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Implicit fixed point iterations

ABSTRACT. Let K be a compact convex subset of a real Hilbert space H; T : K → K a
continuous hemicontractive map. Let {αn} be a real sequence in [0, 1] satisfying appropriate
conditions, then for arbitrary x0 ∈ K and {vn} in K, the sequence {xn} defined iteratively
by xn = αnxn−1 + (1− αn)Tvn, n ≥ 1 converges strongly to a fixed point of T .

We also establish a strong convergence of an implicit iteration process to a common fixed
point for a finite family of ψ−uniformly pseudocontractive and ψ−uniformly accretive map-
pings in real Banach spaces.

The results presented in this paper extend and improve the corresponding results of Refs.
[4, 9, 19, 20, 22, 25, 44].

KEY WORDS. Implicit iteration process, Mann iteration, ψ−uniformly pseudocontractive
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1 Fundamentals

We assume that E is a real Banach space and K be a nonempty convex subset of E. Let J
denote the normalized duality mapping from E to 2E∗ defined by

J(x) = {f ∗ ∈ E∗ : 〈x, f ∗〉 = ||x||2 and ||f ∗|| = ||x||},

where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized duality pairing. We
shall denote the single-valued duality map by j.

Let Ψ := {ψ | ψ : [0,∞) → [0,∞) is a strictly increasing mapping such that ψ(0) = 0}.

Definition 1 A mapping T : K → K is called ψ−uniformly pseudocontractive if there
exist mapping ψ ∈ Ψ and j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ||x− y||2 − ψ(||x− y||), ∀x, y ∈ K. (1.1)
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Definition 2 A mapping S : D(S) ⊂ E → E is called ψ−uniformly accretive if there
exist mapping ψ ∈ Ψ and j(x− y) ∈ J(x− y) such that

〈Sx− Sy, j(x− y)〉 ≥ ψ(||x− y||), ∀x, y ∈ E. (1.2)

Remark 1 a) Taking ψ(a) := ψ(a)a, ∀a ∈ [0,∞), (ψ ∈ Ψ), we get the usual definitions
of ψ− pseudocontractive and ψ− accretive mappings.

b) Taking ψ(a) := γa2; γ ∈ (0, 1), ∀a ∈ [0,∞), (ψ ∈ Ψ), we get the usual definitions of
strongly pseudocontractive and strongly accretive mappings.

c) T is ψ−uniformly pseudocontractive iff S = I − T is ψ−uniformly accretive.

d) It is known that T is strongly pseudocontractive if and only if (I − T ) is strongly
accretive.

Let H be a Hilbert space.

Definition 3 A mapping T : H → H is said to be pseudocontractive (see e.g., [1, 2]) if

||Tx− Ty||2 ≤ ||x− y||2 + ||(I − T )x− (I − T )y||2, ∀x, y ∈ H (1.3)

and is said to be strongly pseudocontractive if there exists k ∈ (0, 1) such that

||Tx− Ty||2 ≤ ||x− y||2 + k||(I − T )x− (I − T )y||2, ∀x, y ∈ H. (1.4)

Definition 4 Let F (T ) := {x ∈ H : Tx = x} and let K be a nonempty subset of H. A
map T : K → K is called hemicontractive if F (T ) 6= ∅ and

||Tx− x∗||2 ≤ ||x− x∗||2 + ||x− Tx||2 ∀ x ∈ H, x∗ ∈ F (T ). (1.5)

Remark 2 It is easy to see that the class of pseudocontractive maps with fixed points is a
subclass of the class of hemicontractions. The following example, due to Rhoades [35], shows
that the inclusion is proper. For x ∈ [0, 1], define T : [0, 1] → [0, 1] by Tx = (1 − x

2
3 )

3
2 . It

is shown in [35] that T is not Lipschitz and so cannot be nonexpansive. A straightforward
computation (see e.g., [38]) shows that T is pseudocontractive. For the importance of fixed
points of pseudocontractions the reader may consult [2].

We shall make use of the following results.

Lemma 1 [40] Suppose that {ρn}, {σn} are two sequences of nonnegative numbers such
that for some real number N0 ≥ 1,

ρn+1 ≤ ρn + σn ∀n ≥ N0.
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(a) If
∑
σn <∞, then, lim ρn exists.

