sequences of nonnegative real

numbers satisfying the inequality
Qp41 S (1+/\n)an+bn7 n 2 1.
If Y A < o0 and Y7 b, < oo, then lim, a, exists.

Lemma 2 Let X be a real Banach space and C be a nonempty closed convex subset of X .
Let T : C — C be an asymptotically nonexpansive mapping with the nonempty fixed-point
set F'(T) (i.e., F(T) :={x € C:2x =Tz} # &) and a sequence {k,} of real numbers such
that ky, > 1 and Y " (k, —1) < co. Let {z,} be a sequence defined by Algorithm 1 with the
restrictions that > =, < 00, D 00 Sy < 00, Do YnCnTyn < 00 and Yo 8,1, < 00.

Then we have the following conclusions.

(i) lim, ||z, — p|| exists for any p € F(T).

(ii) lim, d(z,, F(T)) exists, where d(x, F(T)) denotes the distance from x to the fized-point
set FI(T).
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Proof: Let p € F(T). We note that {u, —p}, {v, —p}, and {w, —p} are bounded sequences
in C. Let

L = sup{ky : n > 1} and M = sup{{|lun — pl|, [[vn — |, lwn —pl| : 7 = 1}

By using (1), we have

lzn = pll < a2 — pll + B, T2 = pll + Poallun —
< (1 =) |lzn — pl| + U, knl|zn — pl| + Mr,,
< (L + b (ko — 1) ||l2n — pll + M7,
< kallea — pll + Mr,, (4)

1Y = pll < anllzn = pll + 0uI T 2 — pll + ol T2 = Pl + sullvn — pll
< (1= by — c)||Tn — pl| + buknllzn — Dl + Coknl|2a — p|| + Msy,
< (1 + (by + ¢ + k) (kn — D) |20 — pl| + M (80 + catnksn)
< (14 (L+2)(kn — 1)|lzn — pl| + M(s, + Lenrn), (5)

and so

[Zn41 = pll < wllzn = pll + Bull T"2n — pll + Yl Ty — pll
+ 0l T" 2 = pl| + tn | wn — pll
< (1= Bn = = 0n)ll2n — pll + Bnknllzn — p
+ Ynknllyn — Pl + Onknllzn — pll + Mty
< (L (Bn+ 9+ nbin(L +2) + 6n(kn + 1)) (kn — 1)) |20 — p
+ M (t, + Yoknsn + Lynkncarn + dpknry)
< (14 (L2 + 3L +3)(ky — 1) ||z — pll
+ Mty + Lynsn + L*Ypcarn + Loyry).
By assumption, the conclusions of the lemma follow from Lemma 1. This completes the
proof. O
We also need the following lemma proved by Schu [].
Lemma 3 Let X be a uniformly conver Banach space, let {\,} be a sequence of real

numbers such that 0 < b < X\, < c <1 foralln > 1, and let {z,} and {y,} be sequences

of X such that limsup,, ||z,| < a, limsup, ||y,|| < a and lim, | \,x, + (1 — \p)ys|| = a for
some a > 0. Then lim, ||z, — y,| = 0.

By Schu’s Lemma, we have the following lemma.
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Lemma 4 Let {x,}, {y.} and {z,} be sequences in a uniformly convex Banach space
X. Suppose that {a,}, {B.} and {v,} are sequences in [0,1] with a, + B + v = 1,
limsup, 2| < a, lim sup, | < o, lmsup, ||zl] < a, and limy aqn+ G+ nzall = a.

where a > 0. If liminf, a,, > 0 and liminf, 5, > 0, then lim, ||z, — y,|| = 0.

