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ABSTRACT. In this paper, a improved method named the integral bifurcation is introduced.
In order to demonstrate its effectiveness for obtaining travelling waves of the nonlinear
wave equations, we studied the modified equal width wave equation and its variants by
this new method. Under the different parameter conditions, many integral bifurcations are
obtained. According to these integral bifurcations, different kinds of travelling wave solutions
are figured out. Compared with [1], many new travelling wave solutions are obtained.
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1 Introduction

In recent years, the sine-cosine method (see Refs. [1–4] and cited therein), the tanh-function
method (see Refs. [5–8] and cited therein) and the bifurcation theory of the planar dynamical
system (see Refs. [11–21] and cited therein) have been often used to study the problem of all
kinds of travelling wave solutions in the nonlinear wave equation domain. These mathemat-
ical methods have been, and continue to be, popular tools for nonlinear analysis. However,
by using the sine-cosine and tanh-function methods to solve nonlinear wave equations, we
cannot obtain the solutions of the type of elliptic function. Among these three mathematical
methods, the bifurcation theory of the planar dynamical system is acceptable on discussion
of the existence of travelling wave solutions, using this method, we can obtain all kinds of
travelling wave solutions, but its analysis of phase portraits and discussion of bifurcation are
more complicated. Therefore, in this paper, we shall introduce a improved method (are also
called simplified method) named the integral bifurcation based on the bifurcation theory of
the planar dynamical system. This improved method needn’t make complicated analysis
of phase portraits like the bifurcation theory and is easy enough in practice. In order to
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demonstrate its effectiveness for obtaining travelling waves of the nonlinear wave equations,
we shall consider the following nonlinear modified equal width (MEW) wave equation

ut + a(u3)x + buxxt = 0 , (1.1)

and its variants

ut + a(un)x − b(un)xxt = 0 , (1.2)

and

ut + a(u−n)x − b(u−n)xxt = 0 , (1.3)

where a, b nonzero real parameters, n is positive integer and n > 1.

The modified equal width (MEW) wave equation has been discussed in Refs. [1, 9, 10].
Just as A.M. Wazwaz said, the MEW equation, which is related to the regularized long
wave (RLW) equation [22], has solitary waves with both positive and negative amplitudes,
all of which have the same width. The MEW equation is a nonlinear wave equation with
cubic nonlinearity with a pulse-like solitary wave solution. The MEW equation’s variants,
(1.2) and (1.3) can be reduced to K(m, n) type equations which is well known, so these two
equations are also very good application.

By using tanh and sine-cosine methods, A.M. Wazwaz studied the equations (1.1), (1.2)
and (1.3), many solutions including compactons and periodic solutions are given (see [1]).
In fact, by using the integral bifurcation method, we shall obtain more exact travelling wave
solutions.

Making the transformation u(x, t) = φ(x− ct) = φ(ξ), then substituting φ(x− ct) into (1.1),
(1.2) and (1.3) respectively, we obtain the following three nonlinear ODE equations

−cφ′ + a(φ3)′ − bcφ′′′ = 0 , (1.4)

and

−cφ′ + a(φn)′ + bc(φn)′′′ = 0 , (1.5)

and

−cφ′ + a(φ−n)′ + bc(φ−n)′′′ = 0 , (1.6)

where ”′” is the derivative with respect to ξ (i.e. φ′ = φξ) and c is wave speed.

Integrating (1.4), (1.5) and (1.6) once and setting the integral constant as zero, we obtain
the following three wave equations, respectively

−cφ + aφ3 − bcφ′′ = 0 , (1.7)
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and

−cφ + aφn + bcn(n− 1)φn−2(φ′)2 + bcnφn−1φ′′ = 0 , (1.8)

and

−cφ + aφ−n + bcn(n + 1)φ−(n+2)(φ′)2 − bcnφ−(n+1)φ′′ = 0 . (1.9)

