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ZOLTAN BOROS! AND ARPAD SzAZ

Finite and conditional completeness properties of
generalized ordered sets

ABSTRACT. In particular, we show that if X is a set equipped with a transitive relation

<, then the following completeness properties are equivalent :

() Ib ({z,y}) #0 forall z,y € X, and inf(A) #0 forall AC X with A#(
and 1b(A) #0;

(2) inf ({z,y})#0 forall z,y € X, and inf(A) #0 forall AC X with A#0,
Ib(A)#0 and ub(A) #0.

Thus, we obtain a substantial generalization of a basic theorem of Garrett Birkhoff which
says only that in a conditionally complete lattice every nonempty subset which has a lower

bound has a greatest lower bound.

KEY WORDS AND PHRASES. Generalized ordered sets, lower bound and infimum com-

pletenesses.

Introduction

Throughout this paper, X will denote an arbitrary set equipped with an arbitrary binary
relation <. Thus, X may be considered as a generalized ordered set or an ordered set

without axioms.

The set X will be called reflexive, transitive, antisymmetric and total if the relation < has
the corresponding property. If X is total, then for any x, y € X we have either z <y or

y < x. Thus, in particular, X is reflexive.
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Scholarship of the Hungarian Academy of Sciences.
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For any A C X, the members of the families
b(A)={z€eX: VacA: z<a}

and

ub(A):{xEX: VaecA: agx}

are called the lower and upper bounds of A in X, respectively. And the members of the

families

min (A) =ANIb(A), max (A) = ANub(A),
inf (A) = max (1b (A)), sup (A) = min (ub (4))

are called the minima, maxima, infima and suprema of A in X, respectively.

First, we show that the following extension of [2, Lemma 2.23, p. 46] is true.

Lemma If X is transitive, and moreover A; C X and inf(A;) # 0 forall i € I,

then
Ib (U Ai) =1b (Uinf(Ai)) and  inf (U A,») = inf <Uinf(Ai)>.
iel iel iel icl
Then, by using this lemma, we show that the following generalization of [I, Theorem 9,

p. 115] is also true.

Theorem If X is transitive, then the following completeness properties are equivalent :

(1) b ({z,y}) #0 foral z,ye€ X, and inf (A) #0 forall ACX with A#0
and 1b(A) #0;

(2) inf ({z,y}) #0 forall z,y€ X, and inf(A)#0 forall ACX with A#0,
Ib(A)#0 and ub(A) #0.

Remark If in particular X is partially ordered, then by using the above lemma we also

show that the following completeness properties are equivalent :

(1) inf {z,y})#0 forall z,ye X;

(2) inf (A) # 0 for every finite, nonvoid subset A of X .

In this respect, it is noteworthy that to prove a counterpart of the above equivalence for 1b

instead of inf, the transitivity of the relation < is again sufficient.
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1 Lower and upper bounds

Concerning lower and upper bounds, we shall only quote here the following simple theorems

of [9].

Theorem 1.1 If A;C X forall i €I, then

b (J4) = b4,

icl iel
Corollary 1.2 If ACBC X, then 1b(B) Clb(A).
Proof: Note that 1b(B)=1b(AUB)=1b(A)N1b(B) Clb(A).
Corollary 1.3 If Ac X, then 1b(A)=(,c41b(a), where 1b(a)=1b ({a}).
Theorem 1.4 If A, BC X, then

ACTh(B) <= BCub(A).

Corollary 1.5 If AC X, then A C ub(lb(A)).

Proof: Clearly, 1b(A) C Ib(A). Hence, by Theorem 1.4, the required inclusion already

follows.

Theorem 1.6 If AcC X, then
min (A) = ANinf (A) and inf (A) =1b(A)Nub (Ib(4)).
Corollary 1.7 If AcC X, then min(A) C inf (A) C 1b(A) C Ib (inf (A)).