Proof: We may assume without loss of generality that «,, > 0 and 3, > 0 for all n € N.
Let {ny} be a subsequence of {n} such that

B,
Qi ﬁ%k ank%—ﬁ%k

hm inf H &n n+ Bn

nt B ant B

hm H Yny
Then

a = liminf ||, @, + Ba Y, + Yo 2|

o B
< lim inf ( e + Bn ‘ e, ~—Vn nell2n >
< limin (. + Bny) ank+ﬁnk$k+ank+ﬁnkyk + Yo |2, |
k A, +ﬁnk A, +ﬁ”k
Bn
< liminf(a, ) 1 f” n li n
1m1n (Ctn,, + Bny) 1m1n Oén+ﬂn n+ n+ﬁny +a 1msup7 -

This implies that
limkinf (a4 B, )a

=(1- limksup Vg )

B

Since liminf, («, + £,) > liminf, a;, + liminf, 3, > 0, it follows that

a, Bn ’ , Bn

< hmkmf (Qny + Bny) hm inf H

Ty + T, +

n || < limsu n n
ant Bt B Plom + 8. o+ B

n

a < lim inf
n

We now observe that

lim inf _ G > liminfa,, >0 and liminf L > liminf 3, > 0.

n oy + On n n (079 n
By Lemma 3, we have lim,, ||z, — y,|| = 0. This completes the proof. O

The following lemmas are the important ingredients for proving our main results in the next

section.

Lemma 5 Let X be a uniformly convex Banach space and C be a nonempty closed convex
subset of X. Let T : C'— C' be an asymptotically nonexpansive mapping with the nonempty
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fized-point set F(T) and a sequence {k,} of real numbers such that k, > 1 and > >~ (k, —
1) < co. Let {x,} be a sequence defined by Algorithm 1 with the restrictions thaty . t, <
00, Do YnSn < 00, Do YnCnTy < 00 and Y >~ 0,1, < 00. Then we have the following

assertions.

(i) If 0 < liminf,~, < limsup, (6, + v + 6,) < 1 and limsup, (b, + ¢,) < 1, then

lim, [|[T"z, — x,| = 0.

(ii) If0 < liminf, 6, <limsup, (B, + v +0,) < 1 and limsup,, b}, < 1, then lim,, | 1"z, —

x| = 0.
(i) If 0 < liminf, G, <limsup, (5, + Vo + 0,) < 1, then lim, ||T"z, — z,|| = 0.
Proof: Let p € F(T). By Lemma 2, we have lim, ||z, — p|| = a for some a > 0. Since
lim, ¢, =0,
a = lim [z, 1 — pl|
=l [[(1 = B = = 6n) (@ = p) + Bu(T" 20 = p) + 1(T"Yn — p)
+ 00 (T" 2 = p) + tn(wy — z0) ||
=l [|(1 = B = 9 = ) (2 = p) + Bp(T" 2 — p)
+ Y (T"yn = p) + 0u(T" 20 = p)I- (6)
We first observe that

limsup || T"z, — p|| < limsup k,||z, — p|| = a. (7)

To prove (i), let {m;} be a subsequence of {n}. We show that there is a subsequence {n;}
of {m;} such that limy | T"*y,, — .| = 0.

As liminf, v, > 0, D77 48, < 00, and Y 7 | Ve < 00, limy, s, = ¢,r, = 0. By using
(5), we have

limsup || 7™y, — pl| < Hmsup Ky, [|[ym; — pll < a. (8)
J J

If lim inf; d,,; > 0, then lim;r,,,, = 0. By (4), we gives

limsup (|17 2, — pl| < Hmsup ki, [|2m, — pl| < a. 9)
J J

It follows from (6)-(9) and Lemma 4 that

Hm [Ty, — @, || = 0.
J
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On the other hand, if liminf; 6,,,, = 0, then we may extract a subsequence {d,, } of {d,,,} so
that limy 9, = 0, it follows that

lim &y, |, — pll = 0 = Lim 6, |7 2, — p]|.
This together with (6) gives
@ =tim (1~ B, — 0@, ~ D)
+ By (T 2y, = )+ i (T Yy, = )| (10)
It follows from (7), (8), (10), and Lemma 4 that
lilgn Ty, — T, || = 0.
By double extract subsequence principle,
(2, — ) — (T — )| = L [Ty, — 2, = . (1)
It follows that lim,, [|T"y, — p|| = a. Also
a= limninf T "y, — p|| < limninf knllyn — pll = limninf llyn — pll-

From (5), we gives limsup,, |y, — p|| < a, so that lim,, ||y, — p|| = a.

