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ABSTRACT. In this paper, the bifurcation method of planar systems and simulation
method of differential equations are employed to investigate the bounded travelling waves
of a generalized Camassa-Holm equation. The bounded travelling waves defined on finite
core regions are found and their integral or implicit expressions are obtained. Their planar
simulation graphs show that they possess the properties of compactons or generalized kink
waves.
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1 Introduction

In recent years the so-called Camassa-Holm [1] equation has caught a great deal of attention.
It is a nonlinear dispersive wave equation that takes the form

ut + 2kux − uxxt + 3uux = 2uxuxx + uuxxx . (1.1)

When k > 0 this equation models the propagation of unidirectional shallow water waves on
a flat bottom, and u(t, x) represents the fluid velocity at time t in the horizontal direction
x [1,2]. The Camassa-Holm equation possesses a bi-Hamiltonian structure [1,3] and is com-
pletely integrable [1,4,5]. Moreover, when k = 0 it has an infinite number of solitary wave
solutions, called peakons due to the discontinuity of their first derivatives at the wave peak,
interacting like solitons:

u(x, t) = c exp(−|x− ct|) . (1.2)

1Corresponding author: E-mail address: xieshlong@163.com
2This research was supported by Natural Science Foundation of China (10261008).
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Liu and Qian [6] investigated the peakons of the following generalized Camassa-Holm equa-
tion

ut + 2kux − uxxt + aumux = 2uxuxx + uuxxx . (1.3)

with a > 0, k ∈ R,m ∈ N and the integral taken as zero. In the case of m = 1, 2, 3 and k 6= 0,
they gave the explicit expressions for the peakons. The concept of compacton: soliton with
compact support, or strict localization of solitary waves, appeared in the work of Rosenau
and Hyman [7] where a genuinely nonlinear dispersive equation K(n, n) defined by

ut + a(un)x + (un)xxx = 0 , (1.4)

was subjected to experimental and analytical studies. They found certain solitary wave
solutions which vanish identically outside a finite core region. These solutions have been
called compactons. Several studies have been conducted in [8]-[12]. The aim was to examine
if other nonlinear dispersive equation may generate compacton structures.

In fact, When a = 3 and m = 2, the Eq. (1.3) has another kind of bounded travelling
waves which possess some properties of kink waves. We call them generalized kink waves.
Therefore, in this paper, we shall consider the compactons and generalized kink waves of the
Eq. (1.3) when a = 3 and m = 2. In the conditions of a = 3 and m = 2, the Eq. (1.3) can
be rewritten as:

ut + 2kux − uxxt + 3u2ux = 2uxuxx + uuxxx , (1.5)

where the constant k ∈ R is given.

The rest of this paper is organized as follows. In Section 2, we firstly derive travelling
wave equation and travelling wave system. Then we study the bifurcations of phase portrait
of the travelling wave system. In Section 3, using the information of phase portrait, we
make the numerical simulation for bounded integral curves of travelling wave equation. In
Section 4, we obtain the integral representations of compactons and the implicit or integral
representations of the generalized kink waves from the bifurcations of phase portrait and the
bounded integral curves. Finally, a short conclusion is given in Section 5.

2 Travelling Waves System and its Bifurcation Phase Portrait

In this section we derive travelling wave system and study its bifurcation phase portrait.
Substituting u(x, t) = φ(ξ) with ξ = x− ct into (1.5), we have

−cφ′ + 2kφ′ + cφ′′′ + 3φ2φ′ = 2φ′φ′′ + φφ′′′ , (2.1)
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where c is the wave speed. Integrating it once gives

(φ− c)φ′′ = φ3 + (2k − c)φ− 1

2
(φ′)2 , (2.2)

where the integral constant is taken as 0. Letting φ′ = y, we obtain a planar system

dφ

dξ
= y ,

dy

dξ
=

φ3 + (2k − c)φ− 1
2
y2

φ− c
, (2.3)

which is called travelling wave system. Our aim is to study the phase portrait of system
(2.3). But system (2.3) has a singular line φ = c which is inconvenient to our study. So we
make the transformation dξ = (φ− c)dτ . Thus system (2.3) becomes Hamiltonian system

dφ

dτ
= (φ− c)y,

dy

dτ
= φ3 + (2k − c)φ− 1

2
y2 , (2.4)

Thus system (2.3) and (2.4) have the same first integral

H(φ, y) = (φ− c)y2 − 1

2
φ4 + (c− 2k)φ2 = h . (2.5)

Therefore both systems (2.3) and (2.4) have same topological phase portraits except the
straight line φ = c.

