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Finite and conditional completeness properties of
generalized ordered sets

ABSTRACT. In particular, we show that if X is a set equipped with a transitive relation

≤ , then the following completeness properties are equivalent :

(1) lb ({x, y }) 6= ∅ for all x, y ∈ X , and inf (A) 6= ∅ for all A ⊂ X with A 6= ∅
and lb (A) 6= ∅ ;

(2) inf ({x, y }) 6= ∅ for all x, y ∈ X , and inf (A) 6= ∅ for all A ⊂ X with A 6= ∅ ,

lb (A) 6= ∅ and ub (A) 6= ∅ .

Thus, we obtain a substantial generalization of a basic theorem of Garrett Birkhoff which

says only that in a conditionally complete lattice every nonempty subset which has a lower

bound has a greatest lower bound.

KEY WORDS AND PHRASES. Generalized ordered sets, lower bound and infimum com-

pletenesses.

Introduction

Throughout this paper, X will denote an arbitrary set equipped with an arbitrary binary

relation ≤ . Thus, X may be considered as a generalized ordered set or an ordered set

without axioms.

The set X will be called reflexive, transitive, antisymmetric and total if the relation ≤ has

the corresponding property. If X is total, then for any x, y ∈ X we have either x ≤ y or

y ≤ x . Thus, in particular, X is reflexive.

1The research of the first author has been supported by the grant OTKA T–043080 and the János Bolyai
Scholarship of the Hungarian Academy of Sciences.
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For any A ⊂ X , the members of the families

lb (A) =
{
x ∈ X : ∀ a ∈ A : x ≤ a

}
and

ub (A) =
{
x ∈ X : ∀ a ∈ A : a ≤ x

}
are called the lower and upper bounds of A in X , respectively. And the members of the

families

min (A) = A ∩ lb (A) , max (A) = A ∩ ub (A) ,

inf (A) = max
(
lb (A)

)
, sup (A) = min

(
ub (A)

)
are called the minima, maxima, infima and suprema of A in X , respectively.

First, we show that the following extension of [2, Lemma 2.23, p. 46] is true.

Lemma If X is transitive, and moreover Ai ⊂ X and inf (Ai) 6= ∅ for all i ∈ I ,

then

lb

(⋃
i∈I

Ai

)
= lb

(⋃
i∈I

inf (Ai)

)
and inf

(⋃
i∈I

Ai

)
= inf

(⋃
i∈I

inf (Ai)

)
.

Then, by using this lemma, we show that the following generalization of [1, Theorem 9,

p. 115] is also true.

Theorem If X is transitive, then the following completeness properties are equivalent :

(1) lb
(
{x, y }

)
6= ∅ for all x, y ∈ X , and inf (A) 6= ∅ for all A ⊂ X with A 6= ∅

and lb (A) 6= ∅ ;

(2) inf
(
{x, y }

)
6= ∅ for all x, y ∈ X , and inf (A) 6= ∅ for all A ⊂ X with A 6= ∅ ,

lb (A) 6= ∅ and ub (A) 6= ∅ .

Remark If in particular X is partially ordered, then by using the above lemma we also

show that the following completeness properties are equivalent :

(1) inf ({x, y }) 6= ∅ for all x, y ∈ X ;

(2) inf (A) 6= ∅ for every finite, nonvoid subset A of X .

In this respect, it is noteworthy that to prove a counterpart of the above equivalence for lb

instead of inf , the transitivity of the relation ≤ is again sufficient.
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1 Lower and upper bounds

Concerning lower and upper bounds, we shall only quote here the following simple theorems

of [5] .

Theorem 1.1 If Ai ⊂ X for all i ∈ I , then

lb
(⋃

i∈I

Ai

)
=
⋂
i∈I

lb (Ai) .

Corollary 1.2 If A ⊂ B ⊂ X , then lb (B) ⊂ lb (A) .

