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ABSTRACT. We introduce and study a new notion of stability of a stochastic fluid model
in terms of random stopping times (partially building on ideas used by Stolyar [10] in his
deterministic setting). It may be viewed as an analog of the original criterion for random T ’s
(which may differ for different ϕ’s). In particular, it is shown that our notion of stability is
equivalent to Lp-stability for some p > 1. We consider an example of a polling system with
tow stations and two servers in which the corresponding fluid model may be unstable in the
sense as it was written in ([10]) but stable from the generalised viewpoint that we adopt.
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1 Introduction

In a number of papers, the fluid approximation approach was used for the instability analysis
of queueing models. Dai [2] and Meyn [9] proved that if all fluid limits are unstable, then the
underlying Markov process is transient. Bramson [1] showed that a Markov process may be
transient even if some of its fluid limits are stable. One should note that in order to establish
the positive recurrence of a Markov process, it is sufficient (and in certain sense necessary)
to show some weak stability of all corresponding fluid limits.

Kumar and Meyn [7] considered stochastic fluid limits and proposed the following notion of
stability : a fluid model is Lp-stable, p > 0 if

supϕE|ϕ(t)|p → 0 as t → +∞ .

They showed the equivalence of the L2-stability of the fluid model and several notions of
stability for the underlying Markov process.

This paper is organised as follows. We introduce and study the notion of stability of a
stochastic fluid model in terms of random stopping times (partially building on ideas used
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by Stolyar in his deterministic setting). It may be viewed as an analog of the original
criterion for random T ’s ( which may differ for different ϕ’s). In particular, it is shown that
our notion of stability is equivalent to Lp-stability for some p > 1.

We consider an example of a polling system with tow stations and two servers in which the
corresponding fluid model may be unstable in the sense as it was written in ([10]), i.e.

∃T ′
> 0, ∃ε ∈ (0, 1] : |ϕ(T

′
)| ≤ 1− ε a.s., (1)

for any fluid limit ϕ, but stable from the generalised viewpoint that we adopt.

It shows that even simple queueing systems may exhibit a kind of fluid behavior (basically
random bifurcations) that cannot be captured by deterministic fluid models, but neverthe-
less, is essential for stability analysis. This kind of behavior has already been described by
Malyshev et al. in a number of papers about ”random walks” in ZN

+ (see [8] and the list of
references therein).

1.1 Positive recurrence of a Markov process via stability of its fluid limits

Let χ be a complete metric space with a metric ρ, and B the σ− algebra generated by open
sets. Let 0 ∈ χ be a fixed element. For x ∈ χ, put |x| = ρ(x,0). In what follows, we make
the following assumptions.

Assumption 1.1 (i) for any constant K ≥ 0, the set

A(K) = {x ∈ χ : |x| ≤ K}

is compact;

(ii) for any constant c ≥ 0, a mapping x → c ∗ x is defined such that

(1) c ∗ 0 = 0 for any c ≥ 0;

(2) ρ(c ∗ x1, c ∗ x2) = cρ(x1, x2) for any c ≥ 0 and x1, x2 ∈ χ;

(3) if cn → c, then cn∗x → c∗x for any x (and, therefore, the convergence is uniform
on any set A(K).)

In fact, in (i) it is sufficient to assume that the set A(1) is compact. For simplicity, we will

write
x

c
instead

1

c
∗ x.

Let Z = {z1, ..., zd} be a finite set with natural discrete topology. For each M > 0, denote
by D[0, M ] the space of χ×Z-valued cadlag (right-continuous with LHS limits) functions

f(t) = (f 1(t), f2(t)), t ∈ [0, M ]
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endowed with the skorohod J1-metric :

dM(f1, f2) = inf
g∈∆

{ sup
t∈[0,M ]

[|g(t)− t|+ ρ(f 1
1 (g(t)), f1

2 (t)) + 11(f2
1 (g(t)) 6=f2

2 (t))]},

where

∆ = {g : [0, M ] → [0, M ], g monotone continious, g(0) = 0, g(M) = M}.