Letting φ′ = y, the equations (1.7), (1.8) and (1.9) become the following three two-dimensional
systems, respectively

dφ

dξ
= y,

dy

dξ
= −1

b
φ +

a

bc
φ3 , (1.10)

and

dφ

dξ
= y,

dy

dξ
=

cφ− aφn − bcn(n− 1)φn−2y2

bcnφn−1
, (1.11)

and

dφ

dξ
= y,

dy

dξ
=
−cφn+3 + aφ2 + bcn(n + 1)y2

bcnφ
. (1.12)

Systems (1.10), (1.11) and (1.12) are all integral systems. Clearly, system (1.10) has the
following first integral

y2 = −1

b
φ2 +

a

2bc
φ4 + C , (1.13)

where C is integral constant. We define

F1(φ, y2) = y2 +
1

b
φ2 − a

2bc
φ4 . (1.14)

System (1.11) has the following first integral

y2 =
2

bn(n + 1)
φ3−n − a

bcn2
φ2 + Cφ2−2n . (1.15)

Similarly we define

F2(φ, y2) = φ2n−2y2 +
a

bcn2
φ2n − 2

bn(n + 1)
φn+1 . (1.16)

System (1.12) has the following first integral

y2 =
2

bn(n− 1)
φn+3 − a

bcn2
φ2 + Cφ2n+2 . (1.17)
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We also define

F3(φ, y2) =
y2

φ2n+2
+

a

bcn2
φ−2n − 2

bn(n− 1)
φ−(n−1) . (1.18)

In the next,we shall introduce integral bifurcation method. By using this method, under the
different parameter conditions and choosing the proper integral constant C and using (1.13),
(1.15) and (1.17), we shall derive all kinds of integral bifurcations. Utilizing these integral
bifurcations, we can obtain all kinds of travelling wave solutions of (1.1), (1.2) and (1.3).

The rest of this paper is organized as follows: In Section 2, we shall introduce the integral
bifurcation method. In section 3, by using the integral bifurcation method, we shall derive
the travelling wave solutions of equation (1.1). In section 4, by using the integral bifurcation
method, we will derive the travelling wave solutions of equation (1.2). In section 5, by using
the integral bifurcation method, we shall derive the travelling wave solutions of equation
(1.3).

2 Integral bifurcation method

For a given (n + 1)−dimensional nonlinear partial differential equation

E[t, xi, uxi
, uxixi

, uxixj
, utt, · · ·] = 0, (i, j = 1, 2, · · ·, n) . (2.1)

The integral bifurcation method simply proceeds as follows:

Step1. Making a transformation u(t, x1, x2, · · ·, xn) = φ(ξ), ξ =
n∑

i=1

µixi − ct, (2.1) can be

reduced to a nonlinear ODE

P (ξ, φ, φξ, φξξ, φξξξ · ··) = 0 , (2.2)

where µi, (i = 1, 2, · · ·, n) are arbitrary nonzero constants. After integrating Eq. (2.2) several
times, if it can be reduced to the following second-order nonlinear ODE

G(φ, φξ, φξξ) = 0 , (2.3)

then we go on the next process.
Step2. Let φξ = dφ

dξ
= y. Eq. (2.3) can be reduced to a two-dimensional planar systems

dφ

dξ
= y,

dy

dξ
= f(φ, y) , (2.4)

where f(φ, y) is an integral expression or a fraction. If f(φ, y) is a fraction such as f(φ, y) =
f∗(φ,y)

g(φ)
and g(φs) = 0, then φξξ (i.e dy

dξ
) does not exist when φ = φs. In this case, we make a

transformation dξ = g(φ)dτ , Eq. (2.4) can be rewritten as

dφ

dτ
= g(φ)y,

dy

dτ
= f ∗(φ, y) , (2.5)
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where τ is a parameter. If the system (2.4) is an integral system, then Eqs. (2.4) and (2.5)
have the same first integral as the follows

H(φ, y) = h , (2.6)

where h is integral constant. Commonly, the function y of (2.6) is satisfied the following
relationship:

y = y(φ, h) . (2.7)

