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Bell Numbers and Engel’s Conjecture

ABSTRACT. In this paper, we prove some new properties of the sequence of the Bell
numbers and present some results in connection with Engel’s conjecture. In addition, using
a new approach we state a stronger conjecture.
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1 Introduction

A partition of the set [n] = {1, 2, . . . , n} is a collection of nonempty, pairwise disjoint subsets
of [n] called blocks whose union is [n]. A partition π1 is said to refine another partition
π2, denoted by π1 ≤ π2, if every block of π1 is contained in some block of π2. Hence, the
refinement relation is a partial ordering of the set

∏
n of all partitions of [n] . The number of

partitions of [n] having exactly k blocks is the Stirling number of the second kind S (n, k).
The total number of partitions of [n] is the nth Bell number Bn. Therefore,

Bn =
n∑

k=1

S (n, k) , n ≥ 1 .

Also, recall Dobinski’s formula [1]

Bn =
1

e

∞∑
i=0

in

i!
.

Now, for all x ∈ R, we set

B (x) =
1

e

∞∑
i=0

ix

i!
, x ∈ R .

Note that the series
∑
i≥0

ix

i!
converges for all x ∈ R and B (n) = Bn for all n ∈ N.
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2 New properties of the Bell numbers

Theorem 1 Let p ∈ ]1, +∞[ and let q be the conjugate exponent of p. Then, for all
x1, x2 ∈ R, we have

B (x1 + x2) ≤ B1/p (px1) B1/q (qx2) .

Proof: Let Z be the discrete random variable with distribution function

P (Z = i) =
1

e
· 1

i!
, i ∈ N .

Then

E(Zx) = B(x), for all x ∈ R . (1)

From Hölder’s inequality we obtain

E
(
Zx1+x2

)
≤ E1/p (Zpx1) · E1/q (Zqx2) , for all x1,x2 ∈ R .

Hence, if we use (1), the result follows immediately.

Theorem 2 For all x1, x2 ∈ R, we have

2B (x1 + x2) ≤ B (2x1) + B (2x2) .

Proof: Using the same discrete random variable in the above proof we have

E((Zx1 − Zx2)2) ≥ 0 .

Thus

2E(Zx1+x2) ≤ E(Z2x1) + E(X2x2) .

Consequently, using (1), we get

2B (x1 + x2) ≤ B (2x1) + B (2x2) .

As a consequence of Theorem 1, with x1, x2 ∈ N and p = q = 2 we obtain the first following
new property of the sequence of the Bell numbers.

Corollary 3 The inequality

B2
n+m ≤ B2nB2m

holds for every n, m ∈ N.
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Corollary 4 The sequence (Bn+1/Bn)n is increasing, and, equivalently, the sequence
(Bn)n is logarithmically convex, i.e.

B2
n+1 ≤ BnBn+2, for all n ≥ 0 .

Proof: The assertion follows from Theorem 1 with x1 = n
2

x2 = n+2
2

, and p = q = 2.

Corollary 5 The sequence (Bn)n is convex, i.e.

2Bn ≤ Bn−1 + Bn+1, for all n ≥ 1 .

Proof: This inequality follows easily from Theorem 2 with x1 = n+1
2

and x2 = n−1
2

.

Henceforth, let τn (resp. σ2
n) denote the average (resp. the variance) of the number of blocks

in a partition of the generic n-set [n], i.e.

τn =
1

Bn

n∑
k=1

kS (n, k)

and

σ2
n =

1

Bn

n∑
k=1

k2S (n, k)−

(
1

Bn

n∑
k=1

kS (n, k)

)2

.

Using the recurrence relation

S (n + 1, k) = S (n, k − 1) + kS (n, k) (2)

we obtain

τn =
Bn+1

Bn

− 1

and

σ2
n =

Bn+2

Bn

−
(

Bn+1

Bn

)2

− 1 .

In studying Alekseev’s inequality [4] on the principal ideal of the partition lattice, it was
shown in [3] that the inequality is equivalent to

τn1 + τn2 ≥ τn1+n2 , for all n1, n2 ∈ N .

Furthermore, K. Engel [5] showed that the inequality above is true if the sequence (τn)n is
concave, and he was led to the conjecture that the sequence (τn)n is concave, i.e.

τn ≥
1

2
(τn−1 + τn+1) , for all n ≥ 1 .
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We verified the last inequality for n ≤ 1500 using a computer [3], but no general proof
has been found yet. The second purpose of this paper is to contribute to the study of this
conjecture by using a new approach.

