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Ishikawa Iterative Process with Errors for Generalized
Lipschitz ®-Accretive Mappings in Uniformly Smooth
Banach Spaces!

ABSTRACT. Let E be a uniformly smooth real Banach space and T' : ' — E be generalized
Lipschitz ®-accretive mapping with ®(r) — 400 as r — 4o00. Let{a,}, {b,}, {cn}, {a}},
{0}, {c,} be six real sequences in [0, 1] satisfying the following conditions: (i)a, + b, + ¢, =
dyt b, = 1 ()lim b, = lm ¥, = lim ¢, = 0, (i) > by = oo, (iv)ew = ofby).
For arbitrary zo € FE, define the Ishikawa iterative process W?E}Ol errors {x,} -, by (ISE):
Yp = a0 Ty + b STy 4 € Un, Tpyp1 = An&y + 0, SY, + Crun,n > 0. where S : E — FE is defined
by Se = f+ax—Tx, f € F,Vr € E. Assume that the equation Tx = f has solution and
{un}. "y, {vn},—, are arbitrary two bounded sequences in E. Then the sequence {z,} -,
converges strongly to the unique solution of the equation Tx = f. A related result deals

with approximation of fixed point of generalized Lipschitz ®-pseudocontractive mapping.

KEY WORDS. Ishikawa iterative process with errors; generalized Lipschitz; ®-accretive

mapping; ®- pseudocontractive mapping; uniformly smooth Banach space.

1 Introduction

Let E be real Banach space and E* be the dual space on . The normalized duality mapping
J : E — 27" is defined by

Jo=A{f € E":<x f>=|lzll-[IfIl = IfII*} (1.1)

for all x € E, where < -,- > denotes the generalized duality pairing. It is well known
that if F is an uniformly smooth Banach space, then J is single-valued and such that
J(—z) = —J(x), J(tx) = tJ(x) for all z € E and t > 0; and J is uniformly continuous on

any bounded subset of E. In the sequel we shall denote single-valued normalized duality

!Project supported by the National Science Foundation of China and Shijiazhuang Railway College Sci-
ences Foundation.



86 X. Zhiqun

mapping by j. By means of the normalized duality mapping J. In the following we give

some concepts.

Definition 1.1 Let E be real Banach space, and T : E D D(T) — E be a mapping
with domain D(T) and range R(T). A mapping T is said to be strongly accretive if for any
z,y € D(T) there exists j(x —y) € J(x —y) such that

<Tz—Ty,j(x—y) >> kllz —y| (1.2)

for some constant k € (0,1). A mapping T is called ®-strongly accretive if for any x,y €
D(T) there exists j(x —y) € J(x —y) and a strictly increasing function ® : [0, 00) — [0, 00)
with ®(0) = 0 such that

<Tx—=Ty,jx—y) >= (lz — yl)llz - yll (1.3)

The mapping T is called ®-accretive if, there exists a strictly increasing function ® : [0, 00) —
[0, 00) with ®(0) =0, and for any x,y € D(T) there exists j(x —y) € J(z —y) such that

<Tz =Ty, j(xz—y) >= ¢([lz —yl) (1.4)

Recently, Zhou [0] proved the following result: Let X be real uniformly smooth Banach space.
Assume that A : X — X is Lipschitz ®-strongly accretive mapping with ®(r) — +oo as

r— 4o00. Let {an,},—, and {B,} —, be two real sequences in (0, 1) satisfying the conditions:

1
< m, n >0, where L1 =1+ L, L > 1 is Lipschitz constant of A;

(i) b(ay), Bn — 0 as n — oo,

(iii) > an(l —ay,) = oo.
n=0
Assume that {u,} o, {vn} oy are two sequences in X satisfying condition: |u,| = o(aw,),
|lvn|| = 0 as n — oo, and ||v,|| < 1,Vn > 0. Define S: E — E by Sx = f+x—Tax, f €
X,Vax € X. Then the Ishikawa iterative process {x,},-, xo € X by

T € X,
Yn = (1 = Bp)x, + B Txy + vyy,n >0,
Tpr1 = (1 — o)y + @, Tyn + uy,n > 0.

converges strongly to the unique solution of the equation T'x = f. one question arises natu-
rally: If T neither is Lipschitzian nor has the bounded range , whether or not the Ishikawa
iterative sequence {x,} | generated by converges strongly to the unique solution of the equa-

tion T'x = f. It is our purpose in this paper to solve the above part question by proving the
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following much more general result: If E is an uniformly smooth real Banach space. Assume
that T : E — E is ®-accretive mapping, and T neither is Lipschizian nor has the bounded
range, then the Ishikawa iteration sequence with errors generated by converges strongly to
the unique solution of the equation Tx = f. For this, we need to give the following concept

and Lemma.

