Rostock. Math. Kolloq. 59, 75-86 (2005)

Zoltán Boros¹ and Árpád Száz

Finite and conditional completeness properties of generalized ordered sets

ABSTRACT. In particular, we show that if X is a set equipped with a transitive relation \leq , then the following completeness properties are equivalent:

- (1) lb $(\{x, y\}) \neq \emptyset$ for all $x, y \in X$, and inf $(A) \neq \emptyset$ for all $A \subset X$ with $A \neq \emptyset$ and lb $(A) \neq \emptyset$;
- (2) inf $(\{x, y\}) \neq \emptyset$ for all $x, y \in X$, and $\inf(A) \neq \emptyset$ for all $A \subset X$ with $A \neq \emptyset$, $\operatorname{lb}(A) \neq \emptyset$ and $\operatorname{ub}(A) \neq \emptyset$.

Thus, we obtain a substantial generalization of a basic theorem of Garrett Birkhoff which says only that in a conditionally complete lattice every nonempty subset which has a lower bound has a greatest lower bound.

KEY WORDS AND PHRASES. Generalized ordered sets, lower bound and infimum completenesses.

Introduction

Throughout this paper, X will denote an arbitrary set equipped with an arbitrary binary relation \leq . Thus, X may be considered as a generalized ordered set or an ordered set without axioms.

The set X will be called reflexive, transitive, antisymmetric and total if the relation \leq has the corresponding property. If X is total, then for any $x, y \in X$ we have either $x \leq y$ or $y \leq x$. Thus, in particular, X is reflexive.

¹The research of the first author has been supported by the grant OTKA T–043080 and the János Bolyai Scholarship of the Hungarian Academy of Sciences.

For any $A \subset X$, the members of the families

$$lb(A) = \left\{ x \in X : \forall a \in A : x \le a \right\}$$

and

$$ub(A) = \left\{ x \in X : \forall a \in A : a \le x \right\}$$

are called the lower and upper bounds of A in X, respectively. And the members of the families

$$\min (A) = A \cap \operatorname{lb} (A), \qquad \max (A) = A \cap \operatorname{ub} (A),$$

$$\inf (A) = \max (\operatorname{lb} (A)), \qquad \sup (A) = \min (\operatorname{ub} (A))$$

are called the minima, maxima, infima and suprema of A in X, respectively.

First, we show that the following extension of [2, Lemma 2.23, p. 46] is true.

Lemma If X is transitive, and moreover $A_i \subset X$ and $\inf(A_i) \neq \emptyset$ for all $i \in I$, then

$$\operatorname{lb}\left(\bigcup_{i\in I}A_i\right) = \operatorname{lb}\left(\bigcup_{i\in I}\operatorname{inf}\left(A_i\right)\right) \quad and \quad \operatorname{inf}\left(\bigcup_{i\in I}A_i\right) = \operatorname{inf}\left(\bigcup_{i\in I}\operatorname{inf}\left(A_i\right)\right).$$

Then, by using this lemma, we show that the following generalization of [1, Theorem 9, p. 115] is also true.

Theorem If X is transitive, then the following completeness properties are equivalent:

- (1) $\operatorname{lb}(\{x, y\}) \neq \emptyset$ for all $x, y \in X$, and $\operatorname{inf}(A) \neq \emptyset$ for all $A \subset X$ with $A \neq \emptyset$ and $\operatorname{lb}(A) \neq \emptyset$;
- (2) $\inf(\{x, y\}) \neq \emptyset$ for all $x, y \in X$, and $\inf(A) \neq \emptyset$ for all $A \subset X$ with $A \neq \emptyset$, $\operatorname{lb}(A) \neq \emptyset$ and $\operatorname{ub}(A) \neq \emptyset$.

Remark If in particular X is partially ordered, then by using the above lemma we also show that the following completeness properties are equivalent:

- (1) inf $(\{x, y\}) \neq \emptyset$ for all $x, y \in X$;
- (2) $\inf(A) \neq \emptyset$ for every finite, nonvoid subset A of X.

In this respect, it is noteworthy that to prove a counterpart of the above equivalence for lb instead of inf, the transitivity of the relation \leq is again sufficient.

1 Lower and upper bounds

Concerning lower and upper bounds, we shall only quote here the following simple theorems of [5].