Let, for x ∈ R,

Bn (x) =
n∑

k=0

S (n, k) xk . (3)

It is clear that (Bn (x))n is a sequence of polynomials, with B0 (x) ≡ 1 and Bn (1) = Bn (Bell
number). Recall that the polynomial Bn (x) admits n distinct roots, where only one of them
is equal to zero and all others are strictly negative. This result is due to L. N. Harper [8] and
the detailed proof can be found in [3]. From now on, let −α1 (n) , −α2 (n) , · · · ,−αn−1 (n)

denote the (n− 1) negative roots of Bn (x), and let In = {0} ∪ {−αi (n) , i = 1, ..., n− 1} .

This allows us to write

Bn (x) = x
n−1∏
i=1

(x + αi (n)) .

In this section we assume that x /∈ In. Setting

τn (x) =
Bn+1 (x)

Bn (x)
− x

and

σ2
n (x) =

Bn+2 (x)

Bn (x)
−
(

Bn+1 (x)

Bn (x)

)2

− x, (4)

we have τn (1) = τn and σ2
n (1) = σ2

n.

Theorem 6 For every n ∈ N∗,

i) τn (x) = 1 +
n−1∑
j=1

x
x+αj(n)

= n−
n−1∑
k=1

αj(n)

x+αj(n)
,

ii) σ2
n (x) = x d (τn (x)),

where d is the differential operator d
dx
·

Proof: Without restriction, we only consider here the case when x > 0.

i) It is easy to verify from (2) and (3) that

Bn+1 (x) = x (d (Bn (x)) + Bn (x)) . (5)



Bell Numbers and Engel’s Conjecture 65

It follows that

τn (x) = x
d (Bn (x))

Bn (x)

= x d (log (Bn (x)))

= x d

(
log x +

n−1∑
j=1

log (x + αj (n))

)

= 1 +
n−1∑
j=1

x

x + αj (n)

= n−
n−1∑
j=1

αj (n)

x + αj (n)
.

To prove ii), we have

x d (τn (x)) = x

(
d (Bn+1 (x))

Bn (x)
− Bn+1 (x) d (Bn (x))

B2
n (x)

− 1

)
=

Bn+2 (x)− xBn+1 (x)

Bn (x)
− Bn+1 (x) (Bn+1 (x)− xBn (x))

B2
n (x)

− x

=
Bn+2 (x)

Bn (x)
−
(

Bn+1 (x)

Bn (x)

)2

− x

= σ2
n (x) .

Thus, the theorem is proved.

Corollary 7 For every n ≥ 2,

a) 1 < τn (x) < n, for each x > 0,

b) 0 < σ2
n (x) < n−1

4
, for each x > 0,

c) The sequence (Bn (x))n is logarithmically convex for x > 0 and logarithmically concave
for x < 0,

d) For every n ≥ 1, the polynomials Bn+1(x)
x

and Bn(x)
x

are coprime,

e) σ2
n+1 (x) + σ2

n−1 (x)− 2σ2
n (x) = x d (τn+1 (x) + τn−1 (x)− 2τn (x)).

Proof: a) By the fact that αj (n) is positive for every j, the inequality a) follows immediately
from i) of Theorem 6.

b) using i) and ii) of Theorem 6, we obtain

σ2
n (x) = x

n−1∑
j=1

αj (n)

(x + αj (n))2 . (6)
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Thus, it is sufficient to notice that the maximum value of the function x → αj(n)x

(x+αj(n))2
is 1

4
,

for x > 0.

c) This result is an immediate consequence of (6). Indeed, if x > 0 (resp. x < 0), then
σ2

n (x) > 0 (resp. σ2
n (x) < 0), i.e. using (4)

Bn+2 (x) Bn (x)−B2
n+1 (x)− xB2

n (x) > 0

(resp. Bn+2 (x) Bn (x)−B2
n+1 (x)− xB2

n (x) < 0) .

Hence

Bn+2 (x) Bn (x) > B2
n+1 (x) ,

(resp. Bn+2 (x) Bn (x) < B2
n+1 (x)) .

From (5), we get

Bn+1 (−αj (n)) = α2
j (n)

n−1∏
i=1
i6=j

(−αj (n) + αi (n)) 6= 0 . (7)

Thus d) is proved.

To prove e), it is sufficient to use ii) of Theorem 6.

Corollary 8 We have

2Bn < Bn+1 < (n + 1)Bn .

Proof: Use a) of Corollary 7 and choose x = 1.

