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On the Difference Equation
xn+1 = (βxn + γxn−1)/(γxn + βxn−1)

ABSTRACT. The difference equation in the title is solved by means of functions, which
can be represented as composed functions of the exponential function and a function being
odd with respect to one or two arbitrary parameters. In the case β = 1/4, γ = 3/4 there is
given a conjecture concerning a solution of a new type. A second conjecture concerns the
existence of asymptotically 3-periodic solutions. Though the difference equation is of second
order, we point out singular cases where three initial values can be prescribed.
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Rational difference equations of second order are systematically investigated in the book
M.R. S. Kulenović and G. Ladas [6], where also various applications of these equations are
pointed out.

Here, we consider the special case

xn+1 =
βxn + γxn−1

γxn + βxn−1

(1)

with β2 6= γ2 and integer n. According to the classification in [6] it belongs to the type (2, 2)

or to the type (1, 1). In the case of positive coefficients a detailed stability and semicycle
analysis of the positive solutions of (1) is carried out in [6, Chapter 6.9].

In this paper we study arbitrary solutions of (1) with respect to its structure and its asymp-
totic behaviour. These solutions can have zeros, but not at consecutive points.

It can easily be seen that (1) has the following property:

Proposition 1 If xn = wn is a special solution of (1), then xn = 1
wn

is also a solution
of (1).
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Here we allow that a solution equals infinity, but not at consecutive points. This means that
the forbidden set of the initial values (x−1, x0) is only {(0, 0), (∞,∞)}, cf. [6, pp. 2.17].

Without loss of generality we use for the coefficients the normalization

β + γ = 1 , (2)

so that we can eliminate γ, and it follows β 6= 1
2
. Equation (1) has the equilibrium x = 1,

and about this equilibrium it has the linearized equation

yn+1 = (2β − 1)(yn − yn−1)

with the characteristic equation

λ2 + (1− 2β)(λ− 1) = 0 . (3)

At first we study solutions with one arbitrary parameter, and afterwards with two parame-
ters. Moreover, we consider the exceptional case β = 1

3
, we ask for asymptotically 3-periodic

solutions, and finally we point out cases with three given initial values.

One parameter. Let λ = z be a solution of (3) with |z| 6= 1. Then (1) possesses a solution
of the form

xn = 1 +
∞∑

j=1

cja
jznj (4)

with c1 = 1, arbitrary a and |cj| ≤ M j−1 for a certain constant M , cf. [2]. Hence, (4)
converges for

|azn| < 1

M
, (5)

i. e. for sufficiently large n in case of |z| < 1, and for sufficiently large −n in case of |z| > 1.
The series in (4) is simultaneously an asymptotic expansion as n → +∞ resp. n → −∞.

Proposition 2 If xn is the solution (4) of (1), then c2 = 1
2

and, under the condition (5),
the solution 1

xn
has the expansion (4) with −a instead of a. Moreover, under the sharpening

of (5)

|azn| < 1

M + 1
(6)

there exists a function fn(a) being odd in a such that

xn = exp(fn(a)) . (7)
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Proof: Under the condition (5) it follows from (4) that

1

xn

= 1− azn + (1− c2)a
2z2n + . . . . (8)

According to Proposition 1 the left-hand side is also a solution of (1), and the right-hand
side must have the form (4), i. e. the expansion in (8) is the expansion (4) with −a instead
of a.

Let xn = Fn(a) and therefore 1
xn

= Fn(−a). Under the condition (6) it is |Fn(a)− 1| < 1, so
that fn(a) = ln(Fn(a)) exists, and this function satisfies fn(a) = −fn(−a). From this and

fn(a) = ln(1 + azn + c2a
2z2n + . . . ) = azn +

(
c2 −

1

2

)
a2z2n + . . .

it follows that c2 = 1
2

�

The functions Fn(a) and fn(a) are holomorphic under the condition (6). Hence, the analytic
continuation of (7) remains a solution of (1).

Example 1 In the case β = 1
4

we can choose the solution λ = 1
2

of (3) and obtain by means
of the DERIVE system

xn = exp

{
a

2n
+

1

108

a3

23n
+

19

71280

a5

25n
+

68437

6951510720

a7

27n
+ . . .

}
and for the coefficient in (4)

c3 =
19

108
, c4 =

11

216
, c5 =

943

71280
, c6 =

4159

1283040
, c7 =

764869

993072960
.

Note that (1) in this example corresponds to [6, (6.66)] with p = 1/3 and q = 3, however,
neither [6, (6,67)] nor [6, (6,68)] are satisfied.