Substituting (2.7) into the first equation of (2.4) and integrating it, we obtain∫ φ

φ(0)

dϕ

y(ϕ, h)
=

∫ ξ

0

dν , (2.8)

where φ(0) and 0 are initial constants. Taking proper initial constants and integrating equa-
tion (2.8), we can obtain exact travelling wave solution of Eq. (2.1). In fact, the initial
constants can be taken by some extreme points or inflection points of the travelling waves.
In other words, φ(0) is root of the equation (2.7) when y = 0 or the equation dy

dξ
= 0. Par-

ticularly, the initial constants can be also taken by (φs, 0) and a beforehand given (φ(0), ξ0).

As the value of parameters of Eq. (2.1) and constant h of Eqs. (2.6), (2.7) are varied, so are the
integral expression (2.8). Therefore, we call these integral expressions integral bifurcations.
The different integral bifurcations correspond to different travelling wave solutions. This is
the whole process of the integral bifurcation method. Using this method, we shall investigate
travelling wave solutions of the equations (1.1), (1.2) and (1.3). See the below computations.

3 Travelling wave solutions of the equation (1.1)(1.1)(1.1)

It is easy to see that the system (1.10) has three equilibrium points (0, 0) and (±
√

c
a
, 0) as

ac > 0. From (1.14), we have

F1(0, 0) = 0, F1

(√
c

a
, 0

)
= F1

(
−

√
c

a
, 0

)
=

c

2ab
. (3.1)

According to the analysis of the section 2, we shall calculate the explicit expressions of all
kinds of travelling wave solutions of (1.1).

3.1 Under the conditions of ac > 0, b > 0,

(1) taking C = F1(±
√

c
a
, 0) = c

2ab
and substituting it into (1.13), it yields

y = ±
√

a

2bc

(
φ2 − c

a

)
. (3.2)
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Letting dy
dξ

= 0 in (1.10), we obtain φ(0) = 0. Under the initial condition φ(0) = 0, substi-
tuting (3.2) into (2.8), we obtain the following integral bifurcations∫ φ

0

dφ
c
a
− φ2

=

√
a

2bc

∫ ξ

0

dξ, for ξ ≥ 0 , (3.3)∫ 0

φ

dφ
c
a
− φ2

= −
√

a

2bc

∫ 0

ξ

dξ, for ξ < 0 . (3.4)

Integrating (3.3) and (3.4), we obtain two couple of kink and anti-kink wave solutions,

u1(x, t) = φ(x− ct) = ±
√

c

a
tanh

1√
2b

(x− ct) , (3.5)

and

u2(x, t) = φ(x− ct) = ±
√

c

a
coth

1√
2b

(x− ct) , (3.6)

the 3D graphs of kink and anti-kink wave solutions are shown in Fig. 1. In the graphs, the
abscissa axis is t, the ordinate axis is x and the vertical axis is u.

(a) kink wave 1 (b) anti-kink wave 1 (c) kink wave 2 (d) anti-kink wave 2

Fig. 1: The 3D graphs of (3.5) and (3.6) as a = 2.5, b = 2, c = 4, C = 0.

(2) When 0 < C < c
2ab

, from (1.13), it yields

y = ±
√

a

2bc

√
2bcC

a
− 2c

a
φ2 + φ4 = ±

√
a

2bc

√
(α2 − φ2)(β2 − φ2) , (3.7)

where α2 = c
a
(1+

√
1− 2abC

c
), β2 = c

a
(1−

√
1− 2abC

c
) and α > β > φ > 0. Taking the initial

conditions φ(0) = 0 and substituting (3.7) into the (2.8), we obtain the following integral
bifurcations, ∫ φ

0

dφ√
(α2 − φ2)(β2 − φ2)

=

√
a

2bc

∫ ξ

0

dξ for ξ ≥ 0 . (3.8)∫ 0

φ

dφ√
(α2 − φ2)(β2 − φ2)

= −
√

a

2bc

∫ 0

ξ

dξ, for ξ < 0 . (3.9)
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By using the elliptic integral formulas, we obtain the following a family of periodic wave
solutions,

u(x, t) = φ(x− ct) = β sn(ω1(x− ct), k1) , (3.10)

where ω1 = ±α
√

a
2bc

, k1 = β
α
.