(b) If
∑
σn <∞ and {ρn} has a subsequence converging to zero, then lim ρn = 0.

Lemma 2 [20] For all x, y ∈ H and λ ∈ [0, 1], the following well-known identity holds:

||(1− λ)x+ λy||2 = (1− λ)||x||2 + λ||y||2 − λ(1− λ)||x− y||2.

Lemma 3 [42] Let J : E → 2E be the normalized duality mapping. Then for any x, y ∈
E, we have

||x+ y||2 ≤ ||x||2 + 2〈y, j(x+ y)〉, ∀j(x+ y) ∈ J(x+ y).

Lemma 4 [23] Let {θn} be a sequence of nonnegative real numbers, {λn} be a real se-
quence satisfying

0 ≤ λn ≤ 1,
∞∑

n=0

λn = ∞

and let ψ ∈ Ψ. If there exists a positive integer n0 such that

θ2
n+1 ≤ θ2

n − λnψ(θn+1) + σn,

for all n ≥ n0, with σn ≥ 0, ∀n ∈ N, and σn = 0(λn), then limn→∞ θn = 0.

2 Implicit Mann iteration process in Hilbert spaces

In the last ten years or so, numerous papers have been published on the iterative approxima-
tion of fixed points of Lipschitz strongly pseudocontractive (and correspondingly Lipschitz
strongly accretive) maps using the Mann iteration process (see e.g., [22]). Results which
had been known only in Hilbert spaces and only for Lipschitz maps have been extended
to more general Banach spaces (see e.g., [5–16, 21, 30–38, 40, 41, 43, 45] and the refer-
ences cited therein) and to more general classes of maps (see e.g., [6–16, 19, 21, 27–34, 36–
38, 40, 41, 43, 45] and the references cited therein). This success, however, has not carried
over to arbitrary Lipschitz pseudocontraction T even when the domain of the operator T is
a a compact convex subset of a Hilbert space. In fact, it is still an open question whether or
not the Mann iteration process converges under this setting. In 1974, Ishikawa introduced
an iteration process which, in some sense, is more general than that of Mann and which
converges, under this setting, to a fixed point of T . He proved the following theorem.

Theorem 1 If K is a compact convex subset of a Hilbert space H, T : K 7→ K is
a Lipschitzian pseudocontractive map and x0 is any point in K, then the sequence {xn}
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converges strongly to a fixed point of T , where xn is defined iteratively for each positive
integer n ≥ 0 by

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn, (2.1)

where {αn}, {βn} are sequences of positive numbers satisfying the conditions

(i) 0 ≤ αn ≤ βn < 1; (ii) lim
n→∞

βn = 0; (iii)
∑
n≥0

αnβn = ∞.

Since its publication in 1974, Theorem 1, as far as we know, has never been extended to more
general Banach spaces. In [27], Qihou extended the theorem to the slightly more general class
of Lipschitz hemicontractions and in [28] he proved, under the setting of Theorem 1, that
the convergence of the recursion formula (2.1) to a fixed point of T when T is a continuous
hemicontractive map, under the additional hypothesis that the number of fixed points of T is
finite. The iteration process (2.1) is generally referred to as the Ishikawa iteration process
in light of [20]. Another iteration process which has been studied extensively in connection
with fixed points of pseudocontractive maps is the following:

For K a convex subset of a real normed space H, and T : K → K, the sequence {xn} is
defined iteratively by x1 ∈ K,

xn+1 = (1− cn)xn + cnTxn, n ≥ 1, (2.2)

where {cn} is a real sequence satisfying the following conditions:

(iv) 0 ≤ cn < 1; (v) lim
n→∞

cn = 0; (vi)
∞∑

n=1

cn = ∞.

The iteration process (2.2) is generally referred to as the Mann iteration process in light of
[22].

