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ABSTRACT. Let X be a uniformly Banach space and let T : X → X be a φ-strongly

quasi-accretive operator. It is proved that, under suitable conditions, the Ishikawa iterative

process with errors both converges strongly to the unique zero of T and is pseudo stable. A

few related results deal with the convergence and stability of the Ishikawa iterative process

with errors to the solutions of the equations Tx = f and x + Tx = f , respectively, when

T : X → X is φ-strongly accretive. Our results extend, improve, and unify the results due

to Chidume [2], [3] and Zhou [18].
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1 Introduction

Let X be a Banach space with norm ‖ · ‖ and the dual space X∗. The normalized duality

mapping J : X → 2X∗
is defined by

J(x) = {f ∈ X∗ : Re〈x, f〉 = ‖x‖2 = ‖f‖2}, x ∈ X,

where 〈·, ·〉 denotes the generalized duality pairing. It is known that ifX is uniformly smooth,

then J is single valued and is uniformly continuous on any bounded subset of X.

The symbols D(T ), R(T ), F (T ), N(T ) stand for the domain, the range, the fixed point set

and the kernel of T , respectively, where N(T ) = {x ∈ D(T );Tx = 0}.

Let T : D(T ) ⊆ X → X be an operator and I denote the identity mapping on X.

1This research was financially supported by Changwon National University in 2004
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Definition 1.1 (i) T is called to be strongly accretive if there exists a constant k ∈
(0, 1) such that for each x, y ∈ D(T ), there exists j(x− y) ∈ J(x− y) satisfying

Re〈Tx− Ty, j(x− y)〉 ≥ k‖x− y‖2;

(ii) T is said to be φ-strongly accretive if there exists a strictly increasing function φ :

[0,∞) → [0,∞) with φ(0) = 0 such that for each x, y ∈ D(T ), there exists j(x− y) ∈
J(x− y) satisfying

Re〈Tx− Ty, j(x− y)〉 ≥ φ(‖x− y‖)‖x− y‖;

(iii) T is said to be φ-strongly quasi-accretive if N(T ) 6= ∅ and if there exists a strictly

increasing function φ : [0,∞) → [0,∞) with φ(0) = 0 such that for each x ∈ D(T ) and

y ∈ N(T ), there exists j(x− y) ∈ J(x− y) satisfying

Re〈Tx, j(x− y)〉 ≥ φ(‖x− y‖)‖x− y‖.

The classes of operators appearing Definition 1.1 have been used and studied by several

authors (see, e.g., [1]-[4], [8], [10], [12]-[16], [18]). It is known that the classes of strongly

accretive operators and φ-strongly accretive operators with a nonempty kernel are proper

subclasses of the classes of φ-strongly accretive operators and φ-strongly quasi-accretive

operators, respectively.

Let us recall the following iterative schemes due to Mann [11], Ishikawa [9] and Liu [10],

respectively.

Definition 1.2 (i) Let D(T ) be a convex subset of X with D(T ) = R(T ). For any

given x0 ∈ D(T ), the sequence {xn}∞n=0 in D(T ) defined by

yn = (1− βn)xn + βnTxn, xn+1 = (1− αn)xn + αnTyn, n ≥ 0

is called the Ishikawa iteration sequence, where {αn}∞n=0 and {βn}∞n=0 are sequences in

[0, 1] satisfying certain conditions;

(ii) If βn = 0 for all n ≥ 0 in (i), then the sequence {xn}∞n=0 in D(T ) defined by

xn+1 = (1− αn)xn + αnTxn, n ≥ 0,

is called the Mann iterative sequence;

(iii) For any given x0 ∈ D(T ), the sequence {xn}∞n=0 in D(T ) defined by

yn = (1− βn)xn + βnTxn + vn, xn+1 = (1− αn)xn + αnTyn + un, n ≥ 0,

is called the Ishikawa iteration sequence with errors, where {un}∞n=0 and {vn}∞n=0 are

sequences in X and {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1] satisfying suitable

conditions;
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(iv) If, βn = ‖vn‖ = 0 for all n ≥ 0 in (iii), then the sequence {xn}∞n=0 in D(T ) now defined

by

xn+1 = (1− αn)xn + αnTxn + un, n ≥ 0,

is called the Mann iteration sequence with errors.

