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ABSTRACT. In the present paper, we define and study a new three-step iterative schemes
with errors. Several strong convergence theorems of this scheme are established for asymp-
totically nonexpansive mappings. Our results extend and improve the recent ones announced
by Osilike and Aniagbosor, Cho et.al, Liu and Kang, Nammanee et al., and many others.
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1 Introduction

Let X be a real Banach space and C be a nonempty subset of X. A mapping T : C → C is
said to be asymptotically nonexpansive if there exists a sequence {kn} of real numbers with
kn ≥ 1 and limn→∞ kn = 1 such that

‖T nx− T ny‖ ≤ kn‖x− y‖,

for all x, y ∈ C and all n ≥ 1. The mapping T is called uniformly L-Lipschitzian if there
exists a positive constant L such that

‖T nx− T ny‖ ≤ L‖x− y‖,

for all x, y ∈ C and all n ≥ 1. It is easy to see that if T is asymptotically nonexpansive, then
it is uniformly L-Lipschitzian with the uniform Lipschitz constant L = sup{kn : n ≥ 1}.

In 2002, Xu and Noor [10] introduced and studied a three-step scheme to approximate fixed
points of asymptotically nonexpansive mappings in a Banach space. Glowinski and Le Tallec
[2] used three-step iterative schemes to find the approximate solutions of the elastoviscoplas-
ticity problem, liquid crystal theory, and eigenvalue computation. It has been shown in
[2] that the three-step iterative scheme gives better numerical results than the two-step and
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one-step approximate iterations. Haubruge, Nguyen and Strodiot [3] studied the convergence
analysis of three-step schemes of Glowinski and Le Tallec [2] and applied these schemes to
obtain new splitting-type algorithms for solving variation inequalities, separable convex pro-
gramming and minimization of a sum of convex functions. They also proved that three-step
iterations lead to highly parallelized algorithms under certain conditions. Thus we conclude
that three-step scheme plays an important and significant part in solving various problems,
which arise in pure and applied sciences. In 2004, Cho, Zhou, and Guo [1], and Liu and
Kang [4] extended the preceding scheme to the three-step iterative scheme with errors and
gave weak and strong convergence theorems for asymptotically nonexpansive mappings in
a Banach space. Recently, Nammanee, Noor and Suantai [5] defined a three-step iterative
scheme with errors which is an extension of schemes in [1] and [4] iterations and gave some
weak and strong convergence theorems for asymptotically nonexpansive mappings in a uni-
formly convex Banach space. The authors of the present paper [6] defined a new three-step
iterative schemes and gave some strong convergence theorems for asymptotically nonexpan-
sive mappings. Inspired by the preceding iteration scheme, we define a new iteration scheme
with errors as follows.

Let C be a nonempty convex subset of a real Banach space X and T : C → C be a mapping.
Algorithm 1 For a given x1 ∈ C, compute the sequences {xn}, {yn} and {zn} by the
iterative schemes, for all n ≥ 1,

zn = a′nxn + b′nT
nxn + rnun,

yn = anxn + bnT
nxn + cnT

nzn + snvn, (1)

xn+1 = αnxn + βnT
nxn + γnT

nyn + δnT
nzn + tnwn,

where {αn}, {βn}, {γn}, {δn}, {an}, {bn}, {cn}, {a′n}, {b′n}, {rn}, {sn} and {tn} are appro-
priate sequences in [0, 1] with αn + βn + γn + δn + tn = an + bn + cn + sn = a′n + b′n + rn = 1,

and {un}, {vn} and {wn} are bounded sequences in C. The iterative schemes (1) is called
the three-step mean value iterative scheme with errors.

If βn ≡ 0, then Algorithm 1 reduces to
Algorithm 2 [5] For a given x1 ∈ C, compute the sequences {xn}, {yn} and {zn} by the
iterative schemes, for all n ≥ 1,

zn = a′nxn + b′nT
nxn + rnun,

yn = anxn + bnT
nxn + cnT

nzn + snvn, (2)

xn+1 = αnxn + γnT
nyn + δnT

nzn + tnwn,

where {αn}, {γn}, {δn}, {an}, {bn}, {cn}, {a′n}, {b′n}, {rn}, {sn} and {tn} are appropriate
sequences in [0, 1] with αn + γn + δn + tn = an + bn + cn + sn = a′n + b′n + rn = 1, and {un},
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{vn} and {wn} are bounded sequences in C. The iterative schemes (2) is called the modified
Noor iterative scheme with errors.