In 1995, Liu [21] introduced what he called Ishikawa and Mann iteration processes with
errors as follows:

(1-a) For K a nonempty subset of H and T : K → E, the sequence {xn} defined by

x1 ∈ K,

xn+1 = (1− αn)xn + αnTyn + un,

yn = (1− βn)xn + βnTxn + vn, n ≥ 1, (2.3)

where, {αn}, {βn} are sequences in [0,1] satisfying appropriate conditions and∑
||un|| <∞,

∑
||vn|| <∞ is called the Ishikawa Iteration process with errors.
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(1-b) With K, H and T as in part (1-a), the sequence {xn} defined by

x1 ∈ K,

xn+1 = (1− αn)xn + αnTxn + un, n ≥ 1, (2.4)

where {αn} is a sequence in [0,1] satisfying appropriate conditions and
∑

||un|| <∞,
is called the Mann iteration process with errors.

While it is known that consideration of error terms in iterative processes is an important
part of the theory, it is also clear that the iteration processes with errors introduced by
Liu in (1-a) and (1-b) are unsatisfactory. The occurrence of errors is random so that
the conditions imposed on the error terms in (1-a) and (1-b) which imply, in particular,
that they tend to zero as n tends to infinity are, therefore, unreasonable. In 1997, Y.
Xu [43] introduced the following more satisfactory definitions.

(1-c) Let K be a nonempty convex subset of H and T : K → K a mapping. For any given
x1 ∈ K, the sequence {xn} defined iteratively by

xn+1 = anxn + bnTyn + cnun,

yn = a
′

nxn + b
′

nTxn + c
′

nvn, n ≥ 1, (2.5)

where {un}, {vn} are bounded sequences in K and {an}, {bn}, {cn}, {a
′
n}, {b

′
n} and {c′n}

are sequences in [0, 1] such that an + bn + cn = a
′
n + b

′
n + c

′
n = 1 ∀ n ≥ 1 is called the

Ishikawa iteration sequence with errors in the sense of Xu.

(1-d) If, with the same notations and definitions as in (1-c), b′n = c
′
n = 0, for all integers

n ≥ 1, then the sequence {xn} now defined by

x1 ∈ K

xn+1 = anxn + bnTxn + cnun, n ≥ 1, (2.6)

is called the Mann iteration sequence with errors in the sense of Xu. We remark that
if K is bounded (as is generally the case), the error terms un, vn are arbitrary in K.

In [9], Chidume and Chika Moore proved the following theorem.

Theorem 2 Let K be a compact convex subset of a real Hilbert space H; T : K → K a
continuous hemicontractive map. Let {an}, {bn}, {cn}, {a

′
n}, {b

′
n} and {c′n} be real sequences

in [0, 1] satisfying the following conditions:

(vii) an + bn + cn = 1 = a
′
n + b

′
n + c

′
n ∀ n ≥ 1;

(viii) lim
n→∞

bn = lim
n→∞

b
′
n = 0;
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(ix)
∑
cn <∞;

∑
c
′
n <∞;

(x)
∑
αnβn = ∞;

∑
αnβnδn <∞, where δn := ||Txn − Tyn||2;

(xi) 0 ≤ αn ≤ βn < 1 ∀ n ≥ 1, where αn := bn + cn; βn := b
′
n + c

′
n.

For arbitrary x1 ∈ K, define the sequence {xn} iteratively by

xn+1 = anxn + bnTyn + cnun,

yn = a
′

nxn + b
′

nTxn + c
′

nvn, n ≥ 1,

where {un}, {vn} are arbitrary sequences in K. Then, {xn} converges strongly to a fixed
point of T .

They also gave the following remark in [9].

Remark 3 d) In connection with the iterative approximation of fixed points of pseu-
docontractions, the following question is still open. Does the Mann iteration process
always converge for continuous pseudocontractions, or for even Lipschitz pseudocon-
tractions?

e) Let H be a Banach space and K be a nonempty compact convex subset of H. Let
T : K → K be a Lipschitz pseudocontractive map. Under this setting, even for H, as
a Hilbert space, the answer to the above question is not known. There is, however, an
example [19] of a discontinuous pseudocontractive map T with a unique fixed point
for which the Mann iteration process does not always converge to the fixed point of T .
Let H be the complex plane and K := {z ∈ H : |z| ≤ 1}. Define T : K → K by

T (reiθ) =

{
2rei(θ+π

3
), for 0 ≤ r ≤ 1

2
,

ei(θ+ 2π
3

), for 1
2
< r ≤ 1.