(3) Taking C = 0, from (1.13) we have

y = ±
√

a

2bc
φ

√
φ2 − 2c

a
, (3.11)

and φ1,2(0) = ±
√

2c
a
. Similarly, Under the initial condition (φ(0), ξ0) = (±

√
2c
a
, ξ0), substi-

tuting (3.11) into (2.8) and integrating it, we obtain a periodic wave solution:

u(x, t) = φ(ξ) =

√
2c

a
sec

1√
b
(x− ct− ξ0) , (3.12)

where ξ0 is an arbitrary constant. Especially, when ξ0 = 0 or ξ0 = π
2
, we obtain the following

two results which are the same as in Ref. [1],

u(x, t) = φ(ξ) =

√
2c

a
sec

1√
b
(x− ct) , (3.13)

or

u(x, t) = φ(ξ) =

√
2c

a
csc

1√
b
(x− ct) . (3.14)

3.2 Under the conditions of ac > 0, b < 0,

(1) taking C = 0, from (1.13), it yields

y = ±
√
− a

2bc
φ

√
2c

a
− φ2 , (3.15)

and φ(0) = ±
√

2c
a
. Under the initial condition φ(0) = ±

√
2c
a
, substituting (3.15) into (2.8)

and integrating it, we obtain two smooth solitary wave solutions,

u(x, t) = φ(ξ) = ±
√

2c

a
sech

1√
−b

(x− ct) , (3.16)

the 3D graphs of solitary wave solutions of (3.16) are shown in Fig. 2. In the graphs, the
abscissa axis is t, the ordinate axis is x and the vertical axis is u.
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(a) solitary wave of peak form (b) solitary wave of valley form

Fig. 2: The 3D graphs of (3.16) as a = 5, b = −8, c = 15, C = 0, x ∈ (−0.5, 0.5).

(2) When c
2ab

< C < 0, from (3.13), it yields

y = ±
√
− a

2bc

√
(α2 − φ2)(φ2 − β2) , (3.17)

and φ(0) = α, where α2, β2 are given above. Corresponding to the Eq. (3.17), we obtain
two families of periodic wave solutions of the type of elliptic function,

u(x, t) = φ(x− ct) = ±
√

α2 − (α2 − β2)sn2[ω2(x− ct), k2] , (3.18)

where ω2 = α
√
− a

2bc
, k2 =

√
α2−β2

α2 and the 3D graphs of (3.18) are shown in Fig. 3. In the
graphs, the abscissa axis is t, the ordinate axis is x and the vertical axis is u.

(a) + (b) −

Fig. 3: The 3D graphs of (3.18) as a = 2.5, b = −2, c = 4, C = −0.3, x ∈ (−14, 14).

(3) When C > 0, from (1.13), we obtain

y = ±
√
− a

2bc

√
(β2 + φ2)(α2 − φ2) , (3.19)
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and φ(0) = α, where α2 > 0, β2 < 0 are given above. Corresponding to the Eq. (3.19), we
obtain a family of periodic wave solutions,

u(x, t) = φ(x− ct) = α cn[ω3(x− ct), k3] , (3.20)

where ω3 =
√
−a(α2+β2)

2bc
, k3 =

√
α2

α2+β2 .

Under the other parameter conditions, according to the above results, we can obtain the
other travelling wave solutions without difficulty:

(i) When ac > 0, b < 0, C = c
2ab

, from (3.5) and (3.6), we obtain

u(x, t) = φ(x− ct) = ±i

√
c

a
tan

1√
−2b

(x− ct) , (3.21)

or

u(x, t) = φ(x− ct) = ∓i

√
c

a
cot

1√
−2b

(x− ct) , (3.22)

where i =
√
−1.