Remark 1 Note that the inequality 2Bn < Bn+1 is stronger than the convexity of the
sequence (Bn)n.

Let un (x) = τn (x) + x. Then we have the following result.

Lemma 9 For every n ≥ 3,

1

un−1 (x)
=

n−1∑
j=1

βj (n)

x + αj (n)
,

where βj (n) ∈]0, 1[.
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Proof: We have

1

un−1 (x)
=

Bn−1 (x)

Bn (x)
=

n−2∏
i=1

(x + αi (n− 1))

n−1∏
i=1

(x + αi (n))

.

By a decomposition into partial fractions, we get

1

un−1 (x)
=

n−1∑
j=1

βj (n)

x + αj (n)
,

where

βj (n) =
Bn−1 (−αj (n))

−αj (n)
n−1∏
i=1
i6=j

(−αj (n) + αi (n))

.

Moreover, from (7) we obtain

βj (n) =
−αj (n) Bn−1 (−αj (n))

Bn+1 (−αj (n))
.

On the other hand in view of (6) we have

σ2
n−1 (x) =

Bn+1 (x)

Bn−1 (x)
−
(

Bn (x)

Bn−1 (x)

)2

− x < 0, for all x < 0 and x /∈ In−1 .

Therefore

Bn−1 (x)

Bn+1 (x)
<

(
Bn (x)

Bn+1 (x)

)2

+ x

(
Bn−1 (x)

Bn+1 (x)

)2

, for all x < 0 and x /∈ In+1 .

If we replace x in the above inequality by −αj (n), then we obtain

βj (n) (1− βj (n)) > 0 ,

thus βj (n) ∈]0, 1[·

Theorem 10 For every n ≥ 2,

τn+1 (x) + τn−1 (x)− 2τn (x) = x

(
un−1 (x)

un (x)

)
d

(
un (x)

un−1 (x)

)
,

with un(x)
un−1(x)

= 1 + x
n−1∑
j=1

βj(n)

(x+αj(n))2
and βj (n) ∈]0, 1[.
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Proof: From (5) we obtain

τn (x) = x
d (Bn (x))

Bn (x)
.

Hence

τn+1 (x) + τn−1 (x)− 2τn (x) = xd (log (Bn+1 (x)) + log (Bn−1 (x))− 2 log (Bn (x)))

= xd

(
log

(
Bn+1 (x) Bn−1 (x)

B2
n (x)

))
= xd

(
log

(
un (x)

un−1 (x)

))
.

We also have

d

(
1

un−1 (x)

)
= d

(
Bn−1 (x)

Bn (x)

)
=

d (Bn−1 (x))

Bn (x)
− d (Bn (x))

Bn (x)
· Bn−1 (x)

Bn (x)

=
d (Bn−1 (x))

Bn−1 (x)
· Bn−1 (x)

Bn (x)
− d (Bn (x))

Bn (x)
· Bn−1 (x)

Bn (x)

=
1

x

1

un−1 (x)
(τn−1 (x)− τn (x))

=
1

x

(
1− un (x)

un−1 (x)

)
.

Hence

un (x)

un−1 (x)
= 1− x d

(
1

un−1 (x)

)
.

Therefore, from Lemma 9 we obtain

un (x)

un−1 (x)
= 1 + x

n−1∑
j=1

βj(n)

(x + αj(n))2
.

This completes the proof.

3 Strong Conjecture

Recall that K. Engel conjectured that the sequence (τn)n is concave in n, i.e.

2τn − τn−1 − τn+1 ≥ 0, for every n ≥ 2 .

In this section we show that this conjecture is in fact a consequence of the following stronger
conjecture.
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Theorem 11 If the positive roots of the equation d
(

un(x)
un−1(x)

)
= 0 are less than 1, then

the sequence (τn)n is concave.

Proof: Using Theorem 10, we have

un (x)

un−1 (x)
≥ 1 when x ≥ 0 and lim

x→+∞

un (x)

un−1 (x)
= 1 .

Then, assuming that the positive roots of the equation d
(

un(x)
un−1(x)

)
= 0 are less than 1, the

function x 7→ un(x)
un−1(x)

would be necessarily decreasing in the neighborhood of 1, which means
that

τn+1 + τn−1 − 2τn =

(
un−1 (1)

un (1)

)
d

(
un (1)

un−1 (1)

)
< 0 .

Conjecture 1 For every n ≥ 1, the positive roots of the equation d
(

un(x)
un−1(x)

)
= 0 are all

less than 1.

Using Maple9, we checked this new conjecture for 2 ≤ n ≤ 400.
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