Now we consider the singular points of system (2.4) and their properties. Let

y0
± = ±

√
2(c2 − c + 2k)c for 2(c2 − c + 2k)c > 0 , (2.6)

φ0
± = ±

√
c− 2k for 2k < c , (2.7)

φ∗± = ±
√
−c2 + 2c− 4k for − c2 + 2c− 4k ≥ 0 , (2.8)

φ1
± = ±

√
2(c− 2k) for 2k ≤ c , (2.9)

k1(c) =
c

2
, (2.10)

k2(c) =
2c− c2

4
for 0 < c , (2.11)

k3(c) =
c− c2

2
, (2.12)

Thus, the k = ki(c) (i = 1, 2, 3) have a unique intersection point (0, 0), and

k3(c) < k2(c) < k1(c) for 0 < c , (2.13)

and

k3(c) < k1(c) for 0 < c . (2.14)

By the theory of planar dynamical system and (2.4)-(2.14), we derive the following proposi-
tion for the equilibrium points of the system (2.4):
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Proposition 2.1 1). When c < 0 and k < k3(c) or 0 < c and k3(c) < k, the (c, y0
−)

and (c, y0
+) are two singular points of the system (2.4). They are saddle points and

H(c, y0
−) = H(c, y0

+).

2). When 0 < c and k1(c) ≤ k, the system (2.4) has three singular points (0, 0), (c, y0
−) and

(c, y0
+). The (0, 0) is a center point.

3). When c = 0 and 0 ≤ k, the system (2.4) has only one singular point (0, 0) and this
point is a degenerate saddle point.

4). When c < 0 and k1(c) ≤ k, the system (2.4) has only one singular point (0, 0) and this
point is a saddle point.

5). When c < 0 and k3(c) < k < k1(c), the system (2.4) has three singular points
(0, 0), (φ0

−, 0) and (φ0
+, 0) and c < φ0

− < 0 < φ0
+. The (0, 0) is a center point, (φ0

−, 0)

and (φ0
+, 0) are saddle points and H(φ0

−, 0) = H(φ0
+, 0) .

6). When c < 0 and k = k3(c), the system (2.4) has three singular points (0, 0), (c, 0) and
(−c, 0). The (0, 0) is a center point, (c, 0) is a degenerate saddle point, (−c, 0) is a
saddle point and H(c, 0) = H(−c, 0).

7). When c < 0 and k < k3(c), the system (2.4) has five singular points (0, 0), (φ0
−, 0),

(φ0
+, 0), (c, y0

−) and (c, y0
+), and φ0

− < c < 0 < φ0
+. The (0, 0) and (φ0

−, 0) are center
points, (φ0

+, 0) is a saddle point.

8). When c = 0 and k < 0, the system (2.4) has three singular points (0, 0), (φ0
−, 0) and

(φ0
+, 0) , and φ0

− < 0 < φ0
+. The (0, 0) is a degenerate saddle point, (φ0

−, 0) is center
point and (φ0

+, 0) is a saddle point.

9). When c > 0 and k < k3(c), the system (2.4) has three singular points (0, 0), (φ0
−, 0)

and (φ0
+, 0) and φ0

− < 0 < c < φ0
+. The (0, 0) and (φ0

+, 0) are saddle points, (φ0
−, 0) is

center point.

10). When c > 0 and k = k3(c), the system (2.4) has three singular points (0, 0), (−c, 0)

and (c, 0). The (0, 0) is a saddle point, (c, 0) is a degenerate saddle point and (−c, 0)

is a center point.