(ii) When ac < 0, b > 0, C = 0, from (3.13), we obtain

u(x, t) = φ(ξ) = ±i

√
−2c

a
sech

1√
b
(x− ct) . (3.23)

(iii) When ac < 0, b > 0, C = a
2bc

, from (3.5) and (3.6), we obtain

u(x, t) = φ(x− ct) = ±i

√
− c

a
tanh

1√
2b

(x− ct) , (3.24)

or

u(x, t) = φ(x− ct) = ∓i

√
− c

a
coth

1√
2b

(x− ct) . (3.25)

(iv) When ac < 0, b < 0, C = 0, from (3.16), we obtain

u(x, t) = φ(ξ) = ±i

√
−2c

a
sech

1√
−b

(x− ct) . (3.26)

(v) When ac < 0, b < 0, C = a
2bc

, from (3.5) and (3.6), we obtain

u(x, t) = φ(x− ct) = ±
√
− c

a
tan

1√
−2b

(x− ct) , (3.27)
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or

u(x, t) = φ(x− ct) = ∓
√
− c

a
cot

1√
−2b

(x− ct) . (3.28)

The 3D graphs of travelling wave solutions of the type of tangent function are shown in
Fig. 4. In the graphs, the abscissa axis is t, the ordinate axis is x and the vertical axis is u.

(a) + (b) −

Fig. 4: The 3D graphs of (3.27) as a = −2, b = −3, c = 4, C = 0, x ∈ (−0.5, 0.5).

(vi) When ac > 0, b < 0, C = 0, from (3.14) yields

u(x, t) = φ(x− ct) = i

√
2c

a
csch

1√
−b

(x− ct) . (3.29)

4 Travelling wave solutions of the equation (1.2)(1.2)(1.2)

Because the equation (1.15) has a term of Cφ2−2n, we only consider those travelling wave
solutions in which the integral constant C is zero.

4.1 Under the conditions of ac > 0, b > 0, C = 0, from (1.15), we obtain

y2 =

2
bn(n+1)

φn−1 − a
bcn2 φ

2n−2

φ2n−4
, (4.1)

i.e.

y = ±
1
n

√
a
bc

√
2cn

a(n+1)
φn−1 − (φn−1)2

φn−2
, (4.2)

and φ1(0) = 0, φ2(0) = [ 2cn
a(n+1)

]
1

n−1 . Where φ1(0) = 0 6= φs as n = 2, and φ1(0) = 0 = φs as
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n > 2. Substituting (4.2) into (2.8), we obtain the following integral bifurcations∫ φ

0

dφn−1√
2cn

a(n+1)
φn−1 − (φn−1)2

=
n− 1

n

√
a

bc

∫ ξ

0

dξ for ξ ≥ 0 , (4.3)

−
∫ 0

φ

dφn−1√
2cn

a(n+1)
φn−1 − (φn−1)2

=
n− 1

n

√
a

bc

∫ 0

ξ

dξ for ξ < 0 , (4.4)

and ∫ φ

[ 2cn
a(n+1)

]
1

n−1

dφn−1√
2cn

a(n+1)
φn−1 − (φn−1)2

=
n− 1

n

√
a

bc

∫ ξ

0

dξ for ξ ≥ 0 , (4.5)

−
∫ [ 2cn

a(n+1)
]

1
n−1

φ

dφn−1√
2cn

a(n+1)
φn−1 − (φn−1)2

=
n− 1

n

√
a

bc

∫ 0

ξ

dξ for ξ < 0 . (4.6)

Integrating (4.3) and (4.4), we obtain

φn−1 =
cn

a(n + 1)

[
1− cos

n− 1

n

√
a

bc
(x− ct)

]
, (4.7)

or

φn−1 =
2cn

a(n + 1)
sin2 n− 1

2n

√
a

bc
(x− ct) . (4.8)

Integrating (4.5) and (4.6), we obtain

φn−1 =
cn

a(n + 1)

[
1 + cos

n− 1

n

√
a

bc
(x− ct)

