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Dynamics of a Nonlinear Difference Equation2

ABSTRACT. In this paper the dynamics for a third-order rational difference equation is
considered. The rule for the trajectory structure of solutions of this equation is clearly
described out. The successive lengths of positive and negative semicycles of nontrivial solu-
tions of this equation are found to occur periodically with prime period 7. And the rule is
3+, 2−, 1+, 1− in a period. By utilizing the rule, the positive equilibrium point of the equation
is verified to be globally asymptotically stable.

KEY WORDS. rational difference equation, semicycle, cycle length, global asymptotic sta-
bility.

1 Introduction and Preliminaries

The study of rational difference equations of order greater than one is quite challenging and
rewarding because some prototypes for the development of the basic theory of the global
behavior of nonlinear difference equations of order greater than one come from the results
for rational difference equations. For this, see, for example, [1, 2] and the papers in the
journal of “ Advances in Difference Equations änd the references cited therein. Furthermore,
there have not been any effective general methods to deal with the global behavior of ratio-
nal difference equations of order greater than one so far. Therefore, the study of rational
difference equations of order greater than one is worth further consideration.

Recently, M.R. S. Kulenović et al [3], Tim Nesemann [4] and Yang et.al [6, 7] investigated
the global asymptotic stability of some second or higher order rational difference equations.
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From the known work, one can see that it is extremely difficult to understand thoroughly the
trajectory structure of solutions of rational difference equations although they have simple
forms (or expressions). One can refer to [1]-[10], especially [1, 2] for examples to illustrate
this.

In this paper we consider the following third - order rational difference equation

xn+1 =
xn−1 + xn−2 + a

xn−1xn−2 + 1 + a
, n = 0, 1, 2, · · · , (1.1)

where a ∈ [0,∞) and the initial values x−2, x−1, x0 ∈ (0, ∞),

Mainly, by analyzing the rule for the length of semi-cycle to occur successively, we describe
clearly out the rule for the trajectory structure of its solutions and further derive the global
asymptotic stability of positive equilibrium of equation (1.1). Whereas, it is extremely
difficult to use those methods in the known literature, such as [1]-[7], to obtain the rule of
trajectory structure of solutions of equation (1.1).

It is easy to see that the positive equilibrium x̄ of equation (1.1) satisfies

x̄ =
2x̄ + a

x̄2 + 1 + a
,

from which one can see that equation (1.1) has a unique positive equilibrium x̄ = 1.

Here, for convenience of readers, we give some corresponding definitions, also review some
results which will be useful in our investigation of the behavior of solutions of Eq. (1.1). Let
I be some interval of real numbers and let f : I × I → I be a continuously differentiable
function. Then for every group of initial conditions x−2, x−1, x0 ∈ I, the difference equation

xn+1 = f(xn−1, xn−2), n = 0, 1, 2, · · · , (E)

has a unique solution {xn}∞n=−2.

A point x̄ is called an equilibrium point of Eq. (E) if x̄ = f(x̄, x̄). That is, xn = x̄, for
n ≥ 0, is a solution of Eq. (E), or, equivalently, x̄ is a fixed point of f .

Definition 1.1 Let x̄ be an equilibrium point of Eq. (E).

(a) The equilibrium x̄ is called stable if, for every ε > 0, there exists δ > 0 such that if
x−2, x−1, x0 ∈ I and |x−2 − x̄|+ |x−1 − x̄|+ |x0 − x̄| < δ, then |xn − x̄| < ε for all ≥ 1.

(b) The equilibrium x̄ is called locally asymptotically stable if it is stable and if there exists
γ > 0 such that if x−2, x−1, x0 ∈ I and |x−2 − x̄| + |x−1 − x̄| + |x0 − x̄| < γ, then
limn→∞ xn = x̄.
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(c) The equilibrium x̄ is called a global attractor if

lim
n→∞

xn = x̄ for any x−2, x−1, x0 ∈ I.

(d) The equilibrium x̄ is called globally asymptotically stable if it is stable and is a global
attractor.

(e) The equilibrium x̄ is called unstable if it is not stable.