11). When c > 0 and k3(c) < k < k2(c), the system (2.4) has five singular points (0, 0),
(φ0

−, 0), (φ0
+, 0), (c, y0

−) and (c, y0
+), and φ0

− < 0 < φ0
+ < c. The (0, 0) is a saddle point,

(φ0
−, 0) and (φ0

+, 0) are center points.
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12). When c > 0 and k = k2(c), the system (2.4) has five singular points (0, 0), (φ0
−, 0),

(φ0
+, 0), (c, y0

−) and (c, y0
+), and φ0

− < 0 < φ0
+ < c. The (0, 0) is a saddle point, (φ0

−, 0)

and (φ0
+, 0) are center points, and H(0, 0) = H(c, y0

−) = H(0, y0
+).

13). When c > 0 and k2(c) < k < k1(c), the system (2.4) has five singular points (0, 0),
(φ0

−, 0), (φ0
+, 0), (c, y0

−) and (c, y0
+), and φ0

− < 0 < φ0
+ < c. The (0, 0) is a saddle point,

(φ0
−, 0) and (φ0

+, 0) are center points.

Proof: It is easy to see that all of the singular points of (2.4) are only distributed on φ-axis
or the line φ = c. Firstly we consider system (2.4) on the line φ = c. From (2.6), on the line
φ = c, (2.4) has two singular points (c, y0

−) and (c, y0
+) when c < 0 and k < k3(c) or 0 < c

and k3(c) < k, has one singular point (c, 0) when k = k3(c), and has not singular point when
c < 0 and k > k3(c) or 0 < c and k3(c) > k. Assume that λ(φ, y) is an eigenvalue of the
linearized system of (2.4) at point (φ, y). Then we have

λ2(c, y0
−) = λ2(c, y0

+) = 2c(c2 − c + 2k) > 0 , (2.15)

for c < 0 and k < k3(c) or 0 < c and k3(c) < k, and

λ2(c, 0) = 0, for k = k3(c) . (2.16)

Now we consider system (2.4) on φ-axis. Let

f(φ) = φ3 + (2k − c)φ , (2.17)

then the (φ0, 0) is singular point of system (2.4) if and only if f(φ0) = 0. It is easy to see
that we obtain the following facts:

(10) When k1(c) ≤ k, the system (2.4) has one zero point (0, 0). Thus the (0, 0) is singular
point of system (2.4) on φ-axis. From (2.7) and (2.17) we have f ′(0) > 0 and f ′(0) = 0

when k1(c) < k and k = k1(c) respectively.

(20) When k1(c) > k, the system (2.4) has three zero points (φ0
−, 0), (0, 0) and (φ0

+, 0). Thus
the (φ0

−, 0), (0, 0) and (φ0
+, 0) are singular points of system (2.4) on φ-axis. From (2.7)

and (2.17) we have f ′(φ0
−) > 0, f ′(0) < 0 and f ′(φ0

+) > 0.

On the other hand, we have

λ2(φ0
−, c) = f ′(φ0

−)(φ0
− − c) , (2.18)

λ2(0, 0) = −cf ′(0) , (2.19)

λ2(φ0
+, c) = f ′(φ0

+)(φ0
+ − c) , (2.20)
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From (2.5) and (2.15) - (2.20) the proof is completed.

According to the above analysis, we draw the bifurcation phase portrait of (2.3) and (2.4),
shown in Fig. 1.

Fig. 1 The bifurcation phase portrait of systems (2.3) and (2.4)

3 Numerical Simulations of Bounded Integral Curves of Travelling
Wave Equation

From the derivation in Sec. 2 we see that the bounded travelling waves of Eq. (1.5) correspond
to the bounded integral curves of Eq. (2.2), and the bounded integral curves of Eq. (2.2)
correspond to the orbits of systems (2.3) in which φ = φ(ξ) is bounded. Therefore we can
simulate the bounded integral curves of Eq. (2.2) by using the information of the phase
portrait of systems (2.3).

From Fig. 1 it is seen that φ = φ(ξ) is bounded in the following orbits of system (2.3):

(1). The homoclinic orbits, (2). The periodic orbits, (3). The orbits Γ1 and Γ2, (4). The
heteroclinic orbits L1

±, L2
±and L3

±.

