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ABSTRACT. In this note we prove that every positive solution of the difference equation

xn = 1 +
xn−k

xn−m

, n = 0, 1, . . .

where k,m ∈ N are so that k < m, and 2m = k(L + 1) for some L ∈ N, converges to
a k-periodic solution. A similar result is proved for a corresponding symmetric system
of difference equations. We also consider the systems of difference equations whose all
solutions are periodic with the same period. It is generalized and solved Open Problem
2.9.1 in M. R. S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference
Equations. With open problems and conjectures. Chapman and Hall/CRC, 2002.

KEY WORDS. k-periodic solution, difference equation, positive solution, system of differ-
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1 Introduction

In this note we study the difference equation

xn = 1 +
xn−k

xn−m

, n = 0, 1, . . . (1)

where k,m ∈ N are so that k < m, and 2m = k(L+1) for some L ∈ N and initial conditions
x−m, . . . , x−2, x−1 are positive real numbers.

In [5, Theorem 4.1] was proved that every positive solution of the difference equation xn =

1 + xn−2

xn−3
converges to a period two solution. This motivated us to generalize the result in

[10]. In [6] we prove the following result:

Theorem A Let I be an open interval of the real line, ϕ : Ik → I be a continu-
ous function which is nondecreasing in each variable and increasing in the first one and
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ϕ(x, x, . . . , x) ≤ x, for every x ∈ I. If (an) is a bounded sequence which satisfies the inequal-
ity

an+k ≤ ϕ(an+k−1, an+k−2, . . . , an) for n ∈ N ∪ {0} ,

then it converges.

Other useful globally convergence results can be found, for example, in [7, 8].

It is easy to prove that every positive solution of Eq. (1) is bounded, moreover, in [9] we
prove that if p ≥ 1 and m, k ∈ N, then every positive solution of the difference equation

xn = p+
xn−k

xn−m

, (2)

is bounded. By a slight modification of the proof of Theorem 3 in [10] it follows that if p > 1,

then every positive solution of Eq. (2) converges, see, also [9]. Unlike the case p > 1, Theorem
4.1 in [5] shows that positive solutions of equation xn = 1 + xn−2

xn−3
need not converge. Hence,

Eq. (2) is more interesting in the case p = 1. The case p ∈ (0, 1) was considered in paper
[3]. Our aim is to generalize the main results in [2], [5] and [10]. In Section 2 we generalize
the main result in [10] developing the main idea from the same paper. In Section 3 we show
that the main result in [2] is an easy consequence of known results, also a generalization
of the result is given. Section 4 is devoted to the systems of difference equations which all
solutions are periodic with the same period. In the section we generalize and solve Open
Problem 2.9.1 from [4].

2 Asymptotic periodicity of solutions of Eq. (1)

In this section we consider the positive solutions of Eq. (1). We prove the following result:

Theorem 1 Let k,m ∈ N be such that k < m and 2m = k(L+1) for some L ∈ N. Then
every positive solution of Eq. (1) converges to a not necessarily prime k-periodic solution
of Eq. (1). If L is odd, then every positive solution of Eq. (1) converges to the equilibrium
x∗ = 2.
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Proof: We have

xn = 1 +
xn−k

1 +
xn−m−k

xn−2m

= 1 +
xn−k

1 +
1

xn−2m

(
1 +

xn−m−2k

xn−2m−k

)
= 1 +

xn−k

1 +
1

xn−2m

+
1

xn−2mxn−2m−k

(
1 +

xn−m−3k

xn−2m−2k

)
= · · ·

= 1 +
xn−k

1 +
l−2∑
i=0

i∏
j=0

1

xn−2m−jk

+
xn−m−lk

l−1∏
j=0

xn−2m−jk

, (3)

for every n ≥ lk +m− k.