If βn = δn = bn ≡ 0, then Algorithm 1 reduces to
Algorithm 3 [1, 4] For a given x1 ∈ C, compute the sequences {xn}, {yn} and {zn} by the
iterative schemes, for all n ≥ 1,

zn = a′nxn + b′nT
nxn + rnun,

yn = anxn + cnT
nzn + snvn, (3)

xn+1 = αnxn + γnT
nyn + tnwn,

where {αn}, {γn}, {an}, {cn}, {a′n}, {b′n}, {rn}, {sn} and {tn} are appropriate sequences in
[0, 1] with αn + γn + tn = an + cn + sn = a′n + b′n + rn = 1, and {un}, {vn} and {wn} are
bounded sequences in C. The iterative schemes (3) is called the Noor iterative scheme with
errors.

2 Auxiliary Lemmas

For convenience, we use the notations limn ≡ limn→∞, lim infn ≡ lim infn→∞, and lim supn ≡
lim supn→∞. In the sequel, we shall need the following lemmas.

Lemma 1 ([7], Lemma 1) Let {an}, {bn} and {λn} be sequences of nonnegative real
numbers satisfying the inequality

an+1 ≤ (1 + λn)an + bn, n ≥ 1.

If
∑∞

n=1 λn < ∞ and
∑∞

n=1 bn < ∞, then limn an exists.

Lemma 2 Let X be a real Banach space and C be a nonempty closed convex subset of X.
Let T : C → C be an asymptotically nonexpansive mapping with the nonempty fixed-point
set F (T ) (i.e., F (T ) := {x ∈ C : x = Tx} 6= ∅) and a sequence {kn} of real numbers such
that kn ≥ 1 and

∑∞
n=1(kn− 1) < ∞. Let {xn} be a sequence defined by Algorithm 1 with the

restrictions that
∑∞

n=1 tn < ∞,
∑∞

n=1 γnsn < ∞,
∑∞

n=1 γncnrn < ∞ and
∑∞

n=1 δnrn < ∞.
Then we have the following conclusions.

(i) limn ‖xn − p‖ exists for any p ∈ F (T ).

(ii) limn d(xn, F (T )) exists, where d(x, F (T )) denotes the distance from x to the fixed-point
set F (T ).
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Proof: Let p ∈ F (T ). We note that {un−p}, {vn−p}, and {wn−p} are bounded sequences
in C. Let

L = sup{kn : n ≥ 1} and M = sup{‖un − p‖, ‖vn − p‖, ‖wn − p‖ : n ≥ 1}.

By using (1), we have

‖zn − p‖ ≤ a′n‖xn − p‖+ b′n‖T nxn − p‖+ rn‖un − p‖
≤ (1− b′n)‖xn − p‖+ b′nkn‖xn − p‖+ Mrn

≤ (1 + b′n(kn − 1))‖xn − p‖+ Mrn

≤ kn‖xn − p‖+ Mrn, (4)

‖yn − p‖ ≤ an‖xn − p‖+ bn‖T nxn − p‖+ cn‖T nzn − p‖+ sn‖vn − p‖
≤ (1− bn − cn)‖xn − p‖+ bnkn‖xn − p‖+ cnkn‖zn − p‖+ Msn

≤ (1 + (bn + cn + cnkn)(kn − 1))‖xn − p‖+ M(sn + cnrnkn)

≤ (1 + (L + 2)(kn − 1))‖xn − p‖+ M(sn + Lcnrn), (5)

and so

‖xn+1 − p‖ ≤ αn‖xn − p‖+ βn‖T nxn − p‖+ γn‖T nyn − p‖
+ δn‖T nzn − p‖+ tn‖wn − p‖

≤ (1− βn − γn − δn)‖xn − p‖+ βnkn‖xn − p‖
+ γnkn‖yn − p‖+ δnkn‖zn − p‖+ Mtn

≤ (1 + (βn + γn + γnkn(L + 2) + δn(kn + 1))(kn − 1))‖xn − p‖
+ M(tn + γnknsn + Lγnkncnrn + δnknrn)

≤ (1 + (L2 + 3L + 3)(kn − 1))‖xn − p‖
+ M(tn + Lγnsn + L2γncnrn + Lδnrn).