Definition 1.2 A mapping T : E — E is called a generalized Lipschitz mapping, if there
exists a constant L > 0 such that ||Tx — Ty| < L(1 + | Tz — Ty||), Vz,y € E. Clear, every
Lipschitz mapping is generalized Lipschitz mapping. However, generalized Lipschitz mapping

must not be Lipschitz. See the following example.

Example Let £ = (—o00,+00)and T : £ — E be

x—1, if x € (—00,0),

T — r—/1—(x+1)2 if xe[-1,0),
r+4/1—(x—=1)% if xe€0,1],

x+1, if x e (1,+00).

Lemma 1.1 ([ ]) Let E be a real Banach space, then for all x,y € E, there exists
j(x+y) € J(x+y) such that ||z +y|]? < ||z]* +2 <y, j(z+y) >.

2 Main Results

Now we prove the main the results of this paper, In the sequel, we always assume that E is

a uniformly smooth real Banach space.

Theorem 2.1 Assume that T : E — E is generalized Lipschitz ®-accretive mapping
with ®(r) — +o00 as r — +oo. Let{a,}, {bn}, {cn}, {a,}, {V,}, {c,} be real sequences in
[0, 1] satisfying the following conditions:

(i) ap+by,+cp=al, +b,+c,=1;

(ii) lim b, = lim b/, = lim ¢, = 0;

(iii) 3 b, = oo
n=0
(iv) ¢, = o(by).
For arbitrary xo € E, define the Ishikawa iterative process with errors {x,} -, by (ISE):

{ Yn = an Xy + b, Sxp, + vy, (2.1)

Tl = ApTp + bnsyn + Cplin,
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where S : E — FE is defined by Sx = f+ x — Tx,Ve € E. Assume that the equation
Tz = [ has solution and {u,} ~,{vn} -, are arbitrary two bounded sequences in E. Then

the sequence {x,} —, converges strongly to the unique solution of the equation Tx = f.

Proof: Let ¢ be the solution of the equation T'x = f, then ¢ is the unique solution. Since 7' is
generalized Lipschitz ®-accretive, then there exists Ly > 0 such that |72 —Ty|| < Lo(1+|lz—
yl) and < Te—Ty, J(x—y) >> O(||lx—y]|), forall x,y € E, i.e., [|[Sx—Sy| < L(1+|z—yl),
< Sz —Sy,J(x —y) >< ||z —y||* — ®(]|z — y||), where L = 1 + Ly. Especially, for Vz € E,
< Sz —8q,J(x —q) >< ||z — q||* — ®(||]x — ql|). Observe that (ISE) equivalent form

{ Yo = (1 = Bo)zn + BuSzn + Vi + ¢ (q — 1) (2.2)

Tpt1 = (1 - Ozn)l‘n + a, Sy, + U, + Cn(q - wn)
where V,, = ¢, (v, — q), Up = cn(un — q), By = b, a, = b,. Then [|[V,]] — 0 as n — oo,
|U.|l = o(by,). From form (2.2), we obtain that
o = all = 10 = B2) (e = 4) + B0 — S) + Vi il — )|

(2.3)
S (1 - 671 + ﬂnL + C;’L)H'/L.n - QH + ﬁnL + HVHH )

[2n41 = all = |1 = an)(@n = ¢) + an(Syn = 5¢) + Un + cnlq — zn)]|
< (I—an+anl(l =B+ Bul + ) + o)z — gl (2.4)
+ (L + B L + L||Voll) + [|U]| -
Furthermore, we have the following estimates
2¢ul2n = all - 21 — all < 26a(1 = an + @ L(1 = By + BoL + ) + cn) |z — ql”
+2¢n(an(L + B L? + Lllvall) + [|Unl) |2 — gl (2.5)
< Rollzn — al* + Pu,
where R, = 2¢,(1 — oy + 0, L(1 — B+ Bu L+ ¢,) + ¢n) + cu(an (L4 BuL* + L||V,|) + [|Un),
P, = cp(an(L + B, L* + L||V,||) + |U,|). And have
2(IVall + cullzn = all) 1y — al
< 2([[Vall + cullzn — al) (X = B+ BuL + ;)0 — all + Bl + [[Val])
< 26, ((1 = By + BaL + ) llwa — gl + 2|Vl (BuL + [Val))
+ 2(IVall(X = Bu + BuL + ) + cu(Bul + [l l2n — qll
< 26, (1 = B + BaL + )z — al” + 2|Vl (BuL + |Val))) (2.6)
+ (IVall(1 = Ba + Bl + ¢) + (Bul + [ValD (1 + llzn — all)
< (¢, + IVal) (X = 8o + BuL + ) + G (BaL + [Val) lzn — alf)
+ (IVall(X = B+ BuL + ) + (¢, + 2 VAl (BaL + [[Val])
= Gyllxn — gl + H,
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where G, = (2¢,, + [|[Val)(1 = Bn + Bul + ¢,) + ¢, (Bl + Val), Hn = ([[Vall(1 — Bn +
Bul + &) + (€ + 2ValD (Gl + IVal)- Set A, = |7 (E2=t) =7 ()| D0 =

