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ABSTRACT. This paper is the continuation of Ref. [1]. Both the bifurcation theory of
planar dynamical system and elliptic function integral method are applied to study a higher
order wave equation of KdV type. And the parametric space is redivided when the integral
constant g 6= 0. Many explicit and implicit solutions of periodic wave and solitary cusp wave
are obtained.
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1 Introduction

In this paper, we will seek periodic wave and solitary cusp wave solutions for the following
higher order wave equation of KdV type (see [1, 2]):

ut + ux + αuux + βuxxx + α2ρ1u
2ux + αβ(ρ2uuxxx + ρ3uxuxx) = 0 , (1.1)

where ρi(i = 1, 2, 3) are free parameters and α, β are positive real constants which character-
ize, respectively, the long wavelength and short amplitude of the waves. Just as Tzirtzilakis,
E. [2] said, the equation (1.1) is a water wave equation of KdV type which is more physically
and practically meaningful. By the local coordinate transformation

u = v − αρ1v
2 − β

(
3ρ1 +

7

4
ρ2 −

1

2
ρ3

)
vxx , (1.2)

Eq. (1.1) can be transformed into the following simple equation, see [3, 4]:

vt −
3

2
βρ2vxxt + β(1− 3

2
ρ2)vxxx + αvvx −

1

2
αβρ2(vvxxx + 2vxvxx) = 0 , (1.3)
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where ρ2 6= 0. In Ref. [1], we obtained two explicit parametric representations of periodic
solutions of equation (1.3) when integral constant g = 0. In this case, we also proved the
existence of all travelling wave solutions. However, when g 6= 0, the bifurcation of travelling
solutions had not been studied. In fact, when the integral constant g 6= 0, the dynamical
behaviors of the equation (1.3) are better than the case of g = 0. Therefore, we shall use
bifurcation method of planar dynamical system [5]-[8] and elliptic function integral method
[9, 10] to investigate the explicit and implicit travelling wave solutions of (1.3) when g 6= 0.

Let v(x, t) = ψ(x− ct) = ψ(ξ), where c is the wave speed, then the equation (1.3) becomes
the following ordinary differential equation

1

2
α(ψ2)ξ − cψξ +

(
3

2
cβρ2 + β(1− 3

2
ρ2)

)
ψξξξ −

1

2
αβρ2

(
ψψξξ +

1

2
ψ2
ξ

)
ξ

= 0 , (1.4)

Integrating once with respect to ξ, we obtain the following wave equation of (1.3)

β(3cρ2 + 2− 3ρ2 − αρ2ψ)ψξξ −
1

2
αβρ2ψ

2
ξ + αψ2 − 2cψ + g = 0 , (1.5)

where g is the integral constant and g 6= 0.

Clearly, (1.5) is equivalent to the following two-dimensional systems:

dψ

dξ
= y,

dy

dξ
=

1
2
αβρ2y

2 − αψ2 + 2cψ − g

β(3ρ2(c− 1) + 2− αρ2ψ)
. (1.6)

System (1.6) is a planar dynamical system defined by the 5-parameter space (α, β,c, ρ2, g).
Because the phase orbits defined by the vector field of (1.6) determine all travelling wave
solutions, we will investigate bifurcations of phase portraits of the system, when the pa-
rameters vary. Since (1.3) is a physical model where only the bounded travelling waves are
meaningful, so we only consider their bounded travelling wave solutions.