By assumption, the conclusions of the lemma follow from Lemma 1. This completes the
proof.

We also need the following lemma proved by Schu [8].

Lemma 3 Let X be a uniformly convex Banach space, let {λn} be a sequence of real
numbers such that 0 < b ≤ λn ≤ c < 1 for all n ≥ 1, and let {xn} and {yn} be sequences
of X such that lim supn ‖xn‖ ≤ a, lim supn ‖yn‖ ≤ a and limn ‖λnxn + (1 − λn)yn‖ = a for
some a ≥ 0. Then limn ‖xn − yn‖ = 0.

By Schu’s Lemma, we have the following lemma.
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Lemma 4 Let {xn}, {yn} and {zn} be sequences in a uniformly convex Banach space
X. Suppose that {αn}, {βn} and {γn} are sequences in [0, 1] with αn + βn + γn = 1,
lim supn ‖xn‖ ≤ a, lim supn ‖yn‖ ≤ a, lim supn ‖zn‖ ≤ a, and limn ‖αnxn +βnyn +γnzn‖ = a,
where a ≥ 0. If lim infn αn > 0 and lim infn βn > 0, then limn ‖xn − yn‖ = 0.

Proof: We may assume without loss of generality that αn > 0 and βn > 0 for all n ∈ N.
Let {nk} be a subsequence of {n} such that

lim
k

∥∥∥ αnk

αnk
+ βnk

xnk
+

βnk

αnk
+ βnk

ynk

∥∥∥ = lim inf
n

∥∥∥ αn

αn + βn

xn +
βn

αn + βn

yn

∥∥∥.

Then

a = lim inf
k

‖αnk
xnk

+ βnk
ynk

+ γnk
znk
‖

≤ lim inf
k

(
(αnk

+ βnk
)
∥∥∥ αnk

αnk
+ βnk

xnk
+

βnk

αnk
+ βnk

ynk

∥∥∥ + γnk
‖znk

‖
)

≤ lim inf
k

(αnk
+ βnk

)
∥∥∥ αnk

αnk
+ βnk

xnk
+

βnk

αnk
+ βnk

ynk

∥∥∥ + lim sup
k

γnk
‖znk

‖

≤ lim inf
k

(αnk
+ βnk

) lim inf
n

∥∥∥ αn

αn + βn

xn +
βn

αn + βn

yn

∥∥∥ + a lim sup
k

γnk
.

This implies that

lim inf
k

(αnk
+ βnk

)a

= (1− lim sup
k

γnk
)a

≤ lim inf
k

(αnk
+ βnk

) lim inf
n

∥∥∥ αn

αn + βn

xn +
βn

αn + βn

yn

∥∥∥.

Since lim infn(αn + βn) ≥ lim infn αn + lim infn βn > 0, it follows that

a ≤ lim inf
n

∥∥∥∥ αn

αn + βn

xn +
βn

αn + βn

yn

∥∥∥∥ ≤ lim sup
n

∥∥∥∥ αn

αn + βn

xn +
βn

αn + βn

yn

∥∥∥∥ ≤ a.

We now observe that

lim inf
n

αn

αn + βn

≥ lim inf
n

αn > 0 and lim inf
n

βn

αn + βn

≥ lim inf
n

βn > 0.

By Lemma 3, we have limn ‖xn − yn‖ = 0. This completes the proof.

The following lemmas are the important ingredients for proving our main results in the next
section.

Lemma 5 Let X be a uniformly convex Banach space and C be a nonempty closed convex
subset of X. Let T : C → C be an asymptotically nonexpansive mapping with the nonempty
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fixed-point set F (T ) and a sequence {kn} of real numbers such that kn ≥ 1 and
∑∞

n=1(kn −
1) < ∞. Let {xn} be a sequence defined by Algorithm 1 with the restrictions that

∑∞
n=1 tn <

∞,
∑∞

n=1 γnsn < ∞,
∑∞

n=1 γncnrn < ∞ and
∑∞

n=1 δnrn < ∞. Then we have the following
assertions.

(i) If 0 < lim infn γn ≤ lim supn(βn + γn + δn) < 1 and lim supn(bn + cn) < 1, then
limn ‖T nxn − xn‖ = 0.