Theorem 1.1 If $A_i \subset X$ for all $i \in I$, then

$$\operatorname{lb}\left(\bigcup_{i\in I}A_{i}\right)=\bigcap_{i\in I}\operatorname{lb}\left(A_{i}\right)$$

Corollary 1.2 If $A \subset B \subset X$, then $\operatorname{lb}(B) \subset \operatorname{lb}(A)$.

Proof: Note that $\operatorname{lb}(B) = \operatorname{lb}(A \cup B) = \operatorname{lb}(A) \cap \operatorname{lb}(B) \subset \operatorname{lb}(A)$.

Corollary 1.3 If $A \subset X$, then $\operatorname{lb}(A) = \bigcap_{a \in A} \operatorname{lb}(a)$, where $\operatorname{lb}(a) = \operatorname{lb}(\{a\})$.

Theorem 1.4 If $A, B \subset X$, then

$$A \subset \operatorname{lb}(B) \iff B \subset \operatorname{ub}(A).$$

Corollary 1.5 If $A \subset X$, then $A \subset ub(lb(A))$.

Proof: Clearly, $lb(A) \subset lb(A)$. Hence, by Theorem 1.4, the required inclusion already follows.

Theorem 1.6 If $A \subset X$, then

 $\min(A) = A \cap \inf(A) \qquad and \qquad \inf(A) = \operatorname{lb}(A) \cap \operatorname{ub}(\operatorname{lb}(A)).$

Corollary 1.7 If $A \subset X$, then $\min(A) \subset \inf(A) \subset \operatorname{lb}(A) \subset \operatorname{lb}(\inf(A))$.

Proof: By Theorem 1.6, we have not only $\min(A) \subset \inf(A) \subset \operatorname{lb}(A)$, but also $\inf(A) \subset \operatorname{ub}(\operatorname{lb}(A)$. Hence, by Theorem 1.4, the required inclusion already follows.

The importance of reflexivity, totality and antisymmetry will only be illuminated here by the following basic theorems of [6].

Theorem 1.8 If $\Phi = lb$, min or inf, then the following assertions are equivalent:

- (1) X is reflexive;
- (2) $x \in \Phi(x)$ for all $x \in X$.

Theorem 1.9 The following assertions are equivalent:

- (1) X is reflexive;
- (2) $\min(x) \neq \emptyset$ for all $x \in X$;
- (3) $\min(x) = \{x\}$ for all $x \in X$.

Theorem 1.10 The following assertions are equivalent:

- (1) X is total;
- (2) $\min(\{x, y\}) \neq \emptyset$ for all $x, y \in X$.

Theorem 1.11 If X is reflexive and $\Phi = \min$ or \inf , then the following assertions are equivalent:

- (1) X is antisymmetric;
- (2) card $(\Phi(A)) \leq 1$ for all $A \subset X$.

Corollary 1.12 If X is reflexive and antisymmetric, then $\inf (x) = \{x\}$ for all $x \in X$.

2 The importance of transitivity

Concerning the importance of transitivity, we shall only quote here the following basic theorems of [6]. Hints for the proofs are included only for the reader's convenience.

Theorem 2.1 The following assertions are equivalent:

- (1) X is transitive;
- (2) $y \in lb(x)$ and $z \in lb(y)$ imply $z \in lb(x)$ for all $x, y, z \in X$;
- (3) $B \subset \operatorname{lb}(A)$ and $C \subset \bigcup_{b \in B} \operatorname{lb}(b)$ imply $C \subset \operatorname{lb}(A)$ for all $A, B \subset X$.

Proof: To prove the less obvious implication $(2) \Longrightarrow (3)$, suppose that (2) and the conditions of (3) hold. If $c \in C$, then since $C \subset \bigcup_{b \in B} \operatorname{ub}(b)$ there exists $b \in B$ such that $c \in \operatorname{lb}(b)$. Moreover, if $a \in A$, then since $b \in B \subset \operatorname{lb}(A)$ we have $b \in \operatorname{lb}(a)$. Hence, by using (2), we can already infer that $c \in \operatorname{lb}(a)$. Now, since $a \in A$ and $c \in C$ were arbitrary, it is clear that $c \in \operatorname{lb}(A)$, and thus $C \subset \operatorname{lb}(A)$. Therefore, (3) also holds.

