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Nonlinear Difference Equations
with Periodic Solutions

ABSTRACT. For ten nonlinear difference equations with only p-periodic solutions it is
shown that the characteristic polynomials of the corresponding linearized equations about
the equilibria have only zeros which are p-th roots of unity. An analogous result is shown
concerning two systems of such equations. Five counterexamples show that the reverse is not
true. Some remarks are made concerning equations with asymptotically p-periodic solutions.
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In their new book [5] the authors E.A. Grove and G. Ladas present a series of examples of
nonlinear difference equations

xn+1 = f(xn, xn−1, . . . , xn−k) , (1)

with fixed k ∈ N0 and variable n ∈ N0, such that all solutions are periodic with the same
(not necessarily prime) period p. On p. 25 they put the following two questions:

“What is it that makes every solution of a difference equation periodic with the same period?”

“Is there an easily verifiable test that we can apply to determine whether or not this is true?”

We deal with these questions under the following conditions:

(i) Assume that f : Gk+1 7→ G for some non-empty complex open set G, and let (1) have
an equilibrium x ∈ G defined by

x = f(x, x, . . . , x) . (2)

(ii) Assume that f(u0, u1, . . . , uk) is holomorphic in some neighbourhood of (x, x, . . . , x).

Then there exists the linearized equation of (1) about the equilibrium x

zn+1 = f0zn + f1zn−1 + · · ·+ fkzn−k (3)
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with
fj =

∂f

∂uj

(x, x, . . . , x)

and with the corresponding characteristic polynomial

λk+1 − f0λ
k − · · · − fk−1λ− fk . (4)

We call a solution admissible if the initial values belong to G.

Conjecture If all admissible solutions of the difference equation (1) are p-periodic, and
if the conditions (i)-(ii) are satisfied concerning all equilibria x ∈ G then:

(iii) All zeros λ of (4) are simple p-th roots of unity ( simple means that all zeros have
multiplicity 1).

Note that the book [5] contains also examples (1) with only periodic solutions, where f is
not differentiable at the positive equilibrium. Such examples contain the maximum function,
cf. [5, p. 27] or the function | · |. We cannot prove this conjecture, but we check assertion
(iii) for eight examples of [5] and two further ones, all with periodic solutions only, and we
give five counterexamples with nonperiodic solutions, where (iii) is fulfilled nevertheless. In
particular, we discuss the case λ = 1 in (iii). It follows an analogous check concerning two
systems of [6], and we make some remarks concerning equations with asymptotically periodic
solutions.

Single equations. We begin the following seven cases of [5, Section 2.2]:

(1) x (4) p

xn+1 =
1

xn

±1 λ + 1 2

xn+1 =
1

xnxn−1

3
√

1 λ2 + λ + 1 3

xn+1 =
1

xn−1

±1 λ2 + 1 4

xn+1 =
1 + xn

xn−1

1

2
(1±

√
5) λ2 − 1

x
λ + 1 5

xn+1 =
xn

xn−1

1 λ2 − λ + 1 6

xn+1 =
1 + xn + xn−1

xn−2

1±
√

2 λ3 − 1

x
(λ2 + λ) + 1 8

xn+1 =
xnxn−2

xn−1xn−3

1 λ4 − λ3 + λ2 − λ + 1 10
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Here, the validity of assertion (iii) follows immediately from

λ2 − 1 = (λ + 1)(λ− 1)

λ3 − 1 = (λ2 + λ + 1)(λ− 1)

λ4 − 1 = (λ2 + 1)(λ2 − 1)

λ5 − 1 =

(
λ2 − 1

x
λ + 1

)
(λ2 + xλ + 1)(λ− 1)

λ6 − 1 = (λ2 − λ + 1)(λ2 + λ + 1)(λ2 − 1)

λ8 − 1 =

(
λ3 − 1

x
(λ2 + λ) + 1

) (
λ3 +

1

x
(λ2 − λ)− 1

)
(λ2 + 1)

λ10 − 1 = (λ4 − λ3 + λ2 − λ + 1)(λ4 + λ3 + λ2 + λ + 1)(λ2 − 1) .

This assertion also comes true for the equation [5, (2.66)]

xn+1 =
xn + xn−1 + · · ·+ xn−k

xnxn−1 . . . xn−k − 1
(5)

with k + 1 equilibria x = (k + 2)
1

k+1 , the further equilibrium x = 0, the characteristic
polynomial λk+1 +λk + · · ·+1, which is a factor of λk+2−1, and the period p = k +2. But it
does not come true for equation [5, (2.26)] xn+1 = |xn|−xn−1 with only 9-periodic solutions,
since its equilibrium is x = 0 and the corresponding linearized equation does not exist.