(ii) If 0 < lim infn δn ≤ lim supn(βn + γn + δn) < 1 and lim supn b′n < 1, then limn ‖T nxn −
xn‖ = 0.

(iii) If 0 < lim infn βn ≤ lim supn(βn + γn + δn) < 1, then limn ‖T nxn − xn‖ = 0.

Proof: Let p ∈ F (T ). By Lemma 2, we have limn ‖xn − p‖ = a for some a ≥ 0. Since
limn tn = 0,

a = lim
n
‖xn+1 − p‖

= lim
n
‖(1− βn − γn − δn)(xn − p) + βn(T nxn − p) + γn(T nyn − p)

+ δn(T nzn − p) + tn(wn − xn)‖
= lim

n
‖(1− βn − γn − δn)(xn − p) + βn(T nxn − p)

+ γn(T nyn − p) + δn(T nzn − p)‖. (6)

We first observe that

lim sup
n

‖T nxn − p‖ ≤ lim sup
n

kn‖xn − p‖ = a. (7)

To prove (i), let {mj} be a subsequence of {n}. We show that there is a subsequence {nk}
of {mj} such that limk ‖T nkynk

− xnk
‖ = 0.

As lim infn γn > 0,
∑∞

n=1 γnsn < ∞, and
∑∞

n=1 γncnrn < ∞, limn sn = cnrn = 0. By using
(5), we have

lim sup
j

‖Tmjymj
− p‖ ≤ lim sup

j
kmj

‖ymj
− p‖ ≤ a. (8)

If lim infj δmj
> 0, then limj rmj

= 0. By (4), we gives

lim sup
j

‖Tmjzmj
− p‖ ≤ lim sup

j
kmj

‖zmj
− p‖ ≤ a. (9)

It follows from (6)-(9) and Lemma 4 that

lim
j
‖Tmjymj

− xmj
‖ = 0.
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On the other hand, if lim infj δmj
= 0, then we may extract a subsequence {δnk

} of {δmj
} so

that limk δnk
= 0, it follows that

lim
k

δnk
‖xnk

− p‖ = 0 = lim
k

δnk
‖T nkznk

− p‖.

This together with (6) gives

a = lim
k
‖(1− βnk

− γnk
)(xnk

− p)

+ βnk
(T nkxnk

− p) + γnk
(T nkynk

− p)‖. (10)

It follows from (7), (8), (10), and Lemma 4 that

lim
k
‖T nkynk

− xnk
‖ = 0.

By double extract subsequence principle,

lim
n
‖(xn − p)− (T nyn − p)‖ = lim

n
‖T nyn − xn‖ = 0. (11)

It follows that limn ‖T nyn − p‖ = a. Also

a = lim inf
n

‖T nyn − p‖ ≤ lim inf
n

kn‖yn − p‖ = lim inf
n

‖yn − p‖.

From (5), we gives lim supn ‖yn − p‖ ≤ a, so that limn ‖yn − p‖ = a.

Next we prove that

lim
n
‖T nxn − xn‖ = 0, (12)

let {`j} be a subsequence of {n}. It suffices to show that there is a subsequence {nk} of {`j}
such that limk ‖T nkxnk

− xnk
‖ = 0. Since limn sn = 0,

a = lim
j
‖y`j

− p‖

= lim
j
‖(1− b`j

− c`j
)(x`j

− p) + b`j
(T `jx`j

− p)

+ c`j
(T `jz`j

− p) + s`j
(v`j

− x`j
)‖

= lim
j
‖(1− b`j

− c`j
)(x`j

− p) + b`j
(T `jx`j

− p) + c`j
(T `jz`j

− p)‖.

If lim infj c`j
> 0, by Lemma 4 and lim supn(bn + cn) < 1, then

lim
j
‖T `jz`j

− x`j
‖ = 0. (13)

On the other hand, if lim infj c`j
= 0, then we may extract a subsequence {cnk

} of {c`j
} so

that limk cnk
= 0, it follows that

lim
k

cnk
‖T nkznk

− xnk
‖ = 0. (14)
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By using (1), we have

‖T nkxnk
− xnk

‖ ≤ ‖T nkxnk
− T nkynk

‖+ ‖T nkynk
− xnk

‖
≤ knk

‖xnk
− ynk

‖+ ‖T nkynk
− xnk

‖
≤ knk

bnk
‖T nkxnk

− xnk
‖+ knk

cnk
‖T nkznk

− xnk
‖

+ knk
snk
‖vnk

− xnk
‖+ ‖T nkynk

− xnk
‖.