When (i). c > 0 and k < k3(c), (ii). c < 0 and k3(c) < k < k1(c), according to the above
analysis we will simulate the bounded integral curves of Eq. (2.2) by using the mathematical
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software Maple. In the other case we can use a similar argument. We assume that (φ0, 0) is
the initial point of an orbit of system (2.3) in the following cases.

Case 1. c > 0 and k < k3(c). For this case, system (2.3) has an orbit Γ1 on which φ is
bounded when φ0 < φ1

− or 0 < φ0 < c, has a homoclinic orbit when φ0 = φ1
−, has a periodic

orbit when φ1
− < φ0 < φ0

−, two heteroclinic orbits L1
± on which φ are bounded when φ0 = 0,

has an orbit Γ2 on which is bounded when c < φ0 < φ0
+, and has two heteroclinic orbits L2

±

which lie on the left side of the line φ = φ0
+ on which φ are bounded when φ0 = φ0

+. For
example, choosing c = 2 and k = −4, we have φ1

− = −4.472135955 and φ0
± = ±3.16227766.

(i). We respectively take φ0 = −4.48,−4.472135955,−4.4721, 0.01, 3.1622 and 3.1622776,
letting φ(0) = φ0 and φ′(0) = 0, we simulate the integral curves of Eq. (2.2) as (a),
(b), (c), (f) , (g) and (h) in Fig. 2.

(ii). The two heteroclinic orbits L1
± respectively have expressions

y±1 (φ) = ±

√
φ4 + 2(2k − c)φ2

2(φ− c)
, for 0 ≤ φ < c . (3.1)

If 0 < φ0
1 < c, then from the first equation of system (2.3) we have dφ

dξ
|ξ=ξ0 = y±1 (φ0

1)

at φ = φ0
1. For example, when c = 2 and k = −4, taking φ0

1 = 0.2, we have
y±1 (φ0

1) = ±0.4709328804. Letting φ(0) = 0.2 and φ′(0) = ±0.4709328804, respec-
tively we simulate the integral curves of Eq. (2.2) as (d) and (e) in Fig. 2.

(iii). The two heteroclinic orbits L2
± respectively have expressions

y±2 (φ0
2) = ±

√
φ4 + 2(2k − c)φ2 + 2h(φ0

+)

2(φ− c)
, for c < φ ≤ φ0

+ , (3.2)

h(φ0
+) = −1

2
(φ0

+)4 + (c− 2k)(φ0
+)2 . (3.3)

If c < φ0
2 ≤ φ0

+, then from the first equation of system (2.3) we have dφ
dξ
|ξ=ξ0 = y±2 (φ0

2)

at φ = φ0
2. For example, when c = 2 and k = −4, taking φ0

2 = 3, we have y±2 (φ0
2) =

±0.7071067812. Letting φ(0) = 3 and φ′(0) = ±0.7071067812, respectively we simulate
the integral curves of Eq. (2.2) as (i) and (j) in Fig. 2.

Remark 1 Under the conditions of Case 1 the following facts can be seen from Fig.2:

(1) The integral curve is only defined on [−ξ1
0 , ξ

1
0 ] or [−ξ2

0 , ξ
2
0 ] and it is of peak form [see
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(a), (f), (g) and (h) in Fig. 2] when φ0 < φ1
− or 0 < φ0 < c or c < φ0 < φ0

+, where

ξ1
0 =

∫ c

φ0

√
2(s− c)

(s2 − φ2
0)(s

2 − α)
ds, for φ0 < φ1

− or 0 < φ0 < c , (3.4)

ξ2
0 =

∫ φ0

c

√
2(s− c)

(s2 − φ2
0)(s

2 − α)
ds, for c < φ0 < φ+

0 , (3.5)

α = −φ2
0 − 4k + 2c . (3.6)

The point (0, φ0) is the peak of the integral curve φ = φ(ξ) which tends to c when
|ξ| tends to ξ0, where ξ0 = ξ1

0 or ξ2
0 . Following Rosenau and Hyman [7] we call a

compacton. For example, when c = 2 and k = −4, we respectively take φ0 = 0.01 and
3.1622776, from (3.4) and (3.5) we obtain ξ1

0 = 2.417690442 and ξ2
0 = 4.1086580 which

is identical with the simulation [see Figs. 2 (f) and (h)].