Then, zero is the only fixed point of T . It is shown in [15] that T is pseudocontractive
and that with cn = 1

n+1
, the sequence {zn} defined by zn+1 = (1−cn)zn+cnTzn, z0 ∈ K,

n ≥ 1, does not converge to zero. Since the T in this example is not continuous, the
above question remains open.

In [10], Chidume and Mutangadura, provide an example of a Lipschitz pseudocontractive
map with a unique fixed point for which the Mann iteration sequence failed to converge and
they stated there ”This resolves a long standing open problem”.

We introduce the following Mann type implicit iteration process associated with continuous
hemicontractive mappings to have a strong convergence in the setting of Hilbert spaces.
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Let K be a closed convex subset of a real normed space H and T : K → K be a mapping.
For a sequence {vn} in K, define {xn} in the following way:

x0 ∈ K,

xn = αnxn−1 + (1− αn)Tvn, (2.7)

where {αn} be a real sequence in [0, 1] satisfying some appropriate conditions.

Now we prove our main results.

Theorem 3 Let K be a compact convex subset of a real Hilbert space H; T : K → K

a continuous hemicontractive map. Let {αn} be a real sequence in [0, 1] satisfying {αn} ⊂
[δ, 1− δ] for some δ ∈ (0, 1). For arbitrary x0 ∈ K and {vn} in K, define the sequence {xn}
by (2.7) satisfying

∑
n≥1

‖vn − xn‖ <∞ . Then {xn} converges strongly to a fixed point of T .

Proof: The existence of a fixed point of T follows from Schauders fixed point theorem. Let
x∗ ∈ K be a fixed point of T and M = dim(K). Using the fact that T is hemicontractive
we obtain

‖Tvn − x∗‖2 ≤ ‖vn − x∗‖2 + ‖vn − Tvn‖2. (2.8)

With the help of (2.7), Lemma 2 and (2.8), we obtain the following estimates:

‖xn − x∗‖2 = ‖αnxn−1 + (1− αn)Tvn − x∗‖2

= ‖αn(xn−1 − x∗) + (1− αn)(Tvn − x∗)‖2

= αn ‖xn−1 − x∗‖2 + (1− αn) ‖Tvn − x∗‖2

−αn(1− αn) ‖xn−1 − Tvn‖2 . (2.9)

Substituting (2.8) in (2.9), we get

‖xn − x∗‖2 ≤ αn ‖xn−1 − x∗‖2 + (1− αn) ‖vn − x∗‖2

+(1− αn) ‖vn − Tvn‖2 − αn(1− αn) ‖xn−1 − Tvn‖2 . (2.10)

Also

‖vn − x∗‖2 ≤ ‖vn − xn‖2 + ‖xn − x∗‖2

+2M ‖xn − x∗‖ ‖vn − xn‖
≤ ‖vn − xn‖2 + ‖xn − x∗‖2

+2M ‖vn − xn‖ , (2.11)

‖vn − Tvn‖2 ≤ ‖vn − xn‖2 + ‖xn − Tvn‖2

+2M ‖xn − Tvn‖ ‖vn − xn‖
≤ ‖vn − xn‖2 + ‖xn − Tvn‖2

+2M ‖vn − xn‖ , (2.12)
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and

‖xn − Tvn‖2 = ‖αnxn−1 + (1− αn)Tvn − Tvn‖2

= α2
n ‖xn−1 − Tvn‖2 . (2.13)

Substituting (2.11-2.13) in (2.10), we get

‖xn − x∗‖2 ≤ αn ‖xn−1 − x∗‖2 + (1− αn)(‖vn − xn‖2

+ ‖xn − x∗‖2 + 2M ‖vn − xn‖)
+(1− αn)(‖vn − xn‖2 + α2

n ‖xn−1 − Tvn‖2 + 2M ‖vn − xn‖)
−αn(1− αn) ‖xn−1 − Tvn‖2 ,

implies

‖xn − x∗‖2 ≤ ‖xn−1 − x∗‖2 + 2
1− αn

αn

‖vn − xn‖2 + 4M
1− αn

αn

‖vn − xn‖

−(1− αn)2 ‖xn−1 − Tvn‖2 ,

and from the condition {αn} ⊂ [δ, 1− δ] for some δ ∈ (0, 1), we conclude that the inequality

‖xn − x∗‖2 ≤ ‖xn−1 − x∗‖2 − δ2 ‖xn−1 − Tvn‖2 + δn, (2.14)

holds for all fixed points x∗ of T provided

δn = 2
1− δ

δ
‖vn − xn‖2 + 4M

1− δ

δ
‖vn − xn‖ .