Next we prove that
lim | T"x,, — x| =0, (12)

let {¢;} be a subsequence of {n}. It suffices to show that there is a subsequence {n;} of {¢;}

such that limy [| 7™z, — x,, || = 0. Since lim,, s, = 0,
a = lim [|ye, — pll
= 11?1 ||(1 — bg]. — Czj)(l’gj — p) + béj (szl’gj — p)

+ ng (ngZgj — p) + Sg]. (Ugj — SL’gj)H

= li]m H(l - bgj — ng)(l'gj — p) + bgj (ngxfj — p) + ¢ (Tg

jzfj - p)H
If liminf; ¢, > 0, by Lemma 4 and limsup,, (b, + ¢,) < 1, then
lim || 7%z, — z¢,|| = 0. (13)
j

On the other hand, if liminf; ¢,; = 0, then we may extract a subsequence {c,, } of {c,} so
that limy ¢,,, = 0, it follows that

Hm o, |77 20, = 2 || = 0. (14)
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By using (1), we have

< knk”xnk - ynkH + HTnkynk - xnk”
< knkbnkHTnkxnk - xnk” + k‘nkanHTnkznk - x”k”

+ Ky Sng [|Ung — T ||+ 1T Yy, — @ |-
This together with (11), (13), and (14) gives
h}gn(l — kn o )T 2y, — 4, || = 0.
As liminf, (1 — k,b,) = 1 — limsup,, b, > 1 — limsup,, (b, + ¢,,) > 0, we have
liin | Tz, — 20, || = 0.

By double extract subsequence principle, we obtain (12) and the proof of (i) is finished.
By using a similar method, it can be shown that (ii) is satisfied.

(iii) To show that
lim || T"x,, — x,|| =0, (15)

let {m;} be a subsequence of {n}. It suffices to show that there is a subsequence {n;} of
{m;} such that limy, [|T"*x,, — x,,|| = 0. We consider the following cases.

Case 1: liminf; ~,,, > 0.

Subcase 1.1: liminf;4,, > 0. Then we obtain (6)-(9). It follows from Lemma 4 that
limy || T 2y, — T, || = 0.

Subcase 1.2: liminf;d,,, = 0 = limy, 6, , where {6,,,} C {0y, }. Then we obtain (10), and
SO

Case 2: liminf;~,,; = 0. Choose {7, } C {ym,} such that lim; v, = 0, it follows that
lim 3y, [|ze, — pll = 0 = Tim s, | T%ye, — pl.
This together with (6) gives

a =T (1 = By, = 8,) (@0, = ) + Be, (T2, = p) + 60, (T2 D). (16)

Subcase 2.1: liminf, d,, > 0. By (4), we have limsup, || 7%z, — p|| < a. It follows from
(7), (16) and Lemma 4,

hin ”Tzkwfk - mfk” = 0.
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Subcase 2.2: liminfy §;, = 0 = lim; 6,,,, where {0,,,} C {d¢,}. It follows that
lim 6, | 7 2, — pll = 0.
This together with (16) gives
@ =i [ (1 = B, (@, — )+ G (T2, — )]

It follows from Lemma 3, lim; ||T"z,, — x,,|| = 0. By double extract subsequence principle,

we obtain (15). This completes the proof. O

Lemma 6 Let X be a real Banach space and C be a nonempty closed convexr subset of
X. Let T : C — C be an asymptotically nonexpansive mapping with a sequence {k,} of
real numbers such that k, > 1 and lim, k, = 1 and, {x,} be a sequence defined in C' by
Algorithm 1 with the restrictions that lim, t,, = lim,, v, s, = lim,, y,c,r, = lim, 0,7, = 0. If

lim, || 7"z, — x,| = 0, then lim, || Tz, — x,| = 0.