Two parameters. Let λ = z and λ = s be two different solutions of (3), and assume that
λ = zjs` is no solution of (3) for all non-negative integers j, ` with j + ` ≥ 2, then (1) has
also a solution of the form

xn = 1 +
∑

1≤j+`

cj` ajznjb`sn` (9)

with c10 = c01 = 1, arbitrary a, b, and |cj`| ≤ M j+`−1 for a certain constant M , which is
convergent for |z| < 1, |s| < 1 and n large, |z| > 1, |s| > 1 and −n large, cf. [2] in the real,
and [3] in the complex case, and also for |z| < 1 < |s|, if |a| and |b| are sufficiently small and

ln(|a|M)

− ln |z|
< n <

− ln(|b|M)

ln s
.
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Instead of a detailed analysis we only mention that with some more effort Proposition 2 can
be generalized to these cases, and that also the analytic continuation can be applied.
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Figure 1: The curve (3) , the curve λ =
√

2β − 1

and the straight lines λ = ±1

Figure 2 shows the real branches of the curve (3), and for 1
2

< β < 5
2

the curve λ =
√

2β − 1

(= |z| = |s|) concerning the complex branches. For 1
4

< β < 1
2

there are two real, and for
1
2

< β < 1 two complex solutions with |λ| < 1. For 1 < β < 5
2

there are two complex, and
for 5

2
< β two real solutions with |λ| > 1. For β < 1

4
there is one solution with 1

2
< λ < 1

and one solution with λ < −1.

In the two cases, where (1) belongs to the type (1, 1), we have elementary solutions of the
form

xn = exp{azn + bsn} , (10)

which visualize Proposition 2, and which can be expanded in the form (9) for all a, b and
all n. The first case is β = 0 with z = −1

2
+

√
5

2
, s = −1

2
−

√
5

2
and therefore |z| < 1 < |s|,

cf. [6, Chapter 3.3]. The second case is β = 1 with z = eiπ/3, s = e−iπ/3 and |z| = |s| = 1,
cf. [6, Chapter 3.2] and [3, Example 4]. Of course, this solution (10) can also be written in
the real form

xn = exp
{

c cos
nπ

3
+ d sin

nπ

3

}
with arbitrary real parameters c, d.

In some of the excluded cases with zks` = 1 for some integers k, `, there also exist solutions
of the form (9), however, with polynomial coefficients, cf. [2].
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Example 2 Let us come back to Example 1 with β = 1
4
, but concerning the second solution

λ = −1 of (5). In this case equation (1) should be expected to have a 2-periodic solution,
however, it turns out that such a solution must be the constant xn = 1.

Hence, we expect that (1) has a solution of the form

xn = 1 + un + (−1)nvn (11)

with functions un, vn tending to zero as n →∞. In order to find the asymptotic behaviour
of these functions, we use the heuristic method from [1], assuming n = t as a continuous
variable, replacing un+k according to Taylor approximately by u + ku′, assuming that u′ =

o(u), and proceeding analogously with vn. Then (1) can be replaced approximately by

(1 + u + u′ − (−1)n(v + v′))(4 + 4u− u′ + (−1)n(2v + v′)) = 4 + 4u− 3u′ + (−1)n(3v′ − 2v) .

Comparing coefficients of (−1)n we obtain

6u′ + 4u + 4u2 + 3uu′ − u′2 − 2v2 − 3vv′ − v′2 = 0 ,

−6v′ − 2uv − 3uv′ + 3vu′ + 2u′v′ = 0 .

Cancelling all terms of smaller order and dividing by 2, these equations reduce to

2u = v2 ,

−3v′ = uv .

Integration yields

u =
3

2t
, v = ±

√
3

t
, (12)

disregarding the constant of integration. A further analysis shows that we can expect an
improvement of (11) with (12) (taking the sign +) in the form

xn = 1 +
3

2n
+ (a ln n + b)

1

n2
+ (−1)n

(√
3

n
+ (c ln n + d)

1√
n3

)
(13)

up to smaller terms as n →∞. By means of the DERIVE system we find

a = −3

8
, b =

√
3d− 9

8
, c = −

√
3

8
, (14)

where d is an arbitrary constant, cf. [7, Remark 1], and

xn+1 −
xn + 3xn−1

3xn + xn−1

∼ − 3

32

ln2 n

n3
.



8 L. Berg

Conjecture 1 There exists a solution xn of (1) such that the expansion (13) with (14)
is valid up to o

(
1
n2

)
.

However, similarly as in [8, Conjecture 1] we cannot prove it. Obviously, a solution xn having
the finite asymptotic expansion (13) as n →∞ is oscillating about the equilibrium 1. From
(13) it follows that 1

xn
has the asymptotic expansion (13) with −

√
3, −d instead of

√
3, d

and that

xn = exp

{
(−1)n

(√
3

n
− 1

8

(√
3 ln n− 8d + 4

√
3
) 1√

n3

+
3

80

(
5
√

3 ln n− 40d + 18
√

3
) 1√

n5

)}

both up to smaller terms as n → ∞, where the argument of the exponential function is an
odd function of

√
n.

Asymptotically 3-periodic solutions. Since 2-periodic solutions were already investi-
gated in [6, Section 6.9.1], we ask for 3-periodic solutions. It can easily be seen that

. . . ,−1,−1, 1,−1,−1, 1, . . . (15)

is such a solution of (1) for all considered coefficients.