This together with (11), (13), and (14) gives

lim
k

(1− knk
bnk

)‖T nkxnk
− xnk

‖ = 0.

As lim infn(1− knbn) = 1− lim supn bn ≥ 1− lim supn(bn + cn) > 0, we have

lim
k
‖T nkxnk

− xnk
‖ = 0.

By double extract subsequence principle, we obtain (12) and the proof of (i) is finished.

By using a similar method, it can be shown that (ii) is satisfied.

(iii) To show that

lim
n
‖T nxn − xn‖ = 0, (15)

let {mj} be a subsequence of {n}. It suffices to show that there is a subsequence {nk} of
{mj} such that limk ‖T nkxnk

− xnk
‖ = 0. We consider the following cases.

Case 1: lim infj γmj
> 0.

Subcase 1.1: lim infj δmj
> 0. Then we obtain (6)-(9). It follows from Lemma 4 that

limj ‖Tmjxmj
− xmj

‖ = 0.

Subcase 1.2: lim infj δmj
= 0 = limk δnk

, where {δnk
} ⊂ {δmj

}. Then we obtain (10), and
so

lim
k
‖T nkxnk

− xnk
‖ = 0.

Case 2: lim infj γmj
= 0. Choose {γ`k

} ⊂ {γmj
} such that limk γ`k

= 0, it follows that

lim
k

γ`k
‖x`k

− p‖ = 0 = lim
k

γ`k
‖T `ky`k

− p‖.

This together with (6) gives

a = lim
k
‖(1− β`k

− δ`k
)(x`k

− p) + β`k
(T `kx`k

− p) + δ`k
(T `kz`k

− p)‖. (16)

Subcase 2.1: lim infk δ`k
> 0. By (4), we have lim supk ‖T `kz`k

− p‖ ≤ a. It follows from
(7), (16) and Lemma 4,

lim
k
‖T `kx`k

− x`k
‖ = 0.
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Subcase 2.2: lim infk δ`k
= 0 = limi δni

, where {δni
} ⊂ {δ`k

}. It follows that

lim
i

δni
‖T nizni

− p‖ = 0.

This together with (16) gives

a = lim
i
‖(1− βni

)(xni
− p) + βni

(T nixni
− p)‖.

It follows from Lemma 3, limi ‖T nixni
− xni

‖ = 0. By double extract subsequence principle,
we obtain (15). This completes the proof.

Lemma 6 Let X be a real Banach space and C be a nonempty closed convex subset of
X. Let T : C → C be an asymptotically nonexpansive mapping with a sequence {kn} of
real numbers such that kn ≥ 1 and limn kn = 1 and, {xn} be a sequence defined in C by
Algorithm 1 with the restrictions that limn tn = limn γnsn = limn γncnrn = limn δnrn = 0. If
limn ‖T nxn − xn‖ = 0, then limn ‖Txn − xn‖ = 0.

Proof: Using (1), we have

‖T nzn − xn‖ ≤ ‖T nzn − T nxn‖+ ‖T nxn − xn‖
≤ kn‖zn − xn‖+ ‖T nxn − xn‖,
≤ (b′nkn + 1)‖T nxn − xn‖+ rnkn‖un − xn‖,

‖T nyn − xn‖ ≤ ‖T nyn − T nxn‖+ ‖T nxn − xn‖
≤ kn‖yn − xn‖+ ‖T nxn − xn‖,
≤ bnkn‖T nxn − xn‖+ cnkn‖T nzn − xn‖

+ snkn‖vn − xn‖+ ‖T nxn − xn‖
≤ (bnkn + cnb

′
nk

2
n + cnkn + 1)‖T nxn − xn‖

+ snkn‖vn − xn‖+ cnrnk
2
n‖un − xn‖,
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and so

‖xn+1 − T nxn+1‖
≤ ‖xn+1 − xn‖+ ‖T nxn+1 − T nxn‖+ ‖T nxn − xn‖
≤ (1 + kn)‖xn+1 − xn‖+ ‖T nxn − xn‖
≤ βn(1 + kn)‖T nxn − xn‖+ γn(1 + kn)‖T nyn − xn‖