Proof: Using (1), we have

1T" 20 — x|l < T2 — T 20| + | T" 20 — 20|
< knllzn = 2nl] + [|[T" 20 — 24|
< (Onkn + DT 2y — @ull + raknllun — 24,

1Ty — znll S NT"yn — T nl| + 1T 20 — 24|
< kllyn = @nl + ([T 20 — @0,
S bk ||[T"xy, — || + crkn||T" 20 — 20|
+ Snkinl|vn — @l + [ T" 20 — @0
< (bpkn + bl k2 + cpkn + V|| T2, — 2,

+ Snknllvn — Za | + otk — 2,
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and so

[Zns1 = T g |
< N@ntr = zall + 1T %01 = T || + ([T 20 — 24|
< (L kn)llwngs = anll + ([T 20 — 20|
< Bua(L+ k)| T2 — | + (1 + k) [Ty — 2|
+ 0, (L + k)| T" 20 — x| + ta(1 + k) ||wn — x| + | T2 — 2]
< Bu(L+ k)| T2y — 0|
+ Yo (1 + k) (b + cubl k2 + cpky + D)|| T, — 1, ]|
+ YnSukin (1 + kn) [vn — Zall +Yncarn(1+ kn)kp l[tn — 2
+ 00 (1 + k) (U ke + DT 20 — 20| + 0nrn(1 + kn)knl|wn — 2|
+ to (1 + kp)||wy — 2| + | T" 2, — 24| — 0.

Thus

|11 = Tongall < lngs = T @l + 1T apn — T

< Nanir = T @i || + k1| T @041 — T || — 0,

which implies lim,, | Tz, — 2,[| = 0. This completes the proof. O

3 Main results

In this section, we establish several strong convergence theorems of the three-step mean value

iterative scheme with errors for asymptotically nonexpansive mappings.

Theorem 7 Let X be a uniformly convex Banach space and C be a nonempty closed
convex subset of X. Let T : C — C' be an asymptotically nonexpansive mapping with the
nonempty fized-point set F(T) and a sequence {k,} of real numbers such that k, > 1 and
Yoo (k,—1) < oo. Let {x,} be a sequence in C' defined by Algorithm 1 with the following

restrictions:
(i) 0 <liminf,~, <limsup, (G, + Yn + 0n) < 1,
(ii) limsup, (b, +¢,) < 1, and
(fii) D02ty <00, D 0 8y <00, 0L Cply < 00, D0 OpTy < 00.

If T satisfies Condition (A) with respect to the sequence {z,}, then {x,} converges strongly
to a fixed point of T.
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Let {z,} be a given sequence in C. Recall that a mapping T : C' — C with the nonempty
fixed-point set F(T') in C satisfies Condition (A) with respect to the sequence {z,} (|9]) if
there is a nondecreasing function f : [0,00) — [0,00) with f(0) = 0 and f(r) > 0 for all
r € (0,00) such that

fld(z, F(T))) < ||xp — Txy||, for all n > 1.

Proof. By Lemma 5(i) and Lemma 6, we have
lim ||Tx, — z,| = 0.

Let f be a nondecreasing function corresponding to Condition (A) with respect to {z,}.
Then

f(d(wn, F(T))) < [T — xnl| = 0,

and so
d(x,, F(T)) — 0.

Therefore, the conclusion of the theorem follows exactly from [6]. This completes the proof.
]

Remark 8 Suppose we rewrite our scheme by treating the additional terms as error terms
in the sense of Xu [11] in this way: z; € C,

/ /
Zn = A, Tp + 0, T, + rpuny,

S
n — Unpdn nTn n bn n = ™ n = n)y
Un = anTn + T2 + ( +S)(bn+5n x +bn+3nv)
xn—i—l:anxn+’7nTnyn+(ﬁn+5n+tn)
Bn 571 tn
X (—"rt-T "2y + —-v--T"2, + ————w,),
(6n+5n+tn 5n+5n+tn 6n+5n+tn )

for all n > 1. To obtain a strong convergence theorem by Theorem 2.4 of [1], we are restricted
to the following

Z(ﬁn + 0, +t,) <oo and Z(bn + s,) < 00,
n=1 n=1

from which lim, §, = lim, 6, = lim,, b, = 0, > >~ s, < 0o, and >~ t, < co. But our
Theorem 7 still gives the result for more general restriction. For example, our result is
applicable to the case of 3, =4, =b, = 1/4 and s,, =, = 1/2".