Iflzn—all ) zn—q||

Yn—4q . Tn—g s N SN Yn—4q
HJ (—H‘lznfq”) J (—Hl'%fq”) ’, then A, 0, D, — 0as n — oco. Indeed Tlzn—all f,,_
o o0
Tn—q Tnt1—4q Tn+1—9q Yn—4q
—on—d __ and are all bounded, and — —
T lan—al [, _y’ Tlen—al §,_ ) Hlen—al  1+|en—dl 0,
Yn—q Tn—q 1 1 1 1
— — 0 as n — o0o. Applying uniformly continuity of J on any bounded
THllrnal — Tilen—ar|| 0 pplying y y of J y

subset, hence A4,, — 0, D,, — 0 as n — oo. Using Lemma 1.1 and (2.4), (2.5), we may obtain
2011 = qll* = (1 = an)(2 — @) + n(Syn — Sq) + Un + calg — 2|
< (1= an)?llzn — qlI” + 200, < Sy, — Sq, J(xp41 — q) >
+2<Up, J(@ps1 —q) > 420, < ¢ — T, J(Tpy1 — q) >
< (1= )| — ql” + 200, < Syn — Sq, J(yn — q) >
+2a, < Syn — Sq, J(xni1 —q) — J(yn — q) >
+2[Unll - llenta = all + 2¢nllzn — gl - |21 = gl

< (1= )l = alP + 200 ({12 — gl = 2l —al) 27)
Tnt1 — 4 Yn — @
+2an<5n—5q,J(+—>_J(—) > (1+[|zn —q
! L+ [z, —q| 1+ ||z, — q|| (L+] b

+ 2|Un|I(1 — o + i L(1 — By, + BuL + ¢) + cn)||2n — ¢

+2||Unll(an L + 0nBuL® + L Vall + [Unll) + Rallzn — all* + Pr

< (1= an)’llen = qll* + 200 (llyn — alI* = 2(llyn — all)

+ 20 An L(1 + [lyn — al) (1 + [l2n = gll) + En + Po+ Rullzn — gf|”

+ 2| Unll(1 = i + o L(1 = By + B L)) |20 — ]|

where E,, = 2||U,||(anL + a3, L% + o, L||V,,|| + [|U,]]). Furthermore,
20|Unll(1 = i + o L(1 = B + BaL + ¢,) + cn)ll2n — 4]

<O =+ LU= o+ Bl 4 E) 4 e 4 [zl (28)
< NUnl| My + Ul — gl

20 Ap L(1 + [lyn — ql)(1 + [|z — ql))

< 20 A L((1 = Bo + BuL + c) |z — gl + 1+ BoL + flual ) + 2 — gl])

< dan ApL(1 + Bl + ) (1 + |2, — )

= Follzn — ql* + Fa
where M, = sup {(1 — a, + @, L(1 = B, + 8oL + ) + cn)*}. F, = 4, A L(1 + B,L + ¢,).
Substituting (2.8) and (2.9) in (2.7), we have

21 = all* < (1= an)® + Fy + By + [Un]) |20 — all* + En + F,
+ Py + [|Un[|M1 + 200 ([lyn — 4l = (1 — all)) -

(2.9)

(2.10)
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Again using Lemma 1.1 and (2.6), we obtain

lyn — qllI” < (1 = Bu)?[lzn — gl + 26, < Sz — Sq, T (yn — q) >
+ 2([[Vall + cpllzn — alD)llyn — 4l
< (1= Bo)?llzn — qll* +28n < Sz — Sq, J (Y — @) — J (20 — q) >
+28, < Sz, — Sq, J (20 — q) > +GChllza — q||> + H,
< (1+ 62+ Go)llzn — qlI> = 28,220 — qll) + Hn

yn_q mn_q
+2n<an—S,J(—>—J(—>> L4 e —
b I\ T en =l T fan—qp) = 4 len =)