(f) The equilibrium x̄ is called a repeller if there exists γ > 0 such that for x−2, x−1, x0 ∈ I

and |x−2 − x̄|+ |x−1 − x̄|+ |x0 − x̄| < γ, there exists N ≥ −2 such that |xN − x̄| ≥ γ.

Clearly, a repeller is an unstable equilibrium.

Let
p =

∂f(x̄, x̄)

∂u
and q =

∂f(x̄, x̄)

∂v
,

where f(u, v) is the function in Eq. (E) and x̄ is an equilibrium of the equation. Then the
equation

yn+1 = pyn−1 + qyn−2, n = 0, 1, · · ·

is called the linearized equation associated with Eq. (E) about the equilibrium point x̄.

Definition 1.2 A positive semicycle of a solution {xn}∞n=−2 of equation (1.1) consists
of a “ string ” of terms {xl, xl+1, · · · , xm}, all greater than or equal to the equilibrium x̄, with
l ≥ −2 and m ≤ ∞ such that

either l = −2 or l > −2 and xl−1 < x̄

and
either m = ∞ or m < ∞ and xm+1 < x̄.

A negative semicycle of a solution {xn}∞n=−2 of equation (1.1) consists of a “ string ” of terms
{xl, xl+1, · · · , xm}, all less than x̄, with l ≥ −2 and m ≤ ∞ such that

either l = −2 or l > −2 and xl−1 ≥ x̄

and
either m = ∞ or m < ∞ and xm+1 ≥ x̄.

The length of a semicycle is the number of the total terms contained in it.

Definition 1.3 A solution {xn}∞n=−2 of equation (1.1) is said to be eventually trivial if
xn is eventually equal to x̄ = 1; Otherwise, the solution is said to be nontrivial.

A solution {xn}∞n=−2 of equation (1.1) is said to be eventually positive(negative) if xn is
eventually great (less) than x̄ = 1;

For the other concepts in this paper, see [1, 2].
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2 Main Results and Their Proofs

In this section we will formulate our main results in this paper, that is, with respect to
the nontrivial solutions, oscillation and non-oscillation and global asymptotic stability for
equation (1.1).

2.1 Nontrivial solution

Theorem 2.1 A positive solution {xn}∞n=−3 of equation (1.1) is eventually trivial if and
only if

(x−2 − 1)(x−1 − 1)(x0 − 1) = 0 . (2.1)

Proof: Sufficiency. Assume that (2.1) holds. Then it follows from equation (1.1) that the
following conclusions hold.

i) If x−2 = 1, then xn = 1 for n ≥ 3;

ii) If x−1 = 1, then xn = 1 for n ≥ 1;

iii) If x0 = 1, then xn = 1 for n ≥ 2.

Necessity. Conversely, assume that

(x−2 − 1)(x−1 − 1)(x0 − 1) 6= 0 . (2.2)

Then one can show that
xn 6= 1 for any n ≥ 1.

Assume the contrary that for some N ≥ 1,

xN = 1 and that xn 6= 1 for − 2 ≤ n ≤ N − 1 . (2.3)

Clearly,
1 = xN =

xN−2 + xN−3 + a

xN−2xN−3 + 1 + a
,

which implies (xN−2 − 1)(xN−3 − 1) = 0, which contradicts (2.3).

Remark 2.2 Theorem 2.1 actually demonstrates that a positive solution {xn}∞n=−2 of equa-
tion (1.1) is eventually nontrivial if and only if (x−2 − 1)(x−1 − 1)(x0 − 1) 6= 0. Therefore, if
a solution {xn}∞n=−2 is nontrivial, then xn 6= 1 for n ≥ −2.

Next we consider some properties of nontrivial solutions of equation (1.1).
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2.2 Oscillation and Non-oscillation

Before stating the oscillation and non-oscillation of solutions, we need the following key
lemma.

Lemma 2.3 For any nontrivial positive solution {xn}∞n=−2 of equation (1.1), the follow-
ing conclusions are true:

(a) (xn+1 − 1)(xn−1 − 1)(xn−2 − 1) < 0 for n ≥ 0;

(b) (xn+1 − xn−1)(xn−1 − 1) < 0 for n ≥ 0;

(c) (xn+1 − xn−2)(xn−2 − 1) < 0 for n ≥ 0.