Let l, t ∈ N are chosen such that t < l and l − t = L. Since 2m = k(L+ 1) we have that

[n−m− lk] +m− k = n− 2m− tk . (4)

For such chosen l and t it follows from (1) that

xn−m−lk

xn−2m−tk

=
1

xn−2m−(t−1)k − 1
, for n ≥ lk . (5)

From (3) and (5) it follows that

xn = 1 +
xn−k

1 +
l−2∑
i=0

i∏
j=0

1

xn−2m−jk

+
(xn−2m−(t−1)k − 1)−1

l−1∏
j=0,j 6=t

xn−2m−jk

,

that is

xn = 1 +
xn−k

1 +
l−2∑
i=0

i∏
j=0

1

xn−k(L+1+j)

+
(xn−k(L+t) − 1)−1

l−1∏
j=0,j 6=t

xn−k(L+1+j)

, (6)

Using the changes y(i)
m = xkm+i, i = 0, 1, . . . , k − 1, Eq. (6) separates into the following k

equations

y(i)
m = 1 +

y
(i)
m−1

1 +
l−2∑
i=0

i∏
j=0

1

y
(i)
m−(L+1+j)

+
1(

y
(i)
m−(L+t) − 1

) 1
l−1∏

j=0,j 6=t

y
(i)
m−(L+1+j)

, (7)
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i = 0, 1, . . . , k − 1.

Eq. (7) can be written in the following form

y(i)
m = F

(
y

(i)
m−1, . . . , y

(i)
m−(L+l)

)
, i = 0, 1, . . . , k − 1 .

Since

F (x, . . . , x) = 1 +
x

l−1∑
i=0

1

xi
+

1

xl−1(x− 1)

= x, for 0 6= x 6= 1 ,

and since F is nondecreasing in each variable and increasing in the first one, we see that all
conditions in Theorem A are satisfied on the interval (1,∞), which implies that the sequence
y

(i)
m , that is, xkm+i converges to y∗i , for each i = 0, 1, . . . , k − 1. It is clear that (y∗0, . . . , y

∗
k−1)

is a k-cycle of Eq. (1), from which the first statement follows.

Assume now that L is odd. Then L = 2s + 1 for some s ∈ N ∪ {0}. Hence Eq. (1) can be
written as follows

xn = 1 +
xn−k

xn−(s+1)k

. (8)

Using the changes y(i)
m = xkm+i, i = 0, 1, . . . , k−1, Eq. (8) can be separated into the following

k equations

y(i)
m = 1 +

y
(i)
m−1

y
(i)
m−(s+1)

, i ∈ {0, 1, . . . , k − 1} . (9)

Each of equations in (9) is a special case of Eq. (1) with k = 1, m = s+ 1 and L = 2m− 1.

According to the first part of the theorem it follows that every positive solution of each of
equations in (9) converges to a periodic solution of period one, that is, to y∗ = 2, from which
it follows that every positive solution of Eq. (1) in this case, converges to the equilibrium
x∗ = 2, as desired. 2

For k = 1 we obtain the following global stability result.

Corollary 1 Let m ∈ N. Then every positive solution of the difference equation

xn = 1 +
xn−1

xn−m

, n = 0, 1, . . .

converges to the positive equilibrium x∗ = 2.
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3 A symmetric system of difference equations

In this section we consider the following symmetric system of difference equations

xn = 1 +
xn−k

yn−m

and yn = 1 +
yn−k

xn−m

, n = 0, 1, . . . , (10)

which corresponds to Eq. (1). A little surprising fact is that the method in Theorem 1 can
be used also in studying of system (10). As a by-product we obtain a very short proof of the
main result in [2]. The main result in this section is the following:

Theorem 2 Let k,m ∈ N be such that k < m and 2m = k(L + 1) for some L ∈ N.

Then every positive solution of system (10) converges to a k-periodic solution of the system.

Proof: We have

xn = 1 +
xn−k

1 +
yn−m−k

xn−2m

= 1 +
xn−k

1 +
1

xn−2m

(
1 +

yn−m−2k

xn−2m−k

)
= 1 +

xn−k

1 +
1

xn−2m

+
1

xn−2mxn−2m−k

(
1 +

yn−m−3k

xn−2m−2k

)
= · · ·

= 1 +
xn−k

1 +
l−2∑
i=0

i∏
j=0

1

xn−2m−jk

+
yn−m−lk

l−1∏
j=0

xn−2m−jk

, (11)

for every n ≥ lk +m− k.