Suppose that ψ(x − ct) = ψ(ξ) is a continuous solution of (1.6) for ξ ∈ (−∞,∞) and
lim
ξ→∞

ψ(ξ) = a, lim
ξ→−∞

ψ(ξ) = b. It is well known that (i) ψ(x, t) is called a solitary wave

solution if a = b; (ii) ψ(x, t) is called a kink or anti-kink solution if a 6= b. Usually, a
solitary wave solution of (1.3) corresponds to a homoclinic orbit of (1.6); a kink (or anti-
kink) wave solution of (1.3) corresponds to a heteroclinic orbit (or the so-called connecting
orbit) of (1.6). Similarly, a periodic orbit of (1.3) corresponds to a periodically travelling
wave solution of (1.6). Therefore, we must find all periodic annuli, heterclinic and homoclinic
orbits of (1.6) in order to investigate the bifurcations of periodic waves and solitary cusp
waves of (1.3). Thus, the bifurcation theory of dynamical systems and some computational
method of travelling wave solutions are very important and useful, see [5]-[11].

We notice that the right-hand side of the second equation in (1.6) is not continuous when
ψ = ψs = η

αρ2
, where η = 3ρ2(c − 1) + 2. In other words, on such straight line ψ = ψs in
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the phase plane (ψ, y), the function ψξξ is not defined. It implies that the smooth system
(1.3) sometimes has non-smooth travelling wave solutions. The similar phenomenon has
been considered before, see [1, 7, 8, 10].

In Section 2, we discuss bifurcations of phase portraits of (1.6), where explicit parametric
conditions will be derived. In Section 3, we derive the explicit parameter representations of
the smooth periodic wave and non-smooth solitary cusp wave solutions of (1.3). In Sections
4, we derive the implicit parameter representations of the smooth periodic wave solutions.

2 Bifurcations of phase portraits of system (1.6)

Because the function ψξξ is not defined on the singular straight line ψ = η
αρ2

, we make a
transformation dζ = 2β(η − αρ2ψ)dξ, η = 3ρ2(c − 1) + 2. Then the system (1.6) becomes
the following system:

dψ

dζ
= 2β(η − αρ2ψ)y,

dy

dζ
= −(−αβρ2y

2 + 2αψ2 − 4cψ + 2g) . (2.1)

It is easy to see that (1.6) and (2.1) have the same first integral

H(ψ, y) = β(η − αρ2ψ)y2 +
2

3
αψ3 − 2cψ2 + 2gψ = h , (2.2)

where h is integral constant.

By system (2.1), we define the ψ = ψs = η
αρ2

is a singular straight line L and write

f(ψ) = αψ2 − 2cψ + g, ∆ = c2 − αg, ψ1,2 =
c±

√
∆

α
, Y± = ±

√
2f(ψs)

αβρ2

. (2.3)

Thus, we obtain the following conclusion for equilibrium points of system (2.1):

(1) when ∆ > 0, (2.1) has two equilibrium points at A1,2(ψ1,2, 0) in the ψ-axis;

(2) when ∆ = 0 and c 6= 0, (2.1) has only one equilibrium point at A0(
c
α
, 0) in the ψ-axis;

(3) When ρ2f(ψs) > 0, there exist two equilibrium points of (2.1) at S±(ψs, Y±) in L;

(4) When f(ψs) = 0, there exist only one equilibrium point of (2.1) at S0(ψs, 0) which is
the intersection point of the line L and the ψ-axis.

LetM(ψi, yj) be the coefficient matrix of the linearized system of (2.1) at an equilibrium
point, (ψi, yj). Then we have Trace(M(ψ1,2, 0)) = 0 and

J(ψ1,2, 0) = detM(ψ1,2, 0) = −8β[ρ2

√
∆± (3ρ2 − 2ρ2c− 2)]

√
∆, J

( c
α
, 0
)

= 0 .

(2.4)
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J(ψs, Y±) = detM(ψs, Y±) = −4α2β2ρ2
2Y

2
± < 0, J(ψs, 0) = 0 . (2.5)

By the theory of planar dynamical systems, we know that for an equilibrium point of a
planar integrable system, if J < 0 then the equilibrium point is a saddle point; if J > 0

and Trace(M(ψi, 0)) = 0 then it is a center point; if J > 0 and (Trace(M(ψi, 0)))2 −
4J(ψi, 0) > 0 then it is a node; if J = 0 and the index of the equilibrium point is zero
then it is a cusp; if J = 0 and the index of the equilibrium point is’nt zero then it is a
high order singular point.