Proof: By Theorem 1.6, we have not only min (A) C inf (A) C Ib(A), but also inf (A) C
ub (lb (A). Hence, by Theorem 1.4, the required inclusion already follows.

The importance of reflexivity, totality and antisymmetry will only be illuminated here by

the following basic theorems of [0].

Theorem 1.8 If ® =1b, min or inf, then the following assertions are equivalent :
(1) X s reflezive;
(2) x € ®(x) forall ze€X.

Theorem 1.9 The following assertions are equivalent :
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(1) X s reflexive,;
(2) min(x) #0 forall x€ X;
(3) min(xz) ={z} forall ze€X.

Theorem 1.10 The following assertions are equivalent :

(1) X is total;

(2) min ({z, y}) #0 forall =z, yeX.

Theorem 1.11 If X is reflexive and ® = min or inf, then the following assertions

are equivalent :

(1) X is antisymmetric;
(2) card (®(A4)) <1 forall ACX.

Corollary 1.12 If X is reflezive and antisymmetric, then inf (z) = {x} for all x €
X.

2 The importance of transitivity

Concerning the importance of transitivity, we shall only quote here the following basic the-

orems of [0]. Hints for the proofs are included only for the reader’s convenience.

Theorem 2.1 The following assertions are equivalent :

(1) X s transitive ;

(2) yelb(x) and z€lb(y) imply z €lb(z) forall z,y, z € X;

(3) BCIb(A) and C CJyep Ib(b) imply C Clb(A) forall A, BCX.
Proof: To prove the less obvious implication (2) = (3), suppose that (2) and the con-
ditions of (3) hold. If ¢ € C, then since C' C |J, 5 ub(b) there exists b € B such that
c € 1b(b). Moreover, if a € A, then since b € B C Ib(A) we have b € Ib(a). Hence, by

using (2), we can already infer that ¢ € 1b (a). Now, since a € A and ¢ € C were arbitrary,
it is clear that ¢ € Ib(A), and thus C C 1b(A). Therefore, (3) also holds.

From the above theorem, it is clear that in particular we also have
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Corollary 2.2 If X is transitive, then x € Ib(A) and y € 1b(z) imply y € 1b(A)
forall ACX and xz,ye X.

Theorem 2.3 If X is transitive, then

Ib(z) =1b(A) for all ACX and z€inf(A).
Proof: If x € inf (A4), then by Corollaries 1.7 and 1.2 we have 1b (A) C Ib (inf (A)) C Ib(z)
even if X is not transitive.

Moreover, if x € inf (A), then Corollary 1.7 we also have z € 1b(A). Hence, by Corollary
2.2, it is clear y € Ib (x) implies y € 1b (A). Therefore, 1b (z) C Ib(A) is also true.

Corollary 2.4 If X is transitive, then
Ib(A)=1b(inf(A))  forall ~ACX with inf(A)#0.

Proof: By Theorems 1.1 and 2.3, it is clear that

b (inf(A4)) = () Ib(z)= (] b(A)=1(4).

z€inf (A) z€inf (A)
Now, in addition to the results of [(], we can also easily prove the following

Theorem 2.5 If X is transitive and A; C X for all i € I, then

ww(Ua)=w((Ua)u( U ifa)),

iel\J

2) inf (|J 45) :mf((iEUJ a)u( U inf(Ai)>),

iel ieI\J
where J={iel: inf(A;)=0}.

Proof: By Theorem 1.1 and Corollary 2.4, we have

lb<U Ai> = b(4,) =

(ﬂ lb(AZ-)) m( N lb(Ai)> — (ﬂ lb(Ai)) m( N lb(inf(Ai))> =
ieJ 1€I\J ieJ 1eI\J
lb(U Ai) mb(U inf(Ai)> :1b(<U Ai) U ( U inf(Al-))).
ieJ i€ i€ ieI\J

Hence, by the definition of inf, it is clear that (2) is also true.