It is clear that the Ishikawa and Mann iterative sequences are all special cases of the Ishikawa

iterative sequences with errors.

Let T : X → X be an operator and {αn}∞n=0 be sequences in [0, 1]. Assume that x0 ∈ X and

xn+1 = f(T, αn, xn) defines an iteration scheme which produces a sequence {xn}∞n=0 ⊂ X.

Suppose that, furthermore, that F (T ) 6= ∅ and that {xn}∞n=0 converges strongly to q ∈ F (T ).

Let {yn}∞n=0 be any sequence in X and define {εn}∞n=0 ⊂ [0,∞) by εn = ‖yn+1−f(T, αn, yn)‖.

Definition 1.3 (i) The iterative scheme {xn}∞n=0 defined by xn+1 = f(T, αn, xn) is

called T -stable if limn→∞ εn = 0 implies that limn→∞ yn = q;

(ii) The iterative scheme {xn}∞n=0 defined by xn+1 = f(T, αn, xn) is called almost T -stable

if
∑∞

n=0 εn <∞ implies that limn→∞ yn = q;

(iii) The iterative scheme {xn}∞n=0 defined by xn+1 = f(T, αn, xn) is called pseudo T -stable

if limn→∞ αn = 0 and εn = o(αn) implies that limn→∞ yn = q.

Osilike [16] pointed out that T -stability implies almost T -stability, and the converse does not

hold in general. Clearly, an iteration scheme {xn}∞n=0 which is T -stable is pseudo T -stable.

In section 2, we shall show that an iteration which is pseudo T -stable may fail to be T -stable.

Several researchers proved that the Mann iterative scheme, Ishikawa iterative scheme, the

Mann iterative scheme with errors and Ishikawa iterative scheme with errors can be used

to approximate solutions of the equations Tx = f and x + Tx = f , where T is continuous

strongly accretive or continuous φ-strongly accretive operators (see, e.g. [2]-[4], [12], [15],

[18]).

Rhoades [17] obtained that the Mann and Ishikawa iterative schemes may exhibit different

behaviors for different classes of nonlinear mappings. Several stability results for certain

classes of nonlinear mappings have been established by a few researchers (see, e.g. [5]-[7],

[13], [14], [16]). Harder and Hicks [7] revealed the importance of investigating the stability

of various iteration schemes for various classes of nonlinear mappings. In [13], [14] and

[16], Osilike established the stability and almost stability of certain Mann and Ishikawa

iteration procedures for the classes of Lipschitz strongly accretive operators and Lipschitz

φ-strongly accretive operators in real q-uniformly smooth Banach spaces and real Banach

spaces, respectively.
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For φ-strongly quasi-accretive operators without Lipschitz assumption, the possibility of

establishing corresponding stability results has not been explored yet within our knowledge.

The aim of this paper is to establish the strong convergence and pseudo stability of the

Ishikawa iterative scheme with errors to zeros of φ-strongly quasi-accretive operators in

uniformly smooth Banach spaces. A few related results deal with the strong convergence

and pseudo stability of the Ishikawa iterative scheme with errors to solutions of the equation

Tx = f and x + Tx = f , respectively, where T : X → X is φ-strongly accretive. The

convergence results in this paper are generalizations and improvements of the corresponding

results due to Chidume [2], [3] and Zhou [18].

We shall make use of the following result.

Lemma 1.1 ([1]) Let X be a Banach space. Then for all x, y ∈ X, j(x+y) ∈ J(x+y)

‖x+ y‖2 ≤ ‖x‖2 + 2Re〈y, j(x+ y)〉.