Let D[0,∞) denote a space of χ×Z-valued cadlag functions on [0,∞) with the metric

d(f1, f2) =
∞∑
1

2−M dM(f1,M , f2,M)

1 + dM(f1,M , f2,M)
,

where fi,M is a restriction of fi in [0, M ], i = 1, 2.

Let χ
′ be a closed subset of χ, and P (t, x, z, B) a probabilistic transition kernel. Here

t ≥ 0, x ∈ χ
′
, z ∈ Z, B ∈ Z ′

, where Z ′ is a σ-algebra in χ
′ ×Z generated by open sets.

For (x, z) ∈ χ
′ ×Z, let

(X, Z)(x,z) = {(X,Z)(x,z)(t), t ≥ 0}

be a χ
′ ×Z-valued time-homogeneous Markov process with transition kernel P , a.s. cadlag

paths, and the initial state (X, Z)(x,z)(0) = (x, z). We assume further that the process
satisfies the strong Markov property.

Remark 1.1 One can introduce a more general description of a Markov process with in-
finite (either countable or not) ”index set” Z. In this case, a lot of additional technicalities
arise. Within this paper, we decided to confine ourselves only to finite set Z.

Definition 1.1 A Markov process (X, Z) = {(X, Z)(x,z)} is positive recurrent (with re-
spect to the semi norm |.|) if there exists a finite K such that the set

B = B(K) = {(x, z) : |x| ≤ K} ⊂ χ
′

is positive recurrent, i.e for some δ > 0,

1. for all (x, z) ∈ χ
′ ×Z,

η(x,z)(B) = inf{t ≥ δ : (X,Z)(x,z)(t) ∈ B} < ∞ a.s.;

2. sup
(x,z)∈B

Eη(x,z)(B) < ∞.
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For x ∈ χ
′
, z, r ∈ Z, let

Y (x,z)
r (t) =

∫ t

0

11(Z(x,z)(u)=r)du, t ≥ 0

be the process couting the sejourn time of the 2nd coordinate at r.

For each (x, z) ∈ χ
′ ×Z, |x| > 0, introduce a family of scaled processes

X̃(x,z) = {X̃(x,z)(t) =
X(x,z)(|x|t)

|x|
, t ≥ 0}

and for each r ∈ Z,

Ỹ (x,z)
r = {Ỹ (x,z)

r (t) =
Y

(x,z)
r (|x|t)
|x|

, t ≥ 0}

Definition 1.2 We call the family

(X̃, Ỹ ) = {X̃(x,z), Ỹ (x,z)
r , r ∈ Z}x∈χ′ ,|x|≥1,z∈Z

relatively compact (at infinity) if, for each sequence

(X̃(xn,zn), Ỹ (xn,zn)
r , r ∈ Z), |xn| → ∞, zn ∈ Z

there exists a subsequence (X̃(xnk
,znk

), Ỹ
(xnk

,znk
)

r , r ∈ Z) that converges weakly (in Skorohod
topology) to some limit process

ϕ = {ϕ(t), t ≥ 0},

which is called a fluid limit.

For any t ≥ 0 and fluid limit ϕ, the values of ϕ(t) lie in χ× Rd
+.

Put ϕ(t) = (x(t), y(t)) and y(t) = {yz(t)}z∈Z , where x(t) ∈ χ and y(t) ∈ Rd
+.

Note that
∑

z yz(t) = t for any fluid limit and for any t.

Denote by Φ = ϕ the family of all fluid limits ϕ (or, equivalently, the family of their
distributions).

Lemma 1.1 If the family (X̃, Ỹ ) is relatively compact, then the family Φ is compact (i.e.
any sequence of fluid limits contains a convergent subsequence).

The following assumption applies for the rest of this section.