Let l, t ∈ N are chosen such that t < l and l − t = L. Since 2m = k(L+ 1) we have that

yn−m−lk

xn−2m−tk

=
1

xn−2m−(t−1)k − 1
, for n ≥ lk. (12)

From (11) and (12) it follows (6). As in the proof of Theorem 1 we have that xn converges
to a k-cycle, say (x∗0, . . . , x

∗
k−1).

Similarly, it can be proved that yn satisfies Eq. (6) and that it converges to a k-cycle, say
(y∗0, . . . , y

∗
k−1). It is easy to see that (x∗0, . . . , x

∗
k−1), (y

∗
0, . . . , y

∗
k−1), is a k-periodic solution of

system (10), from which the result follows. 2
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Remark 1 Note that unlike the scalar Eq. (1) with k = 3 and m = 6, the corresponding
system

xn = 1 +
xn−3

yn−6

and yn = 1 +
yn−3

xn−6

, n = 0, 1, . . . , (13)

has prime three-periodic solutions of the form

(xn) = (a, b, c, a, b, c, . . .), (yn) =

(
a

a− 1
,

b

b− 1
,

c

c− 1
, . . .

)
.

4 Periodic solutions of Eq. (1)

In this section we find a subclass of Eq. (1) which have periodic solutions. Before we formulate
and prove the main result of this section say that GCD(m, k) denotes the greatest common
divisor of integers m and k.

Theorem 3 Let m = 2im1 where m1 is odd, and 2i+1 | k. Then Eq. (1) has infinitely
many periodic solutions with period 2GCD(m, k).

Proof: . First note that k = 2i+1k1, for some k1 ∈ N. Then m and k can be written in the
following forms

m = 2iGCD(m1, k1)m2 = GCD(m, k)m2

and
k = 2i+1GCD(m1, k1)k2 = 2GCD(m, k)k2 .

Hence Eq. (1) can be written

xn = 1 +
xn−2GCD(m,k)k2

xn−GCD(m,k)m2

. (14)

Since every natural number n can be written in the following form n+ 1 = GCD(m, k)l+ r,

where l ∈ N ∪ {0} and r = 0, 1, . . . , GCD(m, k) − 1, it follows that Eq. (14) is separated
into GCD(m, k) independent equations of the form

x
(i)
l = 1 +

x
(i)
l−2k2

x
(i)
l−m2

, (15)

i ∈ {0, 1, . . . , GCD(m, k)− 1}.

Now note that m2 is odd. This means that the numbers l and l− 2k2 have the same parity,
but l −m2 has different one. Hence, each equation in (15) has a 2-periodic solution

φ, ψ, . . . , φ, ψ, . . .
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with
φ = 1 +

φ

ψ
and ψ = 1 +

ψ

φ
,

which is equivalent to φ+ ψ = ψφ. It means that each equation in (15) has infinitely many
periodic solutions with period two of the form

φ,
φ

φ− 1
, . . . , φ,

φ

φ− 1
, . . . .

From all above mentioned the result follows, that is, Eq. (1) has infinitely many periodic
solutions with period 2GCD(m, k). 2

For the readers interested in this topic we leave the following interesting open problem:

Open Problem 1 Investigate the behavior of the positive solutions of system (10) when
k,m ∈ N are so that k 6= m, and 2m 6= k(L+ 1) for every L ∈ N.

In view of Theorem 1 and Theorem 3 we also believe that the following conjecture holds:

Conjecture 1 Assume that k,m ∈ N such that k < m and 2i is the largest power of 2

which divides m. Show that the following statements are true:

(a) If 2i+1 6 | k, then every positive solution of Eq. (1) converges to the equilibrium x∗ = 2.

(b) If 2i+1| k, then every positive solution of Eq. (1) converges to a 2GCD(m, k)-periodic
solution.

5 On systems which have only periodic solutions

In [4, p. 43] the authors claim that for a linear equation, every solution is periodic with
period p ≥ 2, if and only if every root of the characteristic equation is a pth root of unity.
However, this is only true if we add the condition that all these roots are simple and the
equation is homogeneous, or the right-hand side constant and no resonance case. Motivated
by this observation they posed the following open problem.