2 Main results

Theorem 2.1 Let X be a uniformly Banach space and let T : X → X be a φ-strongly

quasi-accretive operator. Suppose that the range (I − T ) of either or T is bounded and that

S = I − T . Assume that {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1] and {un}∞n=0 and

{vn}∞n=0 are sequences in X satisfying

lim
n→∞

αn = lim
n→∞

βn = lim
n→∞

‖vn‖ = 0; (2.1)

∞∑
n=0

αn = ∞; (2.2)

‖un‖ = o(αn). (2.3)

Suppose that {xn}∞n=0 is the sequence generated from arbitrary x0 ∈ X by

zn = (1− βn)xn + βnSxn + vn, xn+1 = (1− αn)xn + αnSzn + un, n ≥ 0. (2.4)

Then the sequence {xn}∞n=0 converges strongly to the unique zero q of T and it is pseudo

(I − T )-stable.

Proof: Since T is φ-strongly quasi-accretive, it follows that N(T ) is a singleton, say, {q}.
It is easy to see that S has a unique fixed point q, and that

Re〈Sx− q, j(x− q)〉 ≤ ‖x− q‖2 − φ(‖x− q‖)‖x− q‖, x ∈ X. (2.5)
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Now we show that R(S) is bounded. In fact, if R(I − T ) is bounded, so is R(S); if R(T ) is

bounded, then

‖Sx‖ ≤ ‖x− q‖+ ‖q‖+ ‖Tx‖ ≤ φ−1(‖Tx‖) + ‖q‖+ ‖Tx‖

for all x ∈ X. That is, R(S) is bounded. Using (2.1) and (2.3), we conclude that there exists

a nonnegative sequence {rn}∞n=0 such that

‖un‖ = rnαn, n ≥ 0; (2.6)

lim
n→∞

rn = 0. (2.7)

Let A = diamR(S) + ‖x0 − q‖ and B = A + sup{‖vn‖ : n ≥ 0} + sup{rn : n ≥ 0}. Next we

show by induction that

‖xn − q‖ ≤ A+ sup{rn : n ≥ 0} ≤ B, n ≥ 0. (2.8)

Obviously, (2.8) is true for n = 0. Suppose that (2.8) is true for some n ≥ 0. It follows from

(2.4) and (2.6) that

‖xn+1 − q‖ ≤(1− αn)‖xn − q‖+ αn‖Szn − q‖+ ‖un‖
≤(1− αn)[A+ sup{rn : n ≥ 0}] + αnA+ αnrn

≤A+ sup{rn : n ≥ 0}.

Hence (2.8) is true for all n ≥ 0.

In view of (2.4) and (2.8), we infer that

‖zn − q‖ ≤(1− βn)‖xn − q‖+ βn‖Sxn − q‖+ ‖vn‖
≤(1− βn)[A+ sup{rn : n ≥ 0}] + βnA+ ‖vn‖
≤B

(2.9)

for all n ≥ 0. It follows from Lemma 1.1, (2.4), (2.8) and (2.9) that

‖zn − q‖2 =‖(1− βn)(xn − q) + βn(Sxn − q) + vn‖2

≤(1− βn)2‖xn − q‖2 + 2βnRe〈Sxn − q, j(zn − q)〉
+ 2Re〈vn, j(zn − q)〉

≤(1− βn)2‖xn − q‖2 + 2B2Bβn + 2B‖vn‖

(2.10)
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for all n ≥ 0. Using Lemma 1.1, (2.4)-(2.6) and (2.8)-(2.10), we get that

‖xn+1 − q‖2 =‖(1− αn)(xn − q) + αn(Szn − q) + un‖2

≤(1− αn)2‖xn − q‖2 + 2αnRe〈Szn − q, j(xn+1 − q)〉
+ 2Re〈un, j(xn+1 − q)〉

≤(1− αn)2‖xn − q‖2 + 2αnRe〈Szn − q, j(zn − q)〉
+ 2αnRe〈Szn − q, j(xn+1 − q)− j(zn − q)〉+ 2B‖un‖

≤(1− αn)2‖xn − q‖2 + 2αn[‖zn − q‖2 − φ(‖zn − q‖)‖zn − q‖]
+ 2αnB‖j(xn+1 − q)− j(zn − q)‖+ 2B‖un‖