Assumption 1.2 The family of processes {X(x,z), (x, z) ∈ χ
′ ×Z} is such that
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1. for all t > 0 and (x, z) ∈ χ
′ ×Z,

E|X(x,z)(t)| < ∞

and moreover, for any K and any z,

sup
|x|≤K

E|X(x,z)(t)| < ∞;

2. for all 0 ≤ u < t, the family of random variables

{ρ(X̃(x,z)(u), X̃(x,z)(t)); |x| ≥ 1; z ∈ Z}

is uniformly integrable (U.I), and for any z,

lim sup
|x|→∞

P{ sup
u′ ,t′∈[u,t]

ρ(X̃(x,z)(u
′
), X̃(x,z)(t

′
)) > C(t− u)} = 0, (2)

where C is a finite constant that does not depend on u, t.

Theorem 1.1 [4] Assume that for some ε > 0, there exists a finite constant T such that

sup
ϕ∈Φ

E|x(T )| < 1− ε.

Then, the underlying Markov process (X, Z) is positive recurrent.

Remark 1.2 The Lp-stability implies conditions of theorem 1.1. Indeed, take any T > 0

such that supϕ E|x(T )|p < 1 and apply the Hölder inequality.

Fix t ≥ 0, and on the event {|x(t)| > 0}, introduce the shift transformation ϕ → ϕt = (xt, yt)

as follows :
xt(u) =

x(t + u|x(t)|)
|x(t)|

;

for r ∈ Z,

yt
r(u) =

yr(t + u|x(t)|)− yr(t)

|x(t)|
.

Along with Markov processes with fixed initial values, we consider processes with random
initial values (x, z). For such processes, one can define fluid limits as follows. Consider a
sequence

(X̃(xn,zn), Ỹ (xn,zn)
r , r ∈ Z), where |xn| → ∞,

in probability, zn ∈ Z. By assumption 1.2, it contains a subsequence

(X̃(xnk
,znk

), Ỹ
(xnk

,znk
r , r ∈ Z)

that converges weakly (in the Skorohod topology) to some limit process, which is also called
a fluid limit. The family of all such fluid limits (or, equivalently, of their distributions) is
denoted by Φ̃. Introduce the following :
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Assumption 1.3 For any ϕ ∈ Φ̃, t ≥ 0, z ∈ Z, the right derivative vz(t) = y
′
z(t + 0)

exists a.s. on the event {|x(t) > 0|}.

Put v(t) = {vz(t)}z∈Z and define the set

V = {{vz}z∈Z : vz ≥ 0,∀z and
∑
z∈Z

vz = 1}.

For any stopping time τ , put

vτ (t) = v(τ + t), t ≥ 0, if |x(τ + t)| > 0.

For a set U and a fluid limit ϕ ∈ Φ̃, put

β = βϕ = inf{t ≥ 0 : |x(t)| = 0 ∨ (xt(0), vt(0)) ∈ U}. (3)

Denote χ1 = {x ∈ χ : |x| = 1}.

We are ready now to formulate and prove the main result which we will make use in section
1.2.

Theorem 1.2 Let Assumption 1.3 hold. Assume that there exist ε > 0 and a measurable
set U ⊆ χ1 ×V such that for each ϕ ∈ Φ,

1. the stopping time βϕ is admissible ;

2. if (x(0), v(0)) ∈ U a.s., then E|x(β)| ≤ 1− ε;

3. the family of random variables {βϕ, ϕ ∈ Φ} is uniformly integrable.

Then, for some ε > 0 and for any ϕ ∈ Φ, there exists a stopping time τϕ such that

E|x(τϕ)| ≤ 1− ε (4)

and
lim

K→∞
sup
ϕ∈Φ

KP{τϕ > K} = 0.

In particular, the conditions of theorem 1.1 are satisfied and therefore the underlying Markov
process (X,Z) is positive recurrent.

Proof: By the total the total probability law, conditions of the theorem imply that

• a stopping time βϕ is admissible for any ϕ ∈ Φ̃

• the family {βϕ, ϕ ∈ Φ̃} is uniformly integrable.
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Let Φ0 = {ϕ ∈ Φ̃ : (x(0), v(0)) ∈ U} and Φ1 = Φ̃ \ Φ0.