Notice that for H(ψ, y) = h defined by (2.2), we have

h1,2 = H(ψ1,2, 0) = −2(c±
√

∆)[(2c2 ± c
√

∆)− (∆ + 3αg)]

3α2
, (2.6)

h0 = H(
c

α
, 0) = −2c(2c2 − 3αg)

3α2
, (2.7)

hs = H(ψs, Y±) =
2η(η2 − 3cρ2η + 3gαρ2

2)

3α2ρ3
2

, (2.8)

hs0 = H(φs, 0) =
2η2(3cρ2 − 2η)

3α2ρ3
2

. (2.9)

From ∆ = 0, we have

(Γ1) : g = g1(c) =
c2

α
. (2.10)

For a fixed ρ2, the case of h1 = hs or h2 = hs imply

(Γ2) : g = g2(c) =
(12ρ2

2 − 8ρ2)c− 9ρ2
2 + 12ρ2 − 4

4αρ2
2

, (2.11)

and

(Γ3) : g = g3(c) = −3ρ2
2c

2 − 12ρ2
2c+ 8ρ2c+ 9ρ2

2 − 12ρ2 + 4

αρ2
2

. (2.12)

It is easy to see that ψs = ψ1(ψs = ψ2) corresponds to J(ψ1, 0) = 0(J(ψ2, 0) = 0) when the
parameter (c, g) ∈ Γ3. In this case, f(ψs) = 0 corresponds to ρ2

√
∆± (3ρ2 − 2ρ2c− 2) = 0

when the parameter (c, g) ∈ Γ3.

Write

Γ1

⋂
Γ2

⋂
Γ3 = Q , (2.13)

where Q
(

3ρ2−2
2ρ2

, (3ρ2−2)2

4αρ22

)
is intersection point of Γ1, Γ2, Γ3.

Here, we express the part of c > 3ρ2−2
2ρ2

on curve Γ with ΓR; We express the part of c < 3ρ2−2
2ρ2

on curve Γ with ΓL; Similarly, we express the part of g > 0 at the regional I − V with
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I+ − V +; we express the part of g < 0 at the regional I − V with I− − V −; we express the
part of g > 0 on curve Γ with Γ+; We express the part of g < 0 on curve Γ with Γ−.

Thus, the bifurcation curves ΓR1 , ΓR2 , ΓR3 , ΓL1 , ΓL2 , ΓL3 which are defined by (2.10), (2.11),
(2.12) divided the plane (c, g) into six regions, i.e. (I)− (V ) and the region of ∆ < 0, shown
in Fig. 1.

(1-1) ρ2 < 0 (1-2) 0 < ρ2 < 2
3

(1-3) ρ2 = 2
3 (1-4) ρ2 > 2

3

Fig. 1 The bifurcation curves and the six regions of (2.1)

For a fixed h, the level curve H(φ, y) = h defined by (2.2) determines a set of invariant
curves of (2.1), which contains different branches of curves. As h vary, it defines different
families of orbits of (2.1), with different dynamical behaviors.

Corresponding to the bifurcation curves Γ1,2,3 and regions I − V of the plane (c, g) in the
Fig. 1 (1-1), we obtain the following different phase portraits
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Fig. 2 The phase portraits of (2.1) for ρ2 < 0, g 6= 0

Corresponding to the bifurcation curves Γ1,2,3 and regions I − V of the plane (c, g) in the
Fig. 1 (1-2), we obtain the following different phase portraits