From the above theorem, it is clear that in particular we also have

78

Corollary 2.2 If X is transitive, then $x \in lb(A)$ and $y \in lb(x)$ imply $y \in lb(A)$ for all $A \subset X$ and $x, y \in X$.

Theorem 2.3 If X is transitive, then

 $\operatorname{lb}(x) = \operatorname{lb}(A)$ for all $A \subset X$ and $x \in \operatorname{inf}(A)$.

Proof: If $x \in \inf(A)$, then by Corollaries 1.7 and 1.2 we have $\operatorname{lb}(A) \subset \operatorname{lb}(\inf(A)) \subset \operatorname{lb}(x)$ even if X is not transitive.

Moreover, if $x \in \inf(A)$, then Corollary 1.7 we also have $x \in \operatorname{lb}(A)$. Hence, by Corollary 2.2, it is clear $y \in \operatorname{lb}(x)$ implies $y \in \operatorname{lb}(A)$. Therefore, $\operatorname{lb}(x) \subset \operatorname{lb}(A)$ is also true.

Corollary 2.4 If X is transitive, then

$$lb(A) = lb(inf(A))$$
 for all $A \subset X$ with $inf(A) \neq \emptyset$.

Proof: By Theorems 1.1 and 2.3, it is clear that

$$\operatorname{lb}\left(\inf\left(A\right)\right) = \bigcap_{x \in \inf\left(A\right)} \operatorname{lb}\left(x\right) = \bigcap_{x \in \inf\left(A\right)} \operatorname{lb}\left(A\right) = \operatorname{lb}\left(A\right)$$

Now, in addition to the results of [6], we can also easily prove the following

Theorem 2.5 If X is transitive and $A_i \subset X$ for all $i \in I$, then

(1)
$$\operatorname{lb}\left(\bigcup_{i\in I} A_i\right) = \operatorname{lb}\left(\left(\bigcup_{i\in J} A_i\right) \cup \left(\bigcup_{i\in I\setminus J} \inf\left(A_i\right)\right)\right),$$

(2) $\operatorname{inf}\left(\bigcup_{i\in I} A_i\right) = \operatorname{inf}\left(\left(\bigcup_{i\in J} A_i\right) \cup \left(\bigcup_{i\in I\setminus J} \inf\left(A_i\right)\right)\right),$

where $J = \{ i \in I : \inf (A_i) = \emptyset \}.$

Proof: By Theorem 1.1 and Corollary 2.4, we have

$$\begin{split} \operatorname{lb}\left(\bigcup_{i\in I}A_{i}\right) &= \bigcap_{i\in I}\operatorname{lb}\left(A_{i}\right) = \\ \left(\bigcap_{i\in J}\operatorname{lb}\left(A_{i}\right)\right) \cap \left(\bigcap_{i\in I\setminus J}\operatorname{lb}\left(A_{i}\right)\right) = \left(\bigcap_{i\in J}\operatorname{lb}\left(A_{i}\right)\right) \cap \left(\bigcap_{i\in I\setminus J}\operatorname{lb}\left(\inf\left(A_{i}\right)\right)\right) = \\ \operatorname{lb}\left(\bigcup_{i\in J}A_{i}\right) \cap \operatorname{lb}\left(\bigcup_{i\in J}\operatorname{inf}\left(A_{i}\right)\right) = \operatorname{lb}\left(\left(\bigcup_{i\in J}A_{i}\right) \cup \left(\bigcup_{i\in I\setminus J}\operatorname{inf}\left(A_{i}\right)\right)\right). \end{split}$$

Hence, by the definition of inf, it is clear that (2) is also true.

From Theorem 2.5, we can at once get the following generalization of the second part of [2, Lemma 2.23, p. 46].