If ϕ ∈ Φ0, put τϕ = βϕ.

Otherwise, put c = supϕ∈Φ1
E|x(βϕ)| and

l = min{n ≥ 0 : (1− ε)nc ≤ 1}+ 2.

For ϕ ∈ Φ1, on define τϕ via the following recursive procedure.

Put T0 = 0, ϕ(0) = ϕ, T1 = βϕ, ϕ(1) = (x(1), y(1)) = ϕT1

and for i ∈ {1, . . . , l − 1}, if |x(i)(0)| > 0 then put

Ti+1 = Ti + |x(i)(0)|βϕ(i) , ϕ(i+1) = ϕTi+1 .

Denote Γ = min(l,min{i : |x(i)(0)| = 0}) and τϕ = TΓ.

Then (4) follows from inequalities

E|x(TΓ)| ≡ E{|x(TΓ)|11(|x(TΓ)|>0)}
= E{|x(Tl)|11(|x(Tl)|>0)}
≤ E{|x(Tl)|11(|x(Tl−1)|>0)}
≤ (1− ε)E{|x(Tl−1)|11(|x(Tl−1)|>0)}
...

≤ (1− ε)l−1E|x(T1)|
≤ (1− ε)l−1c

≤ 1− ε.

Let us show uniform integrability of {τϕ, ϕ ∈ Φ}. For any u ≥ 1,

E{TΓ11(TΓ>u)} ≤
l∑

i=1

E{Ti11(Γ≥i)11(Ti≥u)}.

Set g(u) = supϕ E{βϕ11(βϕ≥u)}. Then, g(u) → 0 as u →∞.

One can see that for i = 1,

E{T111(Γ≥1)11(T1≥u)} ≤ g(u).
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Further, for any v ≥ 1 and u ≥ v(2 + C),

E{T211(Γ≥2)11(T2≥u)} ≤ E{[T1 + (1 + C.T1)βϕT1 ]11(Γ≥2)11(T1+(1+CT1)β
ϕT1

≥u)}

≤ E{v[1 + (1 + C).T1]11(T1≥ u−v
v(1+C)

)}+

+ E{E{βϕT111(β
ϕT1

≥v)/T1, x(T1)}[1 + (1 + C)T1]11(Γ≥2)}

≤ vP{T1 ≥
u− v

v(1 + C)
}+ (1 + C)vE{T111(T1≥ u−v

v(1+C)
)}+

+ g(v)E{1 + (1 + C)T1}

≤ (2 + C)v.g(
u− v

v(1 + C)
) + g(v)[1 + (1 + C)g(0)]

uniformly in Φ̃. Take v = v(u) such that

v →∞ and v.g(
u− v

v(1 + C)
) → 0 as u →∞.

The proof is completed by induction. �

1.2 Application to the study of the stability of a polling system

Consider an open polling system with two stations and two ”heterogenous” servers. With
each station i = 1, 2 an input stream of customers is associated, that has i.i.d interarrival
times with common distribution function F

(0)
i (t) and finite positive mean λ−1

i . The inputs
to different stations i = 1, 2 are mutually independent. For i, m ∈ {1, 2}, server m has a
station i i.i.d service times with common distribution function F

(m)
i (t) and finite positive

mean (µ
(m)
i )−1. Both servers follow the so-called exhaustive service policy : after completing

a service, a server either starts the service of a new customer (if there is any), or leaves
the station ; after a finite ”walking” (”switch-over”) period, the server arrives to the other
station. For server m, walking times from station i1 to station i2 form an i.i.d sequence of
non-negative random variables with finite mean W (m)(i1, i2) (either i1 = 1; i2 = 2, or i1 = 2;
i2 = 1). If a server arrives to a station with empty queue, it becomes ”passive” and waits
there for the first customer. If during this period the other server arrives to this station, it
becomes passive, too, and waits for the second customer to arrive to this station.