–10

–5

0

5

10

y

–4 –3 –2 –1

x

(3-1) I+

–20

–10

10

20

y

–4 –3 –2 –1 1 2 3

x

(3-2) I−

–8

–6

–4

–2

2

4

6

8

y

–4 –3 –2 –1

x

(3-3) ΓR+
2

–20

–10

10

20

y

–4 –3 –2 –1 1 2 3

x

(3-4) ΓR−
2

–8

–6

–4

–2

0

2

4

6

8

y

–4 –3 –2 –1

x

(3-5) II+

–20

–10

10

20

y

–4 –2 2 4

x

(3-6) II−

–20

–10

0

10

20

y

–12 –10 –8 –6 –4 –2

x

(3-7) IV +

–100

–50

0

50

100

y

–60 –50 –40 –30 –20 –10 10

x

(3-8) IV −



Periodic wave solutions and solitary cusp wave solutions . . . 63

–10

–5

5

10

y

–6 –4 –2

x

(3-9) ΓL
2

–20

–10

10

20

y

–10 –8 –6 –4 –2

x

(3-10) V

Fig. 3 The phase portraits of (2.1) for 0 < ρ2 <
2
3
, g 6= 0.

Corresponding to the bifurcation curves Γ1,2,3 and regions I − V of the plane (c, g) in the
Fig. 1 (1-3), we obtain the following different phase portraits
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Fig. 4 The phase portraits of (2.1) for ρ2 = 2
3
, g 6= 0.

Corresponding to the bifurcation curves Γ1,2,3 and regions I − V of the plane (c, g) in the
Fig. 1 (1-4), we obtain the following different phase portraits
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Fig. 5 The phase portraits of (2.1) for ρ2 >
2
3
, g 6= 0.

Note: When ∆ < 0 and ρ2 > 0, (c, g) ∈ Γ1,Γ3, III, system (2.1) has not closed orbit. Here
we omit their phase portraits.

3 Explicit expressions of periodic wave solutions and solitary cusp
wave solutions of (1.3)

According to the analysis in the section 2, we derive the explicit expressions of periodic
wave solutions and solitary cusp wave solutions of (1.3). See the computational process and
results below.

3.1 Suppose that ρ2 < 0, (c, g) ∈ ΓR3 i.e. ρ2 < 0, c > 3ρ2−2
2ρ2

, g = g3(c). In this case, we get

ψ1 = ψs, h1 = hs0 = 2η2(3cρ2−2η)

3α2ρ32
. When h = hs0, system (2.1) has a periodic orbit to the

point S0(ψs, 0) and around the center point A2(ψ2, 0), see Fig. 2 (2-3), (2-4). Substituting
h = hs0 into (2.2) yields the following algebraic equations for this periodic orbit

y = ±

√
2

3β(−ρ2)

√
(ψs − ψ)(ψ − ψ0) , (3.1)

where ψs = η
αρ2

= 3ρ2(c−1)+2
αρ2

, ψ0 = ψ(0) = −4+6ρ2−3ρ2c
αρ2

and ψ0 < ψs.

Substituting (3.1) into the first equation of (2.1) yields the following equation

± dψ√
(ψs − ψ)(ψ − ψ0)

=

√
2

3β(−ρ2)
dξ . (3.2)

Integrating (3.2) along this periodic orbit yields

ψ∫
ψs

dψ√
(ψs − ψ)(ψ − ψ0)

=

√
2

3β(−ρ2)

ξ∫
0

dξ, ξ > 0 (3.3)
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and

−
ψs∫
ψ

dψ√
(ψs − ψ)(ψ − ψ0)

=

√
2

3β(−ρ2)

0∫
ξ

dξ, ξ ≤ 0 (3.4)

By (3.3) and (3.4), we obtain a smooth periodic wave solution of (1.3):

v(x− ct) = ψ(x− ct) =
1

2
[(ψs + ψ0) + (ψs − ψ0) cosω(x− ct)] , (3.5)

where ω =
√

2
3β(−ρ2)

.