< (1+ 82+ Go)llzn — qlI> = 28,2(|zn — qll) + Han
+28||Sx, — Sql| Du(1 + |2, — 4]
< (1485 + G + 48, Dy L) ||z — q?
+ H, +48,D0L — 26,0 (||2n — ql)) -
(2.11)

Substituting (2.11) in (2.10), get

|Zns1 — ql|* < (1 + a2 + F, + Ry + || Un| + 20 (52 + Gy, + 48,D,, L))
X ||zn — ql|* + En 4 Fy + Py + ||U, || My + 20, H,,
+ 8a, 3 Dy L — 20, @(||yn — ¢l])) (2.12)

— 40, 8, @(||x — gl |20 — al))
< o, — Q||2 + L2, — q“2 + 20, (O — @(||lyn — ql]))

where I, = o? + F, + R, + ||U,|| + 22.(8% + G,, + 43,D,L), O,, = (E, + F, + P, +
UMy + 20, Hyy + 80,3, D, L) /2cv,,. Base on definition of S, for any Vo € E, < Sz —
Sq—x+q,J(x —q) >< —=®(||]xr — q||). Thus, ®(||x — ¢||) < ||x — Sz|. Any choose
ro € F such that |zg — Szol| # 0, i.e,xg # q. If xg = ¢, then we are done. Suppose
this is not the case, then have ||zg — ¢l < ®7'(|lzg — Sxzol]). Since an,f, — 0 (n —
00), so that I, = o(ay), 0, = o(ay), |Un|| = o(an) and ||V,]] — 0(n — o), there exists

e &1 (||wo—Szol|) 2® ! (||lzo—Szol)
positive integer NV such that a, < (1L L2)® 1 (Jeo—Swol) +2L2 1 4L’ B < 3(1+L)% 1 (Jzo—Szo)+3L°

U] < 2=eg=smold v < min {1, Seg=Seol kg — g, = B L — > 3, BL o+ (Vall <

X ) , > <1>*1<Hz873zon>
@7 (lzo—Szoll)  In(22~ " (||lmo—Szol]))
6 ) = !an +On < 2

207 1(||zg — Sxpl|) holds, we prove ||zni1 — q|| < 207 (||zo — Szo|). Assume that this is not
true, then ||zyy1 — ¢|| > 207 (||zo — Sxgl]). From (2.2) we may get (1 — ay)|zy — ¢|| >

. For alln > N. Suppose ||zy — ¢ <

len1 =gl = anlley = Synll = [Un |l — enllzn — gl (N is enough big, 1 —ay + ey < 1).
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We also obtain the following inequality:

lzn = gqll = [[en+1 — all — anllen — Syn || = [|Un]]
> 207 (||zg — Sol])
—an(2(1 + L+ L) (||zg — Saol|) + L* + 2L) — || U]
> &7 (||lzwg — Sol)

and

lyx —all =2 (1 = Bu)llen — qll = OnLllzy =gl = By L = IVl = eyllen — ll
= (1= By = BxL = cy)llzn — qll = B L — ||V
(o= Szl
- 2
so that ®(||lyn — ¢l|) > @(w). Using (2.12) and above relevant form, we compute

as follows:

lzni1 — gl < llow — gl + Inllay — qll* + 2an(On — @(|lyn — )
(IN||$N —q|?

e+ Ox = @(lux )

™' (flzo — 5$o||)>
2
< llan = qlI* < (207 (|lwo — Szoll))*

< |low — ql* + 2an

< oy — qll* — an®(

contradicting with assumption. By induction, so sequence {||z,, — ¢l|},—, is bounded, there-
fore {||y, — qll}.—, is also bounded. Set W = sup{|z, —q|} + sup{|lvn — ¢l|}, Qn =
% + O,,. Then using (2.12), we have

Ionn - QHQ
1k R 51 _ P _
20 +On — @([lyn — qll)

< llzn = qll”* + 200(Qu — (Il — all))

= llzn — all* + @ (2Qn — @(llyn — dll)) — an®(llyn — qll)) -
In the following we prove that lim inf ||y, — ¢|| = 0 holds. If not true. Let lim inf ||y, —
q]| = 20 > 0. Then, there exists an integer N; such that |y, — q|| > 4, VZ;OZO Ny, ie.,
O (||yn —¢l]) > ®(5). Since Q,, — 0(n — o0), there exists positive integer Ny > N; such that
Qn < ®(0),Vn > Ny. The implies that @, < ®(||y, — ¢||). Hence, for all n > N,, we obtain
that

mm1—mﬁswm—qW+z%(
(2.13)