This system can be analysed via the fluid approximation approach. In order to avoid the
surplus of technical details, we make the following

Assumption 1.4 The distribution functions F
(m)
i , i = 1, 2; m = 0, 1, 2 are exponential;

λ1 = λ2 = 1 ; all the walking times are equal to zero a.s. (W (m)(i1, i2) = 0, m = 1, 2).

Consider a right-continuous time-homogeneous Markov process

{X(t); Z(t)} = {(Q1(t), Q2(t)), (Z
(1), Z(2)(t))}, t ≥ 0,
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where

• Qi(t) is the queue length at station i = 1, 2 (including the customers being served),

• for m = 1, 2, Z(m)(t) ∈ {−2,−1, 1, 2} is the position of server m at time instant t;
Z(m)(t) = i means that server m is serving (”active”) at station i; Z(m)(t) = −i means
that server m is waiting (”passive”) at station i.

With necessity, we have to assume that Qi(t) ≥ 1 if at least one of Z(m)(t) equals i, and
Qi(t) ≥ 2 if Z(1)(t) = Z(2)(t) = i.

Under Assumption 1.4, a server cannot become passive if there at least two customers in the
whole system.

Here X(t) take its values in

χ
′
= {0, 1, · · · } × {0, 1, · · · } ⊂ χ ≡ R2

+

and Z(t) in
Z = {−2,−1, 1, 2} × {−2,−1, 1, 2}.

Put 0 = ((0, 0)). For x(m) = (x
(m)
1 , x

(m)
2 ) ∈ χ, m = 1, 2, introduce the metric

ρ(x(1), x(2)) =
2∑

i=1

|x(1)
i − x

(2)
i |.

Then, |x| = x1 + x2 for x = (x1, x2) ∈ χ.

The process (X, Z) is piecewise deterministic (in fact, piecewise constant) and, therefore,
possesses the strong Markov property.

Put
C = 3 + µ

(1)
1 + µ

(2)
1 + µ

(1)
2 + µ

(2)
2 .

Assumption 1.2 holds for the process (X,Z). Indeed, for any t ≥ 0, K > 0, and z ∈ Z,

sup
|x|≤K

E|X(x,z)(t)| ≤ K + 2t < ∞;

For any 0 ≤ u < t, z ∈ Z, |x| ≥ 1,

ρ(X̃(x,z)(u), X̃(x,z)(t)) ≤st

|x|∑
i=1

πi

|x|
,

where r.v.’s π1, π2, . . . are i.i.d and have Poisson distribution with parameter (C − 1)(t− u).
Therefore, the family

{ρ(X̃(x,z)(u), X̃(x,z)(t)), z ∈ Z, |x| ≥ 1}
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is uniformly integrable.

Since
|x|∑
i=1

πi

|x|
−→ (C − 1)(t− u) a.s. as |x| → ∞,

then, (2) holds.

Note that if µ
(1)
i + µ

(2)
i ≤ 1 for some i = 1, 2, then the polling system cannot be stable.

Indeed, for i = 1, 2 and for any ∆ > 0 and K > 0, we denote by τ the first moment after
∆ when the queue length at station i becomes smaller than K. If both servers start at
station i with the queue length Q ≥ K, then τ is either infinite with positive probability (if
µ

(1)
i + µ

(2)
i < 1) or finite, but with infinite mean (if µ

(1)
i + µ

(2)
i = 1).

Similarly, the polling system cannot be stable if either

max(µ
(1)
1 , µ

(2)
2 ) ≤ 1 or max(µ

(2)
1 , µ

(1)
2 ) ≤ 1.

Let us number the stations and the servers so that

µ
(1)
1 = min{µ(m)

i ; i, m = 1, 2}.

Then, the polling model may be stable in one of the following cases :

(A1) µ
(1)
1 > 1,

(A2.1) µ
(1)
1 ≤ 1, µ

(2)
1 > 1, µ

(1)
2 > 1, µ

(2)
2 > 1,

(A3.1) µ
(1)
1 ≤ 1, µ

(2)
1 > 1, µ

(1)
2 ≤ 1, µ

(2)
2 > 1,

(A4.1) µ
(1)
1 ≤ 1, µ

(2)
1 ≤ 1, µ

(1)
1 + µ

(2)
1 > 1, µ

(1)
2 > 1, µ

(2)
2 > 1.