3.2 Suppose that ρ2 < 0, (c, g) ∈ ΓL3 i.e. ρ2 < 0, c < 3ρ2−2
2ρ2

, g = g3(c). In this case, we get

ψ2 = ψs, h2 = hs0 = 2η2(3cρ2−2η)

3α2ρ32
. When h = hs0, system (2.1) has a periodic orbit to the

point S0(ψs, 0) and around the center point A2(ψ1, 0), see Fig. 2 (2-7), (2-8). Substituting
h = hs0 into (2.2) yields the following algebraic equations for this periodic orbit

y = ±

√
2

3β(−ρ2)

√
(ψ0 − ψ)(ψ − ψs) , (3.6)

where ψs, ψ0 are given above and ψ0 > ψs.

Similarly, substituting (3.6) into the first equation of (2.1) to integrate along this orbit, we
obtain a smooth periodic wave solution of (1.3):

v(x− ct) = ψ(x− ct) =
1

2
[(ψs + ψ0)− (ψs − ψ0) cosω(x− ct)] , (3.7)

where ω =
√

2
3β(−ρ2)

.

3.3 Suppose that (1) 0 < ρ2 < 2
3
, (c, g) ∈ ΓR2 i.e. 0 < ρ2 < 2

3
, c > 3ρ2−2

2ρ2
, g = g2(c);

(2) ρ2 > 2
3
, (c, g) ∈ ΓR2 i.e. ρ2 > 2

3
, c > 3ρ2−2

2ρ2
, g = g2(c). In these two cases, we get

ψ2 = 3ρ2−2
2αρ2

< ψs and h2 = hs =
2η(η2−3cρ2η+3gαρ22)

3α2ρ32
. When h = h2 = hs, system (2.1) has

two heterclinic orbits connect three saddle points A2(ψ2, 0) and S±(ψs, Y±), see Fig. 3 (3-3),
(3-4) and Fig. 5 (5-2). Substituting h = hs into (2.2) yields the following algebraic equations
for these two heterclinic orbits

y = ±2αρ2ψ − 3ρ2 + 2

αρ2

√
6βρ2

= ± 2√
6βρ2

(ψ − ψ2) . (3.8)

Similarly, substituting (3.8) into the first equation of (2.1) to integrate along these two orbits,
we obtain a non-smooth solitary cusp wave solution of peak type of (1.3):

v(x− ct) = ψ(x− ct) = ψ2 + (ψs − ψ2) exp

(
−2|x− ct|√

6βρ2

)
. (3.9)
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3.4 Suppose that (1) 0 < ρ2 < 2
3
, (c, g) ∈ ΓL2 i.e. 0 < ρ2 < 2

3
, c < 3ρ2−2

2ρ2
, g = g2(c);

(2) ρ2 >
2
3
, (c, g) ∈ ΓL2 i.e. ρ2 >

2
3
, c < 3ρ2−2

2ρ2
, g = g2(c). In these two cases, we have

ψ1 = 1
α
(3

2
− 2

ρ2
) > ψs and h1 = hs =

2η(η2−3cρ2η+3gαρ22)

3α2ρ32
. When h = h1 = hs, system (2.1)

has two heterclinic orbits connect three saddle points A1(ψ2, 0) and S±(ψs, Y±), see Fig. 3
(3-9) and Fig. 5 (5-7), (5-8). Substituting h = hs into (2.2) yields the following algebraic
equations for these two heterclinic orbits

y = ±−2αρ2ψ + 3ρ2 − 2

αρ2

√
6βρ2

= ± 2√
6βρ2

(ψ1 − ψ) . (3.10)

Similarly, substituting (3.10) into the first equation of (2.1) to integrate along these two
orbits, we obtain a non-smooth solitary cusp wave solution of valley type of (1.3):

v(x− ct) = ψ(x− ct) = ψ1 − (ψ1 − ψs) exp

(
−2|x− ct|√

6βρ2

)
. (3.11)