A funny example for an equation with only 3-periodic solutions is

xn+1 =
5(xn + xn−1)− 4xnxn−1 − 3

4(xn + xn−1)− 5
(6)

with the unique equilibrium x = 1 and the corresponding characteristic polynomial λ2+λ+1.

Recall that a p-periodic sequence xn can be represented as discrete Fourier series

xn =

p−1∑
m=0

bmznm (7)

with z = exp

{
2πi

p

}
and the inversion

bm =
1

p

p−1∑
k=0

xkz
−mk

where we want to point out that the last formula with p = 5 was misprinted in [1, p. 1073].

Counterexamples. Next we show by means of two symmetric examples with nonperiodic
solutions that nevertheless assertion (iii) comes true at least for one equilibrium. Here we
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call an equation symmetric, if it is uniquely solvable with respect to xn−k, and if this solution
reads

xn−k = f(xn−k+1, . . . , xn, xn+1)

with the same function f as before. It can easily be proved:

Lemma 1 If equation (1) is symmetric and all solutions of it are p-periodic with p ≥
k + 3, then the solutions xn with equal initial values x0 = x−1 = · · · = x−k have the property

xj = xp−k−j (j = 1, . . . , p− k − 1) . (8)

A third example with nonperiodic solutions concerns the case where (iii) is satisfied com-
pletely.

As first example we choose the symmetric equation

xn+1xn−1 = 2(1−
√

2) + 2xn (9)

with the equilibria x1 =
√

2, x2 = 2−
√

2. The linearized equation

x(xn+1 + xn−1)− 2xn = 0

has the characteristic polynomial

λ2 − 2

x
λ + 1 , (10)

and for the first equilibrium its zeros are simple 8th roots of unity in view of

λ8 − 1 = (λ2 −
√

2x + 1)(λ2 +
√

2x + 1)(λ4 − 1) .

For the initial values x−1 = x0 = 1 (cf. [5, p. 26]) we find

x1 = 4− 2
√

2 , x2 = 10− 6
√

2 , x3 = 4− 3

2

√
2 , x4 =

1

14
(20 + 5

√
2) ,

so that x3 6= x4, i.e. (8) with j = 3, p = 8, k = 1 is not fulfilled. According to Lemma 1
Equation (9) cannot have only 8-periodic solutions. Here, the zeros of (10) concerning the

second equilibrium are λ = 1 + 1
2

√
2±

√
1
2

+
√

2, and these real numbers cannot be roots of
unity.

As second example we choose

xn+1xn−1 = 2− xn (11)

with the equilibria x1 = 1 and x2 = −2. The linearized equation

x(xn+1 + xn−1) + xn = 0
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has the characteristic polynomial

λ2 +
1

x
λ + 1 , (12)

and for the first equilibrium its zeros are simple third roots of unity. For the initial values
x−1 = x0 = 3 we find x1 = −1

3
, x2 = 7

9
, so that this solution is not 3-periodic. Here,

the zeros of (12) concerning the second equilibrium are λ = 1
4
(1 ± i

√
15), and according to

λ3 = − 1
32

(22± 6i
√

15) no third roots of unity.

The third example reads

xn+1 = 3− 1

2

(
3xn +

x2
n−1

xn

)
(13)

with the single equilibrium x = 1 and the single characteristic polynomial (12). For the
initial values x−1 = x0 = 2 we find x1 = −1, x2 = 13

2
, so that this solution is not 3-periodic.

The case λ = 1. In the foregoing examples all zeros of (4) are different from 1. But the
case λ = 1 is likewise possible. By differentiation of (2) with respect to x we easily see:

Lemma 2 Let (2) be satisfied for all x ∈ G, and let (ii) be satisfied in G. Then the
characteristic polynomial (4) has the zero λ = 1.

This case can appear by linear homogeneous difference equations with constant coefficients.
A nonlinear example is

xn+1 =
xnxn−2

xn−1

(14)

with arbitrary x, the single characteristic polynomial λ3− λ2 + λ− 1 = (λ− 1)(λ2 + 1), and
the 4-periodic solutions

a, b, c,
ac

b
, a, . . .

with arbitrary nonvanishing constants a, b, c.

A fourth counterexample is

xn+1 =
1

2

(
xn +

x2
n−1

xn

)
(15)

with arbitrary x, the single characteristic polynomial λ2 − 1 with the roots ±1, but x2 = x0

if and only if x0 = x1. Hence, disregarding the constant solutions, no further solution is
2-periodic.