Proof: Note that lb (B) = lb (A ∪B ) = lb (A) ∩ lb (B) ⊂ lb (A) .

Corollary 1.3 If A ⊂ X , then lb (A) =
⋂

a∈A lb (a) , where lb (a) = lb
(
{a}

)
.

Theorem 1.4 If A , B ⊂ X , then

A ⊂ lb (B) ⇐⇒ B ⊂ ub (A) .

Corollary 1.5 If A ⊂ X , then A ⊂ ub
(
lb (A)

)
.

Proof: Clearly, lb (A) ⊂ lb (A) . Hence, by Theorem 1.4, the required inclusion already

follows.

Theorem 1.6 If A ⊂ X , then

min (A) = A ∩ inf (A) and inf (A) = lb (A) ∩ ub
(
lb (A)

)
.

Corollary 1.7 If A ⊂ X , then min (A) ⊂ inf (A) ⊂ lb (A) ⊂ lb
(
inf (A)

)
.

Proof: By Theorem 1.6, we have not only min (A) ⊂ inf (A) ⊂ lb (A) , but also inf (A) ⊂
ub
(
lb (A) . Hence, by Theorem 1.4, the required inclusion already follows.

The importance of reflexivity, totality and antisymmetry will only be illuminated here by

the following basic theorems of [6].

Theorem 1.8 If Φ = lb , min or inf , then the following assertions are equivalent :

(1) X is reflexive ;

(2) x ∈ Φ (x) for all x ∈ X .

Theorem 1.9 The following assertions are equivalent :
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(1) X is reflexive ;

(2) min (x) 6= ∅ for all x ∈ X ;

(3) min (x) = {x} for all x ∈ X .

Theorem 1.10 The following assertions are equivalent :

(1) X is total ;

(2) min
(
{x, y}

)
6= ∅ for all x, y ∈ X .

Theorem 1.11 If X is reflexive and Φ = min or inf , then the following assertions

are equivalent :

(1) X is antisymmetric ;

(2) card
(
Φ (A)

)
≤ 1 for all A ⊂ X .

Corollary 1.12 If X is reflexive and antisymmetric, then inf (x) = {x} for all x ∈
X .

2 The importance of transitivity

Concerning the importance of transitivity, we shall only quote here the following basic the-

orems of [6]. Hints for the proofs are included only for the reader’s convenience.

Theorem 2.1 The following assertions are equivalent :

(1) X is transitive ;

(2) y ∈ lb (x) and z ∈ lb (y) imply z ∈ lb (x) for all x, y, z ∈ X ;

(3) B ⊂ lb (A) and C ⊂
⋃

b∈B lb (b) imply C ⊂ lb (A) for all A , B ⊂ X .

Proof: To prove the less obvious implication (2) =⇒ (3) , suppose that (2) and the con-

ditions of (3) hold. If c ∈ C , then since C ⊂
⋃

b∈B ub (b) there exists b ∈ B such that

c ∈ lb (b) . Moreover, if a ∈ A , then since b ∈ B ⊂ lb (A) we have b ∈ lb (a) . Hence, by

using (2), we can already infer that c ∈ lb (a) . Now, since a ∈ A and c ∈ C were arbitrary,

it is clear that c ∈ lb (A) , and thus C ⊂ lb (A) . Therefore, (3) also holds.

From the above theorem, it is clear that in particular we also have
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Corollary 2.2 If X is transitive, then x ∈ lb (A) and y ∈ lb (x) imply y ∈ lb (A)

for all A ⊂ X and x , y ∈ X .

Theorem 2.3 If X is transitive, then

lb (x) = lb (A) for all A ⊂ X and x ∈ inf (A) .

Proof: If x ∈ inf (A), then by Corollaries 1.7 and 1.2 we have lb (A) ⊂ lb
(
inf (A)

)
⊂ lb (x)

even if X is not transitive.