4 Implicit expressions of periodic wave solutions which is defined by
H(ψ, y) = 0

By the phase portraits of (2-2)-(2-6), (2-8), (2-10), (3-2), (3-4), (3-6), (5-8) and (5-10) in
Fig. 2-Fig. 5, it is easy to know that there is a periodic annuli through the point O(0, 0). This
periodic annuli is defined by H(ψ, y) = 0. By using the elliptic function integral method,
see [9, 10] and their references, we derive the implicit expressions of periodic wave solutions
of (1.3). See the below computational process and results. Here, we only consider the case
of ρ2 < 0, see Fig. 2. The other cases are similar to ρ2 < 0, see Fig. 3-Fig. 5.

4.1.1 Suppose that ρ2 < 0, (c, g) ∈ ΓR+
3 i.e. ρ2 < 0, c > 3ρ2−2

2ρ2
, g = g3(c) > 0. In this case,

there is ψ1 = ψs = 3ρ2(c−1)+2
αρ2

. And, when h = 0, system (2.1) has a periodic orbit to the
point O(0, 0) and around the center point A2(ψ2, 0), see Fig. 2 (2-3). From H(ψ, y) = 0, we
obtain the following algebraic equations for this periodic orbit

y = ±

√
2

3β(−ρ2)

√
(ψM − ψ)(ψm − ψ)(ψ − 0)

ψs − ψ
, (4.1)

where ψm =
3ρ2c+

√
3(5ρ2c−6ρ2+4)(3ρ2c−6ρ2+4)

2αρ2
, ψM =

3ρ2c−
√

3(5ρ2c−6ρ2+4)(3ρ2c−6ρ2+4)

2αρ2
and 0 < ψ <

ψm < ψs < ψM .

Substituting (4.1) into the first equation of (2.1) yields

±

√
ψs − ψ

(ψM − ψ)(ψm − ψ)(ψ − 0)
dψ =

√
2

3β(−ρ2)
dξ . (4.2)
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Integrating (4.2) along this periodic orbit, we get

ψm∫
ψ

√
ψs − ψ

(ψM − ψ)(ψm − ψ)(ψ − 0)
dψ =

√
2

3β(−ρ2)

0∫
ξ

dξ, ξ > 0 (4.3)

and

−
ψ∫

ψm

√
ψs − ψ

(ψM − ψ)(ψm − ψ)(ψ − 0)
dψ =

√
2

3β(−ρ2)

ξ∫
0

dξ, ξ ≤ 0 (4.4)

By (4.2) and (4.3), we obtain

ψm∫
ψ

√
ψs − ψ

(ψM − ψ)(ψm − ψ)(ψ − 0)
dψ =

√
2

3β(−ρ2)
|ξ| . (4.5)

By using the elliptic integral formulas citelon12, we obtain

ψm∫
ψ

√
ψs − ψ

(ψM − ψ)(ψm − ψ)(ψ − 0)
dψ = (ψs − ψm)e0

u0∫
0

du

1− α2
0sn

2u
, (4.6)

where e0 = 2√
ψs(ψM−ψm)

, u0 = sn−1
(√

ψs(ψm−ψ)
ψm(ψs−ψ)

, k0

)
, k0 =

√
ψm(ψM−ψs)
ψs(ψM−ψm)

, k2
0 < α2

0 = ψm

ψs
< 1.

And
u0∫

0

du

1− α2
0sn

2u
= Π(u0, α

2
0) . (4.7)

By (4.5), (4.6) and (4.7), we obtain a smooth periodic wave solution of (1.3):

Π

(
(sn−1

√
ψs(ψm − ψ)

ψm(ψs − ψ)
, k0), α

2
0

)
=

1

(ψs − ψm)

√
ψs(ψM − ψm)

6β(−ρ2)
|ξ| , (4.8)

where sn−1(∗ , ∗) is the inverse function of sn(∗ , ∗) which is the Jacobian elliptic function,
Π(∗ , ∗) is Legendre’s incomplete elliptic integral of the third kind.