21 = all* < llon = gl = an®(llyn — all)) < [z —qll* — 2 ®(5).
This implies that

©©) Y an< Y (e —all’ = lwnr = all’) < low, — gl < oo

n=N> n=Ns
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contradicting with condition (iii) of Theorem. So there exists a infty subsequence
{yn; — a}— of {yn — @} Again from (2.2), get [y, —qll = (1=, — B, L~} )|, —all
Bn; L—||Vy, ||, so that lim ||z, —q|| = 0. Hence, for any Ve > 0, there exists a positive integer
j—00
Ny, such that ||x,, —q|| <&, an,(LW+L)+||Uy, || < 5, (5nj—|—ﬁnjL+c;1j)W+(ﬁnjL+HanH) <
£, for all n; > n;,. Again choose a positive integer Ny > nj, such that Q, < ®(5)3, for all
n > Ny. Next, we want to prove: for arbitrary Vm > 1,[|zn,+m — q|| < &,nm; > ny,. First,
we prove that |z,,11 — ¢|| < e. If it is not the case, then there exists n; > nj, such that

|20, +1 — ql| < e. Using (2.2) again, we have

sy = all < (1= @y llews, — all + i, 159;, — Sall + [T, 1|+ o, Iy, — al
< (1= gy + euy My, = all + 0y, L+ 51y, — all) + U]
< |tny, = gll + oy, L(L+ W) 4 ([T, |

9

< o, —all +

lead to ||z, — qll > [|n, +1 — ¢l — § > %. And we get also

/
1Yn;, = all = (L= Buy Mwny, = all = Buy, Llll2n;, = all + 1) = (Vo | = e, Ny, — 4l

> ||Inj1 —ql - (ﬁnjl + ﬁnle + C;’le)Hxnjl —qll - (5”1'1[/ T anjl D
3e
> Z _ (ﬂnjl + ﬁnle —+ C;jl)W - (/anlL + ||an1 ||)

>€
5

Hence ®(|[yn,, — ql) > ®(5). By (2.12), we obtain that

e? < |l +1 — all®

<lzn,, = qll* + 2an;, (Qn,, — @(llyn,, — all))

e 1 €
<52+204n]-1(‘1>(§)§— (5))
1
=2 —q, ® £y2
€% — (2)2
< e

contradiction. By induction, we obtain that ||z, +m — ¢|| < e. This show that z, — ¢
oo

as n — oo. About case Y ||U,| < oo, repeating above-mentioned course, we can get the
n—=

conclusion. Completing proof of Theorem 2.1. O

Remark 1 Theorem 2.1 contains a good number of the known results as its special cases.
In particular, if the mapping 7" considered here satisfies one of the following assumptions: (i)
T : K — K is a Lipschitzian. (ii) 7" has the bounded range. Then T satisfied the conditions
of Theorem 2.1.
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Remark 2 It is well known that T is strongly pseudocontractive (®-strongly pseudocon-
tractive, ®-pseudocontractive)if and only if (I —T') is strongly accertive (®-strongly accretive,
d-accretive), where I denotes the identity operator. In the following we give about the results

of ®-pseudocontractive.

Theorem 2.2 Let K be nonempty closed convex subset of E and T : K — K be gener-

alized Lipschitz ®-pseudocontractive mapping. Assume that ®(r) — +oo as r — 400 and
F(T) # 0. Let {a,}, {bn}, {cn}, {a,}, {b.}, {c,} be siz real sequences in [0,1] satisfying

the following conditions:

(i) ap+by,+cp=al, + b, +c,=1;

(i) lim b, = lim b}, = lim ¢, =0;

n—oo n—oo n—oo
oo
(iii) > by = o0o;
n=0
o0
(iv) cn = o(by) or > ¢, < +o0.
n=0

For arbitrary xy € K, define the Ishikawa iterative process with errors {x,}. -, by (ISE):

{ Yn = LTy + U, Txy, + vy, (2.14)

Tpi1l = AQpTy + bnTyn + Cplin,

Suppose {u,},~ o, {vn}ey are arbitrary two bounded sequences in K. Then the sequence

{xn}.2, converges strongly to the unique fized point of T'.

Proof: Applying Theorem 2.1, we obtain directly conclusion of Theorem 2.2. 4

Remark 3 Our two Theorems extend the main known results from Lipschitzian or the
boundedness range to more general class of neithe Lipschitzian nor the range boundedness
mappings, and also from strongly pseudocontractive (accretive) to ®- pseudocontractive
(accretive).
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