+ δn(1 + kn)‖T nzn − xn‖+ tn(1 + kn)‖wn − xn‖+ ‖T nxn − xn‖
≤ βn(1 + kn)‖T nxn − xn‖

+ γn(1 + kn)(bnkn + cnb
′
nk

2
n + cnkn + 1)‖T nxn − xn‖

+ γnsnkn(1 + kn)‖vn − xn‖+ γncnrn(1 + kn)k2
n‖un − xn‖

+ δn(1 + kn)(b′nkn + 1)‖T nxn − xn‖+ δnrn(1 + kn)kn‖un − xn‖
+ tn(1 + kn)‖wn − xn‖+ ‖T nxn − xn‖ → 0.

Thus

‖xn+1 − Txn+1‖ ≤ ‖xn+1 − T n+1xn+1‖+ ‖T n+1xn+1 − Txn+1‖
≤ ‖xn+1 − T n+1xn+1‖+ k1‖T nxn+1 − xn+1‖ → 0,

which implies limn ‖Txn − xn‖ = 0. This completes the proof.

3 Main results

In this section, we establish several strong convergence theorems of the three-step mean value
iterative scheme with errors for asymptotically nonexpansive mappings.

Theorem 7 Let X be a uniformly convex Banach space and C be a nonempty closed
convex subset of X. Let T : C → C be an asymptotically nonexpansive mapping with the
nonempty fixed-point set F (T ) and a sequence {kn} of real numbers such that kn ≥ 1 and∑∞

n=1(kn − 1) < ∞. Let {xn} be a sequence in C defined by Algorithm 1 with the following
restrictions:

(i) 0 < lim infn γn ≤ lim supn(βn + γn + δn) < 1,

(ii) lim supn(bn + cn) < 1, and

(iii)
∑∞

n=1 tn < ∞,
∑∞

n=1 sn < ∞,
∑∞

n=1 cnrn < ∞,
∑∞

n=1 δnrn < ∞.

If T satisfies Condition (A) with respect to the sequence {xn}, then {xn} converges strongly
to a fixed point of T .
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Let {xn} be a given sequence in C. Recall that a mapping T : C → C with the nonempty
fixed-point set F (T ) in C satisfies Condition (A) with respect to the sequence {xn} ([9]) if
there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all
r ∈ (0,∞) such that

f(d(xn, F (T ))) ≤ ‖xn − Txn‖, for all n ≥ 1.

Proof. By Lemma 5(i) and Lemma 6, we have

lim
n
‖Txn − xn‖ = 0.

Let f be a nondecreasing function corresponding to Condition (A) with respect to {xn}.
Then

f(d(xn, F (T ))) ≤ ‖Txn − xn‖ → 0,

and so
d(xn, F (T )) → 0.

Therefore, the conclusion of the theorem follows exactly from [6]. This completes the proof.

Remark 8 Suppose we rewrite our scheme by treating the additional terms as error terms
in the sense of Xu [11] in this way: x1 ∈ C,

zn = a′nxn + b′nT
nxn + rnun,

yn = anxn + cnT
nzn + (bn + sn)(

bn

bn + sn

T nxn +
sn

bn + sn

vn),

xn+1 = αnxn + γnT
nyn + (βn + δn + tn)

× (
βn

βn + δn + tn
T nxn +

δn

βn + δn + tn
T nzn +

tn
βn + δn + tn

wn),

for all n ≥ 1. To obtain a strong convergence theorem by Theorem 2.4 of [1], we are restricted
to the following

∞∑
n=1

(βn + δn + tn) < ∞ and
∞∑

n=1

(bn + sn) < ∞,

from which limn βn = limn δn = limn bn = 0,
∑∞

n=1 sn < ∞, and
∑∞

n=1 tn < ∞. But our
Theorem 7 still gives the result for more general restriction. For example, our result is
applicable to the case of βn = δn = bn = 1/4 and sn = tn = 1/2n.

Consequently, we obtain the following corollaries. When βn ≡ 0, we have

Corollary 9 Let X be a uniformly convex Banach space and C be a nonempty closed
convex subset of X. Let T : C → C be an asymptotically nonexpansive mapping with



82 W. Nilsrakoo, S. Saejung

the nonempty fixed-point set and a sequence {kn} of real numbers such that kn ≥ 1 and∑∞
n=1(kn − 1) < ∞. Let {xn} be a sequence in C defined by Algorithm 2 with the following

restrictions:

(i) 0 < lim infn γn ≤ lim supn(γn + δn) < 1,

(ii) lim supn(bn + cn) < 1, and

(iii)
∑∞

n=1 tn < ∞,
∑∞

n=1 sn < ∞,
∑∞

n=1 cnrn < ∞,
∑∞

n=1 δnrn < ∞.