Corollary 2.6 If X is transitive, and moreover $A_i \subset X$ and $\inf(A_i) \neq \emptyset$ for all $i \in I$, then

(1)
$$\operatorname{lb}\left(\bigcup_{i\in I} A_i\right) = \operatorname{lb}\left(\bigcup_{i\in I} \inf\left(A_i\right)\right);$$

(2) $\operatorname{inf}\left(\bigcup_{i\in I} A_i\right) = \operatorname{inf}\left(\bigcup_{i\in I} \inf\left(A_i\right)\right).$

3 Finite lower bound completenesses

Definition 3.1 We say that

- (1) X is two-lb-complete if $lb(\{x, y\}) \neq \emptyset$ for all $x, y \in X$;
- (2) X is two-inf-complete if $\inf(\{x, y\}) \neq \emptyset$ for all $x, y \in X$;
- (3) X is finitely quasi-lb-complete if $lb(A) \neq \emptyset$ for all finite, nonvoid subset A of X;
- (4) X is finitely quasi-inf-complete if $\inf(A) \neq \emptyset$ for all finite, nonvoid subset A of X.

Remark 3.2 By Corollary 1.7, it is clear that 'two-inf-completeness' implies 'two-lb-completeness', and 'finite quasi-inf-completeness' implies 'finite quasi-lb-completeness'.

Moreover, by using the well-orderedness of the set \mathbb{N} of all natural numbers, we can prove the following

Theorem 3.3 If X is transitive, then the following assertions are equivalent:

- (1) X is two-lb-complete;
- (2) X is finitely quasi-lb-complete.

Proof: By Definition 3.1, it is clear that $(2) \Longrightarrow (1)$ even if X is not partially ordered.

To prove the converse implication, suppose on the contrary that (1) holds, but (2) does not hold. That is, $lb({x, y}) \neq \emptyset$ for all $x, y \in X$, and $lb(A) = \emptyset$ for some finite, nonvoid subset A of X.

Denote by \mathcal{A} the family of all finite, nonvoid subsets A of X such that $\operatorname{lb}(A) = \emptyset$. Then, by the above assumptions, it is clear that $\mathcal{A} \neq \emptyset$ and $\operatorname{card}(A) > 2$ for all $A \in \mathcal{A}$. Define

$$M = \left\{ \operatorname{card} \left(A \right) : \quad A \in \mathcal{A} \right\}.$$

Then, we evidently have $\emptyset \neq M \subset \mathbb{N}$ such that $1 \notin M$ and $2 \notin M$.

Hence, since \mathbb{N} is well-ordered, we can infer that $\min(M) \neq \emptyset$. Therefore, there exists $n \in \min(M)$. This implies that $n \in M$ and $n \in \operatorname{lb}(M)$. Hence, it is clear that $2 < n \in \mathbb{N}$ such that $n \leq m$ for all $m \in M$. Moreover, we can also state that there exists $A \in \mathcal{A}$ such that $n = \operatorname{card}(A)$.

Thus, we can choose $a \in A$, and define $B = A \setminus \{a\}$. Then, it is clear that B is a finite nonvoid subset of X such that $k = \operatorname{card}(B) < \operatorname{card}(A) = n$. Therefore, $\operatorname{lb}(B) \neq \emptyset$ also holds. Namely, $\operatorname{lb}(B) = \emptyset$ would imply that $B \in \mathcal{A}$. Hence, we could infer that $k = \operatorname{card}(B) \in M$, and thus $n \leq k$, which would be a contradiction.

Now, we can choose $\beta \in lb(B)$ and $\gamma \in lb(\{a, \beta\})$. Then, by Theorem 1.1, it is clear that $\gamma \in lb(a)$ and $\gamma \in lb(\beta)$. Hence, by using Corollary 2.2, we can infer that $\gamma \in lb(B)$. Therefore, by Theorem 1.1, we also have $\gamma \in lb(a) \cap lb(B) = lb(\{a\} \cup B) = lb(A)$. This contradiction proves that $(1) \Longrightarrow (2)$.

A particular case of the following theorem is usually considered to be quite obvious in the advanced theory of lattices. The proofs given here and in [4, p. 40] show that this attitude cannot be completely justified.

Theorem 3.4 If X is partially ordered, then the following assertions are equivalent:

- (1) X is two-inf-complete;
- (2) X is finitely quasi-inf-complete.

Proof: By Definition 3.1, it is clear that $(2) \Longrightarrow (1)$ even if X is not partially ordered.

To prove the converse implication, suppose on the contrary that (1) holds, but (2) does not hold. Denote by \mathcal{A} the family of all finite, nonvoid subsets A of X such that $\inf(A) = \emptyset$. Then, by using a similar argument as in the proof of Theorem 3.3, we can see that there exists $A \in \mathcal{A}$ such that by choosing $a \in A$ and defining $B = A \setminus \{a\}$, we already have $\inf(B) \neq \emptyset$.