(2) When φ0 = 0, Eq. (2.2) has two bounded integral curves φ1(ξ) and φ2(ξ) [see Figs. 2
(d) and (e)]. φ1(ξ) is defined on (−∞, ξ1] and tends to c when ξ tends to ξ1, to 0 when
ξ tends to −∞. φ2(ξ) is defined on [−ξ1, +∞) and tends to 0 when ξ tends to +∞ ,
to c when ξ tends to −ξ1, where

ξ1 =

∫ c

φ0
1

1

s

√
2(s− c)

s2 − 2(c− 2k)
ds, for 0 < φ0

1 < c . (3.7)

For example, for the above c = 2, k = −4, taking φ0
1 = 0.2, from (3.7) we obtain

ξ1 = 0.7904027914 which is identical with the simulation [see Figs. 2 (d) and (e)].

(3) When φ0 = φ0
+ , Eq. (2.2) has two bounded integral curves φ3(ξ) and φ4(ξ) [see Figs. 2

(i) and (j)]. φ3(ξ) is defined on [−ξ2, +∞) and tends to c when ξ tends to −ξ2, to φ0
+

when ξ tends to +∞. φ4(ξ) is defined on (−∞, ξ2] and tends to φ0
+ when ξ tends to

−∞, to c when ξ tends to ξ2, where

ξ2 =

∫ φ0
2

c

√
2(s− c)

(φ0
+ − s)(φ0

+ + s)
ds, for c < φ0

2 < φ0
+ . (3.8)

For example, for the above c = 2, k = −4, taking φ0
2 = 3, from (3.8) we obtain

ξ2 = 0.3697389765 which is identical with the simulation [see Figs. 2 (i) and (j)].
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
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(i) (j)

Fig. 2 The simulation of the integral curves of Eq. (2.2) when c = 2 and k = −4.

(a) φ(0) = −4.48 and φ(0)′ = 0, (b) φ(0) = −4.472135955 and φ(0)′ = 0, (c) φ(0) = −4.4721 and
φ(0)′ = 0, (d) φ(0) = 0.2 and φ(0)′ = 0.4709328804, (e) φ(0) = 0.2 and φ(0)′ = −0.4709328804, (f)
φ(0) = 0.01 and φ(0)′ = 0, (g) φ(0) = 3.1622 and φ(0)′ = 0, (h) φ(0) = 3.1622776 and φ(0)′ = 0,
(i) φ(0) = 3 and φ(0)′ = 0.7071067812, (j) φ(0) = 3 and φ(0)′ = −0.7071067812.

Case 2. c < 0 and k3(c) < k < k1(c) . For this case, system (2.3) has an orbit Γ1 on which
φ is bounded when φ0 < c, has an orbit Γ2 on which φ is bounded when c < φ0 < φ0

− and
four heteroclinic orbits L2

± and L3
± are bounded when φ0 = φ0

−, has a periodic orbit when
φ0
− < φ0 < 0. For example, choosing c = −2 and k = −2, we have φ0

± = ±1.414213562.

(i) We respectively take φ0 = −1.4 and −1.4133, letting φ(0) = φ0 and φ′(0) = 0, the
simulation integral curves of Eq. (2.2) are (a) and (b) in Fig. 3.