≤[(1− αn)2 + 2αn(1− βn)2]‖xn − q‖2 + 4Bαnβn + 4B2Bαn‖vn‖
− 2αnφ(‖zn − q‖)‖zn − q‖
+ 2αnB‖j(xn+1 − q)− j(zn − q)‖+ 2B‖un‖

≤‖xn − q‖2 − 2αnφ(‖zn − q‖)‖zn − q‖+ αntn

(2.11)

for all n ≥ 0, where

tn = B2βn + 4Bβn + 4B‖vn‖+ 2B‖j(xn+1 − q)− j(zn − q)‖+ 2Brn, n ≥ 0.

Since j is uniformly continuous on each bounded subset of X and

‖xn+1 − q − (zn − q)‖ ≤αn‖xn − Szn‖+ βn‖xn − Sxn‖+ ‖un‖+ ‖vn‖
≤2B(αn + βn) + ‖un‖+ ‖vn‖ → 0

as n → ∞, it follows that limn→∞ ‖j(xn+1 − q) − j(zn − q)‖ = 0. Thus, by (2.1), (2.6) and

(2.7) we have

lim
n→∞

tn = 0. (2.12)

Put inf{‖zn − q‖ : n ≥ 0} = r. We claim that r = 0. Otherwise r > 0. Thus (2.12) ensures

that there exists a positive integer N such that tn ≤ φ(r)r for all n ≥ N. From (2.11) we

obtain that for all n ≥ N,

‖xn+1 − q‖2 ≤‖xn − q‖2 − 2αnφ(r)r + αnφ(r)r

≤‖xn − q‖2 − αnφ(r)r,

which implies that

φ(r)r
∞∑

n=N

αn ≤
∞∑

n=N

(‖xn − q‖2 − ‖xn+1 − q‖2) = ‖xN − q‖2.
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That is,
∑∞

n=0 αn <∞ contradicting (2.2). Therefore r = 0. Thus there exists a subsequence

{‖znk
− q‖}∞k=0 of {‖zn− q‖}∞n=0 such that limk→∞ ‖znk

− q‖ = 0. It follows from (2.1), (2.4),

(2.6) and (2.7) that

‖xnk
− q‖ ≤‖znk

− q‖+ βnk
‖xnk

− Sxnk
‖+ ‖vnk

‖
≤‖znk

− q‖+ 2Bβnk
+ ‖vnk

‖ → 0

as k →∞. That is,

lim
k→∞

‖xnk
− q‖ = 0. (2.13)

By virtue of (2.1)-(2.3), (2.12) and (2.13), we conclude that for given ε > 0, there exists

positive numbers k0 and p = nk0 such that

‖xp − q‖ ≤ ε, max{αn, βn} ≤
ε

16B
, (2.14)

max{‖un‖, ‖vn‖} ≤
ε

8
, tn ≤ φ(

1

2
ε)ε, n ≥ p.

By induction we show that

‖xp+m − q‖ ≤ ε, m ≥ 0. (2.15)

Note that (2.14) ensures that (2.15) holds for m = 0. Suppose that (2.15) holds for some

m ≥ 0. If ‖xp+m+1 − q‖ > ε, then (2.14), (2.8) and (2.4) yield that

‖xp+m − q‖ ≥‖xp+m+1 − q‖ − αp+m‖Szp+m − xp+m‖ − ‖up+m‖

>ε− ε

16B
· 2B − ε

8
=

3

4
ε

(2.16)

and

‖zp+m − q‖ ≥‖xp+m − q‖ − βp+m‖Sxp+m − xp+m‖ − ‖vp+m‖

>
3

4
ε− ε

16B
· 2B − ε

8
=

1

2
ε.