Moreover, if x ∈ inf (A) , then Corollary 1.7 we also have x ∈ lb (A) . Hence, by Corollary

2.2, it is clear y ∈ lb (x) implies y ∈ lb (A) . Therefore, lb (x) ⊂ lb (A) is also true.

Corollary 2.4 If X is transitive, then

lb (A) = lb
(
inf (A)

)
for all A ⊂ X with inf (A) 6= ∅ .

Proof: By Theorems 1.1 and 2.3, it is clear that

lb
(
inf (A)

)
=

⋂
x∈inf (A)

lb (x) =
⋂

x∈inf (A)

lb (A) = lb (A) .

Now, in addition to the results of [6], we can also easily prove the following

Theorem 2.5 If X is transitive and Ai ⊂ X for all i ∈ I , then

(1) lb
(⋃

i∈I

Ai

)
= lb

((⋃
i∈J

Ai

)
∪
( ⋃

i∈I\J

inf (Ai)
))

,

(2) inf
(⋃

i∈I

Ai

)
= inf

((⋃
i∈J

Ai

)
∪
( ⋃

i∈I\J

inf (Ai)
))

,

where J =
{
i ∈ I : inf (Ai) = ∅

}
.

Proof: By Theorem 1.1 and Corollary 2.4, we have

lb
(⋃

i∈I

Ai

)
=
⋂
i∈I

lb (Ai) =(⋂
i∈J

lb (Ai)
)
∩
( ⋂

i∈I\J

lb (Ai)
)

=
(⋂

i∈J

lb (Ai)
)
∩
( ⋂

i∈I\J

lb
(
inf (Ai)

))
=

lb
(⋃

i∈J

Ai

)
∩ lb

(⋃
i∈J

inf (Ai)
)

= lb

((⋃
i∈J

Ai

)
∪
( ⋃

i∈I\J

inf (Ai)
))

.

Hence, by the definition of inf, it is clear that (2) is also true.

From Theorem 2.5, we can at once get the following generalization of the second part of [2,

Lemma 2.23, p. 46].



80 Zoltán Boros, Árpád Száz

Corollary 2.6 If X is transitive, and moreover Ai ⊂ X and inf (Ai) 6= ∅ for all

i ∈ I , then

(1) lb
(⋃

i∈I

Ai

)
= lb

(⋃
i∈I

inf (Ai)
)

;

(2) inf
(⋃

i∈I

Ai

)
= inf

(⋃
i∈I

inf (Ai)
)

.

3 Finite lower bound completenesses

Definition 3.1 We say that

(1) X is two-lb-complete if lb
(
{x , y }

)
6= ∅ for all x , y ∈ X ;

(2) X is two-inf-complete if inf
(
{x , y }

)
6= ∅ for all x , y ∈ X ;

(3) X is finitely quasi-lb-complete if lb (A) 6= ∅ for all finite, nonvoid subset A of X ;

(4) X is finitely quasi-inf-complete if inf (A) 6= ∅ for all finite, nonvoid subset A of X .

Remark 3.2 By Corollary 1.7, it is clear that ‘two-inf-completeness’ implies ‘two-lb-comp-

leteness’, and ‘finite quasi-inf-completeness’ implies ‘finite quasi-lb-completeness’.

Moreover, by using the well-orderedness of the set N of all natural numbers, we can prove

the following

Theorem 3.3 If X is transitive, then the following assertions are equivalent :

(1) X is two-lb-complete ;

(2) X is finitely quasi-lb-complete .

Proof: By Definition 3.1, it is clear that (2) =⇒ (1) even if X is not partially ordered.

To prove the converse implication, suppose on the contrary that (1) holds, but (2) does not

hold. That is, lb
(
{x , y }

)
6= ∅ for all x , y ∈ X , and lb (A) = ∅ for some finite, nonvoid

subset A of X .

Denote by A the family of all finite, nonvoid subsets A of X such that lb (A) = ∅ . Then,

by the above assumptions, it is clear that A 6= ∅ and card (A) > 2 for all A ∈ A . Define

M =
{

card (A) : A ∈ A
}
.