From Theorem 2.5, we can at once get the following generalization of the second part of [2,
Lemma 2.23, p. 46].
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Corollary 2.6 If X is transitive, and moreover A; C X and inf (A;) # 0 for all
1 €1, then

W b (Ja)=m(Unf(4a));

2) inf<U Ai) - inf(Umf(Ai)) .

3 Finite lower bound completenesses

Definition 3.1 We say that

(1) X s two-lb-complete if b ({z,y})#0 forall z,yeX;

(2) X is two-inf-complete if inf ({z,y}) #0 foral z,yeX;

(3) X s finitely quasi-lb-complete if 1b(A) # O for all finite, nonvoid subset A of X ;
(4) X s finitely quasi-inf-complete if inf (A) # 0 for all finite, nonvoid subset A of X.

Remark 3.2 By Corollary 1.7, it is clear that ‘two-inf-completeness’ implies ‘two-1b-comp-

leteness’, and ‘finite quasi-inf-completeness’ implies ‘finite quasi-lb-completeness’.

Moreover, by using the well-orderedness of the set N of all natural numbers, we can prove

the following

Theorem 3.3 If X is transitive, then the following assertions are equivalent :

(1) X s two-lb-complete ;

(2) X s finitely quasi-lb-complete .

Proof: By Definition 3.1, it is clear that (2) = (1) even if X is not partially ordered.

To prove the converse implication, suppose on the contrary that (1) holds, but (2) does not
hold. That is, Ib ({2, y}) #0 forall z,y € X, and 1b(A) = 0 for some finite, nonvoid
subset A of X.

Denote by A the family of all finite, nonvoid subsets A of X such that 1b(A) = (). Then,
by the above assumptions, it is clear that A # () and card (A) > 2 for all A € A. Define

M= {card(A): AecA}.

Then, we evidently have () £ M C N such that 1 ¢ M and 2 ¢ M.
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Hence, since N is well-ordered, we can infer that min (M) # (). Therefore, there exists
n € min (M) . This implies that n € M and n € lb(M). Hence, it is clear that 2 <n € N
such that n < m for all m € M . Moreover, we can also state that there exists A € A such
that n = card (A).

Thus, we can choose a € A, and define B = A\ {a}. Then, it is clear that B is a
finite nonvoid subset of X such that k = card (B) < card (4) = n. Therefore, 1b(B) # ()
also holds. Namely, 1b(B) = () would imply that B € A. Hence, we could infer that
k = card (B) € M, and thus n <k, which would be a contradiction.

Now, we can choose [ € 1b(B) and v € 1b ({a, ﬁ}) . Then, by Theorem 1.1, it is clear
that v € Ib(a) and v € 1b (). Hence, by using Corollary 2.2, we can infer that v € Ib(B).
Therefore, by Theorem 1.1, we also have v € Ib (a) N1b(B) =1b ({a} UB) =1b(A). This
contradiction proves that (1) = (2).

A particular case of the following theorem is usually considered to be quite obvious in the
advanced theory of lattices. The proofs given here and in [1, p. 40] show that this attitude

cannot be completely justified.

Theorem 3.4 If X is partially ordered, then the following assertions are equivalent :

(1) X s two-inf-complete ;

(2) X is finitely quasi-inf-complete .

Proof: By Definition 3.1, it is clear that (2) == (1) even if X is not partially ordered.

To prove the converse implication, suppose on the contrary that (1) holds, but (2) does not
hold. Denote by A the family of all finite, nonvoid subsets A of X such that inf (A) = 0.
Then, by using a similar argument as in the proof of Theorem 3.3, we can see that there
exists A € A such that by choosing a € A and defining B = A\ {a}, we already have
inf (B) #0.