Moreover
δ2 ‖xn−1 − Tvn‖2 ≤ ‖xn−1 − x∗‖2 − ‖xn − x∗‖2 + δn,

and thus

δ2

∞∑
j=1

‖xj−1 − Tvj‖2 ≤
∞∑

j=1

(‖xj−1 − x∗‖2 − ‖xj − x∗‖2) +
∞∑

j=1

δj

= ‖x0 − x∗‖2 +
∞∑

j=1

δj.

Hence due to the condition
∑

n≥1 ‖vn − xn‖ <∞, we obtain

∞∑
j=1

‖xj−1 − Tvj‖2 <∞. (2.15)

It implies that
lim

n→∞
‖xn−1 − Tvn‖ = 0.
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From (2.13) it further implies that

lim
n→∞

‖xn − Tvn‖ = 0.

Also the condition
∑

n≥1 ‖vn − xn‖ <∞ implies lim
n→∞

‖vn − xn‖ = 0 and the continuity of T
further implies that lim

n→∞
‖Tvn − Txn‖ = 0. Now from

‖xn − Txn‖ ≤ ‖xn − Tvn‖+ ‖Tvn − Txn‖ ,

implies that
lim

n→∞
‖xn − Txn‖ = 0.

By compactness of K this immediately implies that there is a subsequence {xnj
} of {xn}

which converges to a fixed point of T , say y∗. Since (2.14) holds for all fixed points of T we
have

‖xn − y∗‖2 ≤ ‖xn−1 − y∗‖2 − δ2 ‖xn−1 − Tvn‖2 + δn,

and in view of (2.15) and Lemma 1 we conclude that ‖xn−y∗‖ → 0 as n→∞, i.e., xn → y∗

as n→∞. The proof is complete.

Corollary 1 Let H, K, T , be as in Theorem 3 and {αn} be a real sequence in [0, 1]

satisfying {αn} ⊂ [δ, 1− δ] for some δ ∈ (0, 1). Let PK : H → K be the projection operator
of H onto K. For arbitrary x0 ∈ K and {vn} in K, define the sequence {xn} by

xn = PK(αnxn−1 + (1− αn)Tvn), n ≥ 1,

satisfying
∑

n≥1 ‖vn − xn‖ <∞. Then {xn} converges strongly to a fixed point of T .

Proof: The operator PK is nonexpansive (see e.g., [1]). K is a Chebyshev subset of H so
that, PK is a single-valued map. Hence, we have the following estimate:

‖xn − x∗‖2 = ‖PK(αnxn−1 + (1− αn)Tvn)− PKx
∗‖2

≤ ‖αnxn−1 + (1− αn)Tvn − x∗‖2

= ‖αn(xn−1 − x∗) + (1− αn) (Tvn − x∗) ‖2

≤ αn ‖xn−1 − x∗‖2 + (1− αn)(‖vn − xn‖2

+ ‖xn − x∗‖2 + 2M ‖vn − xn‖)
+(1− αn)(‖vn − xn‖2 + α2

n ‖xn−1 − Tvn‖2 + 2M ‖vn − xn‖)
−αn(1− αn) ‖xn−1 − Tvn‖2 ,

implies

‖xn − x∗‖2 ≤ ‖xn−1 − x∗‖2 + 2
1− αn

αn

‖vn − xn‖2 + 4M
1− αn

αn

‖vn − xn‖

−(1− αn)2 ‖xn−1 − Tvn‖2 .

The set K ∪ T (K) is compact and so the sequence {‖xn − Txn‖} is bounded. The rest of
the argument follows exactly as in the proof of Theorem 3 and the proof is complete.
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3 Multi-step iterations in Hilbert spaces

Let K be a nonempty closed convex subset of a real normed space H and T1, T2, ..., Tp :

K → K (p ≥ 2) be a family of selfmappings.