Then, we evidently have ∅ 6= M ⊂ N such that 1 /∈M and 2 /∈M .
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Hence, since N is well-ordered, we can infer that min (M ) 6= ∅ . Therefore, there exists

n ∈ min (M ) . This implies that n ∈M and n ∈ lb (M ) . Hence, it is clear that 2 < n ∈ N
such that n ≤ m for all m ∈M . Moreover, we can also state that there exists A ∈ A such

that n = card (A) .

Thus, we can choose a ∈ A , and define B = A \ {a} . Then, it is clear that B is a

finite nonvoid subset of X such that k = card (B) < card (A) = n . Therefore, lb (B) 6= ∅
also holds. Namely, lb (B) = ∅ would imply that B ∈ A . Hence, we could infer that

k = card (B) ∈M , and thus n ≤ k , which would be a contradiction.

Now, we can choose β ∈ lb (B) and γ ∈ lb
(
{ a , β }

)
. Then, by Theorem 1.1, it is clear

that γ ∈ lb (a) and γ ∈ lb (β) . Hence, by using Corollary 2.2, we can infer that γ ∈ lb (B) .

Therefore, by Theorem 1.1, we also have γ ∈ lb (a) ∩ lb (B) = lb
(
{a} ∪B

)
= lb (A) . This

contradiction proves that (1) =⇒ (2) .

A particular case of the following theorem is usually considered to be quite obvious in the

advanced theory of lattices. The proofs given here and in [4, p. 40] show that this attitude

cannot be completely justified.

Theorem 3.4 If X is partially ordered, then the following assertions are equivalent :

(1) X is two-inf-complete ;

(2) X is finitely quasi-inf-complete .

Proof: By Definition 3.1, it is clear that (2) =⇒ (1) even if X is not partially ordered.

To prove the converse implication, suppose on the contrary that (1) holds, but (2) does not

hold. Denote by A the family of all finite, nonvoid subsets A of X such that inf (A) = ∅ .

Then, by using a similar argument as in the proof of Theorem 3.3, we can see that there

exists A ∈ A such that by choosing a ∈ A and defining B = A \ {a} , we already have

inf (B) 6= ∅ .

Now, by Theorem 1.11, it is clear that there exists x ∈ X such that inf (B) = {x} .

Moreover, by Corollary 1.12, we also have inf
(
{a}

)
= {a} . Hence, by using Corollary 2.6,

we can infer that

inf (A) = inf
(
{a} ∪ B

)
= inf

(
inf
(
{a}

)
∪ inf (B)

)
= inf

(
{a} ∪ {x}

)
= inf

(
{ a , x }

)
.

However, this is already a contradiction. Namely, by A ∈ A , we have inf (A) = ∅ . While,

by (1), we have inf
(
{ a , x }

)
6= ∅ . Therefore, the implication (1) =⇒ (2) is also true.
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4 Conditional infimum completenesses

Definition 4.1 We say that

(1) X is pseudo-inf-complete if inf (A) 6= ∅ for all A ⊂ X with lb (A) 6= ∅ ;

(2) X is semi-inf-complete if inf (A) 6= ∅ for all A ⊂ X with A 6= ∅ and lb (A) 6= ∅ ;

(3) X is almost pseudo-inf-complete if inf (A) 6= ∅ for all A ⊂ X with lb (A) 6= ∅ and

ub (A) 6= ∅ ;

(4) X is almost semi-inf-complete if inf (A) 6= ∅ for all A ⊂ X with A 6= ∅ , lb (A) 6= ∅
and ub (A) 6= ∅ .

Remark 4.2 Thus, ‘pseudo-inf-complete’ implies both ‘semi-inf-complete’ and ‘almost pseudo-

inf-complete’, and ‘almost pseudo-inf-complete’ implies ‘almost-semi-inf-complete’.