(2.17)

It follows from (2.11), (2.14), (2.16) and (2.17) that

ε2 <‖xp+m+1 − q‖2

≤‖xp+m − q‖2 − 2αp+mφ(‖zp+m − q‖)‖zp+m − q‖+ αp+mtp+m

≤ε2 − αp+mφ(
1

2
ε)ε+ αp+mφ(

1

2
ε)ε = ε2,

which is impossible. Hence ‖xp+m+1 − q‖ ≤ ε. That is, (2.15) holds for all m ≥ 0. Thus

(2.15) yields that limn→∞ xn = q.
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Let {yn}∞n=0 be any given sequence in X and define {εn}∞n=0 by

wn = (1− βn)yn + βnSyn + vn, n ≥ 0; (2.18)

εn = ‖yn+1 − (1− αn)yn − αnTwn − un‖, n ≥ 0.

Put pn = yn+1 − (1− αn)yn − αnTwn − un. Then

yn+1 = (1− αn)yn + αnTwn + un + pn, n ≥ 0. (2.19)

Suppose that εn = o(αn). By (2.3), we get that

‖un + pn‖ ≤ ‖un‖+ εn = o(αn),

which implies that ‖un +pn‖ = o(αn). It follows from the above conclusion that the sequence

{yn}∞n=0 defined by (2.18) and (2.19) converges strongly to q. That is, {xn}∞n=0 is pseudo

T -stable. This completes the proof.

Theorem 2.2 Let X, {αn}∞n=0, {βn}∞n=0, {un}∞n=0 and {vn}∞n=0 be as in Theorem 2.1.

Let T : X → X be a φ-strongly accretive operator and the range of either (I − T ) or T

be bounded. Suppose that the equation Tx = f has a solution for a given f ∈ X and that

Sx = f + x − Tx for all x ∈ X. Then the sequence {xn}∞n=0 generated from an arbitrary

x0 ∈ X by (2.4) converges strongly to the unique solution of the equation Tx = f and it is

pseudo S-stable.

Proof: Since T is φ-strongly accretive and the equation Tx = f has a solution, it follows

that the equation Tx = f has a unique solution. The rest of the proof is identical the proof

of Theorem 2.1 and is therefore omitted. This completes the proof.

Theorem 2.3 Let X, {αn}∞n=0, {βn}∞n=0, {un}∞n=0 and {vn}∞n=0 be as in Theorem 2.1.

Let T : X → X be a φ-strongly accretive operator and the range of either (I + T ) or T be

bounded. Suppose that the equation x + Tx = f has a solution for a given f ∈ X and that

Sx = f − Tx for all x ∈ X. Then the sequence {xn}∞n=0 generated from an arbitrary x0 ∈ X
by (2.4) converges strongly to the unique solution of the equation x+Tx = f and it is pseudo

S-stable.

Proof: Let A = I + T . Then A is φ-strongly accretive and the range either A or (I − A)

is bounded. Clearly, x + Tx = f becomes Ax = f and Sx = f − Tx = f + x − Ax for all

x ∈ X. Hence Theorem 2.3 follows from Theorem 2.2. This completes the proof.
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Remark 2.1 The boundedness of R(T ) or R(I−T ) in Theorems 2.1 and 2.2 can be replaced

by the boundedness of {Txn}∞n=0 and {Tzn}∞n=0 or {xn − Txn}∞n=0 and {zn − Tzn}∞n=0.

Remark 2.2 The convergence result in Theorem 2.2 extends, improves and unifies Theo-

rems 1 and 2 of [2], Theorems 7 and 8 of [3] and Theorem 1 of [18] in the following ways:

(a) The Mann iterative schemes in [2, 3] and the Ishikawa iterative schemes in [2, 3, 18]

are replaced by the more general Ishikawa iterative scheme with errors.

(b) The strongly accretive operators in [2], [3] and [18] are replaced by the more general

φ-strongly accretive operators;

(c) That T is Lipschitz in [2] is omitted;

(d) The assumptions of αn ≤ βn in [2], [3], [18],
∑∞

n=0 cnb(cn) <∞ in [2], [3],
∑∞

n=0 αnb(αn) <

∞ in [2], [3] are superfluous;

(e) The boundedness hypotheses of R(I − T ) in [2], [18] and R(T ) in [3] are replaced by

the boundedness of either R(I − T ) or R(T );

The following example reveals that the convergence result in Theorem 2.2 extends properly

the corresponding results in [2], [3] and [18].