Proof: In view of equation (1.1), we can see that

xn+1 − 1 = −(xn−1 − 1)(xn−2 − 1)

xn−1xn−2 + 1 + a
, n = 0, 1, 2, · · ·

and
xn+1 − xn−1 =

(1− xn−1)[a + xn−2(1 + xn−1)]

xn−1xn−2 + 1 + a
, n = 0, 1, 2, · · · ,

from which inequalities (a) and (b) follow. The proof for inequality (c) is similar to that of
inequality (b). So the proof is complete.

Theorem 2.4 There exist non-oscillatory solutions of equation (1.1), which must be
eventually negative. There don’t exist eventually positive non-oscillatory solutions of equation
(1.1).

Proof: Consider a solution of equation (1.1) with x−2 < 1, x−1 < 1 and x0 < 1. We then
know from Lemma 2.3 (a) that xn < 1 for n ≥ −2. So, this solution is just a non-oscillatory
solution and furthermore eventually negative.

Suppose that there exist eventually positive non-oscillatory solutions of equation (1.1). Then,
there exists a positive integer N such that xn > 1 for n ≥ N . Thereout, for n ≥ N + 2,
(xn+1 − 1)(xn−1 − 1)(xn−2 − 1) > 0. This contradicts Lemma 2.3 (a). So, There don’t exist
eventually positive non-oscillatory solutions of equation (1.1), as desired.

We now analyze the rule for trajectory structure of strictly oscillatory solutions of equation
(1.1).

Theorem 2.5 Let {xn}∞n=−2 be a strictly oscillatory solution of equation (1.1). Then the
rule for the lengths of positive and negative semi-cycles of this solution to successively occur
is · · · , 3+, 2−, 1+, 1−, 3+, 2−, 1+, 1−, 3+, 2−, 1+, 1−, 3+, 2−, 1+, 1−, 3+, 2−, 1+,1−, 3+, 2−, 1+,
1−, · · · .
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Proof: By Lemma 2.3 (a), one can see that the length of a negative semi-cycle is not larger
than 2, whereas, the length of a positive semi-cycle is at most 3. Based on the strictly
oscillatory character of the solution, we see, for some integer p ≥ 0 , one of the following two
cases must occur:
Case 1: xp−2 > 1, xp−1 < 1, xp > 1;
Case 2: xp−2 > 1, xp−1 < 1, xp < 1.

If Case 1 occurs, it follows from Lemma 2.3 (a) that xp+1 > 1, xp+2 > 1, xp+3 < 1,
xp+4 < 1, xp+5 > 1, xp+6 < 1, xp+7 > 1, xp+8 > 1, xp+9 > 1, xp+10 < 1, xp+11 < 1,
xp+12 > 1, xp+13 < 1, xp+14 > 1, xp+15 > 1, xp+16 > 1, xp+17 < 1, xp+18 < 1, xp+19 > 1,
xp+20 < 1, xp+21 > 1, xp+22 > 1, xp+23 > 1, xp+24 < 1, xp+25 < 1, xp+26 > 1, xp+27 < 1,
xp+28 > 1, xp+29 > 1, xp+30 > 1, xp+31 < 1, xp+32 < 1, xp+33 > 1, xp+34 < 1, xp+35 > 1,
xp+36 > 1, xp+37 > 1, xp+38 < 1, xp+39 < 1, xp+40 > 1, xp+41 > 1, · · · , which means
that the rule for the lengths of positive and negative semi-cycles of the solution of equation
(1.1) to successively occur is · · · , 3+, 2−, 1+, 1−, 3+, 2−, 1+, 1−, 3+, 2−, 1+, 1−, 3+, 2−, 1+, 1−,
3+, 2−, 1+, 1−, 3+, 2−, 1+, 1−, · · · .