As last counterexample we consider the equation

xnxn−k = 2xn − 1 (16)
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with k ∈ N, the single equilibrium x = 1, the linearized equation

xn = xn−k ,

and the single characteristic polynomial λk − 1. All zeros are simple k-th roots of unity,
but the solutions of (16) are not k-periodic (disregarding xn = 1). In this case the first
hypothesis of Lemma 2 is not fulfilled.

Systems of equations. The foregoing conjecture can also be transferred to systems of
nonlinear difference equations. We shall show this for the two systems from [6]

x
(m)
n+2 x(m+2)

n = 1 + x
(m+1)
n+1 (17)

and

x
(m)
n+3 x(m+3)

n = 1 + x
(m+2)
n+1 + x

(m+1)
n+2 (18)

with variable m, n ∈ Z, where the solutions in both cases shall be k-periodic in m with a
fixed k ∈ N. For k = 1 the systems reduce to special cases from before.

In [6] it was proved: Every admissible solution of (17) is p-periodic with p = 5k when 5 - k

and p = k else. Every admissible solution of (18) is p-periodic with p = 8q when k = 2jq

(0 ≤ j ≤ 2), 2 - q and p = k else.

In both cases we shall show that every zero of the corresponding characteristic polynomials
about the common equilibria is a p-th root of unity.

We begin with (17). The common equilibria are the solutions of

x2 = 1 + x . (19)

Fixing one of it, the corresponding linearized system reads

x
(
x

(m)
n+2 + x(m+2)

n

)
= x

(m+1)
n+1 ,

where as before x
(m)
n is k-periodic in m. With the ansatz x

(m)
n = ξmλn we get the cyclic

system
xλ2ξm − λξm+1 + xξm+2 = 0

with k-periodic ξm. The matrix is the circulant matrix

Circ (xλ2,−λ, x, 0, . . . , 0)

where the eigenvalues are the discrete Fourier transform (7) of the first line

xλ2 − λεm + xε2m , (20)
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m = 0, . . . , k − 1, with ε = exp

{
2πi

k

}
, cf. [4]. The characteristic polynomial is the deter-

minant of the circulant matrix, and its zeros are the zeros of (20), i.e. the solutions of

xλ2 = λεm − xε2m .

From this it follows by means of (19) that

xλ4 = −λxε3m + ε4m

and λ5 = ε5m, i.e. λ5q = 1 and therefore p = 5q when either k = q and 5 - q or when k = 5q

with an integer q. The result is independent of the chosen equilibrium.

In the case (18) the common equilibria are the solutions of

x2 = 1 + 2x . (21)

Fixing one of it, the corresponding linearized system reads

x
(
x

(m)
n+3 + x(m+3)

n

)
= x

(m+2)
n+1 + x

(m+1)
n+2 ,

and the ansatz x
(m)
n = ξmλn with k-periodic ξm yields the cyclic system

xλ3ξm − λ2ξm+1 − λξm+2 + xξm+3 = 0

with the circulant matrix
Circ (xλ3,−λ2,−λ, x, 0, . . . , 0) .

Again, the eigenvalues must vanish, so that

xλ3 − λ2εm − λε2m + xε3m = 0 , (22)

m = 0, . . . , k − 1, with the same ε as before. The left-hand side of (22) can be factorized as

(x(λ2 − λεm + ε2m)− λεm)(λ + εm) ,

so that one solution of (22) is λ = −εm. For the zeros of the other factor it follows by means
of (21) that λ4 = −ε4m, hence in both cases λ8 = ε8m. This implies λ8q = 1 and therefore
p = 8q, when either k = 2jq (0 ≤ j ≤ 2) and q odd or when k = 8q with an integer q. The
result is independent of the chosen equilibrium.

Asymptotically periodic solutions. In [5, p. 61] there is contained a further question:
“What is it that makes all the solutions of a difference equation be eventually periodic with
the same period? ”
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Under the assumptions (i) and (ii) the last assertion comes true, if some (but not all) zeros
of the characteristic polynomial (4) about an equilibrium are simple p-th roots of unity, all
other zeros λi satisfy 0 < |λi| < 1, and if the general solution of (1) can be represented
in the form (7), where the coefficients are convergent power series in λn

i for large n (with
polynomial coefficients in case of need), cf. the special cases in [1, (7.12)] and [2, Propositions
3.3 and 3.4]. But the situation can be more complicated, cf. [3, Example 2], in particular in
the case λ = 1 for one zero of (4), cf. [1, (1.7)], i.e. [5, (5.2) with α = β = 0 and γ = A = 1].
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