Algorithm 1 For a given x0 ∈ K, compute the sequence {xn} by the implicit iteration
process of arbitrary fixed order p ≥ 2,

xn = αnxn−1 + (1− αn)T1y
1
n,

yi
n = βi

nxn−1 + (1− βi
n)Ti+1y

i+1
n ; i = 1, 2, ..., p− 2,

yp−1
n = βp−1

n xn−1 + (1− βp−1
n )Tpxn, n ≥ 1, (3.1)

which is called the multi-step implicit iteration process, where {αn}, {βi
n} ⊂ [0, 1], i = 1, 2,

..., p− 1.

For p = 3, we obtain the following three-step implicit iteration process:

Algorithm 2 For a given x0 ∈ K, compute the sequence {xn} by the iteration process

xn = αnxn−1 + (1− αn)T1y
1
n, ,

y1
n = β1

nxn−1 + (1− β1
n)T2y

2
n,

y2
n = β2

nxn−1 + (1− β2
n)T3xn, n ≥ 1, (3.2)

where {αn} , {β1
n} and {β2

n} are three real sequences in [0, 1] satisfying some certain condi-
tions.

For p = 2, we obtain the following two-step implicit iteration process:

Algorithm 3 For a given x0 ∈ K, compute the sequence {xn} by the iteration process

xn = αnxn−1 + (1− αn)T1y
1
n,

y1
n = β1

nxn−1 + (1− β1
n)T2xn, n ≥ 1, (3.3)

where {αn} and {β1
n} are two real sequences in [0, 1] satisfying some certain conditions.

If T1 = T, T2 = I, β1
n = 0 in (3.3), we obtain the implicit Mann iteration process:

Algorithm 4 For any given x0 ∈ K, compute the sequence {xn} by the iteration process

xn = αnxn−1 + (1− αn)Txn, n ≥ 1, (3.4)

where {αn} is a real sequence in [0, 1] satisfying some certain conditions.
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Theorem 4 Let K be a compact convex subset of a real Hilbert space H and T1, T2, . . . , Tp

(p ≥ 2) be selfmappings of K. Let T1 be a continuous hemicontractive map. Let {αn},
{βi

n} ⊂ [0, 1], i = 1, 2, . . . , p − 1 be real sequences in [0, 1] satisfying {αn} ⊂ [δ, 1 − δ] for
some δ ∈ (0, 1) and

∑
n≥1(1− β1

n) <∞. For arbitrary x0 ∈ K, define the sequence {xn} by

(3.1). Then {xn} converges strongly to the common fixed point of
p⋂

i=1

F (Ti) 6= φ.

Proof: By applying Theorem 3 under assumption that T1 is continuous hemicontractive,
we obtain Theorem 4 which proves strong convergence of the iteration process defined by
(3.1). Consider by taking T1 = T and vn = y1

n,

‖vn − xn‖ =
∥∥y1

n − xn

∥∥
=

∥∥β1
nxn−1 + (1− β1

n)T2y
2
n − xn

∥∥
=

∥∥β1
n (xn−1 − xn) + (1− β1

n)
(
T2y

2
n − xn

)∥∥
≤ β1

n ‖xn−1 − xn‖+ (1− β1
n)

∥∥T2y
2
n − xn

∥∥
≤ β1

n ‖xn−1 − xn‖+M(1− β1
n), (3.5)

and

‖xn−1 − xn‖ = ‖xn−1 − αnxn−1 − (1− αn)Tvn‖
= (1− αn) ‖xn−1 − Tvn‖ . (3.6)

From (3.5) and (3.6), we have

‖vn − xn‖ ≤ β1
n(1− αn) ‖xn−1 − Tvn‖+M(1− β1

n)

≤ β1
n(1− δ) ‖xn−1 − Tvn‖+M(1− β1

n).

Now from (2.15) and the condition
∑

n≥1(1− β1
n) <∞, it can be easily seen that∑

n≥1 ‖vn − xn‖ <∞.

Corollary 2 Let K be a compact convex subset of a real Hilbert space H; T : K → K

a hemicontractive map. Let {αn} be a real sequence in [0, 1] satisfying {αn} ⊂ [δ, 1 − δ]

for some δ ∈ (0, 1). For arbitrary x0 ∈ K, define the sequence {xn} by (3.4). Then {xn}
converges strongly to a fixed point of T .