4.1.2 Suppose that ρ2 < 0, (c, g) ∈ ΓR−3 i.e. ρ2 < 0, c > 3ρ2−2
2ρ2

, g = g3(c) < 0. In this case,
there is ψ1 = ψs = 3ρ2(c−1)+2

αρ2
. And, when h = 0, system (2.1) has a periodic orbit to the

point O(0, 0) and around the center point A2(ψ2, 0), see Fig. 2 (2-4). From H(ψ, y) = 0, we
get the following algebraic equations for this periodic orbit

y = ±

√
2

3β(−ρ2)

√
(ψM − ψ)(0− ψ)(ψ − ψm)

ψs − ψ
, (4.9)
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where ψm, ψM are given above and ψm < ψ < 0 < ψs < ψM .

Corresponding to (4.9), we obtain a smooth periodic wave solution of (1.3):

Π

(
(sn−1

√
(ψs − ψm)ψ

ψm(ψs − ψ)
, k1), α

2
1

)
=

1

ψs

√
ψM(ψs − ψm)

6β(−ρ2)
|ξ| , (4.10)

where the computational process is similar to (4.2)-(4.8) and k2
1 = −ψm(ψM−ψs)

ψM (ψs−ψm)
, α2

1 =
−ψm

ψs−ψm
< 1.

4.1.3 Suppose that ρ2 < 0, (c, g) ∈ ΓL−3 i.e. ρ2 < 0, c < 3ρ2−2
2ρ2

, g = g3(c) < 0. In this case,
there is ψ2 = ψs = 3ρ2(c−1)+2

αρ2
. And, when h = 0, system (2.1) has a periodic orbit to the

point O(0, 0) and around the center point A1(ψ1, 0), see Fig. 2 (2-8). From H(ψ, y) = 0, we
get the following algebraic equations for this periodic orbit

y = ±

√
2

3β(−ρ2)

√
(ψM − ψ)(ψ − 0)(ψ − ψm)

ψ − ψs
, (4.11)

where ψm, ψM are given above and ψm < ψs < 0 < ψ < ψM .

Substituting (4.11) into the first equation of (2.1) yields

±

√
ψs − ψ

(ψM − ψ)(ψm − ψ)(ψ − 0)
dψ =

√
2

3β(−ρ2)
dξ . (4.12)

Integrating (4.12) along this periodic orbit, we get

ψM∫
ψ

√
ψ − ψs

(ψM − ψ)(ψ − 0)(ψ − ψm)
dψ =

√
2

3β(−ρ2)
|ξ| , (4.13)

By using the elliptic integral formulas [11], we obtain

ψM∫
ψ

√
ψ − ψs

(ψM − ψ)(ψ − 0)(ψ − ψm)
dψ = (ψM − ψs)e2

∫ u2

0

dn2udu

1− α2
2sn

2u
, (4.14)

where e2 = 2√
−ψm(ψM−ψs)

, u2 = sn−1
(√

−ψm(ψM−ψ)
ψM (ψ−ψm)

, k2

)
, k2

2 = ψM (ψs−ψm)
−ψm(ψM−ψs)

, α2
2 = ψM

ψm
< 0.

And ∫ u2

0

dn2udu

1− α2
2sn

2u
=

1

α2
2

[k2
2u2 + (α2

2 − k2
2)Π(u2, α

2
2)] . (4.15)

By (4.13), (4.14) and (4.15), we obtain a smooth periodic wave solution of (1.3):

k2
2sn

−1(

√
−ψm(ψM − ψ)

ψM(ψ − ψm)
, k2) + (α2

2 − k2
2)Π

(
(sn−1

√
−ψm(ψM − ψ)

ψM(ψ − ψm)
, k2), α

2
2

)
= Ω1|ξ| ,

(4.16)
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where Ω1 = α2
2

√
−ψm

6β(−ρ2)(ψM−ψs)
.