Now, by Theorem 1.11, it is clear that there exists x € X such that inf(B) = {z}.
Moreover, by Corollary 1.12, we also have inf ({a}) = {a}. Hence, by using Corollary 2.6,

we can infer that
inf (A) = inf ({a} U B) = inf (inf ({a}) Uinf (B)) = inf ({a} U{z}) =inf ({a, 2 }).

However, this is already a contradiction. Namely, by A € A, we have inf (A) = (. While,
by (1), we have inf ({a, z}) # 0. Therefore, the implication (1) = (2) is also true.
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4 Conditional infimum completenesses

Definition 4.1 We say that

(1) X is pseudo-inf-complete if inf (A) #0 forall AC X with Ib(A)#0;
(2) X is semi-inf-complete if inf (A) #0 forall ACX with A#0 and 1b(A)#0;

(3) X is almost pseudo-inf-complete if inf (A) # @ forall AC X with Ib(A)#0D and
ub(4) £

(4) X s almost semi-inf-complete if inf (A) #£ O forall AC X with A#Q, Ib(A)#0
and ub (A) #£0.

Remark 4.2 Thus, ‘pseudo-inf-complete’ implies both ‘semi-inf-complete” and ‘almost pseudo-

inf-complete’, and ‘almost pseudo-inf-complete’ implies ‘almost-semi-inf-complete’.
Moreover, by using Corollary 2.6, we can also prove the following

Theorem 4.3 If X is transitive and ub (X) # (), then the following assertions are

equivalent :

(1) X s two-lb-complete and pseudo-inf-complete ;

(2) X is two-inf-complete and almost pseudo-inf-complete .

Proof: By the corresponding definitions, it is clear that (1) = (2) even if X is not
transitive or ub (X) = (. Moreover, from Remark 3.2 we know that the first part (2)
always implies that of (1). Therefore, to prove the converse implication (2) = (1), we

need only show that (2) implies the second part of (1).
For this, assume that (2) holds, and moreover A C X such that 1b (A) # 0. If A=0, then

by the corresponding definitions it is clear that
inf (A) = inf (§) = max (1b (0)) = max (X) = ub (X),

and thus inf (A) # (. Therefore, we may assume that A # ), i.e., there exists a € A.
Define

B = U inf({a, z}).

z€A
Then, by Corollary 2.6, it is clear that

lb(B):lb< | inf ({a, x}) :lb< UAa, x}) =1b(A).

z€A T€A
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Moreover, by using the duals of Theorems 1.1 and Corollary 1.2, and Corollaries 1.7 and 1.5,

we can see that

ub (B) =ub( | inf ({a, :p}) =

zeA

ﬂ ub (inf ({a, 2})) D ﬂ ub (b ({a, z})) D ﬂ{a, xz} D {a}.

z€A €A €A

Therefore, 1b(B) # 0 and ub(B) # (0 also hold. Thus, by the almost pseudo-inf-
completeness of X, we also have inf (B) # 0.

Now, it remains to note that by Corollary 2.6 we also have

inf (A) :inf( U{a, x}) :inf( |J inf ({a, m}) — inf (B).

r€A z€A

Therefore, inf (A) # () also holds, and thus X is pseudo-inf-complete.

The following theorem is a generalization of the first part of [I, Theorem 9, p. 115]. Our
subsequent sketch of the proof shows that the two and a half line proof given there may only

be considered as a hint.

Theorem 4.4 If X is transitive, then the following assertions are equivalent :

(1) X s two-lb-complete and semi-inf-complete ;

(2) X s two-inf-complete and almost semi-inf-complete .

Proof: Again, it is clear that (1) = (2) even if X is not transitive. Moreover, the first
part (2) always implies that of (1). Therefore, to prove the converse implication (2) = (1),
we need only show that (2) implies the second part of (1).

For this, assume that (2) holds, and moreover A C X such that A # () and 1b(A) # 0.
Choose a € A, and define
B = U inf ({a, z}).
z€A
Then, it is clear that () # B C X. Namely, by the two-inf-completeness of X and the
definition of B, we evidently have () # inf({a,a}) C B.