]
, (4.9)

or

φn−1 =
2cn

a(n + 1)
cos2 n− 1

2n

√
a

bc
(x− ct) . (4.10)

Thus, when n = 2, we obtain two smooth periodic wave solutions

u(x, t) = φ(x− ct) =
cn

a(n + 1)

[
1± cos

n− 1

n

√
a

bc
(x− ct)

]
, (4.11)

or

u(x, t) = φ(x− ct) =
2cn

a(n + 1)
sin2 n− 1

2n

√
a

bc
(x− ct) , (4.12)

u(x, t) = φ(x− ct) =
2cn

a(n + 1)
cos2 n− 1

2n

√
a

bc
(x− ct) , (4.13)
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for x − ct ∈ (−∞, +∞). The 3D graphs of periodic wave solutions of (4.11) are shown in
Fig. 5. In the graphs, the abscissa axis is t, the ordinate axis is x and the vertical axis is u.

(a) + (b) −

Fig. 5: The 3D graphs of (4.11) as n = 2, a = −2, b = −3, c = 4, C = 0, x ∈ (−0.5, 0.5).

When n is an even number and n > 2, we obtain two periodic cusp wave solutions

u(x, t) = φ(x− ct) =

{
cn

a(n + 1)

[
1± cos

n− 1

n

√
a

bc
(x− ct)

]} 1
n−1

, (4.14)

or

u(x, t) = φ(x− ct) =

[
2cn

a(n + 1)
sin2 n− 1

2n

√
a

bc
(x− ct)

] 1
n−1

, (4.15)

u(x, t) = φ(x− ct) =

[
2cn

a(n + 1)
cos2 n− 1

2n

√
a

bc
(x− ct)

] 1
n−1

. (4.16)

When n is an odd number and n > 1, we obtain four periodic cusp wave solutions

u(x, t) = φ(x− ct) = ±
{

cn

a(n + 1)

[
1± cos

n− 1

n

√
a

bc
(x− ct)

]} 1
n−1

, (4.17)

or

u(x, t) = φ(x− ct) = ±
[

2cn

a(n + 1)
sin2 n− 1

2n

√
a

bc
(x− ct)

] 1
n−1

, (4.18)

u(x, t) = φ(x− ct) = ±
[

2cn

a(n + 1)
cos2 n− 1

2n

√
a

bc
(x− ct)

] 1
n−1

. (4.19)

The 3D graphs of periodic cusp wave solutions of (4.18) are shown in Fig. 6. In the graphs,
the abscissa axis is t, the ordinate axis is x and the vertical axis is u.
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(a) + (b) −

Fig. 6: The 3D graphs of (4.18) as n = 5, a = 2, b = 3, c = 4, C = 0, x ∈ (−4, 4).

When n is an arbitrary positive integer, from (4.15), (4.16), (4.18) and (4.19) we can obtain
two compacton solutions of peak type which have been given in reference [1]:

 u(x, t) =
[

2cn
a(n+1)

sin2 n−1
2n

√
a
bc

(x− ct)
] 1

n−1
, 0 ≤ (x− ct) ≤ 2nπ

n−1

√
bc
a
,

0, otherwise.
(4.20)

and

 u(x, t) =
[

2cn
a(n+1)

cos2 n−1
2n

√
a
bc

(x− ct)
] 1

n−1
, |(x− ct)| ≤ nπ

n−1

√
bc
a
,

0, otherwise.
(4.21)

In fact, when n is an odd number, we also obtain two compacton solutions of valley type

 u(x, t) = −
[

2cn
a(n+1)

sin2 n−1
2n

√
a
bc

(x− ct)
] 1

n−1
, 0 ≤ (x− ct) ≤ 2nπ

n−1

√
bc
a
,

0, otherwise.
(4.22)

and

 u(x, t) = −
[

2cn
a(n+1)

cos2 n−1
2n

√
a
bc

(x− ct)
] 1

n−1
, |(x− ct)| ≤ nπ

n−1

√
bc
a
,

0, otherwise.
(4.23)

The 3D graphs of compacton solutions of (4.20) and (4.22) are shown in Fig. 7. In the
graphs, the abscissa axis is t, the ordinate axis is x and the vertical axis is u.
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(a) compacton of (4.20) (b) compacton of (4.22)

Fig. 7: The 3D graphs of (4.18) and (4.22) as n = 3, a = 2, b = 3, c = 4, C = 0, x ∈ (−4, 4).