In connection with (15) it makes sense to ask for asymptotically 3-periodic solutions of the
form

x3n−1 = −1 + aλn

x3n = −1 + bλn

x3n+1 = 1 + cλn

 (16)

up to O(λ2n), cf. [1, Section 5]. Substituting (16) into (1) we find

(1 + cλn)(γ(−1 + bλn) + β(−1 + aλn)) = β(−1 + bλn) + γ(−1 + aλn)

(−1 + aλn+1)(γ(1 + cλn) + β(−1 + bλn)) = β(1 + cλn) + γ(−1 + bλn)

(−1 + bλn+1)(γ(−1 + aλn+1) + β(1 + cλn)) = β(−1 + cλn+1) + γ(1 + cλn)

again up to O(λ2n), and, comparing the coefficients of λn, it follows

δa − δb − c = 0

δλa + b + c = 0

λa − δλb + c = 0

 (17)
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using the notation δ = β − γ = 2β − 1 according to (2). The homogeneous system (17) has
a non-trivial solution, if its determinant∣∣∣∣∣∣∣

δ −δ −1

δλ 1 1

λ −δλ 1

∣∣∣∣∣∣∣ = δ2λ2 + (2δ2 − δ + 1)λ + δ

vanishes, i.e. with the notation η = 1
δ
, if

λ2 + (2− η + η2)λ + η = 0 . (18)

If the condition (18) is satisfied, then (17) has the solution

b =
1 + λ

1− η
a , c =

η + λ

η(η − 1)
a (19)

with arbitrary a.
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Figure 2: The curve (18) , and the straight line λ = −1

Figure 2 of the curve (18) shows that for all η 6= 1, i.e. β 6= 1, there exists one solution of (18)
with |λ| < 1, and another one with λ < −1. Since for all finite β it is η 6= 0, it follows that
always λ 6= 0. We expect that for β 6= 1 there are two solutions of (1) with the asymptotic
behaviour (16) for n →∞ in case of |λ| < 1 resp. for n → −∞ in case of |λ| > 1, and with
regard to (4) we make the

Conjecture 2 For β 6= 1 there exist two solutions of (1) such that x3n−1, x3n, x3n+1

can be expanded into power series in λn with the first terms (16) and an arbitrary a. The
other parameters are determined by (18), (19) and η = 1

2β−1
.



10 L. Berg

Conjecture 2 comes true in the case β = 0, where η = −1. Namely, denoting the 3-periodic
solution (15) by εn, then (1) has besides of (10) also the solution εnxn, cf. [4, Setion 4.2] as
well as [5, p. 175], and the two solutions of (18) are z3 and s3 with z and s from (10).

Let us remark that the curve (18) attains its maximum λ = 1
4

at η = −3
2
, where b = a

2
,

c = −a
3

and β = 1
6
.

Three initial values. Let xn be a solution of Equation (1) for non-negative integers n. In
order to continue this solution to negative n, it is appropriate to write (1) in the form

xn−1 = xn
γxn+1 − β

γ − βxn+1

, (20)

which is singular for xn+1 = γ
β
. In the case that the initial values (x−1, x0) are neither

(
0, γ

β

)
nor

(
∞, β

γ

)
, the value x−2 is uniquely determined by means of (20). Otherwise, this value

x−2 remains indetermined and can be prescribed arbitrarily, disregarding the countably many
cases where the continuation by means of (20) satisfies xn−1 ∈ {0,∞} for some negative n.
In particular, we have to avoid the case x−2 = x−1 in order to avoid the (shifted) forbidden
set.

Analogously, if the initial values (x−1, x0) are given in such a way that for a negative integer
m the pair (xm−1, xm) is either

(
0, γ

β

)
or
(
∞, β

γ

)
, then we can choose xm−2 as a third

arbitrary initial value subject to an analogous restriction as before.

References

[1] Berg, L. : On the asymptotics of nonlinear difference equations. Z. Anal. Anw. 21,
1061-1074 (2002)

[2] Berg, L. : Inclusion theorems for non-linear difference equations with applications.
J. Diffenrence Eq. Appl. 10, 399-408 (2004)
Corrections in same j.: 11, 181-182 (2005)

[3] Berg, L. : Oscillating solutions of rational difference equations. Rostock. Math. Kolloq.
58, 31-35 (2004)

[4] Çinar, C., Stević, S., and Yalçinkaya, I. : A note on global asymptotic stability of a
family of rational equations. Rostock. Math. Kolloq. 59, 41-49 (2005)

[5] Kocic, V. L., and Ladas, G. : Global Behaviour of Nonlinear Difference Equations of
Higher Order with Applications. Kluwer 1993



On the Difference Equation . . . 11

[6] Kulenović, M. R. S., and Ladas, G. : Dynamics of Second Order Rational Difference
Equations. Boca Raton etc. 2002

[7] Stević, S. : On positive solutions of a (k +1)-th order difference equation. Appl. Math.
Letters, to appear

[8] Stević, S. : Asymptotic behaviour of a class on nonlinear difference equations.To appear

received: August 9, 2005

revised: September 5, 2005

Author:

Lothar Berg
Universität Rostock
Institut für Mathematik
18051 Rostock
Germany

e-mail: lothar.berg@uni-rostock.de

mailto:lothar.berg@uni-rostock.de