Moreover, from the proof of Theorem 4.3, we can see that 1b(B) # () and ub(B) # () also
hold. Thus, by the almost semi-inf-completeness of X, we also have inf (B) # (). Now, it
remains to note that by the proof of Theorem 4.3, we also have inf (A) = inf (B). Therefore,
inf (A) # () also holds, and thus X is semi-inf-complete.
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5 Two illustrating examples
Example 5.1 If X ={a, b, ¢} such that we only have
a<b, b<c, c<a and <z for all re X,

then X is total and antisymmetric. Moreover, X 1is two-inf-complete, but not finitely
quasi-lb-complete. Thus, by Remark 3.2, X is also two-lb-complete, but not finitely quasi-

inf-complete.

To check that X is not finitely quasi-lb-complete, note that

Ib(a) = {a, c}, b () = {a, b}, b (5) = {b, c}.
Therefore, by Corollary 1.3, we have

Ib (X) =1b(a) N1b(b) N1b(c)

0,

and thus X is not finitely quasi-lb-complete.

Moreover, we can quite similarly see that

b({a,b})={a},  B({ac))={c.  b({be})={b}.

Hence, since by the dual of Theorem 1.8 we have z € max (z) for all z € X | it is already

clear that
inf ({z,y}) =max (Ib({z,y})) #0

for all z,y € X with x # y. Moreover, by Theorem 1.8, we also have z € inf (z), and
hence inf (z) # 0 for all z € X. Therefore, X is two-inf-complete.

Remark 5.2 In addition to Example 5.1 and Corollary 2.4, it is worth noticing that if X
is reflexive, antisymmetric and

Ib(A) =1b (inf (A))
forall A C X with card(A) =2 and inf (A) # 0, then X is necessary transitive. Thus,

by Theorem 3.4, X is finitely quasi-inf-complete if and only if it is two-inf-complete.

To check the transitivity of X, by Theorem 2.1 it is enough to show only that if x € X,
y€lb(z), z €lb(y) and r#y,

then z € 1b(z). For this, note if A = {z, y}, then by Theorem 1.8 and Corollaries 1.3

and 1.5 we have

y€lb(z)Nlb(y) =1b(A) and yeAcCub(lb(A)).
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Hence, by Theorems 1.6 and 1.11, it is clear that
y€lb(A)Nub(lb(A)) =inf(A), and thus {y} =inf (A4).
Now, by using our former assumptions and observations, we can already easily see that
z€lb(y) =1 (inf(A)) =1b(A) =1b(z)Nlb(y) C Ib(z).

Example 5.3 If X ={a, b, ¢, d} such that we only have

then X is transitive and antisymmetric. Moreover, X is almost semi-inf-complete, but not

semi-inf-complete.
To check this, note that

b (a) = {a}, b () =10, Ib(c)={a}, 1b(d)={a,b,c};
ub(a) = {a, ¢, d}, ub(b)={d}, ub(c)={d}, ub(d)=0.
Hence, by Theorem 1.6 and the dual of Corollary 1.3, it is clear that

inf (d) = 1b (d) Nub (1b (d)) = b (d) Nub (a) Nub (b) Nub (¢) = 0.

Therefore, X is not semi-inf-complete.

Moreover, by Corollary 1.3, it is clear that, for any A C X,
b(A)#0 = Ac{a,c,d} and ub(A)#0 = AcC{a,b,c}.
Therefore, if A#@, Ib(A)# 0 and ub(A) # 0, then we necessarily have
A= {a} or A=A{c} or A={a,c}.

Hence, by Corollary 1.3, it is clear that 1b(A) = {a}. Moreover, by Theorem 1.6, it is clear
that
inf (A) =1b(A) Nub (b (A)) =1b(a) Nub(a) = {a}.

Therefore, X is almost semi-inf-complete.
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