Now, by Theorem 1.11, it is clear that there exists $x \in X$ such that $\inf(B) = \{x\}$. Moreover, by Corollary 1.12, we also have $\inf(\{a\}) = \{a\}$. Hence, by using Corollary 2.6, we can infer that

$$\inf (A) = \inf \left(\{a\} \cup B \right) = \inf \left(\inf \left(\{a\} \right) \cup \inf (B) \right) = \inf \left(\{a\} \cup \{x\} \right) = \inf \left(\{a, x\} \right)$$

However, this is already a contradiction. Namely, by $A \in \mathcal{A}$, we have $\inf(A) = \emptyset$. While, by (1), we have $\inf(\{a, x\}) \neq \emptyset$. Therefore, the implication $(1) \Longrightarrow (2)$ is also true.

4 Conditional infimum completenesses

Definition 4.1 We say that

- (1) X is pseudo-inf-complete if $\inf(A) \neq \emptyset$ for all $A \subset X$ with $\operatorname{lb}(A) \neq \emptyset$;
- (2) X is semi-inf-complete if $\inf(A) \neq \emptyset$ for all $A \subset X$ with $A \neq \emptyset$ and $\operatorname{lb}(A) \neq \emptyset$;
- (3) X is almost pseudo-inf-complete if $\inf(A) \neq \emptyset$ for all $A \subset X$ with $\operatorname{lb}(A) \neq \emptyset$ and $\operatorname{ub}(A) \neq \emptyset$;
- (4) X is almost semi-inf-complete if $\inf(A) \neq \emptyset$ for all $A \subset X$ with $A \neq \emptyset$, $\operatorname{lb}(A) \neq \emptyset$ and $\operatorname{ub}(A) \neq \emptyset$.

Remark 4.2 Thus, 'pseudo-inf-complete' implies both 'semi-inf-complete' and 'almost pseudo-inf-complete', and 'almost pseudo-inf-complete' implies 'almost-semi-inf-complete'.

Moreover, by using Corollary 2.6, we can also prove the following

Theorem 4.3 If X is transitive and $ub(X) \neq \emptyset$, then the following assertions are equivalent:

- (1) X is two-lb-complete and pseudo-inf-complete;
- (2) X is two-inf-complete and almost pseudo-inf-complete.

Proof: By the corresponding definitions, it is clear that $(1) \implies (2)$ even if X is not transitive or $ub(X) = \emptyset$. Moreover, from Remark 3.2 we know that the first part (2) always implies that of (1). Therefore, to prove the converse implication $(2) \implies (1)$, we need only show that (2) implies the second part of (1).

For this, assume that (2) holds, and moreover $A \subset X$ such that $lb(A) \neq \emptyset$. If $A = \emptyset$, then by the corresponding definitions it is clear that

$$\inf (A) = \inf (\emptyset) = \max (\operatorname{lb} (\emptyset)) = \max (X) = \operatorname{ub} (X),$$

and thus $\inf(A) \neq \emptyset$. Therefore, we may assume that $A \neq \emptyset$, i.e., there exists $a \in A$. Define

$$B = \bigcup_{x \in A} \inf(\{a, x\}).$$

Then, by Corollary 2.6, it is clear that

$$\operatorname{lb}(B) = \operatorname{lb}\left(\bigcup_{x \in A} \inf\left(\left\{a, x\right\}\right) = \operatorname{lb}\left(\bigcup_{x \in A}\left\{a, x\right\}\right) = \operatorname{lb}(A).$$

Moreover, by using the duals of Theorems 1.1 and Corollary 1.2, and Corollaries 1.7 and 1.5, we can see that

$$ub(B) = ub\left(\bigcup_{x \in A} \inf\left(\{a, x\}\right)\right) = \bigcap_{x \in A} ub\left(\inf\left(\{a, x\}\right)\right) \supset \bigcap_{x \in A} ub\left(lb\left(\{a, x\}\right)\right) \supset \bigcap_{x \in A} \{a, x\} \supset \{a\}.$$

Therefore, $\operatorname{lb}(B) \neq \emptyset$ and $\operatorname{ub}(B) \neq \emptyset$ also hold. Thus, by the almost pseudo-infcompleteness of X, we also have $\operatorname{inf}(B) \neq \emptyset$.