Moreover, by using Corollary 2.6, we can also prove the following

Theorem 4.3 If X is transitive and ub (X) 6= ∅, then the following assertions are

equivalent :

(1) X is two-lb-complete and pseudo-inf-complete ;

(2) X is two-inf-complete and almost pseudo-inf-complete .

Proof: By the corresponding definitions, it is clear that (1) =⇒ (2) even if X is not

transitive or ub (X) = ∅ . Moreover, from Remark 3.2 we know that the first part (2)

always implies that of (1). Therefore, to prove the converse implication (2) =⇒ (1) , we

need only show that (2) implies the second part of (1) .

For this, assume that (2) holds, and moreover A ⊂ X such that lb (A) 6= ∅ . If A = ∅ , then

by the corresponding definitions it is clear that

inf (A) = inf (∅) = max
(
lb (∅)

)
= max (X) = ub (X) ,

and thus inf (A) 6= ∅ . Therefore, we may assume that A 6= ∅ , i. e., there exists a ∈ A .

Define

B =
⋃
x∈A

inf
(
{ a , x }

)
.

Then, by Corollary 2.6, it is clear that

lb (B) = lb

( ⋃
x∈A

inf
(
{ a , x }

)
= lb

( ⋃
x∈A

{ a , x }
)

= lb (A) .
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Moreover, by using the duals of Theorems 1.1 and Corollary 1.2, and Corollaries 1.7 and 1.5,

we can see that

ub (B) = ub

( ⋃
x∈A

inf
(
{ a , x }

)
=⋂

x∈A

ub
(
inf
(
{ a , x }

))
⊃
⋂
x∈A

ub
(
lb
(
{ a , x }

))
⊃
⋂
x∈A

{ a , x } ⊃ {a}.

Therefore, lb (B) 6= ∅ and ub (B) 6= ∅ also hold. Thus, by the almost pseudo-inf-

completeness of X , we also have inf (B) 6= ∅ .

Now, it remains to note that by Corollary 2.6 we also have

inf (A) = inf

( ⋃
x∈A

{ a , x }
)

= inf

( ⋃
x∈A

inf
(
{ a , x }

)
= inf (B) .

Therefore, inf (A) 6= ∅ also holds, and thus X is pseudo-inf-complete.

The following theorem is a generalization of the first part of [1, Theorem 9, p. 115]. Our

subsequent sketch of the proof shows that the two and a half line proof given there may only

be considered as a hint.

Theorem 4.4 If X is transitive, then the following assertions are equivalent :

(1) X is two-lb-complete and semi-inf-complete ;

(2) X is two-inf-complete and almost semi-inf-complete .

Proof: Again, it is clear that (1) =⇒ (2) even if X is not transitive. Moreover, the first

part (2) always implies that of (1). Therefore, to prove the converse implication (2) =⇒ (1) ,

we need only show that (2) implies the second part of (1) .

For this, assume that (2) holds, and moreover A ⊂ X such that A 6= ∅ and lb (A) 6= ∅ .

Choose a ∈ A , and define

B =
⋃
x∈A

inf
(
{ a , x }

)
.

Then, it is clear that ∅ 6= B ⊂ X . Namely, by the two-inf-completeness of X and the

definition of B, we evidently have ∅ 6= inf
(
{ a , a }

)
⊂ B .

Moreover, from the proof of Theorem 4.3, we can see that lb (B) 6= ∅ and ub (B) 6= ∅ also

hold. Thus, by the almost semi-inf-completeness of X , we also have inf (B) 6= ∅ . Now, it

remains to note that by the proof of Theorem 4.3, we also have inf (A) = inf (B) . Therefore,

inf (A) 6= ∅ also holds, and thus X is semi-inf-complete.
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5 Two illustrating examples

Example 5.1 If X = { a, b, c } such that we only have

a ≤ b , b ≤ c , c ≤ a and x ≤ x for all x ∈ X,

then X is total and antisymmetric. Moreover, X is two-inf-complete, but not finitely

quasi-lb-complete. Thus, by Remark 3.2, X is also two-lb-complete, but not finitely quasi-

inf-complete.