We need some additional notations. First, for m, i = 1, 2, let

p
(m)
i = (1− µ

(m)
i

µ
(1)
i + µ

(2)
i

).max(0, 1− µ
(m)
i ).

Then put

c11 =
1

µ
(1)
1 + µ

(2)
1 − 1

, c22 =
1

µ
(1)
2 + µ

(2)
2 − 1

, c12 =
1− µ

(1)
1

µ
(2)
2 − 1

,

c21 =
1− µ

(1)
2

µ2
1 − 1

11
(µ

(2)
1 >1≥µ1

2)
+

1− µ
(2)
1

µ1
2 − 1

11
(µ

(1)
2 >1≥µ2

1)
.
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Introduce the families of conditions as follows :

Condition (A2). Inequalities (A2.1) and

c11(c22(1− p
(1)
1 ) + c12p

(1)
1 ) < 1.

Condition (A3). Inequalities (A3.1) and

(1− c11c12p
(1)
1 )+.(1− c22c21p

(1)
2 )+ > c11c22(1− p

(1)
1 )(1− p

(1)
2 ),

where a+ = max(a, o).

Condition (A4). Inequalities (A4.1) and

c11(c22(1− p
(1)
1 − p

(2)
1 ) + c12p

(1)
1 + c21p

(2)
1 ) < 1. (5)

Theorem 1.3 [4] Under Assumption 1.4, if one of conditions A1-A4 is satisfied, then
the process (X,Z) is positive recurrent and ergodic.

Remark 1.3 If the service times are ”server-independent” (i.e. µ
(1)
i = µ

(2)
i = µi, i = 1, 2),

then, the stability condition
1

µ1

+
1

µ2

< 2 (6)

is well known and may be easily obtained via the criterion (1). In this case, one can check
that (6) holds if and only if either (A1), or (A4) is satisfied. Similarly, if the service times
are ”station-independent” (i.e. µ

(m)
1 = µ

(m)
2 = µm, m = 1, 2 ), then the stability condition

µ(1) + µ(2) > 2 holds if and only if (A1) or (A3) is validated.

We complete this paper with the following theorem, we assume that the set U consists only
of one point (1, 0, 1, 1) and the r.v.’s β and β0 are defined by (3).

Theorem 1.4 Assume that any of conditions (A2.1)-(A4.1) holds. If

1 ≤ E|x0(β0)| < ∞ and E log |x0(β0)| < 0, (7)

then

1. for any fluid limit ϕ

γ = γϕ = inf{t > 0 : |x(t)| = 0} < ∞ a.s.; (8)

and for any non-flashing fluid limit,

Eγ = ∞; (9)
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2. with any fluid limit ϕ = (x, y) one can associate an infinite sequence {γϕ
(l)} of r.v.’s

such that γ
(l)
ϕ →∞ a.s. as l →∞, and

|x(γ(l)
ϕ )| = 0 a.s. for any n; (10)

3. the underlying Markov process is recurrent.

Proof: 1. Put |x0(β0)| = q1(β0) = u0 > 0 a.s. for any n = 0, 1, ..., set

βn+1 = inf{t > βn : q2(t) = 0, z(1)(t) = z(2)(t) = 1}

and put γ0 = limn→∞ βn ≤ ∞. It follows from Theorem 1.3 that |x0(t)| > 0 for any
t < γ0 and q1(βn) may be represented in the form

q1(βn) =
n∏

j=0

uj,

where {uj} are i.i.d.

Put δ0 = β0 and, for n ≥ 1,

δn =
βn − βn−1

q1(βn−1)
.

Then, {δn} form an i.i.d sequence, δn does not depend on u0, · · · , un−1 for any n, and

γ0 = δ0 +
∞∑
i=1

δi

i−1∏
j=0

uj.