Now, it remains to note that by Corollary 2.6 we also have

$$\inf(A) = \inf\left(\bigcup_{x \in A} \{a, x\}\right) = \inf\left(\bigcup_{x \in A} \inf\left(\{a, x\}\right) = \inf(B).$$

Therefore, $\inf(A) \neq \emptyset$ also holds, and thus X is pseudo-inf-complete.

The following theorem is a generalization of the first part of [1, Theorem 9, p. 115]. Our subsequent sketch of the proof shows that the two and a half line proof given there may only be considered as a hint.

Theorem 4.4 If X is transitive, then the following assertions are equivalent:

- (1) X is two-lb-complete and semi-inf-complete;
- (2) X is two-inf-complete and almost semi-inf-complete.

Proof: Again, it is clear that $(1) \Longrightarrow (2)$ even if X is not transitive. Moreover, the first part (2) always implies that of (1). Therefore, to prove the converse implication $(2) \Longrightarrow (1)$, we need only show that (2) implies the second part of (1).

For this, assume that (2) holds, and moreover $A \subset X$ such that $A \neq \emptyset$ and $lb(A) \neq \emptyset$. Choose $a \in A$, and define

$$B = \bigcup_{x \in A} \inf(\{a, x\}).$$

Then, it is clear that $\emptyset \neq B \subset X$. Namely, by the two-inf-completeness of X and the definition of B, we evidently have $\emptyset \neq \inf(\{a, a\}) \subset B$.

Moreover, from the proof of Theorem 4.3, we can see that $lb(B) \neq \emptyset$ and $ub(B) \neq \emptyset$ also hold. Thus, by the almost semi-inf-completeness of X, we also have $inf(B) \neq \emptyset$. Now, it remains to note that by the proof of Theorem 4.3, we also have inf(A) = inf(B). Therefore, $inf(A) \neq \emptyset$ also holds, and thus X is semi-inf-complete.

5 Two illustrating examples

Example 5.1 If $X = \{a, b, c\}$ such that we only have

 $a \le b$, $b \le c$, $c \le a$ and $x \le x$ for all $x \in X$,

then X is total and antisymmetric. Moreover, X is two-inf-complete, but not finitely quasi-lb-complete. Thus, by Remark 3.2, X is also two-lb-complete, but not finitely quasi-inf-complete.

To check that X is not finitely quasi-lb-complete, note that

$$lb(a) = \{a, c\},$$
 $lb(b) = \{a, b\},$ $lb(b) = \{b, c\}.$

Therefore, by Corollary 1.3, we have

$$\operatorname{lb}(X) = \operatorname{lb}(a) \cap \operatorname{lb}(b) \cap \operatorname{lb}(c) = \emptyset,$$

and thus X is not finitely quasi-lb-complete.

Moreover, we can quite similarly see that

$$lb({ \{a, b\}}) = {a}, lb({ \{a, c\}}) = {c}, lb({ \{b, c\}}) = {b}.$$

Hence, since by the dual of Theorem 1.8 we have $x \in \max(x)$ for all $x \in X$, it is already clear that

$$\inf (\{ x, y \}) = \max (\operatorname{lb} (\{ x, y \})) \neq \emptyset$$

for all $x, y \in X$ with $x \neq y$. Moreover, by Theorem 1.8, we also have $x \in \inf(x)$, and hence $\inf(x) \neq \emptyset$ for all $x \in X$. Therefore, X is two-inf-complete.

Remark 5.2 In addition to Example 5.1 and Corollary 2.4, it is worth noticing that if X is reflexive, antisymmetric and

$$lb(A) = lb(inf(A))$$

for all $A \subset X$ with card (A) = 2 and inf $(A) \neq \emptyset$, then X is necessary transitive. Thus, by Theorem 3.4, X is finitely quasi-inf-complete if and only if it is two-inf-complete.