4 Implicit iteration process for a finite family of ψ-uniformly pseu-
docontractive mappings

Let E be a real Banach space and K be a nonempty closed convex subset of E. Let {Ti : i

∈ I} be N self-mappings of K.
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In 2001, Xu and Ori [44] introduced the following implicit iteration process for a finite family
of nonexpansive mappings {Ti : i ∈ I} (here I = {1, 2, ..., N}), with {αn} a real sequence in
(0, 1), and an initial point x0 ∈ K :

x1 = α1x0 + (1− α1)T1x1,

x2 = α2x1 + (1− α2)T2x2,
...

xN = αNxN−1 + (1− αN)TNxN ,

xN+1 = αN+1xN + (1− αN+1)T1xN+1,
...

which can written in the following compact form:

xn = αnxn−1 + (1− αn)Tnxn, ∀n ≥ 1, (4.1)

where Tn = Tn (mod N) (here the (mod N) function takes values in I). Xu and Ori proved
the weak convergence of this process to a common fixed point of the finite family defined
in a Hilbert space. They further remarked that it is yet unclear what assumptions on the
mappings and/or the parameters {αn} are sufficient to guarantee the strong convergence of
the sequence {xn}.

In [24], Oslilike proved the following theorem.

Theorem 5 Let E be a real Banach space and K be a nonempty closed convex subset of

E. Let {Ti : i ∈ I} be N strictly pseudocontractive self-mappings of K with F =
N⋂

i=1

F (Ti) 6=

φ. Let {αn}∞n=1 be a real sequence satisfying the conditions:

(i) 0 < αn < 1,

(ii)
∑∞

n=1(1− αn) = ∞,

(iii)
∑∞

n=1(1− αn)2 <∞.

From arbitrary x0 ∈ K, define the sequence {xn} by the implicit iteration process (4.1). Then
{xn} converges strongly to a common fixed point of the mappings {Ti : i ∈ I} if and only if
lim

n→∞
d(xn, F ) = 0.

Definition 5 [24] A normed space E is said to satisfy Opial’s condition if for any se-
quence {xn} in E, xn ⇀ x implies that lim supn→∞ ‖xn − x‖ < lim supn→∞ ‖xn − y‖ for all
y ∈ E with y 6= x.
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In [4], Chen et al proved the following theorem.

Theorem 6 Let K be a nonempty closed convex subset of a q-uniformly smooth and
p-uniformly convex Banach space E that has the Opial property. Let s be any element in
(0, 1) and let {Ti}N

i=1be a finite family of strictly pseudocontractive self-maps of K such that
{Ti}N

i=1, have at least one common fixed point. For any point x0 in K and any sequence
{αn}∞n=1 in (0, s), define the sequence {xn} by the implicit iteration process (4.1). Then {xn}
converges weakly to a common fixed point of {Ti}N

i=1.

The purpose of this section is to study the strong convergence of the implicit iteration
process (4.1) to a common fixed point for a finite family of ψ−uniformly pseudocontractive
and ψ−uniformly accretive mappings in real Banach spaces.

Theorem 7 Let {T1, T2, . . . , TN} : K → K be N, ψ−uniformly pseudocontractive map-

pings with F =
N⋂

i=1

F (Ti) 6= φ. From arbitrary x0 ∈ K, define the sequence {xn} by the

implicit iteration process (4.1) satisfying
∑∞

n=1(1 − αn) = ∞ and lim
n→∞

(1 − αn) = 0. If
the sequence {Tnxn} is bounded, then {xn} converges strongly to a common fixed point of
{T1, T2, ..., TN}.

Proof: Since each Ti is ψ−uniformly pseudocontractive, we have from (1.1)

〈Tix− Tiy, j(x− y)〉 ≤ ||x− y||2 − ψ(||x− y||), i = 1, 2, . . . , N . (4.2)

We know that the mappings {T1, T2, . . . , TN} have a common fixed point in K, say w, then

the fixed point set F =
N⋂

i=1

F (Ti) 6= φ is nonempty. We will show that w is the unique fixed

point of F . Suppose there exists q ∈ F (T1) such that w 6= q i.e., ‖w − q‖ > 0. Then

ψ(‖w − q‖) > 0. (AR)

Since ψ is strictly increasing with ψ(0) = 0. Then, from the definition of ψ−uniformly
pseudocontractive mapping,

||w − q||2 = 〈w − q, j(w − q)〉 = 〈T1w − T1q, j(w − q)〉
≤ ||w − q||2 − ψ(||w − q||),

implies
ψ(||w − q||) ≤ 0,

contracditing (AR), which implies the uniqueness. Hence F (T1) = {w}. Similarly we can
prove that F (Ti) = {w}; i = 2, 3, . . . , N . Thus F = {w}.
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Since the sequence {Tnxn} is bounded, we set

M1 = ||x0 − w||+ sup
n≥1

||Tnxn − w||.