Since all r.v’s are a.s. strictly positive,

Eγ0 = Eδ0(1 +
∞∑

j=1

(Eu0)
j)

is infinite if Eu0 ≥ 1. On the other hand, if E log u0 = −c < 0, then

i∏
j=0

uj = exp{
i∑

j=0

log uj} → 0 a.s. as i →∞.

Set

ν = min{i :
k−1∑
j=0

log uj ≤ −ck/2, ∀k ≥ i} < ∞ a.s.

Then

γ0 ≤ δ0 +
ν−1∑
i=1

δi

i−1∏
j=0

uj +
∞∑
i=1

δiexp{−c(i− 1)/2} < ∞ a.s.
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and

|x0(γ0)| = lim
n→∞

|x0(βn)| = lim
n→∞

n∏
j=0

uj = 0 a.s.

Take now any other non-flashing fluid limit ϕ. Note that either γϕ = β or ϕβ has the same
distribution as ϕ0. Therefore, one can represent γ = γϕ in the form

γ = β + |x(β)|.γ̃0,

where γ̃0 is distributed like γ0 and does not depend on x(β).

Note that
P(γ > β) = P(|x(β)| > 0) > 0.

Therefore, under conditions (7), γ is finite a.s. and Eγ = ∞.

2. Consider any fluid limit ϕ = (x,y). For any t > 0, if |x(t)| = q > 0, then |x(t+γϕt .q)| = 0

a.s., that proves (10).

3. Consider the ordinary birth-death process U(t) with constant birth and death intensities
λ and µ respectively, and initial size U(0) = 1.

Set
η = inf{t > 0 : U(t) = 0} and H(λ, µ) = E(η11(δ<∞)).

The following is well-known :

1. If λ 6= µ, then H(λ, µ) < ∞.

2. If λ < µ, then
sup
t≥0

E{U(t)11(δ>t)} ≤ H(λ, µ) < ∞.

The state space of the Markov process (X, Z) is countable, and any two states communicate.
It is sufficient to show that there exists a constant K such that the random variable

β(1)(x, z, K) = inf{t > 0 : Q
(x,z)
1 (t) + Q

(x,z)
2 (t) ≤ K}

is finite a.s. for any couple x = (n1, n2) of non-negative integers and for any z ∈ Z.

It is easy to see that β(2)(x, z) = inf{t > 0 : Q
(xn,z)
2 (t) = 0,

Z(1)(t) = Z(2)(t) = 1, Z(1)(t− 0) = 2 ∨ Z(2)(t− 0) = 2}

is finite a.s. (here the symbol ∨ stands for the union of two events).

Set
β(x, z) = min{β(1)(x, z, 1), β(2)(x, z)} and βn = β((n, 0), (1, 1)).
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Set z = (1, 1), xn = (n, 0), tend n to infinity, and denote by ϕ the weak limit of the process
(X̃(xn,z), Ỹ (xn,z)).

For any constant c > 0,

min(
βn

n
, c) → min(β, c) weakly.

Here, β ≡ β0 is defined in the statement of the theorem).

Therefore, βn/n → β and
Q

(xn,z)
1 (βn)

n
−→ q1(β) weakly.

Assume we have proved uniform integrability of (log(Q
(xn,z)
1 (βn)/n))+.

Then,

lim
n→∞

supE log(
max(1, Q

(xn,z)
1 (βn) + Q

(xn,z)
2 (βn))

n
) ≤ E log q1(β)

(since Q
(xn,z)
2 (βn) ≤ 1 a.s. ) and there exists K such that

sup
n≥K

E log(
max(1, Q

(xn,z)
1 (βn) + Q

(xn,z)
2 (βn))

n
) ≤ −ε

for some ε > 0.

Start with any initial value (x, z), put κ1 = β(1)(x, z,K) and for k = 1, 2, . . . ,

κk+1 = inf{t > κk : (Q
(xn,z)
2 (t) = 0, Z(1)(t) = Z(2)(t) = 1,

(Z(1)(t− 0) = 2 ∨ Z(2)(t− 0) = 2)) ∨ (Q
(xn,z)
1 (t) + Q

(xn,z)
2 (t) ≤ 1)}.