If T satisfies Condition (A) with respect to the sequence {xn}, then {xn} converges strongly
to a fixed point of T .

When βn = δn = bn ≡ 0 in Theorem 7, we also have

Corollary 10 Let X be a uniformly convex Banach space and C be a nonempty closed
convex subset of X. Let T : C → C be an asymptotically nonexpansive mapping with
the nonempty fixed-point set and a sequence {kn} of real numbers such that kn ≥ 1 and∑∞

n=1(kn − 1) < ∞. Let {xn} be a sequence in C defined by Algorithm 3 with the following
restrictions:

(i) 0 < lim infn γn ≤ lim supn γn < 1,

(ii) lim supn cn < 1, and

(iii)
∑∞

n=1 tn < ∞,
∑∞

n=1 sn < ∞,
∑∞

n=1 cnrn < ∞.

If T satisfies Condition (A) with respect to the sequence {xn}, then {xn} converges strongly
to a fixed point of T .

Remark 11 1. Corollary 9 extends and improves Theorem 2.3 of [5] in the following
ways:

(i) The condition lim infn cn > 0 is removed.

(ii) The restriction
∑∞

n=1 rn < ∞ is weakened and replaced by
∑∞

n=1 cnrn < ∞ and∑∞
n=1 δnrn < ∞.

(iii) The complete continuity imposed on T is replaced by the more general Condition
(A) with respect to {xn} (see also [1, Corollary 2.5]).

2. Corollary 10 extends and improves Theorem 2.4 of [1]. The restriction
∑∞

n=1 rn < ∞
is weakened and replaced by

∑∞
n=1 cnrn < ∞.
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3. Corollary 10 also extends and improves Theorem 3.2 of [4] in the following ways:

(i) The semi-compactness imposed on T is weakened by assuming that T satisfies
Condition (A) with respect to {xn} [1, Corollary 2.5].

(ii) The condition limn cn = 0 is weakened and replaced by lim supn cn < 1.

Next, as consequences of Lemma 5(ii), (iii) and Lemma 6, we have the following theorems.

Theorem 12 Let X be a uniformly convex Banach space and C be a nonempty closed
convex subset of X. Let T : C → C be an asymptotically nonexpansive mapping with
the nonempty fixed-point set and a sequence {kn} of real numbers such that kn ≥ 1 and∑∞

n=1(kn − 1) < ∞. Let {xn} be a sequence in C defined by Algorithm 1 with the following
restrictions:

(i) 0 < lim infn δn ≤ lim supn(βn + γn + δn) < 1,

(ii) lim supn b′n < 1, and

(iii)
∑∞

n=1 tn < ∞,
∑∞

n=1 αnsn < ∞,
∑∞

n=1 rn < ∞.

If T satisfies Condition (A) with respect to the sequence {xn}, then {xn} converges strongly
to a fixed point of T .

Theorem 13 Let X be a uniformly convex Banach space and C be a nonempty closed
convex subset of X. Let T : C → C be an asymptotically nonexpansive mapping with
the nonempty fixed-point set and a sequence {kn} of real numbers such that kn ≥ 1 and∑∞

n=1(kn − 1) < ∞. Let {xn} be a sequence in C defined by Algorithm 1 with the following
restrictions:

(i) 0 < lim infn βn ≤ lim supn(βn + γn + δn) < 1 and

(ii)
∑∞

n=1 tn < ∞,
∑∞

n=1 γnsn < ∞,
∑∞

n=1 γncnrn < ∞,
∑∞

n=1 δnrn < ∞.

If T satisfies Condition (A) with respect to the sequence {xn}, then {xn} converges strongly
to a fixed point of T .

Remark 14 By using the same ideas and techniques, we can also discuss the weak con-
vergence for asymptotically nonexpansive mappings with errors and thereby improve the
corresponding results obtained by Cho, Zhou and Guo [1], Liu and Kang [4], and Namma-
nee, Noor and Suantai [5].
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