Example 2.1 Let X = (−∞,∞) with the usual norm. Then for any q > 1, X is real

q-uniformly smooth Banach space. Define T : X → X by

Tx =


x− 1, if x < −1

x−
√
−x, if x ∈ [−1, 0)

x, if x ∈ [0,∞).

Clearly R(T ) = X, R(I − T ) is bounded and T is continuous. Note that

lim
x→0−

Tx− T0

x− 0
= lim

x→0−

(
1 +

1√
−x

)
= ∞.

Hence T is not Lipschitz. Take φ(t) = 1
2
t for all t ≥ 0. In order to prove that T is φ-strongly

accretive, that is,

〈Tx− Ty, j(x− y)〉 ≥ φ(‖x− y|)‖x− y‖, x, y ∈ X. (2.20)

We have to consider the following cases.

Case 1. Let x, y ∈ (−∞,−1) or x, y ∈ [0,∞). Then

〈Tx− Ty, j(x− y)〉 = (x− y)2;
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Case 2. Let x, y ∈ [−1, 0). Then

〈Tx− Ty, j(x− y)〉 = [x− y − (
√
−x−

√
−y)](x− y) =

(
1 +

1√
−x+

√
−y

)
(x− y)2;

Case 3. Let x ∈ (−∞,−1), y ∈ [−1, 0). Then

〈Tx− Ty, j(x− y)〉 = [x− 1− (y −
√
−y)(x− y) = (x− y)2 + (1−

√
−y)(y − x);

Case 4. Let x ∈ (−∞,−1), y ∈ [0,∞). Then

〈Tx− Ty, j(x− y)〉 = (x− 1− y)(x− y) = (x− y)2 + (y − x);

Case 5. Let x ∈ [−1, 0), y ∈ [0,∞). Then

〈Tx− Ty, j(x− y)〉 = (x−
√
−x− y)(x− y) = (x− y)2 +

√
−x(y − x).

Therefore (2.20) holds. Since R(T ) = X, it follows that the equation Tx = f has a solution

for any f ∈ X. Set

αn = (1 + n)−
1
2 , βn = (2 + 2n)−

1
2 , un = (1 + n)−1, vn = (1 + n)−

1
3 , n ≥ 0.

Then all the assumptions of Theorem 2.2 are fulfilled. But Theorems 1 and 2 in [2], Theorems

7 and 8 in [3], and Theorem 1 in [18] are not applicable since R(T ) is unbounded, T is not

Lischitz, and αn > βn for each n > 0.

Remark 2.3 Theorems 11 and 12 in [3] are special cases of our Theorem 2.3.

Remark 2.4 For T : X → X a φ-strongly quasi-accretive operator, Theorem 2.1 proves

that the Ishikawa iterative scheme with errors considered in Theorem 2.1 is pseudo (I − T )-

stable. The following example reveals that the iterative scheme is not (I − T )-stable.

Example 2.2 Let X = (−∞,∞) with the usual norm, T = I and un = vn = 0 for all

n ≥ 0. Clearly,

Re〈Tx− Ty, j(x− y)〉 = ‖x− y‖2 ≥ φ(‖x− y‖)‖x− y‖, x ∈ X, y ∈ N(T ),

where φ(t) = 1
2
t for all t ≥ 0. It follows from Theorem 2.1 that the sequence {xn}∞n=0

generated from an arbitrary x0 ∈ X by

zn = (1− βn)xn + βnSxn + vn, xn+1 = (1− αn)xn + αnSzn + un, n ≥ 0,

converges strongly to the unique zero 0 of T and is pseudo (I − T )-stable. Next we prove

that it is not pseudo (I − T )-stable. Let yn = n
1+n

for all n ≥ 0. Then

εn = ‖yn+1 − (1− αn)yn − αnSwn − un‖ ≤ ‖yn+1 − yn‖+ αn‖yn‖ → 0

as n→∞. That is, limn→∞ εn = 0. But, limn→∞ yn = 1 /∈ N(T ) = {0}.
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