If Case 2 happens, then Lemma 2.3 (a) tells us that xp+1 > 1, xp+2 < 1, xp+3 > 1,
xp+4 > 1, xp+5 > 1, xp+6 < 1, xp+7 < 1, xp+8 > 1, xp+9 < 1, xp+10 > 1, xp+11 > 1,
xp+12 > 1, xp+13 < 1, xp+14 < 1, xp+15 > 1, xp+16 < 1, xp+17 > 1, xp+18 > 1, xp+19 > 1,
xp+20 < 1, xp+21 < 1, xp+22 > 1, xp+23 < 1, xp+24 > 1, xp+25 > 1, xp+26 > 1, xp+27 < 1,
xp+28 < 1, xp+29 > 1, xp+30 < 1, xp+31 > 1, xp+32 > 1, xp+33 > 1, xp+34 < 1, xp+35 < 1,
xp+36 > 1, xp+37 < 1, xp+38 > 1, xp+39 > 1, xp+40 > 1, xp+41 < 1, xp+42 < 1, xp+43 < 1,
xp+44 > 1, · · · . This shows the rule for the numbers of terms of positive and negative
semicycles of the solution of equation (1.1) to successively occur still is · · · 3+, 2−, 1+, 1−, 3+,
2−, 1+, 1−, 3+, 2−, 1+, 1−, 3+, 2−, 1+, 1−, 3+, 2−, 1+, 1−, 3+, 2−, 1+, 1−, · · · .

Hence, the proof is complete.

Remark 2.6 It is well known to all that the two cases in the proof of Theorem 2.5 are
caused by the perturbation of the initial around the equilibrium point. So, the theorem 2.5
actually indicates that the perturbation of the initial values may lead to the variation of the
trajectory structure rule for the solutions of equation (1.1).

2.3 Global Asymptotic Stability

First, we consider the local asymptotic stability for unique positive equilibrium point x̄ of
equation (1.1). We have the following results.

Theorem 2.7 Then the positive equilibrium of equation (1.1) is locally asymptotically
stable.
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Proof: The linearized equation of equation (1.1) about the positive equilibrium x̄ = 1 is

yn+1 = 0× yn + 0× yn−1 + 0× yn−2, n = 0, 1, · · · .

By virtue of [2, Remark 1.3.7], x̄ is locally asymptotically stable. The proof is complete.

We now are in a position to study the global asymptotic stability of positive equilibrium
point x̄.

Theorem 2.8 The positive equilibrium point of equation (1.1) is globally asymptotically
stable.

Proof: We must prove that the positive equilibrium point x̄ of equation (1.1) is both locally
asymptotically stable and globally attractive. Theorem 2.7 has shown the local asymptotic
stability of x̄. Hence, it remains to verify its global attractivity. That is, it suffices to prove
that every solution {xn}∞n=−3 of equation (1.1) converges to x̄ as n →∞, i.e., to prove

lim
n→∞

xn = x̄ = 1 . (2.4)

We can divide the solutions into two kinds of types.

i) Trivial solutions;

ii) Nontrivial solutions.

If the solution is a trivial solution, then it is obvious for (2.4) to hold because xn = 1

eventually.

If the solution is a nontrivial solution, then we can further divide the solution into two cases.

a) Non-oscillatory solution;

b) Oscillatory solution.

If case a) happens, then it follows from Theorem 2.4 that the solution is actually an eventually
negative one. Accordingly, there exists a positive integer N such that xn < 1 for n ≥ N . From
Lemma 2.3 (b), we know that two subsequences {x2n} and {x2n+1} of the solution {xn}∞n=−2

are increasing and have upper bound 1. So, the limits limn→∞ x2n and limn→∞ x2n+1 exist
and are finite, denoted by L and M , respectively. It is clear from equation (1.1) that

x2n+1 =
x2n−1 + x2n−2 + a

x2n−1x2n−2 + 1 + a
and x2n+2 =

x2n + x2n−1 + a

x2nx2n−1 + 1 + a
.

Taking limits on both sides of the above equalities produces

M =
M + L + a

LM + 1 + a
and L =

L + M + a

LM + 1 + a
.
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Solving these two equations, we get L = M = 1. This manifests that (2.4) is valid for
non-oscillatory solutions.

Thus, it suffices to prove that (2.4) holds for the solution to be oscillatory, i.e., case b) occurs.

Consider now {xn} to be strictly oscillatory about the positive equilibrium point x̄ of equation
(1.1). By virtue of Theorem 2.5, we know that the rule for the lengths of positive and negative
semi-cycles which occur successively is · · · , 3+, 2−, 1+, 1−, 3+, 2−, 1+, 1−, 3+, 2−, 1+, 1−, · · · .