4.2.1 Suppose that ρ2 < 0, (c, g) ∈ III+ i.e. ρ2 < 0, 0 < g < g3(c). In this case, when
h = 0, system (2.1) has a periodic orbit to the point O(0, 0) and around the center point
A2(ψ2, 0), see Fig. 2 (2-5). From H(ψ, y) = 0, we get the following algebraic equations for
this periodic orbit

y = ±

√
2

3β(−ρ2)

√
(ψG − ψ)(ψl − ψ)(ψ − 0)

ψs − ψ
, (4.17)

where ψl =
3c−
√

9c3−12αg

2α
, ψG =

3c+
√

9c3−12αg

2α
and 0 < ψ < ψl < ψs < ψG.

Corresponding to (4.17), we obtain a smooth periodic wave solution of (1.3):

Π

(
(sn−1

√
ψs(ψl − ψ)

ψl(ψs − ψ)
, k3), α

2
3

)
=

1

(ψs − ψl)

√
ψs(ψG − ψl)

6β(−ρ2)
|ξ| , (4.18)

where k2
3 =

√
ψl(ψG−ψs)
ψs(ψG−ψl)

, k2
3 =

√
ψl(ψG−ψs)
ψs(ψG−ψl)

, k2
3 < α2

3 = ψl

ψs
< 1.

4.2.2 Suppose that (1) ρ2 < 0, (c, g) ∈ III− i.e. ρ2 < 0, g < g3(c) < 0; (2) ρ2 < 0, (c, g) ∈
II− i.e. ρ2 < 0, g3(c) < g < 0. In these two cases, when h = 0, system (2.1) has a periodic
orbit to the point O(0, 0) and around the center point A2(ψ2, 0), see Fig. 2 (2-6), (2-2). From
H(ψ, y) = 0, we get the following algebraic equations for this periodic orbit

y = ±

√
2

3β(−ρ2)

√
(ψG − ψ)(0− ψ)(ψ − ψl)

ψs − ψ
, (4.19)

where ψl, ψG are given above and ψl < ψ < 0 < ψs < ψG.

Corresponding to (4.21), we obtain a smooth periodic wave solution of (1.3):

Π

(
(sn−1

√
(ψs − ψl)ψ

ψl(ψs − ψ)
, k4), α

2
4

)
=

1

ψs

√
ψG(ψs − ψl)

6β(−ρ2)
|ξ| , (4.20)

where k2
4 = −ψl(ψG−ψs)

ψG(ψs−ψl)
, α2

4 = −ψl

ψs−ψl
< 1.

4.2.3 Suppose that ρ2 < 0, (c, g) ∈ IV −,ΓL−2 , V − i.e. ρ2 < 0, c < 3ρ2−2
2ρ2

, g3(c) < g < 0. In
this case, when h = 0, system (2.1) has a periodic orbit to the point O(0, 0) and around the
center point A1(ψ1, 0), see Fig. 2 (2-10). From H(ψ, y) = 0, we get the following algebraic
equations for this periodic orbit

y = ±

√
2

3β(−ρ2)

√
(ψG − ψ)(ψ − 0)(ψ − ψl)

ψ − ψs
, (4.21)
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where ψl, ψG are given above and ψl < ψs < 0 < ψ < ψG.

Corresponding to (4.21), we obtain a smooth periodic wave solution of (1.3):

k2
5sn

−1(

√
−ψl(ψG − ψ)

ψG(ψ − ψl)
, k5) + (α2

5 − k2)Π

(
(sn−1

√
−ψl(ψG − ψ)

ψG(ψ − ψl)
, k5), α

2
5

)
= Ω2|ξ| ,

(4.22)

where Ω2 = α2
5

√
−ψl

6β(−ρ2)(ψG−ψs)
, k2

5 = ψG(ψs−ψl)
−ψl(ψG−ψs)

, α2
5 = ψG

ψm
< 0.
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