To check the transitivity of X, by Theorem 2.1 it is enough to show only that if $x \in X$,

$$y \in \operatorname{lb}(x)$$
, $z \in \operatorname{lb}(y)$ and $x \neq y$,

then $z \in lb(x)$. For this, note if $A = \{x, y\}$, then by Theorem 1.8 and Corollaries 1.3 and 1.5 we have

$$y \in \operatorname{lb}(x) \cap \operatorname{lb}(y) = \operatorname{lb}(A)$$
 and $y \in A \subset \operatorname{ub}(\operatorname{lb}(A))$.

Hence, by Theorems 1.6 and 1.11, it is clear that

 $y \in \operatorname{lb}(A) \cap \operatorname{ub}(\operatorname{lb}(A)) = \operatorname{inf}(A)$, and thus $\{y\} = \operatorname{inf}(A)$.

Now, by using our former assumptions and observations, we can already easily see that

$$z \in \operatorname{lb}(y) = \operatorname{lb}(\operatorname{inf}(A)) = \operatorname{lb}(A) = \operatorname{lb}(x) \cap \operatorname{lb}(y) \subset \operatorname{lb}(x).$$

Example 5.3 If $X = \{a, b, c, d\}$ such that we only have

$$a \le a$$
, $a \le c$, $a \le d$, $b \le d$, $c \le d$,

then X is transitive and antisymmetric. Moreover, X is almost semi-inf-complete, but not semi-inf-complete.

To check this, note that

$$lb (a) = \{a\}, lb (b) = \emptyset, lb (c) = \{a\}, lb (d) = \{a, b, c\}; ub (a) = \{a, c, d\}, ub (b) = \{d\}, ub (c) = \{d\}, ub (d) = \emptyset.$$

Hence, by Theorem 1.6 and the dual of Corollary 1.3, it is clear that

$$\inf (d) = \operatorname{lb} (d) \cap \operatorname{ub} (\operatorname{lb} (d)) = \operatorname{lb} (d) \cap \operatorname{ub} (a) \cap \operatorname{ub} (b) \cap \operatorname{ub} (c) = \emptyset.$$

Therefore, X is not semi-inf-complete.

Moreover, by Corollary 1.3, it is clear that, for any $A \subset X$,

$$\mathrm{lb}\,(A)\neq \emptyset \implies A \subset \left\{\,a,\,c,\,d\,\right\} \qquad \mathrm{and} \qquad \mathrm{ub}\,(A)\neq \emptyset \implies A \subset \left\{\,a,\,b,\,c\,\right\}.$$

Therefore, if $A \neq \emptyset$, $\operatorname{lb}(A) \neq \emptyset$ and $\operatorname{ub}(A) \neq \emptyset$, then we necessarily have

$$A = \{a\}$$
 or $A = \{c\}$ or $A = \{a, c\}$

Hence, by Corollary 1.3, it is clear that $lb(A) = \{a\}$. Moreover, by Theorem 1.6, it is clear that

$$\inf (A) = \operatorname{lb} (A) \cap \operatorname{ub} (\operatorname{lb} (A)) = \operatorname{lb} (a) \cap \operatorname{ub} (a) = \{a\}.$$

Therefore, X is almost semi-inf-complete.

References

 Birkhoff, G. : Lattice Theory. Amer. Math. Soc. Colloq. Publ. 25, Providence, Rhode Island 1967

- [2] **Davey, B. A.**, and **Priestley, H. A.** : *Introduction to Lattices and Order*. Cambridge University Press, Cambridge 2002
- [3] Boros, Z., and Száz, Á. : Infimum and supremum completeness properties of ordered sets without axioms. Tech. Rep., Inst. Math., Univ. Debrecen, 1–6 2004/4
- [4] Szász, G.: Introduction to Lattice Theory. Academic Press, Budapest 1963
- [5] Száz, Á.: Upper and lower bounds in ordered sets without axioms. Tech. Rep., Inst. Math., Univ. Debrecen, 1–11 2004/1
- [6] Száz, A.: The importance of reflexivity, transitivity, antisymmetry and totality in generalized ordered sets. Tech. Rep., Inst. Math., Univ. Debrecen, 1–15 2004/2

received: July 18, 2005

Authors:

Zoltán Boros Institute of Mathematics, University of Debrecen, H-4010 Debrecen, Pfi2, Hungary e-mail: boros@math.klte.hu Árpád Száz Institute of Mathematics, University of Debrecen, H-4010 Debrecen, Pf12, Hungary e-mail: szaz@math.klte.hu