For simplicity, for some nonnegative integer p, we denote by {xp, xp+1, xp+2}+ the terms of
a positive semi-cycle of length three, followed by {xp+3, xp+4}− a negative semi-cycle with
length two, then a positive semi-cycle {xp+5}+ and a negative semi-cycle {xp+6}−, and so on.
Namely, the rule for the positive and negative semi-cycles of the solution to occur successively
can be periodically expressed as follows:
{xp+7n, xp+7n+1, xp+7n+2}+, {xp+7n+3, xp+7n+4}−, {xp+7n+5}+, {xp+7n+6}−, n = 0, 1, · · · .

From Lemma 2.3 (b) and (c) the following results can be derived straightforward:

(i) xp+7n+7 < xp+7n+5 < xp+7n+2 < xp+7n;

(ii) xp+7n+6 > max{xp+7n+4, xp+7n+3}.

From i), one can see that {xp+7n} is monotonically decreasing and has lower bound 1. So,
the limit limn→∞ xp+7n exists and is finite, denoted by L. Moreover, it follows from i) that

lim
n→∞

xp+7n+5 = lim
n→∞

xp+7n+2 = lim
n→∞

xp+7n = L . (2.5)

According to the taking values of variable in positive and negative semi-cycles and equation
(1.1), we also have

xp+7n+3 =
xp+7n+1 + xp+7n + a

xp+7n+1xp+7n + 1 + a
>

1

xp+7n+1

,

and

xp+7n+4 =
xp+7n+2 + xp+7n+1 + a

xp+7n+2xp+7n+1 + 1 + a
>

1

xp+7n+2

.

So, we further obtain

xp+7n+7 =
xp+7n+5 + xp+7n+4 + a

xp+7n+5xp+7n+4 + 1 + a
<

1

xp+7n+4

< xp+7n+2 (2.6)

and

xp+7n+8 =
xp+7n+6 + xp+7n+5 + a

xp+7n+6xp+7n+5 + 1 + a
<

1

xp+7n+6

<
1

xp+7n+3

< xp+7n+1 . (2.7)
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we see by (2.5) and (2.6) that limn→∞ xp+7n+4 = 1/L.

(2.7) indicates that {xp+7n+1} is monotonically decreasing and has lower bound 1. So, the
limit limn→∞ xp+7n+1 exists and is finite, denoted by M . Furthermore, it is clear from (2.7)
that

lim
n→∞

xp+7n+6 = lim
n→∞

xp+7n+3 =
1

M
. (2.8)

Now it’s sufficient for us to verify that L = M = 1. To this end, noting

xp+7n+6 =
xp+7n+4 + xp+7n+3 + a

xp+7n+4xp+7n+3 + 1 + a
,

taking the limits on both sides of the above equality, we obtain 1
M

= 1/L+1/M+a
1/L×1/M+1+a

. Solving
this equation, we can derive M = 1.

By taking the limits on both sides of

xp+7n+5 =
xp+7n+3 + xp+7n+2 + a

xp+7n+3xp+7n+2 + 1 + a
,

we have L = limn→∞ xp+7n+5 = 1.

Up to this, we have shown limn→∞ xp+7n+k = 1, k = 0, 1, 2 · · · , 6, which indicates limn→∞ xn =

1. So, the proof for Theorem 2.8 is complete.

2.4 Rule of Trajectory Structure

Finally, we can sum the general rule for the trajectory structure of solutions of equation
(1.1) as follows.

Theorem 2.9 The rule for the trajectory structure of any solution of equation (1.1) is
as follows.

I). The solution is either eventually trivial or;

II). The solution is eventually nontrivial and further either

II-1). The solution is eventually negative non-oscillatory or;

II-2). The solution is strictly oscillatory and moreover, the successive lengths for positive and
negative semi-cycles occur periodically with prime period 7 and in a period the rule is
3+, 2−, 1+, 1−.

The positive equilibrium point of equation (1.1) is a global attractor of all its solutions.

It follows from the results stated previously that Theorem 2.9 is true.
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