Obviously M1 <∞.

It is clear that ||x0−w|| ≤M1. Let ||xn−1−w|| ≤M1. Next we will prove that ||xn−w|| ≤M1.

Consider

||xn − w|| = ||αnxn−1 + (1− αn)Tnxn − w||
= ||αn(xn−1 − w) + (1− αn)(Tnxn − w)||
≤ αn||xn−1 − w||+ (1− αn)||Tnxn − w||
≤ αnM1 + (1− αn)M1

= M1.

So, from the above discussion, we can conclude that the sequence {xn −w} is bounded. Let
M2 = sup

n≥1
||xn − w||.

Denote M = M1 +M2. Obviously M <∞.

The real function f : [0,∞) → [0,∞), defined by f(t) = t2 is increasing and convex. For all
λ ∈ [0, 1] and t1, t2 > 0 we have

((1− λ)t1 + λt2)
2 ≤ (1− λ)t21 + λt22. (4.3)

Consider

||xn − w||2 = ||αnxn−1 + (1− αn)Tnxn − w||2

= ||αn(xn−1 − w) + (1− αn)(Tnxn − w)||2

≤ [αn ‖xn−1 − w‖+ (1− αn) ‖Tnxn − w‖]2

≤ αn ‖xn−1 − w‖2 + (1− αn) ‖Tnxn − w‖2

≤ ‖xn−1 − w‖2 +M2(1− αn). (4.4)

From Lemma 3 and (4.1), we have

‖xn − w‖2 = ‖αnxn−1 + (1− αn)Tnxn − w‖2

= ‖αn(xn−1 − w) + (1− αn) (Tnxn − w)‖2

≤ αn
2||xn−1 − w||2 + 2 (1− αn) 〈Tnxn − w, j(xn − w)〉

≤ αn
2||xn−1 − w||2 + 2 (1− αn) ‖xn − w‖2

−2 (1− αn)ψ(‖xn − w‖), (4.5)
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Substituting (4.4) in (4.5), we get

‖xn − w‖2 ≤ [α2
n + 2(1− αn)]||xn−1 − w||2 − 2(1− αn)ψ(‖xn − w‖)

+2M2(1− αn)2

=
[
1 + (1− αn)2

]
||xn−1 − w||2 − 2(1− αn)ψ(‖xn − w‖)

+2M2(1− αn)2

≤ ||xn−1 − w||2 − 2(1− αn)ψ(‖xn − w‖) + 3M2(1− αn)2. (4.6)

Denote

θn = ||xn−1 − w||,
λn = 2(1− αn),

σn = 3M2(1− αn)2.

Condition lim
n→∞

(1 − αn) = 0 assures the existence of n0 ∈ N such that λn = 2(1 − αn) ≤ 1,

for all n ≥ n0. Now with the help of
∑∞

n=1(1−αn) = ∞ and Lemma 4, we obtain from (4.6)
that

lim
n→∞

||xn − w|| = 0,

completing the proof.

Remark 4 Theorem 7 extend and improve the Theorems 5-6 in the following directions:

� The strictly pseudocontractive mappings are replaced by the more general ψ−uniformly
pseudocontractive and ψ−uniformly accretive mappings;

� Theorem 7 holds in real Banach space whereas the results of Theorem 6 are in q-
uniformly smooth and p-uniformly convex Banach space;

� We do not need the assumption lim
n→∞

d(xn, F ) as in Theorem 5.

� One can easily see that if we take αn = 1− 1
nσ ; 0 < σ < 1, then

∑
(1− αn) = ∞, but∑

(1− αn)2 = ∞. Hence the conclusion of Theorem 5 is false.
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