Open Problem 2.9.1 Assume that f ∈ C1[(0,∞)2, (0,∞)] is such that every positive
solution of the equation

xn+1 = f(xn, xn−1), n = 0, 1, . . . (16)

is periodic with period p ≥ 2.

Is it true that the linearized equation about a positive equilibrium of Eq. (16) has the property
that every one of its solutions is also periodic with the same period p?
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In [1] L. Berg shows that for ten nonlinear difference equations, whose all solutions are
periodic with the same period p, all solutions of the corresponding linearized equations are
periodic with the same period. This Berg’s paper motivated us to believe that not only
Open Problem 2.9.1 is true but that a more general result holds.

In order to solve Open Problem 2.9.1 we need a useful result contained in the following
lemma. Before formulating it we say that for a mapping f : X → X, (f [p])p∈N∪{0} denotes
the sequence of iterates of f, that is, f [0] = I, the identity function on X, f [1] = f and
generally f [p+1] = f ◦ f [p] for any p ∈ N.

Lemma 1 Let I ⊂ R be an interval. Consider the system of difference equations

~xn+1 = f(~xn) , (17)

where f ∈ C1[Ik, Ik], and x∗ is an equilibrium of Eq. (17). If all solutions of Eq. (17) are
periodic with period p, then Jacobi’s matrix Df(x∗) is diagonalizable and all its eigenvalues
are pth roots of unity (here Df denotes Jacobi’s matrix of the function f).

Proof: Since all solutions of Eq. (17) are periodic with period p, then we have

~xp = f [p](~x0) = ~x0 , (18)

for every ~x0 ∈ Ik. Differentiating (18) we have that

D(f [p](~x)) = D~x = Id , (19)

for every ~x ∈ Ik, where Id denotes the identity operator on Rn.

Now note that every stationary point x∗ of system (17) is a fixed point of the equation
f(~x) = ~x.

Using this fact, chain rule and taking ~x = x∗ in (19), we have that

[Df(x∗)]p = Id , (20)

that is, pth power of Jacobi’s matrix [Df(x∗)] is equal to Id. Using Jordan’s decomposition
of the matrix and (20), it follows that the matrix [Df(x∗)] is diagonalizable and that all
roots of the characteristic polynomial of the matrix are pth roots of unity, as desired. 2

Notice that the linearized system of (17) at x∗ is

~yn+1 = [Df(x∗)]~yn.

From all above mentioned it follows that the characteristic polynomial of the matrix in the
corresponding linearized equation about an equilibrium has only zeros which are pth roots
of unity.

As a corollary of Lemma 1 we obtain the next result which among other things solves Open
Problem 2.9.1.
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Corollary 2 Let I ⊂ R be an interval. Consider the difference equation

xn+1 = f(xn, . . . , xn−k+1) , (21)

where f ∈ C1[Ik, I], and x∗ is an equilibrium of Eq. (21). If all solutions of Eq. (21)
are periodic with period p, then the zeros of the characteristic polynomial of the linearized
equation

yn+1 =
∂f

∂x1

(x∗)yn + · · ·+ ∂f

∂xk

(x∗)yn−k+1 (22)

about the equilibrium x∗ of Eq. (21) are simple pth roots of unity and consequently all solutions
of Eq. (22) are periodic with period p.

Proof: By standard transformation Eq. (21) can be written as a k× k system of difference
equations of first order. The corresponding linearized system have the following matrix

0 1 0 · · · 0

0 0 1 · · · 0
...

...
... · · · ...

0 0 0 · · · 1
∂f

∂xk

(x∗)
∂f

∂xk−1

(x∗) · · · · ∂f

∂x1

(x∗)


. (23)

By Lemma 1 the characteristic polynomial

λk − ∂f

∂x1

(x∗)λk−1 − · · · − ∂f

∂xk

(x∗) = 0 (24)

of the system has only zeros which are pth roots of unity.

By a well known result (see [11, No. 9.67 point 4]) if the polynomial (24) has multiple zeros,
then matrix (23) cannot be diagonalizable. By Lemma 1 matrix (23) is diagonalizable, which
is a contradiction. Hence all zeros of polynomials (24) are simple pth roots of unity, which
implies that all solutions of Eq. (22) are periodic with period p, as claimed. 2
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