Denote Q(k) = Q
(x,z)
1 (κk) + Q

(x,z)
2 (κk). Then

E(log
Q(k + 1)

Q(k)
/Q(k) > K) ≤ −ε

and, therefore,

γ(x, z) = min{k : Q(k) ≤ K} and β(1)(x, z,K) ≤ κγ(x,z) are finite a.s. Thus, the Markov
process is recurrent.

We give now the proof of uniform integrability for a sequence of random variables

{(log(Q
(xn,z)
1 (βn)/n))+, n ≥ 1}.

The proof is based on similar arguments in cases A2.1-A4.1.

Consider case (A3.1), as the most complicated one.

Let αn = inf{t > 0 : Z(1)(t) 6= 1 ∨ Z(2)(t) 6= 1}. Then αn ≤ βn a.s. and

EQ
(xn,z)
2 (αn) = (n− 1)c11.
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Put D = {Q(x,z)
1 (βn) + Q

(x,z)
2 (βn) ≤ 1}. Denote by D the complement of D, that is,

D = {both servers stop not on the time interval [0, βn]}.

From the total probability law,

EQ
(xn,z)
1 (βn) = E{Q(xn,z)

1 (βn)11D}+ E{Q(xn,z)
1 (βn)11B−1}+

+ E{Q(xn,z)
1 (βn)11B̃−1

}+
∞∑
i=0

E{Q(xn,z)
1 (βn)11D | Bi}P(Bi)+

+
∞∑
i=0

E{Q(xn,z)
1 (βn)11D | B̃i}P(B̃i),

where the events Bi and B̃i describe the dynamics of servers within the time interval [0, βn].

Namely,

B−1 = { server 2 stays at station 1 all the time ; server 1 switches to station 2 only once and
returns to station 1 at time instant βn};

for i ≥ 0,

Bi = { first, both servers switch to station 2 (in any order); second, server 2 switches to
station 1 and returs back i times ; finally, both servers switch to station 1 (in any order)};

B̃−1 = { server 1 stays at station 1 all the time; server 2 switches to station 2 only once and
return back at time instant βn};

for i ≥ 0,

B̃i = { first, both servers switch to station 2 (in any order); second, servers 1 and 2 switche
to station 1 and returs back several times (alternatively) ; after the last return of server 1 to
station 2, server 2 visits station 1 i times ; finally, both servers return to station 1 (in any
order)}.

Then
E{Q(xn,z)

1 (βn)11D} ≤ 1;

and routine (but space-consuming) calculations show that following inequalities are valid :

E{Q(xn,z)
1 (βn)11DB−1

} ≤H(1, µ
(2)
1 ) < ∞;

E{Q(xn,z)
1 (βn)11DB̃−1

} ≤(n− 1)c11c12 + 1;

E{Q(xn,z)
1 (βn)11D | B0} ≤((n− 1)c11 + c21)max(c12, c22) + c12;

E{Q(xn,z)
1 (βn)11D | Bi} ≤((n− 1)c11 + c21)max(c12, c22)(c21c22)

i + c12;

E{Q(xn,z)
1 (βn)11D | B̃i} ≤H(1, µ

(2)
2 )(c21c22)

i + c12
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for all i ≥ 0.

Thus, sup
n≥2

E

(
Q

(xn,z)
1 (βn)

n

)δ

is finite for any δ ∈ (0, 1] such that

(c21c22)
δ µ

(2)
2

µ
(1)
2 + µ

(2)
2

< 1.

Therefore, the random variables

(
log

(
Q

(xn,z)
1 (βn)

n

))+

are uniformly integrable. �

Prospects (future works) :

1. We will consider a same polling system but with λ1 6= λ2 and a walking times
W (m)(i1, i2) 6= 0.

2. We will seek the conditions of transience for this new system.
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