4.2 Suppose that ac < 0, b > 0, C = 0, from (1.15), it yields

y = ±
1
n

√
− a

bc

√
− 2cn

a(n+1)
φn−1 + (φn−1)2

φn−2
, (4.24)

(4.25)

and φ(0) = 0. Thus, corresponding the Eq. (4.24), we obtain

φn−1 = − cn

a(n + 1)

[
cosh

n− 1

n

√
− a

bc
(x− ct)− 1

]
. (4.26)

When n is an even number, we obtain a unbounded travelling wave solution of hyperbolic
cosine type

u(x, t) = φ(x− ct) =

{
− cn

a(n + 1)

[
cosh

n− 1

n

√
− a

bc
(x− ct)− 1

]} 1
n−1

. (4.27)

When n is an odd number, we obtain two unbounded travelling wave solutions of hyperbolic
cosine type

u(x, t) = φ(x− ct) = ±
{
− cn

a(n + 1)

[
cosh

n− 1

n

√
− a

bc
(x− ct)− 1

]} 1
n−1

. (4.28)

The 3D graphs of unbounded travelling wave solutions of (4.28) are shown in Fig. 8. In the
graphs, the abscissa axis is t, the ordinate axis is x and the vertical axis is u.
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(a) + (b) −

Fig. 8: The 3D graphs of (4.28) as n = 5, a = −2, b = 3, c = 4, C = 0, x ∈ (−4, 4).

Similarly, under the other parameter conditions, according to the above results, we can
obtain the other travelling wave solutions without difficulty:

(1) When n is an even number and ac > 0, b < 0, C = 0, from (4.14) and (4.15), we obtain
three unbounded travelling wave solutions:

u(x, t) = φ(x− ct) =

{
cn

a(n + 1)

[
1± cosh

n− 1

n

√
− a

bc
(x− ct)

]} 1
n−1

, (4.29)

and

u(x, t) = φ(x− ct) =

[
− 2cn

a(n + 1)
sinh2 n− 1

2n

√
− a

bc
(x− ct)

] 1
n−1

. (4.30)

(2) When n is an odd number and ac > 0, b < 0, C = 0, from (4.17), (4.18) and (4.19), we
obtain six unbounded travelling wave solutions:

u(x, t) = φ(x− ct) = ±
{

cn

a(n + 1)

[
1 + cosh

n− 1

n

√
− a

bc
(x− ct)

]} 1
n−1

, (4.31)

and

u(x, t) = φ(x− ct) = ±
[
− 2cn

a(n + 1)
sinh2 n− 1

2n

√
− a

bc
(x− ct)

] 1
n−1

, (4.32)

u(x, t) = φ(x− ct) = ±
[

2cn

a(n + 1)
cosh2 n− 1

2n

√
− a

bc
(x− ct)

] 1
n−1

. (4.33)
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5 Travelling wave solutions of the equation (1.3)(1.3)(1.3)

Since (1.16) is a high order equation, we only consider the case of integral constant C = 0

in this section.

5.1 Suppose that ac > 0, b > 0, C = 0 or ac < 0, b < 0, C = 0, from (1.17), we obtain

y = ±

√
2

bn(n− 1)
φ
√

φn+1 − A2 , (5.1)

and φ1(0) = A
2

n+1 or φ1,2(0) = ±A
2

n+1 , where A =
√

a(n−1)
2cn

. Substituting (5.1) into (2.8), we
obtain the following integral bifurcations∫ φ

±[A
2

n+1 ]

dφ

φ
√

φn+1 − A2
=

n− 1

n

√
a

bc

∫ ξ

ξk

dξ, for ξ ≥ 0 , (5.2)