(ii) The two heteroclinic orbits L3
± respectively have expressions

y±3 = ±

√
φ4 + 2(2k − c)φ2 + 2h(φ0

−)

2(φ− c)
, for φ0

− ≤ φ ≤ φ0
+ , (3.9)

where

h(φ0
−) = −1

2
(φ0

−)4 + (c− 2k)(φ0
−)2 . (3.10)

If φ0
− ≤ φ0

3 ≤ φ0
+, then from the first equation of system (2.3) we have dφ

dξ
|ξ=ξ0 = y±3 (φ0

3)

at φ = φ0
3. For example, taking φ0

3 = 0, we have y±3 (φ0
3) = ±1. Letting φ(0) = 0 and

φ′(0) = ±1 respectively, we simulate the integral curves of Eq. (2.2) as (c) and (d) in
Fig. 3.
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(iii) When φ0 = φ0
−, L2

± lie on the left side of the line φ = φ0
−, the simulation integral

curve of Eq. (2.2) is similar to Figs. 2 (i) - (j), when φ0 < c, to Fig. 2 (a) or (f), when
c < φ0 < φ0

−, to Fig. 2 (g) or (h).

Remark 2 The simulation in Fig. 3 imply that under of case 2, the integral curve φ = φ5(ξ)

and φ = φ6(ξ) are defined on (−∞, +∞), φ5(ξ) tends to φ0
− when ξ tends to −∞ or tends

to φ0
+ when ξ tends to +∞ and φ6(ξ) tends to φ0

+ when ξ tends to −∞ or tends to φ0
− when

ξ tends to +∞.

(a) (b)

(c) (d)

Fig. 3 The simulation of the integral curves of Eq. (2.2) when c = −2 and k = −2.

(a) φ(0) = −1.4 and φ′(0) = 0, (b) φ(0) = −1.4133 and φ′(0) = 0, (c) φ(0) = 0 and φ′(0) = 1, (d)
φ(0) = 0 and φ′(0) = −1.

4 The Expressions of Compactons and Generalized Kink Waves

In this section, we derive the expressions of compactons and generalized kink waves by using
the information obtained from above sections.
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4.1 Integral Expressions of Compactons

For given c and k, we give hypotheses as follows:

(H1) c < 0, k < k3(c) and φ0 satisfies φ0 < φ∗−.

(H2) c = 0, k < 0 and φ0 satisfies φ0 < φ1
−.

(H3) c > 0, k ≤ k3(c) and φ0 satisfies φ0 < φ1
− or 0 < φ0 < c.

(H4) c > 0, k3(c) < k < k2(c) and φ0 satisfies φ0 < φ1
− or 0 < φ0 < φ∗+.

(H5) c ≥ 0, k2(c) ≤ k and φ0 satisfies φ0 < −c.

(H6) c < 0, k ≥ k3(c) and φ0 satisfies φ0 < c.

(H7) c < 0, k < k3(c) and φ0 satisfies −c < φ0 < φ0
+.

(H8) c ≥ 0, k < k3(c) and φ0 satisfies c < φ0 < φ0
+.

(H9) c < 0, k ≥ k1(c) and φ0 satisfies c < φ0 < 0.

(H10) c < 0, k3(c) < k < k1(c) and φ0 satisfies c < φ0 < φ0
−.

Proposition 4.1 (i) If one of hypotheses (H1) – (H6) holds, then Eq. (1.5) has a
concave compacton u = φ(ξ) which satisfies integral equation

ξ0 − |ξ| =
∫ c

φ

√
2(s− c)

(s2 − φ2
0)(s

2 − α)
ds, for |ξ| ≤ ξ0 , (4.1)

where

ξ0 =

∫ c

φ0

√
2(s− c)

(s2 − φ2
0)(s

2 − α)
ds . (4.2)

(ii) If one of hypotheses (H7) – (H10) holds, then Eq. (1.5) has a convex compacton
u = φ(ξ) which satisfies integral equation

ξ0 − |ξ| =
∫ φ

c

√
2(s− c)

(s2 − φ2
0)(s

2 − α)
ds, for |ξ| ≤ ξ0 , (4.3)

where

ξ0 =

∫ φ0

c

√
2(s− c)

(s2 − φ2
0)(s

2 − α)
ds . (4.4)
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Proof: From Fig. 1 it is seen that the unique orbit Γ1 or Γ2 of system (2.3) passes the point
(φ0, 0) when one of above hypotheses holds. From (2.5) the Γ1 and Γ2 have expression

2(φ− c)y2(φ) = (φ2 − φ2
0)(φ

2 − α) . (4.5)

Substituting y = dφ
dξ

into (4.5), we have

±

√
2(φ− c)

(φ2 − φ2
0)(φ

2 − α)
dφ = dξ . (4.6)

Thus along Γ1 and Γ2 respectively integrate (4.6), the (4.1) and (4.3) are obtained.