To check that X is not finitely quasi-lb-complete, note that

lb (a) = { a, c } , lb (b) = { a, b } , lb (b) = { b, c } .

Therefore, by Corollary 1.3, we have

lb (X) = lb (a) ∩ lb (b) ∩ lb (c) = ∅ ,

and thus X is not finitely quasi-lb-complete.

Moreover, we can quite similarly see that

lb
(
{ a, b }

)
= {a} , lb

(
{ a, c }

)
= {c} , lb

(
{ b, c }

)
= {b} .

Hence, since by the dual of Theorem 1.8 we have x ∈ max (x) for all x ∈ X , it is already

clear that

inf
(
{x, y }

)
= max

(
lb
(
{x, y }

))
6= ∅

for all x, y ∈ X with x 6= y . Moreover, by Theorem 1.8, we also have x ∈ inf (x) , and

hence inf (x) 6= ∅ for all x ∈ X . Therefore, X is two-inf-complete.

Remark 5.2 In addition to Example 5.1 and Corollary 2.4, it is worth noticing that if X

is reflexive, antisymmetric and

lb (A) = lb
(
inf (A)

)
for all A ⊂ X with card (A) = 2 and inf (A) 6= ∅ , then X is necessary transitive. Thus,

by Theorem 3.4, X is finitely quasi-inf-complete if and only if it is two-inf-complete.

To check the transitivity of X , by Theorem 2.1 it is enough to show only that if x ∈ X ,

y ∈ lb (x) , z ∈ lb (y) and x 6= y ,

then z ∈ lb (x) . For this, note if A = {x, y } , then by Theorem 1.8 and Corollaries 1.3

and 1.5 we have

y ∈ lb (x) ∩ lb (y) = lb (A) and y ∈ A ⊂ ub
(
lb (A)

)
.
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Hence, by Theorems 1.6 and 1.11, it is clear that

y ∈ lb (A) ∩ ub
(
lb (A)

)
= inf (A) , and thus {y} = inf (A) .

Now, by using our former assumptions and observations, we can already easily see that

z ∈ lb (y) = lb
(
inf (A)

)
= lb (A) = lb (x) ∩ lb (y) ⊂ lb (x) .

Example 5.3 If X = { a, b, c, d } such that we only have

a ≤ a , a ≤ c , a ≤ d , b ≤ d , c ≤ d ,

then X is transitive and antisymmetric. Moreover, X is almost semi-inf-complete, but not

semi-inf-complete.

To check this, note that

lb (a) = {a} , lb (b) = ∅ , lb (c) = {a} , lb (d) = { a, b, c } ;

ub (a) = { a, c, d } , ub (b) = {d} , ub (c) = {d} , ub (d) = ∅ .
Hence, by Theorem 1.6 and the dual of Corollary 1.3, it is clear that

inf (d) = lb (d) ∩ ub
(
lb (d)

)
= lb (d) ∩ ub (a) ∩ ub (b) ∩ ub (c) = ∅ .

Therefore, X is not semi-inf-complete.

Moreover, by Corollary 1.3, it is clear that, for any A ⊂ X ,

lb (A) 6= ∅ =⇒ A ⊂ { a, c, d } and ub (A) 6= ∅ =⇒ A ⊂ { a, b, c } .

Therefore, if A 6= ∅ , lb (A) 6= ∅ and ub (A) 6= ∅ , then we necessarily have

A = {a} or A = {c} or A = { a, c } .

Hence, by Corollary 1.3, it is clear that lb (A) = {a} . Moreover, by Theorem 1.6, it is clear

that

inf (A) = lb (A) ∩ ub
(

lb (A)) = lb (a) ∩ ub (a) = {a} .

Therefore, X is almost semi-inf-complete.
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