Consequently, we obtain the following corollaries. When (3, = 0, we have

Corollary 9 Let X be a uniformly convex Banach space and C be a nonempty closed

conver subset of X. Let T : C — C be an asymptotically nonexpansive mapping with
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the nonempty fixed-point set and a sequence {k,} of real numbers such that k, > 1 and
Yoo (ky—1) < oo. Let {x,} be a sequence in C' defined by Algorithm 2 with the following

restrictions:

(i) 0 < liminf, v, <limsup, (v, + d,) < 1,
(i) limsup, (b, +¢c,) <1, and

(1) D07 by <00, D0l 8y <00, YT Cply < 00, D0 Oply < 00.

If T satisfies Condition (A) with respect to the sequence {z,}, then {x,} converges strongly
to a fixed point of T.

When 3, = 9,, = b, =0 in Theorem 7, we also have

Corollary 10 Let X be a uniformly convex Banach space and C be a nonempty closed
conver subset of X. Let T : C — C be an asymptotically nonexpansive mapping with
the nonempty fixed-point set and a sequence {k,} of real numbers such that k, > 1 and
Yo (k,—1) < oo. Let {x,} be a sequence in C' defined by Algorithm 3 with the following

restrictions:

(i) 0 <liminf,~, <limsup, v, < 1,
(ii) limsup, ¢, <1, and

(i) > pmytn <00, D20y S0 <00, DTy Cal < 0O

If T satisfies Condition (A) with respect to the sequence {x,}, then {x,} converges strongly
to a fized point of T.

Remark 11 1. Corollary 9 extends and improves Theorem 2.3 of [5] in the following
ways:
(i) The condition liminf, ¢, > 0 is removed.

(ii) The restriction >~ r, < oo is weakened and replaced by > >~ ¢,r, < oo and
Yo Onry < 00.

(iii) The complete continuity imposed on T is replaced by the more general Condition
(A) with respect to {z,} (see also [, Corollary 2.5]).

2. Corollary 10 extends and improves Theorem 2.4 of [I]. The restriction Y>> 7, < 00

is weakened and replaced by > ¢,r, < c0.
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3. Corollary 10 also extends and improves Theorem 3.2 of [1] in the following ways:

(i) The semi-compactness imposed on T is weakened by assuming that T satisfies
Condition (A) with respect to {x,} ||, Corollary 2.5]|.

(ii) The condition lim,, ¢, = 0 is weakened and replaced by limsup,, ¢, < 1.
Next, as consequences of Lemma 5(ii), (iii) and Lemma 6, we have the following theorems.

Theorem 12 Let X be a uniformly convexr Banach space and C be a nonempty closed
convex subset of X. Let T : C — C be an asymptotically nonexpansive mapping with
the nonempty fixed-point set and a sequence {k,} of real numbers such that k, > 1 and
Yo (kn—1) < o0. Let {z,} be a sequence in C' defined by Algorithm 1 with the following

restrictions:

(i) 0 < liminf, 6, < limsup,, (B, + Y + 0n) < 1,
(i) limsup, b}, <1, and

(1) 352, t < 00, 305, s < 00, Y00, 1 < 00.

If T satisfies Condition (A) with respect to the sequence {x,}, then {x,} converges strongly
to a fized point of T'.

Theorem 13 Let X be a uniformly convex Banach space and C be a nonempty closed
convex subset of X. Let T : C — C be an asymptotically nonexpansive mapping with
the nonempty fixed-point set and a sequence {k,} of real numbers such that k, > 1 and
Yo (ky —1) < oo. Let {z,} be a sequence in C' defined by Algorithm 1 with the following

restrictions:

(i) 0 <liminf, 8, <limsup,, (B, + v + ) < 1 and

(1) D200t <00, Dol VS < 00, Yot YnCnln < 00, D oo Gyt < 00.

If T satisfies Condition (A) with respect to the sequence {x,}, then {x,} converges strongly
to a fized point of T'.

Remark 14 By using the same ideas and techniques, we can also discuss the weak con-
vergence for asymptotically nonexpansive mappings with errors and thereby improve the
corresponding results obtained by Cho, Zhou and Guo [1], Liu and Kang [!|, and Namma-

nee, Noor and Suantai [5].
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