4.2 Implicit or Integral Expressions of Generalized Kink Waves

For given c and k, we give hypotheses as follows:

(H11) c > 0, k < k2(c) and φ0
1 satisfies 0 < φ0

1 < c < φ0
+.

(H12) k < k3(c) and φ0
2 satisfies φ0

− < c < φ0
2 < φ0

+.

(H13) c < 0, k ≥ k1(c) and φ0
2 satisfies c < φ0

2 < 0.

(H14) c < 0, k3(c) < k < k1(c) and φ0
2 satisfies c < φ0

2 < φ0
−.

(H15) c < 0, k3(c) < k < k1(c) and φ0
3 satisfies c < φ0

− < φ0
3 < φ0

+.

Proposition 4.2 (i) If hypothesis (H11) holds, then Eq. (1.5) has two generalized
kink waves u = φ1(ξ) and u = φ2(ξ) which satisfy integral equation

∫ φ1

φ0
1

1

s

√
2(s− c)

s2 + 2(2k − c)
ds = ξ, for −∞ < ξ < ξ1 (4.7)

and ∫ φ2

φ0
1

−1

s

√
2(s− c)

s2 + 2(2k − c)
ds = ξ, for − ξ1 < ξ < +∞ (4.8)

where

ξ1 =

∫ φ0
1

c

1

s

√
2(s− c)

s2 + 2(2k − c)
ds . (4.9)
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(ii) If hypothesis (H12) holds, then Eq. (1.5) has two generalized kink waves u = φ3(ξ)

and u = φ4(ξ) which respectively satisfy equation√
φ0

+ − c

2
ln

(√
φ0

+ − c +
√

φ3 − c√
φ0

+ − c−
√

φ3 − c

)
−
√

φ0
+ + c arctan

√
φ3 − c√
φ0

+ + c
=

φ0
+√
2
(ξ + ξ2) ,

(4.10)

for −ξ2 < ξ < +∞. And√
φ0

+ − c

2
ln

(√
φ0

+ − c +
√

φ4 − c√
φ0

+ − c−
√

φ4 − c

)
−
√

φ0
+ + c arctan

√
φ4 − c√
φ0

+ + c
=

φ0
+√
2
(−ξ + ξ2) ,

(4.11)

for −∞ < ξ < ξ2. Where

ξ2 =

√
2

φ0
+

[√
φ0

+ − c

2
ln

(√
φ0

+ − c +
√

φ0
2 − c√

φ0
+ − c−

√
φ0

2 − c

)
−
√

φ0
+ + c arctan

√
φ0

2 − c√
φ0

+ + c

]
.

(4.12)

(iii) If hypothesis (H13) holds, then Eq. (1.5) has two generalized kink waves u = φ3(ξ)

and u = φ4(ξ) which respectively satisfy integral equation

∫ φ3

φ0
2

−1

s

√
2(s− c)

s2 + 2(2k − c)
ds = ξ, for − ξ2 < ξ < +∞ (4.13)

and ∫ φ4

φ0
2

1

s

√
2(s− c)

s2 + 2(2k − c)
ds = ξ, for −∞ < ξ < ξ2 (4.14)

where

ξ2 =

∫ φ0
2

c

−1

s

√
2(s− c)

s2 + 2(2k − c)
ds . (4.15)

(iv) If hypothesis (H14) holds, then Eq. (1.5) has two generalized kink waves u = φ3(ξ)

and u = φ4(ξ) which satisfy equation

(√
φ0
− − c−

√
φ3 − c√

φ0
− − c +

√
φ3 − c

)√φ0
−−c(√

−φ0
− − c +

√
φ3 − c√

−φ0
− − c−

√
φ3 − c

)√−φ0
−−c

= β1e
(
√

2φ0
−ξ) ,

(4.16)
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for −ξ2 < ξ < +∞, and(√
φ0
− − c−