−
∫ ±[A

2
n+1 ]

φ

dφ

φ
√

φn+1 − A2
=

n− 1

n

√
a

bc

∫ ξk

ξ

dξ, for ξ < 0 , (5.3)

where ξk is an arbitrary constant. Integrating (5.2) and (5.3), we obtain

φn+1 =
a(n− 1)

2cn
sec2 n + 1

2n

√
a

bc
(ξ − ξk) . (5.4)

When n is an even number, we obtain a family of periodic wave solutions

u(x, t) = φ(x− ct) =

[
a(n− 1)

2cn
sec2 n + 1

2n

√
a

bc
(ξ − ξk)

] 1
n+1

. (5.5)

Taking ξk = 0 and ξk = π
2

respectively, we obtain the following two periodic wave solutions
which are the same as Ref. [1],

u(x, t) = φ(x− ct) =

[
a(n− 1)

2cn
sec2 n + 1

2n

√
a

bc
(x− ct)

] 1
n+1

, (5.6)

and

u(x, t) = φ(x− ct) =

[
a(n− 1)

2cn
csc2 n + 1

2n

√
a

bc
(x− ct)

] 1
n+1

. (5.7)

When n is an odd number, we obtain two families of periodic wave solutions:

u(x, t) = φ(x− ct) = ±
[
a(n− 1)

2cn
sec2 n + 1

2n

√
a

bc
(ξ − ξk)

] 1
n+1

. (5.8)
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Taking ξk = 0 and ξk = π
2

respectively, we obtain the following four periodic wave solutions:

u(x, t) = φ(x− ct) = ±
[
a(n− 1)

2cn
sec2 n + 1

2n

√
a

bc
(x− ct)

] 1
n+1

. (5.9)

and

u(x, t) = φ(x− ct) = ±
[
a(n− 1)

2cn
csc2 n + 1

2n

√
a

bc
(x− ct)

] 1
n+1

. (5.10)

5.2 Suppose that ac > 0, b < 0, C = 0 or ac < 0, b > 0, C = 0. According to the results
(5.7), (5.8), (5.9), (5.10), we can obtain the other traveling wave solutions without difficulty:

(i) When n is an even number, we obtain two solitary wave solutions:

u(x, t) = φ(x− ct) =

[
a(n− 1)

2cn
sech2 n + 1

2n

√
− a

bc
(x− ct)

] 1
n+1

, (5.11)

and

u(x, t) = φ(x− ct) =

[
−a(n− 1)

2cn
csch2 n + 1

2n

√
− a

bc
(x− ct)

] 1
n+1

. (5.12)

(ii) When n is an odd number, we obtain four solitary wave solutions:

u(x, t) = φ(x− ct) = ±
[
a(n− 1)

2cn
sech2 n + 1

2n

√
− a

bc
(x− ct)

] 1
n+1

, for ac > 0 , (5.13)

and

u(x, t) = φ(x− ct) = ±
[
−a(n− 1)

2cn
csch2 n + 1

2n

√
− a

bc
(x− ct)

] 1
n+1

, for ac < 0 . (5.14)

The 3D graphs of solitary wave solutions of (5.14) are shown in Fig. 9. In the graphs, the
abscissa axis is t, the ordinate axis is x and the vertical axis is u.

(a) solitary of peak form (b) solitary of valley form

Fig. 9: The 3D graphs of (5.14) as n = 5, a = −2, b = 3, c = 4, C = 0, x ∈ (−4, 4).
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From the above process of deriving, it is easy to see that this method is also available to
many nonlinear integral systems.

6 Conclusion

In this paper, we introduced a new method named integral bifurcation. By using this method,
we studied the modified equal width wave equation and its variants and obtained many new
traveling wave solutions in addition to the results in reference [1]. Clearly, this method
is available to many nonlinear partial equations. However, when we solve the universal
nonlinear partial equations by this method, are all the effects good? We will continue to
thoroughly pay attention to this question.
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