√
φ4 − c√

φ0
− − c +

√
φ4 − c

)√φ0
−−c(√

−φ0
− − c +

√
φ4 − c√

−φ0
− − c−

√
φ4 − c

)√−φ0
−−c

= β1e
−
√

2φ0
−ξ ,

(4.17)

for −∞ < ξ < ξ2, where

β1 =

(√
φ0
− − c−

√
φ0

2 − c√
φ0
− − c +

√
φ0

2 − c

)√φ0
−−c(√

−φ0
− − c +

√
φ0

2 − c√
−φ0

− − c−
√

φ0
2 − c

)√−φ0
−−c

, (4.18)

and

ξ2 = ln β1 . (4.19)

(v) If hypotheses (H15) holds, then Eq. (1.5) has two generalized kink waves u = φ5(ξ)

and u = φ6(ξ) which satisfies equation(√
φ0

+ − c +
√

φ5 − c√
φ0

+ − c−
√

φ5 − c

)√φ0
+−c(√

φ5 − c−
√
−φ0

+ − c
√

φ5 − c +
√
−φ0

+ − c

)√−φ0
+−c

= β2e
(
√

2φ0
+ξ) ,

(4.20)

for −∞ < ξ < +∞ and(√
φ0

+ − c +
√

φ6 − c√
φ0

+ − c−
√

φ6 − c

)√φ0
+−c(√

φ6 − c−
√
−φ0

+ − c
√

φ6 − c +
√
−φ0

+ − c

)√−φ0
+−c

= β2e
−(
√

2φ0
+ξ) ,

(4.21)

for −∞ < ξ < +∞. Where

β2 =

(√
φ0

+ − c +
√

φ0
3 − c√

φ0
+ − c−

√
φ0

3 − c

)√φ0
+−c(√

φ0
3 − c−

√
−φ0

+ − c√
φ0

3 − c +
√
−φ0

+ − c

)√−φ0
+−c

. (4.22)

Proof: Here we only proof (ii), in the other cases one can use a similar arguments. If
hypotheses (H12) holds, then there are two heteroclinic orbits L2

+ and L2
− of system (2.3)

passes the point (φ0
+, 0), From (2.5) they have expressions

2(φ− c)y2(φ) = [(φ0
+)2 − φ2]2, for φ0

− < c < φ < φ0
+ . (4.23)

Substituting y = dφ
dξ

into (4.23) and letting φ(0) = φ0
2, we have√

2(φ− c)

(φ0
+)2 − φ2

dφ = dξ, −ξ2 < ξ < +∞ and φ0
− < c < φ < φ0

+ , (4.24)
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and

−
√

2(φ− c)

(φ0
+)2 − φ2

dφ = dξ, −∞ < ξ < ξ2 and φ0
− < c < φ < φ0

+ . (4.25)

Integrating (4.24) and (4.25) along L2
+ and L2

− respectively, we have∫ φ3

φ0
2

√
2(s− c)

(φ0
+)2 − s2

ds =

∫ ξ

0

ds, −ξ2 < ξ < +∞ and φ0
− < c < φ < φ0

+ , (4.26)

and

−
∫ φ4

φ0
2

√
2(s− c)

(φ0
+)2 − s2

ds =

∫ ξ

0

ds, −∞ < ξ < ξ2 and φ0
− < c < φ < φ0

+ . (4.27)

From (4.26) and (4.27) we obtain (4.10) and (4.11).

5 Conclusion

In this paper, we have employed both the bifurcation method of planar dynamical systems
and numerical simulation method of differential equations to investigate the bounded travel-
ing waves of a generalized Camassa-Holm equation. We have found another kind of bounded
traveling waves which have the properties of compactons or generalized kink waves. Their
planar graphs are simulated (see Figs. 2 (a), (f), (g) and (h) for compactons; Figs. 2 (d),
(e), (i) and (j) and Figs. 3 (c) and (d) for generalized kink waves). Their integral or im-
plicit representations are obtained (see Proposition 4.1 for compactons; Proposition 4.2 for
generalized kink waves).
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